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Abstract

We find necessary and sufficient conditions for a generalised Mehler
semigroup to be covariant under the action of a locally compact group.
These are then applied to implement “noise reduction” for Hilbert-
space valued Ornstein-Uhlenbeck processes driven by Lévy processes.

1 Introduction

Generalised Mehler semigroups are beautiful objects which have attracted the
attention of both analysts and probabilists. They are semigroups of linear
operators (T'(t),t > 0) acting on the space of bounded continuous functions
on a real separable Hilbert space which are built from two components:

e a Cy-semigroup (S(t),t > 0) acting in H with generator J,

e a family (u,t > 0) of probability measures on H satisfying the skew-
convolution property sy, = ps * (1 0 (S(t)71),

through the formula
(T(t)f)(x) = /H F(S(0)x + y)nldy).

From a probabilistic point of view, they arise as the transition semigroups
of H-valued Ornstein-Uhlenbeck processes (Y (t),t > 0) which are driven by
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H-valued Lévy processes (Z(t),t > 0) (i.e. processes with stationary and
independent increments) through the stochastic differential equation:

dY (t) = JY (t)dt + dZ(2).

When H is infinite-dimensional, such equations have been extensively studied
in the Gaussian case where Z is a standard Brownian motion (see e.g. [6]),
and have been extended to the more general Lévy case in [5] and [2]. In
the “classical case” where J is a negative scalar and H is finite dimensional,
the use of Lévy noise has attracted recent attention through applications
to volatility models in option pricing [3], [16] and branching processes with
immigration [15].

From the analytic viewpoint, extensive work on Mehler semigroups has
been carried out by M.Réckner and his collaborators ([4], [9], [12], [13],
[18]). In particular, they have shown that when invariant measures exist,
the generators can be constructed as pseudo-differential operators acting in
a suitable LP space [12], while in [18], the strong Feller property is proved
and the Harnack, Poincaré and logarithmic Sobolev inequalities established.
Applications of generalized Mehler semigroups to measure-valued catalytic
branching processes have been developed in [7].

From a modelling viewpoint, a Mehler semigroup (or Ornstein-Uhlenbeck
process) describes the interaction of a system, which may itself be highly com-
plex, with a noisy environment. It is natural to seek to simplify the problem
by exploiting symmetry, when this is present. To this end, in this paper we
assume that the Hilbert space H carries a unitary representation of a group
G and we ask for conditions under which the Mehler semigroup commutes
with this group action. Our main result is that necessary and sufficient con-
ditions for this are that the semigroup (S(t),t > 0) itself commutes with the
group action and the probabilities (yu, ¢ > 0) are left invariant. When G acts
irreducibly, this forces S(t) to be trivial, so we have a “classical” Ornstein-
Uhlenbeck process and the driving noise is simplified. In the non-compact
case, we have extensive “noise reduction” in that the only admissible (i.e.
suitably invariant) driving Lévy processes are those of pure jump type.

Acknowledgement. [ am grateful to Robin Hudson for a helpful obser-
vation and to the referee for useful comments

Notation RT = [0,00). If T"is a topological space, then B(T) denotes
its Borel o-algebra. If H is a real separable Hilbert space, By(H) is the space
of bounded Borel measurable real-valued functions on H and L(H) is the
x-algebra of all bounded linear operators on H. If M is a non-empty subset
of L(H), then M" is the smallest von Neumann algebra containing M. [ is
the identity operator in £(H). The domain of a linear operator 7" acting in
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H is denoted as Dom(7T). A mapping from Rt to H is cadlag if it is right
continuous and has a left limit at every point.

If z € H, 6, denotes Dirac mass at x which is the probability measure on
B(H) defined by 0,(A) =1ifx € A, and 6,(A) =0if o ¢ A. uy * po denotes
the convolution of Borel measures p; and po defined on H.

If (2, F, P) is a probability space and X : 2 — H is a random variable,
the law of X is the probability measure px defined on B(H) by px(A) =

P(X € A). If X and Y are two such random variables, we write X Ly if
bx = Py

2 Generalised Mehler Semigroups ([4], [9])

Let H be a real separable Hilbert space and (S(t),t > 0) be a Cy-semigroup
acting in H with infinitesimal generator J. Let (u,t > 0)) be a family of
probability measures defined on B(H). Consider the space Cy,(H) of bounded
continous real valued functions on H. It is a Banach space when equipped
with the supremum norm. We define a family of bounded linear operators
(T'(t),t > 0) on Cy(H) by the prescription

(ﬂﬂﬁ@%iéf@@x+wmww, (2.1)

for each t > 0, f € Cy(H),x € H. It is shown in [4] that (T(¢),t > 0) is a
semigroup if and only if (¢ > 0) is a skew-convolution semigroup in the
sense that

perr = 1% (e 0 (S(H)7) (2.2)
for all t,r > 0.

