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Abstract

Functional laws may be known only at a fi-
nite number of points, and then the function
can be completed by interpolation tech-
niques obeying some smoothness condi-
tions. We rather propose here to specify
constraints by means of gradual rules for de-
limiting areas where the function may lie be-
tween known points. Such an approach
results in an imprecise interpolation graph
whose shape is controlled by tuning the
fuzziness attached to the reference points.
However, the graph so-built is still crisp,
which means that different possible paths
between the interpolation points cannot be
distinguished according to their plausibility.
The paper discusses a method for introduc-
ing membership degrees inside the interpo-
lation graph. The developed formalism
relies on the use of weighted nested graphs.
It amounts to handling level 2 gradual rules
for specifying a family of flexible con-
straints on the reference points. The pro-
posed approach is compared with the one of
extending gradual rules for dealing with type
2 fuzzy reference points.

Keywords: Gradual rules, Fuzzy interpola-
tion, Level 2 fuzzy sets

1 Introduction

The main purpose of this paper is to further investi-
gate the interest of gradual rules [5] for modelling in-
terpolative reasoning. What is supposed to be known,
in a precise or in an imprecise way, is the behaviour of
a system at some points or in some areas, the problem
being to interpolate between these regions. The pro-
posed rule-based approach is an alternative to works
based on fuzzy polynomial [10] or fuzzy spline inter-
polation [9], [1], which rely on fuzzy-valued func-

tions. Using such techniques, fuzzy interpolation
depends on the analytical form of the interpolant (lin-
ear, polynomial, spline-based). 

Using a rule-based formalism, we are no longer look-
ing for a function, possibly fuzzy, but for a relation
linking input variables to output variables, still con-
strained by the points which govern the interpolation.
Actually, each constraint is expressed by a rule that
encapsulates the underlying reference point. This
principle was developed in [7], then applied to impre-
cise modeling for the classification of time series [8].
In these first attempts, the built interpolation graphs
are imprecise but still crisp. Actually, the fuzziness in-
troduced for modeling closeness with respect to pre-
cise interpolation points is not present in the
interpolation graph. This paper presents a refinement
of the rule-based representation that enables the han-
dling of fuzzy interpolation graphs. The proposed
method consists in implementing level 2 gradual
rules.

The paper, after some brief background on gradual
rules, discusses interpolation between precisely
known points. Then, the building of nested interpola-
tive graphs is addressed. Their weighting allows the
definition of fuzzy graphs as level 2 fuzzy sets of crisp
graphs. Finally, it is shown that similar results can be
obtained using a type 2 fuzzy set-based approach.

2 Interpolation and gradual rules

In the one-dimensional input case considered in the
paper, the input-output relation is represented by its
graph Γ defined on the Cartesian product X x Z (where
X is the input domain, and Z the output domain). The
idea of imprecise interpolation suggested above is
based on constraints to be satisfied, namely the postu-
late that the results of the interpolation should agree
with the interpolation points. These constraints
should be expressed in order to define the graph Γ of
the relation on X x Z.

Fuzzy interpolation and level 2 gradual rules

Sylvie Galichet 1,2 Didier Dubois1 Henri Prade1

1 IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4
2 LISTIC, Université de Savoie, 41 avenue de la plaine, BP806, 74016 Annecy Cedex

galichet@univ-savoie.fr dubois@irit.fr prade@irit.fr



We consider the case of precise interpolation points Pi
with coordinates (xi, zi), i = 1, ..., n. Then the relation
Γ should satisfy:

Γ(xi, zi) = 1,
∀ z≠zi ∈ Z, Γ(xi, z) = 0,

for i = 1, ..., n. Without any further constraint on the
nature of the interpolation, we only have:

∀ x≠xi ∈ X, ∀ z∈ Z, Γ(x, z) = 1.

Thus each interpolation point induces the constraint
“If x = xi then z = zi”, represented by (x = xi) → (z =
zi) where → is the material implication. The relation
Γ is thus obtained as the conjunction:

Γ(x, z) = ∧  i = 1, .., n (x = xi) → (z = zi). (1)

This relation is extremely imprecise since there is no
constraint at all outside the interpolation points. The
absence of a choice of a precise type of interpolation
function should be alleviated by the use of fuzzy rules
in order to express constraints in the vicinity of the in-
terpolation points. The idea is to use rules of the form
“the closer x is to xi, the closer z is to zi” [5]. The ex-
tension to gradual rules of equation (1) provides the
following expression for the graph Γ:

Γ(x, z) = min i = 1, .., n µclose to xi
(x) → µclose to zi

(z)(2)

where → represents Rescher-Gaines implication, i.e.
a → b = 1 if a ≤ b and a → b = 0 if a > b, and the value
µclose to xi

(x) is the degree of truth of the proposition
“x is close to xi”.

