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Résumé : Cet article est dérivé d�une nouvelle expression des masses des
lois multinomiales négatives multivariées. Cette expression des masses peut être
utilisée pour déterminer les estimateurs du maximum de vraisemblance de ses
paramètres inconnus. Une application au traitement d�images polarimétriques
est étudiée. Plus précisément, les estimateurs du degré de polarisation utilisant la
méthode du maximum de vraisemblance avec di¤érentes combinaisons d�images
sont comparés.
Mots clés : Lois multinomiales négatives, maximum de vraisemblance,images

polarimétriques, degrés de polarisation.

Abstract : This paper derives new closed-form expressions of the masses of
multivariate negative multinomiale distributions. These masses can be maximi-
zed to determine the maximum likelihood estimator of its unknown parameters.
An application to polarimetric image processing is investigated. More precisely,
estimators of the polarization degree using maximum likelihood methods with
di¤erent combinations of images are compared.
Keywords : Negative multinomial distributions, maximum likelihood, pola-

rimetric images, degree of polarization

1 Introduction

Bar Lev et al. [1] introduced multivariate NMDs whose PGFs are de�ned
as the inverse �th power of any a¢ ne polynomial as follows. Let us denote
[n] = f1; : : : ; ng and zT =

Q
t2T zt, where z = (z1; : : : ; zn) 2 Rn and T � [n].

Let Pn (z) =
P

T�[n];T 6=? pTz
T be an a¢ ne polynomial, with respect to the n

variables (z1; : : : ; zn) such as 1�Pn (1) 6= 0: The NMDNM (n; Pn) associated to
(n; Pn) is de�ned by its PGF equal to GNM(n;Pn) (z) = (1� Pn (z))

��
(1� Pn (1))�.

These very general multivariate NMDs were recently used for image processing
applications in [3].
For a valid NMD, the corresponding expression of the coe¢ cient of z� in

the Taylor expansion of (1� Pn (z))�� is given by the formula (see [2])

c� (�; Pn) =
X
k2K�

(�)jkj
pk

k!
; (1)
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where K� = fk : Pn ! Ng ; and Pn is the set of all subsets of [n].
The �rst part of this paper derives a way of computing the masses of mul-

tivariate NMDs NM (n; Pn) de�ned above. The second part of the paper is
devoted to the application of NMDs to image processing, more speci�cally to
polarimetric image processing.

2 Negative Multinomial Distributions

An n-variate NMD is the distribution of a random vector N = (N1; :::; Nn)
taking its values in Nn0 whose PGF is

GN (z) = E

 
nY
k=1

zNk

k

!
= [Pn(z)]

�� (2)

where E denotes the mathematical expectation, z = (z1; :::; zn); � > 0 and
Pn(z) is an a¢ ne polynomial of order n1 . The a¢ ne polynomial Pn has to sa-
tisfy appropriate conditions to ensure that GN (z) is a PGF (see [2]). These
conditions include the equality Pn(1; :::; 1) = 1 . As explained in [2], the a¢ ne
polynomial Pn(z) can be rewritten Pn(z) = An(a1z1; :::; anzn)=An(a1; :::; an)
where a1; :::; an are positive numbers and An is an a¢ ne polynomial such that
An(0; :::; 0) = 1. The Taylor expansions of [An(z)]

�� and [Pn(z)]
�� in the neigh-

borhood of (0; :::; 0) will be denoted as follows

[An(z)]
��
=
X
�2Nn0

c�(�;An)z
�; [Pn(z)]

��
=
X
�2Nn0

c�(�; Pn)z
� (3)

where � = (�1; :::; �n) and z� =
Qn
i=1 z

�i
i . The masses of multivariate NMDs

are c�(�; Pn) = c�(�;An)An(a1; :::; an)�
Qn
i=1 a

�i
i :

3 Masses of Negative Multinomial Distributions

Before computing the c�(�;An), we need the following result

Theorem 1 Denote as P�n the set of non empty subsets of [n] = f1; :::; ng. Any
a¢ ne polynomial An such that An(0) = 1 denoted as An (z) = 1�

P
T2P�

n
aTz

T :
Moreover

An(z) =

24Y
i2[n]

(1� aizi)

35�1�Qn� z1
1� a1z1

; : : : ;
zn

1� anzn

��
(4)

where jT j is the cardinal of the set T; and Qn is the polynomial de�ned by
Qn (z) =

P
T2P�

n;jT j>2 d
n
Tz

T and dnT is related to the 2jT j � 1 variables aS ;
S 2 P�T as follows dnT =

PjT j
T2Pn;jT j>1 aTa

[n]nT + (jT j � 1)
Q
i2T ai:

