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Abstract. We consider the problem of camera self-
calibration, from images of a planar object with unknown
Euclidean structure. The general case of possibly varying
focal length is addressed. This problem is non-linear in gen-
eral. One of our contributions is a non-linear approach, that
makes abstraction of the (possibly varying) focal length, re-
sulting in a computationally efficient algorithm. In addi-
tion, it does not require a good initial estimate of the focal
length, unlike previous approaches. As for the initialization
of other parameters, we propose a practical approach, that
simply requires to take one image in roughly fronto-parallel
position. Closed-form solutions for various configurations
of unknown intrinsic parameters are provided. Our methods
are evaluated and compared to previous approaches, using
simulated and real images. Besides our practical contribu-
tions, we also provide a detailed geometrical interpretation
of the principles underlying our approach.

1. Introduction
Calibration of a camera consists in recovering its metric
properties, which are encoded as a set of so-called internal
parameters. Two very opposite assumptions can be made:
the Euclidean structure of the (observed) world is known or
not. The term calibration usually applies to known 1D [13],
2D [8, 12, 2] and 3D structures. The prefix self- is added as
soon as the world’s Euclidean structure is unknown, which
can be seen as a case of “0D” calibration.

In this paper, we focus on plane-based self-calibration
[10, 5], i.e. from images of a rigid planar object lying on
some plane – the “world plane” – whose Euclidean structure
is unknown. The only prerequisite is to have at one’s dis-
posal the inter-image homographies (induced by the world
plane), for which “direct” estimation algorithms, i.e. with
closed-form solutions, exist [3, §3.1, pp. 71-76]1.

2. A Stratified Problem Formulation
The two goals of our work are to calibrate the camera and
to recover the plane’s Euclidean structure at the same time.
On the one hand, it is well known that camera calibration
is equivalent to computing the image of the absolute conic
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supplying part of the matching software.

1Interesting algorithms with “real-time” performance also exist [4].

[3, §7.5, pp. 198-204]. On the other hand, the plane’s struc-
ture can be characterized at different geometric levels: pro-
jective, affine or Euclidean by two (complex) points, called
circular points (cf. §3). The circular points (CP) of the plane
lie on the absolute conic (AC), and thus, in all views, the im-
ages of the CP (ICP) lie on the image of the AC (IAC). We
now express the problems using this stratified framework.

We first consider the case where we have prior knowl-
edge of the plane’s Euclidean structure. The problem re-
duces to that of camera calibration and linear solutions exist
[8, 12], even for varying intrinsics [8, 2]. Technically speak-
ing, calibration can be seen as fitting an imaginary conic
(the IAC) to all available ICP. This can be done by solving
a linear equation system.

Consider now the general case, where the plane’s Eu-
clidean structure is unknown. We introduce unknowns to
parameterize the ICP in one of our views, and compute
the ICP in the other views using inter-image homographies.
The estimation problem becomes non-linear, and iterative
methods for its solution have been proposed [10, 5]. One
of their drawbacks, common to non-linear problems, is the
need for “good” initial estimates. Another problem is that
the number m of unknowns may become relatively large in
the case of varying intrinsics, increasing the sensitivity to
the initial estimates and computation time (generally with
O(m3) complexity per iteration). One of our contributions
is a parameterization that allows to solve the problem us-
ing a fixed number of unknowns (reducing the complexity
to O(m)), and that has a nice geometric interpretation (not
shown completely in this paper due to lack of space).

Up to now, we have considered two extreme cases:
completely known or completely unknown Euclidean plane
structure. In the latter case, we know at least its projective
structure (every image is a projective “model” of the plane).
Consider now the obvious intermediate case: known affine
structure. The problem remains non-linear, but can be ex-
pressed using fewer unknowns and simpler equations. Most
importantly, closed-form solutions for interesting minimal
cases are now possible (see §5.3). One way of recovering
the plane’s affine structure is e.g. to identify the projections
of two sets of parallel lines on the plane. Another solution,
that we use in this paper, is to simply take a fronto-parallel
image of the plane. Taking an exactly fronto-parallel image
is of course difficult. However, we show that in practice, a



roughly fronto-parallel image is sufficient to get good initial
estimates using the closed-form solutions. We use them to
start a non-linear optimization process, where the assump-
tion of fronto-parallelism can be dropped.