Two comments on equation (2) are worth stating.
First, the principle underlying the rules is the one at
work in analogical or case-based reasoning and (2) is
interpreting this principle as a constraint (as opposed
to a weaker interpretation leading to Mamdani-like
fuzzy systems, see [3]). Moreover, (2) embeds inter-
polation in a purely logical setting (see [2]) which
does not require a defuzzification step.

We have now to define what is meant by “close to”.
Let Ai denote the fuzzy set of values close to xi. It is
natural to set µAi

(x) = 1 if x = xi and to assume that the
membership degree to Ai decreases on each side of xi
with the distance to xi. The simplest solution consists
in choosing triangular fuzzy sets with a support denot-
ed by [xi

−, xi
+]. In a similar way, the closeness to zi

will be modelled by a triangular fuzzy set Bi with mo-
dal value zi and support [zi

−, zi
+]. Then the interpola-

tion relation only depends on 4n parameters xi
−, xi

+,

zi
−, zi

+ for n interpolation points. 

We might think of using a strong fuzzy partition both
for X and Z (i.e. ∀ x∈ X, Σi=1, ..., n µAi

(x) = 1 and ∀ z∈ Z,
Σi=1, ..., n µBi

(z) = 1), with triangular fuzzy sets Ai and
Bi. In this case, as shown in [5] and [7], gradual rules
lead to a precise and linear interpolation, as pictured
in Figure 1 with 3 interpolation points.

Figure 1: Linear interpolation

The interpolation graph becomes more imprecise
when the fuzzy reference points define more permis-
sive constraints. It amounts to modifying their sup-
ports while ensuring some tuning conditions. In
particular, the graph should remain connected in order
to guarantee that any feasible input is associated with
an output value. This means that conflict should be
avoided when two rules are simultaneously fired, i.e.
when x∈ [xi+1

−, xi
+]. In other words, coherence condi-

tions for the set of fuzzy rules should be satisfied [6].
In [7], additional conditions are exhibited so as to
shape the interpolation graph. Actually, piecewise
graphs based on 4-sided areas (see figure 2) can be
obtained using a suitable tuning of the fuzzy closeness
relation with respect to reference points.

Looking at figure 2, one may be disappointed that the
fuzziness introduced in the closeness relations is no
more present in the interpolation graph. The next sec-
tion is devoted to the issue of introducing membership
degrees in the 4-sided areas while keeping their sup-
port unchanged. Such an appoach is motivated by the
need to evaluate the relative merits of different possi-
ble paths between the reference points.
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Figure 2: Quadrangle-based interpolation graph

3 Interpolative fuzzy graph

According to equation (2), it is obvious that using a
crisp implication for defining the graph necessarily
results into a crisp graph. Then, the most intuitive
strategy for keeping memberhip degrees in the inter-
polative graph consists in replacing Rescher-Gaines
implication by another one. In order to be in accord-
ance with the semantics of gradual rules, only residu-
ated implications can be used, which means that: 

a → b = 1 if a ≤ b and a → b = α if a > b (3)

where α depends on the chosen implication. From
equations (2) and (3), it is obvious that the core of the
graph Γ (white areas in figure 2) does not depend on
the chosen implication. Actually, only values outside
the core area (black areas with zero membership gra-
de in figure 2) are concerned with the implication
choice. Thus, our aim when introducing membership
degrees in the 4-sided areas cannot be achieved sim-
ply by choosing a suitable fuzzy implication. As an al-
ternative, an approach based on level 2 gradual rules
(still implemented using Rescher Gaines implication)
is proposed. 

3.1 Nested graph family

According to section 2, it is clear that given a set of
rules, i.e. a set of reference points, a collection of crisp
graphs is obtained by varying the support parameters
of the Ai’s and/or the Bi’s. Moreover, inclusion prop-

erties between the built graphs can be exhibited for
controlling the variation of the supports as expressed
by the following statements.

P1: If Ai ⊆ Ai*, i=1, ..., n, then Γ* ⊆ Γ, 
where Γ and Γ* are the graphs associated with
rules Ai → Bi and Ai* → Bi respectively. 

The proof of P1 is immediate. Indeed, (x, z) ∈ Γ *
means that ∀ i, Ai*(x) ≤ Bi(z). According to the as-
sumption that ∀ i, Ai ⊆ Ai*, it follows that ∀ i, Ai(x) ≤
Bi(z) which results in (x, z) ∈ Γ.