If v is a finite Borel measure on H we denote its Fourier transform by
v: H — C, so that

o) = [ i)
H
for each y € H. In [4] it is further established that if for all y € H,

e the mapping t — [i(y) is locally absolutely continuous on [0, c0) and
differentiable at t = 0,

e the mapping t — A(S(t)*y) is locally Lebesgue integrable on [0, c0),
where

d
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then (2.2) is equivalent to

(v) = exp {— /0 t A(S(r)*v)dr}, (2.3)

for all v € H. The mapping A\ : H — C is negative definite, hermitian and
satisfies A\(0) = 0.

In the sequel we will always assume that the conditions given above hold.
(T'(t),t > 0) is then called a (generalised) Mehler semigroup. We also assume
that A is Sazonov continuous, i.e. it is continuous with respect to the locally
convex topology on H generated by the seminorms y — ||Ay||, where A
runs over all Hilbert-Schmidt operators in H. We can now utilise the Lévy-
Khinchine formula in H (see e.g. Chapter 6 in [17]) to assert that A\ must
take the form

Ay) = _’i<b=y>+%<y,Qy>
i / (1= e i (1, y) L gy (), (2.4)
H—{0)

where b € H, () is a positive, self-adjoint trace class operator on H and v
is a Lévy measure on I — {0}, i.e. [ (|[z][> A 1)v(dz) < co. The triple
(b, @Q,v), which is the (set of) characteristics of A\, determines X\ uniquely.
Note that (T'(t),t > 0) is not strongly continuous on Cy,(H) with the usual
uniform topology. Provided (u,t > 0) is weakly convergent to Dirac mass
at the origin, it can be shown to be continuous with respect to the so-called
mixed topology (see [10], [11]). We will not need such results in this paper.

3 Covariant Mehler Semigroups

Let G be a locally compact group and U be a continuous unitary (non-trivial)
representation of G in H. For each g € G, define U, : C,(H) — Cy(H) by

Uy f)(x) = f(Uy),

for each f € Cy(H),xz € H, then ¢ — U, is a anti-homomorphism of G
into the automorphism group of the Banach algebra C,(H). We say that
the Mehler semigroup (7;,¢ > 0) is covariant under the action U of G (or
G-covariant, for short) if

T(t)Z/{g = MQT(t)a

for each ¢ > 0,¢g € G. In the sequel, p :=po Ug_l7 for all g € G, whenever p
is a function or measure defined on H.



Theorem 3.1 The following are equivalent:
(i) The Mehler semigroup (T'(t),t > 0) is G-covariant,
(i) e * Os(tyu,e = OU,S(t)z * 117,
(iii) e@SOUsD) G (1) = ei(v7UgS(t)x)/;g(U);
forallge G,x,ve H;t > 0.

Proof. (i) = (ii). For all f € C,(H),x € H,

UT () f) () = /H (ST + y)unldy) = /H F(9) (ts # Dsnae) ().

(T(OU,f)(x) = /H F(U,S()x + Uy (dy)
- /H F(U,S(0) + y)pd (dy)
- / F(5) (60,5000 % 1) ().

(ii) = (i) is immediate.
(ii) = (iii) Put f(-) = €.
(iii) = (ii) follows from the fact that a finite measure is uniquely deter-

mined by its Fourier transform. O

It is clear from Theorem 3.1 that sufficient conditions for (7'(t),¢ > 0) to
be G-covariant are

[S(t), U] =0 and  pf = pu, (3.5)

for each t > 0, g € G. To establish whether these are also necessary, we must
probe at the infinitesimal level and from now on, we make the additional
assumption that

Uy(Dom(J)) € Dom(J),

for all ¢ € GG. Note that we can replace this by the weaker requirement that
J has a U, invariant core, for all g € GG, whenever such a core exists.