We thus have established a stratification for plane-based
calibration: calibration relies on the knowledge of the
plane’s Euclidean structure, whereas self-calibration only
requires its projective structure. The intermediate case of
known affine structure is analogous to using scene con-
straints in traditional 3D self-calibration [11], or, in the case
of a fronto-parallel image, to self-calibration based on spe-
cial motions (typically, pure translations [1, 7]).

3. Background
3.1. Calibration and the Absolute Conic
Our camera model is the usual specialization of the finite
projective camera model [3, §5.1, pp. 143-144] with zero
skew ; it has four d.o.f. linked to the (constant) principal
point (u0, v0)�, the (constant) aspect ratio τ and the (pos-
sibly varying) focal length f . If A is the calibration matrix,
then the IAC can be represented by ω = A−�A−1, with:

ω ∼



τ2 0 −τ2u0

0 1 −v0

−τ2u0 −v0 τ2u2
0 + v2

0 + τ2f2


 . (1)

3.2. Plane’s Structure and Circular Points
When some world plane Π is projected onto the image I,
the world-to-image homography that maps points p on Π
onto pixels m on I is defined by a 3× 3 matrix P such that
m ∼ Pp. We assume that some Euclidean coordinate sys-
tem is attached to Π and P is decomposable into a product
of three 3 × 3 matrices [3, §1.4.6, pp. 22-23]:

P = PpPaPs, (2)

where Pp (resp. Pa) is the projective (resp. affine) com-
ponent of P, with four d.o.f. in all, and Ps is the Euclidean
component of P with four additional d.o.f. (i.e. Ps is a 2D
similarity in Π).

Since the matrix (PpPa)−1 defines a metric rectification
of the imaged plane, by mapping points on I onto Π w.r.t.
some “arbitrary” Euclidean coordinate system, it is possible
to ignore the component Ps in (2) so that:

P =




β α 0
0 1 0

µβ µα + λ 1


 , (3)

where α, β, λ, µ are four scalars that encode the world
plane’s Euclidean structure.

Under P, the world plane’s line at infinity is mapped to
its vanishing line v according to:

v = P−� (0, 0, 1)� ∼ (−µ,−λ, 1)� . (4)

Hence λ, µ represent the plane’s affine structure (the mean-
ing of α, β is discussed below).

In the following paragraphs, we establish links between
the world-to-image homography P, as defined in (3), and
the circular points.
Circular Points (CP). The circular points (CP) of a plane
have the following properties: (1) They lie on the absolute
conic. (2) Their coordinates i± = (1,±i, 0)� are the same
in every Euclidean coordinate system.
Image of Circular Points (ICP). Under P, the CP trans-
form into the ICP (images of circular points) according to:

Pi± = (β, 0, µβ)� ± i (α, 1, µα + λ)� . (5)

The ICP are another representation, besides P, of the world
plane’s Euclidean structure. Regarding the canonical rep-
resentation v = (0, 0, 1)� in (4), it now can be readily
seen that the vector (α ± iβ, 1)� represents the 1D homo-
geneous coordinates of the ICP on the line at infinity.
Conic Dual to the Circular Points (CDCP). The conic
dual to the circular points is the symmetric rank-2 matrix
defined by D∗

∞ = i+i�− + i−i�+ = diag(1, 1, 0).
Under P, the CDCP transforms into:

Σ = PD∗
∞P�. (6)

The conic Σ is yet another representation of the world
plane’s Euclidean structure [3, §1.7.5, pp. 34-37], which
will be used in our self-calibration approach. It is worth
noting that Σ is linked to the vanishing line v by the prop-
erty: null(Σ) = v = (−µ,−λ, 1)�.