P2: If Bi* ⊆ Bi, i=1, ..., n, then Γ* ⊆ Γ, 
where Γ and Γ* are now the graphs associated
with rules Ai → Bi and Ai → Bi* respectively. 

The proof of P2 is also immediate. Indeed, (x, z) ∈ Γ *
if and only if ∀ i, Ai(x) ≤ Bi*(z). Since ∀ i, Bi* ⊆ Bi, it
follows that ∀ i, Ai(x) ≤ Bi(z), i.e. (x, z) ∈ Γ.

The combination of P1 and P2 leads to:

P3: If Ai ⊆ Ai* and Bi*⊆ Bi, i=1, ..., n, then Γ*⊆ Γ,
where Γ and Γ* are the graphs associated with
rules Ai → Bi and Ai*→ Bi* respectively. 

Thus, according to the above inclusion properties, it is
possible to design a family of nested graphs simply by
building collections of nested fuzzy subsets on X and
Z. Indeed, denote { Ai

λ, λ∈ [0,1]}  a family of fuzzy
subsets on X such that Ai

λ’ ⊆ Ai
λ if λ≥λ’ and { Bi

λ,
λ∈ [0,1]}  a family of fuzzy subsets on Z such that Bi

λ

⊆ Bi
λ’ if λ≥λ’. The graph family associated with rules

Ai
λ → Bi

λ, λ∈ [0,1], guarantees that Γλ ⊆ Γλ’ if λ≥λ’.
Actually, such a construction of nested graphs simply
expresses that implicative graphs increase in the sense
of inclusion when underlying constraints become
more permissive. Indeed, more permissive rules are
obtained either by restricting input conditions further,
or by enlarging output fuzzy sets. 

Using a convex linear combination of fuzzy intervals
enables the automatic construction of a collection of
nested fuzzy subsets ranging from the lower bound of
the family to the upper one. Applying such a tech-
nique results in the following equation:

Ai
λ = (1−λ)Ai

0 ⊕  λAi
1, λ∈ [0,1], i=1, .. ,n (4)

where Ai
0 and Ai

1, such that Ai
0 ⊆ Ai

1, are the lower
and upper bounds of the family and ⊕ denotes the ex-
tended sum of fuzzy numbers. 

In the same way, nested output fuzzy subsets can be
built according to:
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Bi
λ = (1−λ)Bi

0 ⊕  λBi
1, λ∈ [0,1], i=1, .. ,n (5)

where Bi
0 and Bi

1, such that Bi
1 ⊆ Bi

0 , are the upper
and lower bounds of the family. It should be noted that
the inclusion ordering of the Bi

λ for increasing λ is the
converse of the one of the Ai

λ, due to opposite behav-
iors with respect to graph inclusion. 

Using such fuzzy subset families (see figure 3) results
in the following graph inclusions:

Γ1 ⊆ Γλ ⊆ Γλ’⊆ Γ0, λ,λ’ ∈ [0,1] and λ≥λ’. (6)

Figure 3: Nested fuzzy subsets (λ>λ’)

Another interesting point is that the 4-sided shape is
shared by all nested graphs provided that the lower
and upper graphs are themselves quadrangle-shaped.

3.2 Fuzzy graph

According to the previous section, the construction of
indexed nested graphs can be easily handled from the
knowledge of lower and upper graphs. Now, given the
above family {Γλ, λ∈ [0,1]} , there is a unique fuzzy
set F whose λ−cuts Fλ are precisely Γλ for each λ
∈ [0,1]. This fuzzy set is built using the standard rep-
resentation theorem [11], that is:

µF(x, z) = supλ ∈ [0,1] min (λ, Γλ(x, z) ) (7)

It should be noticed that equation (7) is based on the
equality Fλ = Γλ in which two different meanings of
λ are involved depending on the used notation. When
λ is used as a subscript, it should be interpreted as a
level-cut. On the other hand, the corresponding super-
script is relative to the index of an element of a family
of nested subsets.

According to formulation (7), the reconstructed F is
finally a classical fuzzy graph defined on X x Z. An-
other interpretation consists in viewing F as a fuzzy
set of crisp graphs, that is as a level 2 fuzzy set [12].
In this case, F is represented as:

F = ∫λ ∈ [0,1] λ / Γλ (8)

according to Zadeh’s notation where the integral sign
stands for the union of the fuzzy singletons λ / Γλ.

Figure 4 plots the fuzzy graph obtained when the low-
er graph Γ1 is precise and piecewise linear (as in fig-
ure 1) and the upper graph Γ0 has the quadrangle-
based shape of figure 2.