Theorem 3.2 The following are equivalent:



(i) The Mehler semigroup is G-covariant.
(iv) UyJo = JUjx and N9 = A,
(v) [S), Ul =0 and pi =,
forallt > 0,9 € G,z € Dom(J).

Proof. (i) = (iv) Apply (2.3) in Theorem 3.1 (iii) to obtain for each
t>0,9eG,x,ve H,

exp {— /O {A(S(r) U, ) — A<S(r)*v)}dr} = exp{i(v, [S(t), Uglz) }-

Now take x € Dom(.J), differentiate both sides of the above equation and let
t = 0 to obtain
Av) = M (v) =i(v, [J, Ujlx).

From this we deduce that the linear mapping from Dom(.J) to H given by
r — [J,U,]z is constant. But 0 € Dom(J) = [J,U,Jxr = 0 for all =z €
Dom(J) = N = A\

(iv) = (v) That U,Jx = JU,x for all € Dom(J) = [S(t),U,] =0 is a
standard (easily verified) fact about Cy-semigroups. If A9 = X then by (2.3),
we see that

i) — exp{— /0 t)\(S(r)*Uglv)dr}

But each ;7 = ,uA;C’ , hence pf = py, by the uniqueness of Fourier transforms.
(v) = (i) is immediate O

It follows from the Lévy-Khintchine formula (2.4) that A = X for all
g € G if and only if

Upb=0b, Q=U,QU,", 19 =u, (3.6)

for all g € G. If (3.6) holds, we say that A has G-invariant characteristics.



Corollary 3.1 If G acts irreducibly on H, then (T(t),t > 0) is G-covariant
if and only if

1. There exists a € R such that S(t) = eI for allt >0,

2. X has G-invariant characteristics with b =0,Q = cl, for some ¢ > 0.

In the case where H is infinite-dimensional, (2) is replaced by
2 X\ has characteristics (0,0,v) where v9 = v, for all g € G.

Proof. The condition (1) on the semigroup is a consequence of Schur’s
lemma. Using (3.6), we see that for G-covariance, the ray {pb, p € R} must be
invariant under the action of G, hence b = 0 by irreducibility when dim(H) >
2. When dim(H) = 1,b = 0 follows immediately from (3.6). From Schur’s
lemma again, we must have () = ¢I with ¢ > 0, and in infinite dimensions ¢
cannot be trace class unless ¢ = 0. 0

We recall that the irreducible representations of compact Lie groups are
always finite dimensional, so Corollary 3.1 makes most impact on noise re-
duction when G is non-compact.

4  Covariant Ornstein-Uhlenbeck Processes

Let (2, F, (F:,t > 0), P) be a stochastic base wherein the filtration (F;, ¢t >
0) satisfies the usual hypotheses of completeness and right continuity and let
X = (X(t),t > 0) be a (time homogeneous) Markov process defined on {2
and taking values in H. For each t > 0,2 € H,A € B(H),pi(x,A) is the
transition probability P(X (t) € A|X(0) = x). We say that X has covariant
transitions if for all t > 0,z € H A€ B(H),g € G:

pe(Uyz, A) = py(x, U A). (4.7)

Let (M(t),t > 0) be the transition semigroup of X acting on B,(H), so that
(M(t)f)(x) =E(f(X(¢))|X(0) =2z) for each t > 0,2 € H, f € By(H).

Proposition 4.1 (M(t),t > 0) is G-covariant if and only if X has G-
covariant transition probabilities.

Proof. This follows from the facts that for each ¢ € G,x € H, f €
Bb(H)yt Z 07

UM (1) )(x) = /H F)p(Uyz, dy), and
(MU, f)(z) = /H F (Ui, dy) = /H F)pele, U dy).
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We recall that a Markov process X is G-invariant if it has invariant laws,
ie forallt>0,AecB(H) g€Qaq,

pxw(A) = pxp (U, ' A).

For the next result we assume that X is normal, i.e. the mapping + —
pi(z, A) is measurable for each t > 0, A € B(H).

Corollary 4.1 If the normal Markov process X has G-invariant transition
probabilities and the law of X (0) is G-invariant, then X is G-invariant.