Under A, the CDCP transforms into:

Λ = AD∗
∞A� ∼ diag(1, τ2, 0). (7)

with the key property, used later: image lines m1 and m2

are orthogonal (w.r.t. the image frame) iff m�
1 Λm2 = 0.

4. Plane-based Calibration
In this section, we review constraints on the IAC ω that
are used to solve the plane-based calibration problem. We
first review the basic equations introduced in [8, 12]. In
§4.2, we then describe an approach leading to equations that
do not take into account the focal length. This allows the
number of unknowns to remain constant, even in the case
of a varying focal length [2]. This advantage may be very
interesting for the non-linear self-calibration problem, and
in §5.2, we accordingly extend the approach of §4.2.

4.1. Basic Equations
Plane-based calibration is based on two key ideas. First, the
CP (encoding the plane’s Euclidean structure) lie on the AC
(encoding the camera’s internal parameters). Second, the
CP are mapped to their images (ICP) via the world-to-image
homography P. Hence the fact that the ICP lie on the IAC
can be expressed by: (Pi±)�ω(Pi±) = 0, or equivalently:

p�
1 ωp1 = p�

2 ωp2, p�
1 ωp2 = 0, (8)

where p1and p2 are the first two columns of P. These con-
straints are linear in the elements of ω.



4.2. The Centre Line Constraint
Equations (8) include the focal length (contained in ω)
which might be disadvantageous, as explained above. Thus,
we now describe an alternative approach, based on a geo-
metric constraint on the principal point, called centre line
constraint [2], that is regardless of the focal length. The
centre line constraint results from the projective properties
of the central projection of a planar object. It expresses
the fact that the locus of the (unknown) principal point of
a camera viewing a (known) planar object is constrained to
a (known) line segment, called principal segment. In other
words, for any point taken as principal point on this seg-
ment, there exists a world plane on which the object can
lie and yield exactly the same image. What it is mentioned
here is best explained by the animation available at the URL

www.irit.fr/˜Pierre.Gurdjos/ECCV2002/.
The centre line. The image line that contains the princi-
pal segment is called centre line. In [2], we shown that:
(i) The centre line is orthogonal to the vanishing line.
(ii) The vector that represents its image coordinates only
depends on the world-to-image homography P:

φ = (−ϕ1,−ϕ2, ϕ3 + ϕ4)
�

,

where ϕi = ϕi(P) is a bilinear function of elements of P.
To put it more precisely, the property (ii) holds providing

pixels are square, so one of our contributions is to define
the locus of the centre line, in presence of a non-unit aspect
ratio τ . Furthermore, we will give a matrix representation of
the centre line constraint in terms of Λ and Σ, more suitable
for self-calibration as described in §5.2.
The pencil of centre lines. The following properties hold
w.r.t. an arbitrary aspect ratio τ (proofs are omitted).
(iii) The vector that represents the image coordinates of the
centre line can be written as:

φ = (0,−ϕ2, ϕ4)
� + τ2 (−ϕ1, 0, ϕ3)

� ∼ d1 + τ2d2,

where d1, d2 are the two vectors (written in terms of Σ):

d1 = (Σe3) × µe1, d2 = (Σe3) × λe2,

in which e�1 = (1, 0, 0) , e�2 = (0, 1, 0) , e�3 = (0, 0, 1).
(iv) The locus of the centre line is then a linear family i.e. a
line pencil, denoted by P , irrespective of τ , with vertex:

d1 × d2 ∼ Σe3. (9)

Basically, (iii) and (iv) mean that we solely inherit from the
world-to-image homography P a pencil of (centre) lines.
(v) The following points are collinear: the vertex Σe3, de-
fined in (9), the principal point p�

0 = (u0, v0, 1) and the
point given by Λv ; so we have:

det (Σe3 | Λv | p0) = 0. (10)

Note that the point Λv is the point at infinity in the direction
“orthogonal” to the vanishing line v, i.e. in terms of Λ, cf.
(7). It is the point where all the lines parallel to φ meet
(cf. Fig. 1). This is actually an alternative representation of

the centre line constraint. It links the aspect ratio τ (in Λ),
the principal point (u0, v0)�, and the parameters α, β, λ, µ
of the plane’s Euclidean structure (in Σ). This constraint is
the basis for our self-calibration approach, cf. §5.2.
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Figure 1: The pole of the vanishing line v w.r.t. Λ, the vertex of
the line pencil P (i.e. d1×d2) and the principal point are aligned.