1A polynomial Pn(z) with respect to z = (z1; : : : ; zn) is a¢ ne if the one variable polynomial
zj 7! Pn(z) can be written A(�j)zj + B(�j) (for any j = 1; : : : ; d), where A(�j) and B(�j)

are polynomials with respect to the zi�s with i 6= j.
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Theorem 2 Let An (z) = 1�
P

T2P�
n
aT z

T ; a = (a1; : : : ; an) and Qn the a¢ ne
polynomial de�ned in Theorem 1. For any � and  in Nn; denote as c (�;An)
the coe¢ cient of z in the Taylor expansion of [An (z)]

�� and c� (�; 1�Qn) the
coe¢ cient of z� in the Taylor expansion [1�Qn (z)]��. The following relation
can be obtained

c (�;An) =
X

�+�=

c� (�; 1�Qn) (�1+ �)�
a�

�!
(5)

=
X

06�i6i; i=1;:::;n
c�� (�; 1�Qn)

nY
i=1

(�+ i � �i)�i
a�ii
�i!

(6)

=
X

06�i6i; i=1;:::;n
c� (�; 1�Qn)

nY
i=1

(�+ �i)�i
ai��ii

(i � �i)!
(7)

3.1 Bivariate NMDs

Theorem 3 The coe¢ cient of z in the Taylor expansion of [A2 (z)]
��
; can

be computed as follows

c (�; P2) = (�)max(1;2)

min(1;2)X
`=0

(�+ `)min(1;2)�`

(1 � `)! (2 � `)!`!
a1�`1 a2�`2 b`1;2: (8)

3.2 Trivariate NMDs

Theorem 4 The coe¢ cient of z in the Taylor expansion of [A3 (z)]
�� can be

expressed as follows

c (�; P3) =

1X
�1=0

2X
�2=0

3X
�3=0

b j��j2 cX
v=k��k

(�)v
bv�1+�12;3 bv�2+�21;3 bv�3+�31;2Q3

i=1 (v � i + �i)!
b
j��j�2v
1;2;3

(j � �j � 2v)!

�
(�+ 1 � �1)�1

�1!

(�+ 2 � �2)�2
�2!

(�+ 3 � �3)�3
�3!

a�11 a
�2
2 a

�3
3 : (9)

4 Estimating the polarization degree of low-�ux
polarimetric images using maximum likelihood
methods

4.1 Low-�ux polarimetric images

The state of polarization of the light can be described by the random beha-
vior of a complex vector A = (AX ; AY ), called the Jones vector, whose cova-
riance matrix, called the polarization matrix, is

� =

�
E (AXA�X) E (AXA�Y )
E (AYA�X) E (AYA�Y )

�
�
=

�
a1 a3 + ia4

a3 � ia4 a2

�
where � denotes the complex conjugate. The covariance matrix � is a non ne-
gative hermitic matrix whose diagonal terms are the intensity components in
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the X and Y directions. The cross terms of � are the correlation between the
Jones components. If we assume a fully developed speckle, the Jones vector A is
distributed according to a complex Gaussian distribution with probability den-

sity function (pdf) (see [5]) p(A) = 1=(�2j�j) exp
�
�Ay��1A

�
where j�j is the

determinant of the matrix � and y denotes the conjugate transpose operator.
As a consequence, the statistical properties of A are fully characterized by the
covariance matrix �. The di¤erent components of � can be classically estimated
by using four intensity images that are related to the components of the Jones
vector as follows (see [3], for more details)

I1 = jAX j2 ; I2 = jAY j2 ; I3 =
1

2
jAX j2 +

1

2
jAY j2 +Re (AXA�X) ;

I4 =
1

2
jAX j2 +

1

2
jAY j2 + Im (AXA�Y ) :

The state of polarization of the light is classically characterized by the square
DoP de�ned by ([5])

P 2 = 1� 4 j�j
[trace(�)]2

= 1�
4
�
a1a2 � (a23 + a24)

�
(a1 + a2)2

(10)

where trace(�) is the trace of the matrix �. The light is totally depolarized for
P = 0, totally polarized for P = 1 and partially polarized when P 2 ]0; 1[.
Di¤erent estimation methods of P 2 using several combinations of intensity
images were studied in [3]. Since only one realization of the random vector
I = (I1; :::; I4)

