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Abstract

We find necessary and sufficient conditions for a generalised Mehler
semigroup to be covariant under the action of a locally compact group.
These are then applied to implement “noise reduction” for Hilbert-
space valued Ornstein-Uhlenbeck processes driven by Lévy processes.

1 Introduction

Generalised Mehler semigroups are beautiful objects which have attracted the
attention of both analysts and probabilists. They are semigroups of linear
operators (T (t), t ≥ 0) acting on the space of bounded continuous functions
on a real separable Hilbert space which are built from two components:

• a C0-semigroup (S(t), t ≥ 0) acting in H with generator J ,

• a family (µt, t ≥ 0) of probability measures on H satisfying the skew-
convolution property µt+r = µt ∗ (µr ◦ (S(t)−1),

through the formula

(T (t)f)(x) =

∫

H

f(S(t)x + y)µt(dy).

From a probabilistic point of view, they arise as the transition semigroups
of H-valued Ornstein-Uhlenbeck processes (Y (t), t ≥ 0) which are driven by
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H-valued Lévy processes (Z(t), t ≥ 0) (i.e. processes with stationary and
independent increments) through the stochastic differential equation:

dY (t) = JY (t)dt + dZ(t).

When H is infinite-dimensional, such equations have been extensively studied
in the Gaussian case where Z is a standard Brownian motion (see e.g. [6]),
and have been extended to the more general Lévy case in [5] and [2]. In
the “classical case” where J is a negative scalar and H is finite dimensional,
the use of Lévy noise has attracted recent attention through applications
to volatility models in option pricing [3], [16] and branching processes with
immigration [15].

From the analytic viewpoint, extensive work on Mehler semigroups has
been carried out by M.Röckner and his collaborators ([4], [9], [12], [13],
[18]). In particular, they have shown that when invariant measures exist,
the generators can be constructed as pseudo-differential operators acting in
a suitable Lp space [12], while in [18], the strong Feller property is proved
and the Harnack, Poincaré and logarithmic Sobolev inequalities established.
Applications of generalized Mehler semigroups to measure-valued catalytic
branching processes have been developed in [7].

From a modelling viewpoint, a Mehler semigroup (or Ornstein-Uhlenbeck
process) describes the interaction of a system, which may itself be highly com-
plex, with a noisy environment. It is natural to seek to simplify the problem
by exploiting symmetry, when this is present. To this end, in this paper we
assume that the Hilbert space H carries a unitary representation of a group
G and we ask for conditions under which the Mehler semigroup commutes
with this group action. Our main result is that necessary and sufficient con-
ditions for this are that the semigroup (S(t), t ≥ 0) itself commutes with the
group action and the probabilities (µt, t ≥ 0) are left invariant. When G acts
irreducibly, this forces S(t) to be trivial, so we have a “classical” Ornstein-
Uhlenbeck process and the driving noise is simplified. In the non-compact
case, we have extensive “noise reduction” in that the only admissible (i.e.
suitably invariant) driving Lévy processes are those of pure jump type.

Acknowledgement. I am grateful to Robin Hudson for a helpful obser-
vation and to the referee for useful comments

Notation R+ = [0,∞). If T is a topological space, then B(T ) denotes
its Borel σ-algebra. If H is a real separable Hilbert space, Bb(H) is the space
of bounded Borel measurable real-valued functions on H and L(H) is the
∗-algebra of all bounded linear operators on H. If M is a non-empty subset
of L(H), then M ′′ is the smallest von Neumann algebra containing M . I is
the identity operator in L(H). The domain of a linear operator T acting in
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H is denoted as Dom(T ). A mapping from R+ to H is càdlàg if it is right
continuous and has a left limit at every point.

If x ∈ H, δx denotes Dirac mass at x which is the probability measure on
B(H) defined by δx(A) = 1 if x ∈ A, and δx(A) = 0 if x /∈ A. µ1 ∗µ2 denotes
the convolution of Borel measures µ1 and µ2 defined on H.