Eventually, it is worth noting that:
(vi) From (9), it follows that the vertex of P is the pole of
the image plane’s line at infinity w.r.t. the imaged CDCP Σ.
(vii) The intersection point of φ and the line at infinity is the
pole of the vanishing line w.r.t. Λ, i.e. φ × e3 = Λv.

5. Plane-Based Self-Calibration
5.1. Existing Non-Linear Solutions
“Basic” constraints on the IAC and ICP. In [10], a so-
lution is given for plane-based self-calibration in the case of
constant internal parameters, which has been extended in [3,
§18.7, pp. 469-471] to the “varying focal length” case. The
approach is basically the same as in calibration (cf. §4.1)
with the difference that the ICP map from image to im-
age via the inter-image homographies Hij . If we denote
by p1± = Pi± the ICP in some key image (say image 1),
then we have pj± = H1jp1±. Two equations are therefore
provided by each image j:

(H1jp1±)�ωj(H1jp1±) = 0. (11)

Given n views, i.e. (n − 1) inter-image homographies
H1j (1 < j ≤ n ; H11 = I), the self-calibration problem
of a camera with a possibly varying focal length is that of
solving the system of 2n equations (11) for the 3 + m d.o.f.
in all the ωj and the 4 d.o.f. in p1±, where m is the number
of unknown focal lengths. If m = 1, at least 4 views are
required ; if m = n, at least 7 are required.

This problem is non-linear and can be solved using it-
erative methods. It requires initial values, in particular for
the (possibly different) focal lengths. This critical issue,
already mentioned in [10], motivated us to (1) seek a min-
imization criterion that is irrespective of f (see §5.2) ; (2)
find closed-form solutions for minimal cases (see §5.3).

5.2. A New Non-Linear Solution
The centre line constraint (10) in §4.2 can be seen as some-
what of a dual formulation of Triggs’s approach, described



in §5.1. Indeed, it involves the CDCP instead of the CP. If
we denote by Σ the image of the CDCP in some key image
(say again image 1), then we have Σj = H1jΣH�

1j , where
H1j is the inter-image homography from image 1 to image
j. Moreover, under H1j , the vanishing line v of image 1
transforms into vj = H−�

1j v.
It follows that one equation is provided by each image j:

det
(
H1jΣH�

1je3 | ΛH−�
1j v | p0

)
= 0. (12)

Problem 1 Given n views, i.e. (n − 1) inter-image homo-
graphies H1j (1 < j ≤ n ; H11 = I), the self-calibration
problem of a camera with a possibly varying focal length is
that of solving the system of n equations (12) for the 2 d.o.f.
in p0, the single d.o.f. in Λ and the 4 d.o.f. in Σ, under the
condition null(Σ) = v.

There is a fixed number of 7 unknowns (α, β, λ, µ and
u0, v0, τ ) – even with a varying focal length – so that at least
7 views are required. Once the parameters are recovered,
the different focal lengths can be computed using linear al-
gorithms described in §4.

Implementation. Referring to (12), let us denote by M
the matrix

(
HΣH�e3 | ΛH−�v | p0

)
(we omit the index

for H). A solution to Problem 1 can be obtained by mini-
mizing a cost function depending on det M. This is a non-
linear problem but let us notice that since the condition
null(Σ) = v is directly ensured from the definition of Σ
in (6), no constrained optimization algorithm is required.

An interesting aspect of our formulation is that we can
easily attach a geometric meaning to the algebraic quantity
det M. Indeed, det M is equal to the mixed triple product of
its three column vectors: hence δ = 1

k |m�
1 (m2 × m3) |,

where k =
√

φ�Λφ, represents the distance from point
m1 to the (centre) line φ ∼ m2 × m3.