T was available for a given pixel of a polarimetric image, the
image was supposed to be locally stationary and ergodic. These assumptions
were used to derive square DoP estimators using several neighbor pixels belon-
ging to a so-called estimation window.
This section considers practical applications where the intensity level of the

re�ected light is very low (low-�ux assumption), which leads to an additional
source of �uctuations on the detected signal. Under the low-�ux assumption,
the quantum nature of the light leads to a Poisson-distributed noise which can
become very important relatively to the mean value of the signal at low photon
level. As a consequence, the observed pixels of the low-�ux polarimetric image
are discrete random variables contained in the vectorN = (N1; :::; N4) such that
the conditional distributions of the random variables NljIl, for l = 1; :::; 4 are in-
dependent and distributed according to Poisson distributions with means Il, for
l = 1; :::; 4. The resulting joint distribution ofN is a multivariate mixed Poisson

distribution (see [4]) P (N = k) =
R
� � �
R
(R+)4

Q4
l=1

I
kl
l

kl!
exp (�Il) f (I) dI, where

k = (k1; :::; k4), ki 2 N and f(I) is the joint pdf of the intensity vector. This
section studies estimators of the square DoP P 2 de�ned in (10) based on several
vectors N1; : : : ;Nn belonging to the estimation window.
The joint distribution of the intensity vector I is known to be a multivariate

gamma distribution whose Laplace transform is (see [3]) E
h
exp

�P4
k=1 zkIk

�i
=

1=P4(z) where the a¢ ne polynomial P4 is P4(z) = 1 + z�+ ka[2z1z2 + z3z4 +
(z1 + z2)(z3 + z4)] with z = (z1; :::; z4) and ka = 1

2

�
a1a2 � a23 � a24

�
; � =

(a1; a2; a3 + (a1 + a2) =2; a4 + (a1 + a2) =2)
T
: As a consequence, the distribu-

tion of N is an NMD whose PGF can be written

GN (z) = [P4(z1 � 1; z2 � 1; z3 � 1; z4 � 1)]�1 : (11)
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The results of Section 3 allow us to compute the masses ofN that will be useful
for studying the maximum likelihood estimator (MLE) of the square DoP.

4.2 MLE using three polarimetric images

The PGF offN = (N1; N2; N3) can be computed from (11) by setting z4 = 1.
The following result can be obtained

GfN (z) = [P3(z)]�1 (12)

with P3(z) = P3(0)+z1(�1�3ka)+z2(�2�3ka)+z3(�3�2ka)+ka(2z1z2+z1z3+
z2z3); z = (z1; z2; z3) and P3(0) = 1�

P3
i=1 �i+4ka. The results of Section 3.2

can then be used to express the masses offN as a function of � = (a1; a2; a3; a24)
T .

The ML estimator of � based on several vectors fNk
belonging to the estima-

tion window (where k = 1; :::;K and K is the number of pixels of the observa-

tion window) is obtained by maximizing the log-likelihood l3
�fN1

; :::;fNK
j�
�
=PK

k=1 log
h
P
�fNk

�i
with respect to �. The practical determination of the ML

estimator of � is achieved by using a Newton-Raphson procedure. The ML es-

timators of the vector � elements, denoted as e� = �ea1;ea2;ea3; ea24�T , are then
plugged into (10) to provide the ML estimator of the square DoP based on
three polarimetric images

eP 2 = 1� 4
hea1ea2 � (ea23 + ea24)i

(ea1 + ea2)2 : (13)

4.3 MLE using two polarimetric images

The PGF of N = (N1; N2) can be computed from (12) by setting z3 = 1.
The following result can be obtained

GN (z) = [P2(z)]
�1 (14)

with P2(z) = P2(0) + z1(�1 � 2ka) + z2(�2 � 2ka) + 2kaz1z2; z = (z1; z2) and
P2(0) = 1�

P2
i=1 �i+2ka. The results of Section 3.1 can then be used to express

the masses of N as a function of � = (a1; a2; ka)T .
The ML estimator of � based on several vectorsNk belonging to the estima-

tion window is obtained by maximizing the log-likelihood l2
�
N1; :::;NP j�

�
=PK

k=1 log
h
P
�
Nk
�i
with respect to �. The practical determination of the ML

estimator of � is achieved by using a Newton-Raphson procedure. The ML esti-
mators of the vector � elements, denoted as � =

�
a1; a2; ka

�T
, are then plugged

into (10) to provide the ML estimator of the square DoP based on two polari-
metric images

P 2 = 1�
8ka

(a1 + a2)
2
: (15)
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5 Simulations results

Simulations results showing the estimation performance and illustrating the
application to polarimetric imagery will be presented during the conference.
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