If (Ω,F , P ) is a probability space and X : Ω → H is a random variable,
the law of X is the probability measure pX defined on B(H) by pX(A) =

P (X ∈ A). If X and Y are two such random variables, we write X
d
= Y if

pX = pY .

2 Generalised Mehler Semigroups ([4], [9])

Let H be a real separable Hilbert space and (S(t), t ≥ 0) be a C0-semigroup
acting in H with infinitesimal generator J . Let (µt, t ≥ 0)) be a family of
probability measures defined on B(H). Consider the space Cb(H) of bounded
continous real valued functions on H. It is a Banach space when equipped
with the supremum norm. We define a family of bounded linear operators
(T (t), t ≥ 0) on Cb(H) by the prescription

(T (t)f)(x) =

∫

H

f(S(t)x + y)µt(dy), (2.1)

for each t ≥ 0, f ∈ Cb(H), x ∈ H. It is shown in [4] that (T (t), t ≥ 0) is a
semigroup if and only if (µt, t ≥ 0) is a skew-convolution semigroup in the
sense that

µt+r = µt ∗ (µr ◦ (S(t)−1) (2.2)

for all t, r ≥ 0.
If ν is a finite Borel measure on H we denote its Fourier transform by

ν̂ : H → C, so that

ν̂(y) =

∫

H

ei〈x,y〉ν(dx),

for each y ∈ H. In [4] it is further established that if for all y ∈ H,

• the mapping t → µ̂t(y) is locally absolutely continuous on [0,∞) and
differentiable at t = 0,

• the mapping t → λ(S(t)∗y) is locally Lebesgue integrable on [0,∞),
where

λ(y) := − d

dt
µ̂t(y)

∣∣∣∣
t=0

,
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then (2.2) is equivalent to

µ̂t(v) = exp

{
−

∫ t

0

λ(S(r)∗v)dr

}
, (2.3)

for all v ∈ H. The mapping λ : H → C is negative definite, hermitian and
satisfies λ(0) = 0.

In the sequel we will always assume that the conditions given above hold.
(T (t), t ≥ 0) is then called a (generalised) Mehler semigroup. We also assume
that λ is Sazonov continuous, i.e. it is continuous with respect to the locally
convex topology on H generated by the seminorms y → ||Ay||, where A
runs over all Hilbert-Schmidt operators in H. We can now utilise the Lévy-
Khinchine formula in H (see e.g. Chapter 6 in [17]) to assert that λ must
take the form

λ(y) = −i〈b, y〉+
1

2
〈y, Qy〉

+

∫

H−{0}
(1− ei〈u,y〉 + i〈u, y〉1{||u||<1})ν(du), (2.4)

where b ∈ H,Q is a positive, self-adjoint trace class operator on H and ν
is a Lévy measure on H − {0}, i.e.

∫
H−{0}(||x||2 ∧ 1)ν(dx) < ∞. The triple

(b,Q, ν), which is the (set of) characteristics of λ, determines λ uniquely.
Note that (T (t), t ≥ 0) is not strongly continuous on Cb(H) with the usual

uniform topology. Provided (µt, t ≥ 0) is weakly convergent to Dirac mass
at the origin, it can be shown to be continuous with respect to the so-called
mixed topology (see [10], [11]). We will not need such results in this paper.

3 Covariant Mehler Semigroups

Let G be a locally compact group and U be a continuous unitary (non-trivial)
representation of G in H. For each g ∈ G, define Ug : Cb(H) → Cb(H) by

(Ugf)(x) = f(Ugx),

for each f ∈ Cb(H), x ∈ H, then g → Ug is a anti-homomorphism of G
into the automorphism group of the Banach algebra Cb(H). We say that
the Mehler semigroup (Tt, t ≥ 0) is covariant under the action U of G (or
G-covariant, for short) if

T (t)Ug = UgT (t),

for each t ≥ 0, g ∈ G. In the sequel, ρg := ρ ◦ U−1
g , for all g ∈ G, whenever ρ

is a function or measure defined on H.
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Theorem 3.1 The following are equivalent:

(i) The Mehler semigroup (T (t), t ≥ 0) is G-covariant,

(ii) µt ∗ δS(t)Ugx = δUgS(t)x ∗ µg
t ,

(iii) ei〈v,S(t)Ugx〉µ̂t(v) = ei〈v,UgS(t)x〉µ̂g
t (v),

for all g ∈ G, x, v ∈ H, t ≥ 0.