In our experiments, we used the non-linear least squares
implementation (Levenberg-Marquardt algorithm) avail-
able in the MATLAB Optimization Toolbox [6]. The Ja-
cobian information for the objective function can be easily
supplied, using the following properties:
(1) det M = (H31 +µH33) det N1 +(H32 +λH33) det N2,
where Ni =

(
Hσi | m2 | m3

)
; σi is the column i of Σ.

(2) d det M
dx = tr

{
dM
dx adjM

}
, where adjM = (detM) M−1

is the adjoint matrix of M.

5.3. Direct Solutions
We now develop closed-form solutions, based on the as-
sumption that one image was taken in fronto-parallel posi-
tion relative to the world plane (i.e. image and world planes
are parallel). As mentioned in §2, we immediately have the
world plane’s affine structure; equivalently, we now have
λ = µ = 0 for the representations described in §3.2. Keep
in mind that we use the assumption of fronto-parallelism
only for the algorithm initialization. For the subsequent
non-linear optimization, we drop this assumption.

In the fronto-parallel image, the ICP lie on both the IAC
and plane’s vanishing line (here, the image plane’s line at
infinity). Looking at (1), we see that the only points at in-
finity that lie on the IAC are the two points given by:

(
τ−1, 0, 0

)� ± i (0, 1, 0)� ∼ (1,±τi, 0)� . (13)

Consequently, using (5), we know that α = 0 and thus, we
can recover the world plane’s Euclidean structure up to the
single unknown β = τ−1.

We now sketch closed-form solutions for various scenar-
ios, depending if the aspect ratio and/or principal point are
known or not, and if the focal length is constant or vary-
ing. In the case of a known aspect ratio, the fronto-parallel
image directly gives us the plane’s Euclidean structure, and
self-calibration reduces to calibration [8, 12, 2]. So, in the
following, we only consider an unknown aspect ratio.

As shown in (13), the ICP in the fronto-parallel image
can be parameterized by the unknown τ . Using inter-image
homographies, we also parameterize the ICP in the other
images using τ . Let H be the homography, mapping the
fronto-parallel to some other image. The basic calibration
equations (8) then become:

h�
1 ωh1 − τ2h�

2 ωh2 = 0, h�
1 ωh2 = 0. (14)

The second equation is linear and the same as in (8),
hence with 5 or more inter-image homographies, the un-
knowns can be recovered linearly. As for the first equation,
using the fact that τ2 = ω11/ω22, we may reformulate it as:

ω22h�
1 ωh1 − ω11h�

2 ωh2 = 0.

This is quadratic in the set of coefficients of ω, with only
ω11 and ω22 appearing squared. In the following, we de-
scribe several minimal cases, but due to lack of space, with-
out much detail. Note that the focal length of the fronto-
parallel image can not be recovered [8], so we ignore it.

In the case of a known principal point, two images,
the fronto-parallel and another one, are sufficient for self-
calibration. The only unknowns are the aspect ratio and
the focal length of the second view (that may be differ-
ent from that of the fronto-parallel view). We suppose that
the images are centered in the principal point, i.e. we have
ω = diag(τ2, 1, τ2f2). Equations (14) thus become, after
replacing the unknowns by a = τ2 and b = τ2f2:

H2
21 + a(H2

11 − H2
22) + bH2

31 − abH2
32 − a2H2

12 = 0
H21H22 + aH11H12 + bH31H32 = 0.

The two equations can be reduced a single quadratic one
in b. Writing down explicit closed-form solutions for τ and
f in terms of H is trivial.

In the case of an unknown principal point and constant
(resp. varying) focal length, three (resp. four) images are
sufficient and the problem can be written as a cubic (resp.
quartic) polynomial in one variable. Hence, self-calibration
has a closed-form solution.