Proof For each t > 0, A € B(H),g € G,
pxo@,' ) = [ pxo(nn(eU;4)
H

— [ pxoUds)p(Uyz, 4)
H
= pX(t)(A>7

where we have used the fact that each U, is a bijection of H. OJ

Now let Z = (Z(t),t > 0) be a Lévy process, i.e. a cadlag, Fi-adapted sto-
chastically continuous process with stationary and independent increments
for which Z(0) = 0 (a.s.). Then there exists a negative-definite, hermitian,
Sazonov continuous function A : H — C with A(0) = 0 such that

E(e!wZM)) = ¢=1A0), (4.8)

for each t > 0,y € H. Let (b,Q,v) be the characteristics of .

The Lévy-Ito decomposition within this context has been established by
Albeverio and Riidiger ([1], see also [8]). It asserts that there exists a Brown-
ian motion (Bg(t),t > 0) with covariance operator () and an independent
Poisson random measure N on R* x (H — {0}) with intensity measure | ® v
(where [ is Lebesgue measure on R™) such that

Z(t) =tb+ Bg(t) + / N (t,dz) + /| . zN(t,dz), (4.9)

lll<1

where N is the compensated Poisson measure, i.e. N(dt,dz) = N(dt, dx)—
dtv(dzx).

Now consider the stochastic differential equation

dY (1) = JY (£)dt + dZ(t), (4.10)
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with initial condition Y'(0) = Yy, where Y is Fp-measurable and independent
of (Z(t),t > 0). This has been given a precise meaning using stochastic
integration based on (4.9) in [2] and it is shown therein that it has a unique
weak solution given by the Ornstein-Uhlenbeck process

Y(t) = S(t)Y(0) + / St — Pz, (4.11)

for each ¢ > 0 (see [5] for an earlier alternative approach, and [4] for a method
for obtaining strong solutions to (4.10) by extension to a larger Hilbert space).
Y is a Markov process and its transition semigroup is a generalised Mehler
semigroup and so has the form (2.1).

By Proposition 4.1, Y has covariant transition probabilities if and only if
(T'(t),t > 0) is G-covariant. By Theorem 3.2, we see that this holds whenever
J commutes with the group action and A9 = A, for all ¢ € G. By (4.8), the
latter holds if and only if Z is G-invariant. If G acts irreducibly on H, then
Y is a classical Ornstein-Uhlenbeck process driven by G-invariant Z, so that
(4.10) becomes

dY (t) = aY (t)dt + dZ(t), (4.12)
where o € R.
Example Let H = L?(R?) and G be the orthogonal group O(d). We

consider the representation of G on L?(R?) given by (L, f)(z) = f(g~'z), for
each g € O(d),z € R%. Let (S(t),t > 0) be the heat semigroup

(SO f)(x) = @nt)2 [ flx+y)e = dy,

Rd

for each t > 0, f € H,z € RY. It is well-known (and easily checked) that S(t)
commutes with the group action. J is the usual Laplacian A and its domain
is the Sobolev space

i) = { 7 € s [ 1oPlFPdy < oo}

where f is the Fourier transform of f, which is easily seen to be invariant
under O(d). The group action is, of course, reducible and the most general
(left) O(d)-covariant Ornstein-Uhlenbeck process is that driven by a (left)
O(d)-invariant Lévy process satisfying the conditions (3.6), e.g. we may take

dY (t) = AY ()dt + dBo(t),

where () is any positive, self-adjoint trace class operator in the commutant
of the real von Neumann algebra N = {L,,g € G}" (see Chapter 4 of [14]
for a general account of such algebras). We may for example take @ = S(1).
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If G is a non-compact group acting irreducibly in GG, then Y is of the form
(4.12) with

Z(t) = Axd xN(t,dx) + /|x||>1 xN(t,dx)

for each ¢ > 0, and v9 = v for each g € G. It is easily verified that a sufficient
condition for the latter is that

N(t,A) £ N(t,U; 1 A),

for each t > 0,4 € B(H),g € G. As an example, we take Z to be a G-
invariant compound Poisson process,

where (X,,,n € N) are i.i.d random variables with common G-invariant law ¢
and (N(t),t > 0) is an independent Poisson process with intensity A > 0. In
this case v(-) = hq(+) is a finite measure and we can write the unique weak
solution to (4.12) explicitly as

Y(t)=eYo+ Y X, 1oy (7)

neN

for each t > 0, where for each n € N, 7,, is the nth arrival time for (N (t),t > 0)

hn—le—hmxn—l

fl)!l(o’oo) (l‘)

and has a gamma distribution with density g, () = (
n
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