Proof. (i) ⇒ (ii). For all f ∈ Cb(H), x ∈ H,

(UgT (t)f)(x) =

∫

H

f(S(t)Ugx + y)µt(dy) =

∫

H

f(y)(µt ∗ δS(t)Ugx)(dy).

(T (t)Ugf)(x) =

∫

H

f(UgS(t)x + Ugy)µt(dy)

=

∫

H

f(UgS(t)x + y)µg
t (dy)

=

∫

h

f(y)(δUgS(t)x ∗ µg
t )(dy).

(ii) ⇒ (i) is immediate.

(ii) ⇒ (iii) Put f(·) = ei〈v,·〉.

(iii) ⇒ (ii) follows from the fact that a finite measure is uniquely deter-
mined by its Fourier transform. ¤

It is clear from Theorem 3.1 that sufficient conditions for (T (t), t ≥ 0) to
be G-covariant are

[S(t), Ug] = 0 and µg
t = µt, (3.5)

for each t ≥ 0, g ∈ G. To establish whether these are also necessary, we must
probe at the infinitesimal level and from now on, we make the additional
assumption that

Ug(Dom(J)) ⊆ Dom(J),

for all g ∈ G. Note that we can replace this by the weaker requirement that
J has a Ug invariant core, for all g ∈ G, whenever such a core exists.

Theorem 3.2 The following are equivalent:
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(i) The Mehler semigroup is G-covariant.

(iv) UgJx = JUgx and λg = λ,

(v) [S(t), Ug] = 0 and µg
t = µt,

for all t ≥ 0, g ∈ G, x ∈ Dom(J).

Proof. (i) ⇒ (iv) Apply (2.3) in Theorem 3.1 (iii) to obtain for each
t ≥ 0, g ∈ G, x, v ∈ H,

exp

{
−

∫ t

0

{λ(S(r)∗U−1
g v)− λ(S(r)∗v)}dr

}
= exp{i〈v, [S(t), Ug]x〉}.

Now take x ∈ Dom(J), differentiate both sides of the above equation and let
t = 0 to obtain

λ(v)− λg(v) = i〈v, [J, Ug]x〉.
From this we deduce that the linear mapping from Dom(J) to H given by
x → [J, Ug]x is constant. But 0 ∈ Dom(J) ⇒ [J, Ug]x = 0 for all x ∈
Dom(J) ⇒ λg = λ.

(iv) ⇒ (v) That UgJx = JUgx for all x ∈ Dom(J) ⇒ [S(t), Ug] = 0 is a
standard (easily verified) fact about C0-semigroups. If λg = λ then by (2.3),
we see that

µ̂t
g(v) = exp

{
−

∫ t

0

λ(S(r)∗U−1
g v)dr

}

= exp

{
−

∫ t

0

λ(U−1
g S(r)∗v)dr

}

= exp

{
−

∫ t

0

λg(S(r)∗v)dr

}

= µ̂t(v).

But each µ̂t
g = µ̂g

t , hence µg
t = µt, by the uniqueness of Fourier transforms.

(v) ⇒ (i) is immediate ¤
It follows from the Lévy-Khintchine formula (2.4) that λg = λ for all

g ∈ G if and only if

Ugb = b, Q = UgQU−1
g , νg = ν, (3.6)

for all g ∈ G. If (3.6) holds, we say that λ has G-invariant characteristics.
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Corollary 3.1 If G acts irreducibly on H, then (T (t), t ≥ 0) is G-covariant
if and only if

1. There exists α ∈ R such that S(t) = eαtI for all t ≥ 0,

2. λ has G-invariant characteristics with b = 0, Q = cI, for some c ≥ 0.

