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Peter Häıssinsky, Kevin Pilgrim. Quasisymmetrically inequivalent hyperbolic Julia sets. Re-
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QUASISYMMETRICALLY INEQUIVALENT HYPERBOLIC

JULIA SETS

PETER HAÏSSINSKY AND KEVIN M. PILGRIM

Abstract. We give explicit examples of pairs of Julia sets of hyperbolic rational
maps which are homeomorphic but not quasisymmetrically homeomorphic.

Quasiconformal geometry is concerned with properties of metric spaces that are
preserved under quasisymmetric homeomorphisms. Recall that a homeomorphism
h : X → Y between metric spaces is quasisymmetric if there exists a distortion
control function η : [0,∞) → [0,∞) which is a homeomorphism and which satisfies
|h(x) − h(a)|/|h(x) − h(b)| ≤ η(|x − a|/|x − b|) for every triple of distinct points
x, a, b ∈ X . We shall say that X and Y are quasisymmetrically equivalent if there
exists such a homeomorphism.

A basic —even if still widely open— question is to determine whether two given
spaces belong to the same quasisymmetry class, once it is known that they are
homeomorphic and share the same qualitative geometric properties. This question
arises also in the classification of hyperbolic spaces and word hyperbolic groups in
the sense of Gromov [BP, Kle, Häı]. Besides spaces modelled on manifolds, very
few examples are understood; see nonetheless [Bou] for examples of inequivalent
spaces modelled on the universal Menger curve. Here, we focus our attention on
compact metric spaces that arise as Julia sets of rational maps. A rational map is
hyperbolic if the closure of the set of forward orbits of all its critical points does not
meet its Julia set. We address the question of whether the geometry of the Julia
set of a hyperbolic rational map is determined by its topology. More precisely,
given two hyperbolic rational maps f and g with homeomorphic Julia sets Jf and
Jg, does there exist a quasisymmetric homeomorphism h : Jf → Jg?

Hyperbolic Julia sets serve our purposes for several reasons. First, it rules out
elementary local obstructions. For instance, the Julia set of f(z) = z2 is the
Euclidean unit circle S1, while that of g(z) = z2 + 1/4 is a Jordan curve with
a cusp at the unique fixed-point, so they are not quasisymmetrically equivalent.
Second, if f is hyperbolic, it is locally invertible near Jf , and the inverse branches
are uniformly contracting; the Koebe distortion theorem then implies that Jf

satisfies a strong quasi-self-similarity property. Among such maps, in some cases,
this implies that homeomorphic Julia sets are quasisymmetrically homeomorphic.
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(1) If the Julia set of a hyperbolic rational map is a Jordan curve, then it is
quasisymmetrically equivalent to the unit circle [Sul1].

(2) Let C ⊂ R denote the usual middle-thirds Cantor set. Recall that any com-
pact, totally disconnected metric space without isolated points is homeo-
morphic to C; see e.g. [HY, Thm. 2.97]. If the Julia set of a hyperbolic
rational map is homeomorphic to C, then, by a theorem of David and
Semmes [DS, Prop. 15.11] they are quasisymmetrically equivalent.

(3) If f and g are hyperbolic and their Julia sets are homeomorphic by the
restriction of a global conjugacy, then they are also quasisymmetrically
equivalent [MS, Thm 2.9].

So one must look to more complicated Julia sets for potential examples of non-
quasisymmetrically equivalent Julia sets.

We will show

Theorem 1. Let f(z) = z2 + 10−9/z3 and g(z) = z2 + 10−20/z4. Then Jf , Jg are
each homeomorphic to C×S1, but they are not quasisymmetrically homeomorphic.

Recall that a metric space X equipped with a Radon measure µ is Ahlfors regu-
lar of dimension Q if the measure of a ball satisfies µ(B(x, r)) ≍ rQ; one has then
that X has locally finite Hausdorff measure in its Hausdorff dimension, Q. Its
Ahlfors-regular conformal dimension ARconfdim(X) is the infimum of the Haus-
dorff dimensions of all Ahlfors-regular metric spaces quasisymmetrically equivalent
to X . Since the Julia set of any hyperbolic rational map is quasi-self-similar, it fol-
lows that it is Ahlfors regular and porous, hence has Hausdorff dimension strictly
less than 2 [Sul2, Thm 4 and Cor.]. So if f is hyperbolic then ARconfdim(Jf) < 2.
We prove Theorem 1 by showing ARconfdim(Jf) 6= ARconfdim(Jg).

The arguments we use to prove Theorem 1 will generalize to yield

Theorem 2. There exist hyperbolic rational maps each of whose Julia sets is
homeomorphic to C × S1 and whose Ahlfors-regular conformal dimensions are
arbitrarily close to 2.

It follows that there exists an infinite sequence of hyperbolic rational maps whose
Julia sets are homeomorphic to C×S1 but which are pairwise quasisymmetrically
inequivalent.

Our method of proof of Theorem 2 requires that the degrees become arbitrarily
large. It is tempting to look for such a sequence of examples among maps of
fixed degree. This may be difficult: as is shown by Carrasco [Car], the Ahlfors-
regular conformal dimension of any hyperbolic polynomial with connected Julia
set is equal to 1.