Figure 4: Fuzzy graph obtained by a set of gradual 
rules

According to Figure 3, families { Ai
λ, λ∈ [0,1]}  and

{ Bi
λ, λ∈ [0,1]} , i=1, ...,n, can also be viewed as type 2

fuzzy subsets, i.e. fuzzy sets with fuzzy membership
grades [12]. In this framework, one may wonder if ex-
tending the Rescher-Gaines implication to fuzzy set-
valued arguments would be compatible with equation
(7). Let us examine this approach a little further in the
case of a single rule, i.e. n=1. 

Let  and  be type 2 fuzzy subsets on X and Z de-
fined according to nested families { Aλ, λ∈ [0,1]}  and
{ Bλ, λ∈ [0,1]}. 

It follows that membership degrees in  and  are
now fuzzy subsets on [0,1], that is:

 and , (9)

where the membership functions of  and  can
be deduced from the construction of  and . When
x and z belong to the support of A0 and B1, the mem-
bership functions obtained for  and  are given
in Figure 5.

Figure 5: Fuzzy membership degrees  and  
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mapping from [0,1]x[0,1] to { 0,1}  defined by f(a,b) =
a→b. Extending f to the fuzzy set-valued arguments

 and  leads to:

 = sup{λ∈ [0,1]: t∈ f( λ, λ)} (10)

where t∈{ 0,1}  and λ (resp. λ) denotes the λ−
cut of  (resp. ). Since λ = [µAλ(x), µA1(x)]
and λ = [µB1(z), µBλ(z)] (see Figure 5), it follows
that:

(1) = sup{λ∈ [0,1]: µAλ(x)≤ µBλ(z)} (11)

and

(0) = 1 if µA1(x) > µB1(z) (12)

= 0 otherwise. (13)

From equations (11) and (7), it can be concluded that: 

µF(x, z) = (1) (14)

which means that the fuzzy graph F can be obtained
from a type 2 reasoning by considering the “true” case
only. The information provided by the “false” case is
quite poorer since the degree of membership of 0 to
f( , ) simply defines the complement of the
core of F, i.e. this degree is 1 if (x, z) ∉ core(F) and 0
otherwise. 

Links between type 2 and level 2 interpretations are
illustrated on figure 6 for a single gradual rule.

Figure 6: Type 2-based construction

Further computations are still necessary for combin-
ing several implicative rules in the case of a type 2 in-
terpretation. Actually, even if both approaches (level

2 and type 2 constructions) lead to similar fuzzy
graphs, it is more convenient to adopt the level 2 in-
terpretation. 

The proposed approach based on (7) or (14) provides
a constructive method for deriving a genuine fuzzy
implication from a set of gradual rules. That it is a
genuine implication can be checked by verifying the
following properties:

if µA1(x) ≥ µA1(x*) then µF(x, z) ≤ µF(x*, z)
if µB0(z) ≥ µB0(z*) then µF(x, z) ≥ µF(x, z*)

Moreover,

if µA1(x) = 1 then µF(x, z) = 0 when µB0(z) ≠1
if µA1(x) = 0 then µF(x, z) = 1
if µB0(z) = 1 then µF(x, z) = 1 (identity principle).

It is interesting to compare our construction to the one
in [4]. This paper establishes results under which
fuzzy implications can be decomposed as convex
sums of crisp rules. It assumes a finite number of
membership grades. Under certain mild conditions,
this decomposition involves a nested family of gradu-
al rules of the form mi(A)→B where {mi} is a family
of modifiers affecting the condition part only. In the
present paper, both conditions and conclusions are
varied.

4 Conclusion

This paper illustrates how fuzzy interpolation graphs
can be obtained from gradual rules. The easiest strat-
egy consists in building nested crisp graphs whose
weighting allows the construction of the final fuzzy
graph in the form of a level 2 graph.

This method is compatible with a type 2 interpretation
which applies the extension principle to the Rescher-
Gaines implication with fuzzy set-valued arguments.

An interesting point for further investigation concerns
the interpretation of the interpolative crisp graphs in
terms of some properties of the underlying functions,
especially their derivatives. If such links could be ex-
hibited, they would provide a theoretical framework
for the choice of the lower and upper graphs that are
used for the building of the fuzzy interpolative
graphs.

From a practical point of view, a relevant use of the
proposed fuzzy interpolation technique still requires
that the multi-input case be developed. In this context,
the construction of nested interpolation graphs by
means of families of gradual rules with composite an-
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f ã x( ) b̃ z( ),( )

(0)=Core (F)µ
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tecedents is also a matter of further research.
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