In the case where H is infinite-dimensional, (2) is replaced by
2′ λ has characteristics (0, 0, ν) where νg = ν, for all g ∈ G.

Proof. The condition (1) on the semigroup is a consequence of Schur’s
lemma. Using (3.6), we see that for G-covariance, the ray {ρb, ρ ∈ R}must be
invariant under the action of G, hence b = 0 by irreducibility when dim(H) ≥
2. When dim(H) = 1, b = 0 follows immediately from (3.6). From Schur’s
lemma again, we must have Q = cI with c ≥ 0, and in infinite dimensions Q
cannot be trace class unless c = 0. ¤

We recall that the irreducible representations of compact Lie groups are
always finite dimensional, so Corollary 3.1 makes most impact on noise re-
duction when G is non-compact.

4 Covariant Ornstein-Uhlenbeck Processes

Let (Ω,F , (Ft, t ≥ 0), P ) be a stochastic base wherein the filtration (Ft, t ≥
0) satisfies the usual hypotheses of completeness and right continuity and let
X = (X(t), t ≥ 0) be a (time homogeneous) Markov process defined on Ω
and taking values in H. For each t ≥ 0, x ∈ H, A ∈ B(H), pt(x,A) is the
transition probability P (X(t) ∈ A|X(0) = x). We say that X has covariant
transitions if for all t ≥ 0, x ∈ H,A ∈ B(H), g ∈ G:

pt(Ugx, A) = pt(x, U−1
g A). (4.7)

Let (M(t), t ≥ 0) be the transition semigroup of X acting on Bb(H), so that
(M(t)f)(x) = E(f(X(t))|X(0) = x) for each t ≥ 0, x ∈ H, f ∈ Bb(H).

Proposition 4.1 (M(t), t ≥ 0) is G-covariant if and only if X has G-
covariant transition probabilities.

Proof. This follows from the facts that for each g ∈ G, x ∈ H, f ∈
Bb(H), t ≥ 0,

(UgM(t)f)(x) =

∫

H

f(y)pt(Ugx, dy), and

(M(t)Ugf)(x) =

∫

H

f(Ugy)pt(x, dy) =

∫

H

f(y)pt(x, U−1
g dy).

7



¤
We recall that a Markov process X is G-invariant if it has invariant laws,

i.e. for all t ≥ 0, A ∈ B(H), g ∈ G,

pX(t)(A) = pX(t)(U
−1
g A).

For the next result we assume that X is normal, i.e. the mapping x →
pt(x,A) is measurable for each t ≥ 0, A ∈ B(H).

Corollary 4.1 If the normal Markov process X has G-invariant transition
probabilities and the law of X(0) is G-invariant, then X is G-invariant.

Proof For each t ≥ 0, A ∈ B(H), g ∈ G,

pX(t)(U
−1
g A) =

∫

H

pX(0)(dx)pt(x, U−1
g A)

=

∫

H

pX(0)(Ugdx)pt(Ugx,A)

= pX(t)(A),

where we have used the fact that each Ug is a bijection of H. ¤
Now let Z = (Z(t), t ≥ 0) be a Lévy process, i.e. a càdlàg, Ft-adapted sto-

chastically continuous process with stationary and independent increments
for which Z(0) = 0 (a.s.). Then there exists a negative-definite, hermitian,
Sazonov continuous function λ : H → C with λ(0) = 0 such that

E(ei〈y,Z(t)〉) = e−tλ(y), (4.8)

for each t ≥ 0, y ∈ H. Let (b,Q, ν) be the characteristics of λ.
The Lévy-Itô decomposition within this context has been established by

Albeverio and Rüdiger ([1], see also [8]). It asserts that there exists a Brown-
ian motion (BQ(t), t ≥ 0) with covariance operator Q and an independent
Poisson random measure N on R+× (H −{0}) with intensity measure l⊗ ν
(where l is Lebesgue measure on R+) such that

Z(t) = tb + BQ(t) +

∫

||x||<1

xÑ(t, dx) +

∫

||x||≥1

xN(t, dx), (4.9)

where Ñ is the compensated Poisson measure, i.e. Ñ(dt, dx) = N(dt, dx)−
dtν(dx).