6. Experiments
Synthetic data. Self-calibration using the centre line con-
straint of §5.2 (“CL-NONL-SELF”) has first been tested using
synthetic data. We compare it with the results of the al-
gorithm using the basic constraints, see §5.1 (“BAS-NONL-
SELF”). For each experiment, the camera has constant inter-
nal parameters with nominal values u0 = 255 ± 50 pixels,
v0 = 255 ± 50 pixels, τ = 1 ± 0.1 (with normal distribu-
tion). For each camera c in each experiment, the inclina-
tion angle between the world and the image planes is set to
30◦ ± 10◦ (except for the first for which it is set to ±10◦);
the angles for azimuth and rotation around the optical axis
are set to 0◦±90◦ (normal distribution); the (varying) focal
length is set to fc = 700 ± 700 pixels (normal distribu-
tion). 100 points are randomly generated in the first im-
age, then transferred to the others with a of perturbation
±1 pixel (Gaussian noise). The inter-image homographies
have been estimated using the normalized DLT algorithm
of [3, §3.1, pp. 71-73], from the perturbed points. We con-
ducted 200 independent trials for a number of cameras vary-
ing from 8 to 24. In Fig. 2, we show the computed absolute
errors for u0, v0, for world coordinates x, y (in mms), and
relative errors for τ and the focal lengths. We also sought
a threshold on the number of cameras for which the “CL-
NONL-SELF” and “BAS-NONL-SELF” algorithms have similar
accuracies. Regarding our tests, this threshold is about 15
views. Typically, the algorithm converges in 5 iterations.
A “good” initialization of the parameters proved to be cru-
cial. We used the direct solution given in §5.3, except in
one case for “BAS-NONL-SELF”: this case is plotted with the
dashed line with marker ‘*’ and corresponds to focal lengths
initialized to 2000 (which is quite realistic) ; the “incoher-
ent” behaviour of the algorithm is owing to the fact that, in
a certain number of trials, it did not converge.
Real Images. To evaluate the performance of our non-
linear self-calibration algorithm (“CL-NONL-SELF”), we
compared the results with those obtained by both basic lin-
ear calibration (“BAS-LIN-CAL”) and basic non-linear self-
calibration (“BAS-NONL-SELF”) algorithms. We used 15 im-
ages of a calibration checkerboard, taken from different ori-
entations. A Nikon Coolpix 800 was used with resulting
jpeg images of 640 × 480 pixels resolution in size. 48 cor-
ners have been extracted in order to compute the inter-image
homographies. To avoid critical motions, we took care
to apply significative rotations around the optical axis be-
tween successive shots. The (known) Euclidean structure of
the calibration checkerboard was only used by the calibra-
tion algorithm BAS-LIN-CAL. The principal point and aspect
ratio were assumed to be constant; their estimated values
are: (308, 250, 1.0083) for BAS-LIN-CAL, (325, 253, 0.999)
for BAS-NONL-SELF and (325, 260, 0.999) for our CL-NONL-
SELF algorithm. Note that the relative error between the dif-
ferent aspect ratios is less than 1%.
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Figure 2: Self-calibration results. “CL-NONL-SELF” method:
marker �. “BASIC-NONL-SELF” method: marker ∗ ; the
dashed line highlights the “bad” initializations of f .

There could be variations of the focal length owing to
the camera’s auto-focus, so we assumed f to be varying.
The different focal lengths recovered by the algorithm BAS-
NONL-SELF are: 1368, 1390, 1383, 1352, 1357, 1357, 1371,
1322, 1346, 1352, 1358, 1345, 1390, 1394, 1387, with
mean 1364 and standard deviation around 20 (1%). Table
1 gives the the relative difference (percent) with BAS-LIN-
CAL obtained by CL-NONL-SELF. In brackets, the relative er-
rors with BAS-NONL-SELF are shown (a negative value means
“closer to BAS-LIN-CAL’s estimates”). The relative errors
between the calibration and self-calibration algorithms are
very small (in most cases less than 1%) for all focal lengths.