Now consider the stochastic differential equation

dY (t) = JY (t)dt + dZ(t), (4.10)
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with initial condition Y (0) = Y0, where Y0 is F0-measurable and independent
of (Z(t), t ≥ 0). This has been given a precise meaning using stochastic
integration based on (4.9) in [2] and it is shown therein that it has a unique
weak solution given by the Ornstein-Uhlenbeck process

Y (t) = S(t)Y (0) +

∫ t

0

S(t− r)dZ(r), (4.11)

for each t ≥ 0 (see [5] for an earlier alternative approach, and [4] for a method
for obtaining strong solutions to (4.10) by extension to a larger Hilbert space).
Y is a Markov process and its transition semigroup is a generalised Mehler
semigroup and so has the form (2.1).

By Proposition 4.1, Y has covariant transition probabilities if and only if
(T (t), t ≥ 0) is G-covariant. By Theorem 3.2, we see that this holds whenever
J commutes with the group action and λg = λ, for all g ∈ G. By (4.8), the
latter holds if and only if Z is G-invariant. If G acts irreducibly on H, then
Y is a classical Ornstein-Uhlenbeck process driven by G-invariant Z, so that
(4.10) becomes

dY (t) = αY (t)dt + dZ(t), (4.12)

where α ∈ R.

Example Let H = L2(Rd) and G be the orthogonal group O(d). We
consider the representation of G on L2(Rd) given by (Lgf)(x) = f(g−1x), for
each g ∈ O(d), x ∈ Rd. Let (S(t), t ≥ 0) be the heat semigroup

(S(t)f)(x) = (2πt)−
d
2

∫

Rd

f(x + y)e−
1
2t
|y|2dy,

for each t ≥ 0, f ∈ H, x ∈ Rd. It is well-known (and easily checked) that S(t)
commutes with the group action. J is the usual Laplacian ∆ and its domain
is the Sobolev space

H2(Rd) =

{
f ∈ H;

∫

Rd

|y|2|f̂(y)|2dy < ∞
}

,

where f̂ is the Fourier transform of f , which is easily seen to be invariant
under O(d). The group action is, of course, reducible and the most general
(left) O(d)-covariant Ornstein-Uhlenbeck process is that driven by a (left)
O(d)-invariant Lévy process satisfying the conditions (3.6), e.g. we may take

dY (t) = ∆Y (t)dt + dBQ(t),

where Q is any positive, self-adjoint trace class operator in the commutant
of the real von Neumann algebra N = {Lg, g ∈ G}′′ (see Chapter 4 of [14]
for a general account of such algebras). We may for example take Q = S(1).
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If G is a non-compact group acting irreducibly in G, then Y is of the form
(4.12) with

Z(t) =

∫

||x||<1

xÑ(t, dx) +

∫

||x||≥1

xN(t, dx)

for each t ≥ 0, and νg = ν for each g ∈ G. It is easily verified that a sufficient
condition for the latter is that

N(t, A)
d
= N(t, U−1

g A),

for each t ≥ 0, A ∈ B(H), g ∈ G. As an example, we take Z to be a G-
invariant compound Poisson process,

Z(t) = X1 + X2 + · · ·+ XN(t),

where (Xn, n ∈ N) are i.i.d random variables with common G-invariant law q
and (N(t), t ≥ 0) is an independent Poisson process with intensity h > 0. In
this case ν(·) = hq(·) is a finite measure and we can write the unique weak
solution to (4.12) explicitly as

Y (t) = eαtY0 +
∑

n∈N
eα(t−τn)Xn1[0,t](τn)

for each t ≥ 0, where for each n ∈ N, τn is the nth arrival time for (N(t), t ≥ 0)

and has a gamma distribution with density gn(x) =
hn−1e−hxxn−1

(n− 1)!
1(0,∞)(x).

References
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