0.5 (−0.1) 0.4 (−0.1) 1.2 (−0.1) 0.9 (−0.1) 0.7 (0.1)

0.0 (−0.1) 0.3 (0.1) 1.6 (1.0) 0.2 (0.1) 0.3 (0.2)

0.6 (0.3) 0.4 (0.2) 0.9 (0.1) 1.3 (0.0) 0.1 (−0.1)

Table 1: Focal length self-calibration obtained by the CL-NONL-
SELF algorithm from 15 images of a checkerboard. Relative errors
(percent) w.r.t. the BAS-LIN-CAL algorithm are shown. In brack-
ets, the difference with the BAS-NONL-SELF algorithm.

Videos of a comic book. We acquired several videos of
a comic book using a hand-held digital camcorder (Pana-
sonic NV-MX 300). Acquisitions were started in roughly
fronto-parallel position. The videos were processed auto-
matically to extract and track interest points and to com-
pute inter-image homographies (using a RANSAC-based
method). This and the remaining processing was done on
1 out of every 10 frames. Figure 3 shows 8 of the 20 frames
used for one of the sequences. We used the closed-form
solution of §5.3 corresponding to an unknown aspect ratio
but known principal point (image center). This gave the fo-



cal length for every frame but the first, and one estimate of
the aspect ratio per frame. A single value for the aspect ra-
tio was computed using robust statistics, and used to obtain
an initial solution of the world plane’s Euclidean structure
from the fronto-parallel frame. Then, initial pose estimates
for all frames were obtained [9].

These initial estimates were refined by a bundle adjust-
ment (including position of points on the world plane and
radial distortion). Bundle adjustment was implemented in
the usual sparse way, and converged in 2 to 3 iterations,
each iteration taking a few seconds.

The results were compared with calibration values ob-
tained by filming a 3D calibration grid. The aspect ratio was
estimated with 0.2% error (1.0893, compared to a “ground
truth” of 1.0919). The principal point was estimated about
10 pixels off. As for the focal length, the results for the
first half of the frames were bad as expected (frames are
too close to fronto-parallel) whereas for the second half,
the mean value was 1366, which means an error of 3.5%
(ground truth was 1319). Similar results were obtained for
other sequences of the same object.

Figure 3 shows a rectified image of the world plane, ob-
tained from the first frame of the last row in the figure. The
structure is well recovered, considering that the page of the
comic book was not perfectly flat towards its left.

Figure 3: Left: input images. Right: rectified image.

7. Conclusion
We addressed the problem of camera self-calibration, from
inter-image homographies induced by a single plane with
unknown Euclidean structure. A non-linear solution, based
on properties of circular points and the absolute conic, was
previously proposed in [10]. This “basic” algorithm proved
to be efficient, but requires a good initial estimate of the fo-
cal length. Our first contribution was to solve this issue by
proposing a practical approach that simply requires to take a
first image in roughly fronto-parallel position. Closed-form
solutions for various configurations are obtained and dis-
cussed. The assumption of fronto-parallelism is only used
for initialization and dropped for non-linear optimization.

Another contribution was to extend the so-called centre line
constraint, already used for plane-based calibration in [2],
to self-calibration. This constraint expresses the fact that
the locus of the principal point is a line, called the centre
line. With a non-unit aspect ratio, we showed that the locus
of the centre line is a line pencil. The centre line constraint
then equivalently expresses the alignment of three particular
points, whose representations involve all intrinsic parame-
ters except the focal length as well as, surprisingly enough,
the images of the conic dual to the circular points (CDCP) ;
technically speaking, self-calibration is based on the trans-
formations of the CDCP via the inter-image homographies.
Under the common assumption of supposedly known prin-
cipal point and aspect ratio, the proposed constraint will not
depend on the intrinsic parameters (i.e. only on the plane’s
structure), allowing metric “self-rectification” that general-
izes [3, §1.7.5, pp. 34-37] ; this interesting point, not ex-
panded here, had to be mentioned. We gave a comparative
experimental evaluation for simulated and real data indicat-
ing good performances, even if we empirically noticed that
the centre line-based algorithm had a higher number of crit-
ical configurations than the basic one.
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