If connected, the Julia sets of hyperbolic polynomials have many cut-points.
At the opposite extreme, recall that a Sierpiński carpet may be defined as a one-
dimensional, connected, locally connected compact subset of the sphere such that
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the components of its complement are Jordan domains with pairwise disjoint clo-
sures; any two such spaces are homeomorphic [Why]. Sierpiński carpets are 1-
dimensional analogs of Cantor sets. They also play an important role in Complex
Dynamics and Hyperbolic Geometry [McM2, Bon]. Sierpiński carpets which arise
from hyperbolic groups and hyperbolic rational maps also share the same qualita-
tive properties: their peripheral circles are uniform quasicircles and are uniformly
separated; Bonk also proved that any such carpet is quasisymmetrically equivalent

to one where the complementary domains are round disks in Ĉ. Nonetheless, using
similar methods, we will show

Theorem 3. There exist hyperbolic rational maps with Sierpiński carpet Julia sets
whose Ahlfors-regular conformal dimensions are arbitrarily close to 2.

To our knowledge, an analogous result for conformal dimensions of limit sets of
convex compact Kleinian groups is not yet known.

On the one hand, it is perhaps not surprising that there are a plethora of qua-
sisymmetrically distinct such Julia sets: any quasisymmetric map between round
convex compact Kleinian group carpets is the restriction of a Möbius transforma-
tion [BKM, Thm. 1.1]. Also, any quasisymmetric automorphism of the standard
square “middle ninths” carpet is the restriction of a Euclidean isometry [Bon,
Thm. 8.1]. On the other hand, the proofs of these results are rather involved.

The proofs of our results rely on the computation of the Ahlfors-regular con-
formal dimension of certain metric spaces homeomorphic to C × S1, following the
seminal work of Pansu, cf. [Häı, Prop. 3.7]. We will also make frequent use of the
fact that on the Euclidean 2-sphere, an orientation-preserving self-homeomorphism
is quasiconformal if and only if it is quasisymmetric; see [Hei, Thm. 11.14]. We
denote by S2 denote the round Euclidean 2-sphere.

The special case needed for the present purpose is summarized in § 1. The proofs
of the theorems appear in §§ 2 and 3.

1. Annulus maps

Let I = [0, 1] and let ι : I → I be the involution given by ι(x) = 1 − x.
Identify S

1 with R/Z. We give I×S
1 the product orientation. Fix an even integer

m ≥ 2 and let D := (d0, . . . , dm−1) be a sequence of positive integers such that∑m−1
i=0

1
di

< 1. Then there exist real numbers ai, bi, i = 0, . . . , m − 1 such that for

each i, |bi − ai| =
1
di

and

0 < a0 < b0 < a1 < b1 < . . . < am−1 < bm−1 < 1.

Fix such a choice a0, b0, . . . , am−1, bm−1. For each i, let Ji = [ai, bi], and let gi :
I → Ji be the unique affine homeomorphism which is orientation-preserving if i
is even and is orientation-reversing if i is odd. This iterated function system on
the line has a unique attractor C(D) and its Hausdorff dimension, by the pressure
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formula [Fal, Thm. 5.3], is the unique real number λ = λ(D) satisfying

m−1∑

i=0

1

dλi
= 1.

Let
F̃ :

(
⊔m−1
i=0 Ji

)
× S

1 → I × S
1 =: A.

be the map whose restriction to the annulus Ai := Ji × S1 is given by

F̃ |Ai
(x, t) = (g−1

i (x), (−1)idi · t mod 1).

That is: F̃ |Ai
is an orientation-preserving covering map of degree di which is

a Euclidean homothety with factor di and which preserves or reverses the linear
orientation on the interval factors according to whether i is even or, respectively,
is odd.

The invariant set associated to F̃ is

X(D) := C(D)× S
1 =

⋂

n≥0

F̃−n(A).

From [HP, §3], we have

Proposition 1.1. The Ahlfors-regular conformal dimension of X(D) is equal to
1 + λ(D).

This statement is a particular case of a criterion originally due to Pansu [Häı,
Prop. 3.7]; see also Tyson’s theorem [Hei, Thm 15.10].

2. Proofs of Theorems 1 and 2

Let D be a sequence of positive integers defining a family of annulus maps F̃ as
in the previous section, and put X = X(D).

Proposition 2.1. There is a smooth embedding A →֒ S2 such that (upon identify-

ing A with its image) the map F̃ : ⊔iAi → A extends to a smooth map F : S2 → S2

whose iterates are uniformly quasiregular. There is a quasiconformal (equivalently,

a quasisymmetric) homeomorphism h : S2 → Ĉ such that h◦F ◦h−1 is a hyperbolic
rational map f , and h(X) = Jf .

Proof: The existence of the extension F is a straightforward application of qua-
siconformal surgery; we merely sketch the ideas and refer to [PL] for details; see
also the forthcoming text [BF] devoted to this topic. The next two paragraphs
outline this construction.

The linear ordering on the interval I gives rise to a linear ordering on the set
of 2m boundary components of the set of annuli A0, . . . , Am−1. We may regard
A as a subset of a smooth metric sphere S2 conformally equivalent to S2. For
i = 1, . . . , m−1 let Ci be the annulus between Ai−1 and Ai. Let D0, D1 be the disks
bounded by the least, respectively greatest, boundary of A, so that the interiors
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Figure 1. Caricature of the extended mapping, F .

of D0, A,D1 are disjoint. Let D′
0 be the disk bounded by the least component of

A0 and D′
1 be the disk bounded by the greatest component of Am−1.

We now extend F̃ as follows. See Figure 1. Send D′
0 to D0 by a proper map of

degree d0 ramified over a single point x, so that in suitable holomorphic coordinates
it is equivalent to z 7→ zd0 acting near the origin; thus D0 ⊂ D′

0 is mapped inside
itself. Similarly, send D′

1 to D0 by a proper map of degree dm−1 ramified only
over x, so that in suitable holomorphic coordinates it is equivalent to z 7→ 1/zdm−1

acting near infinity; thus D1 ⊂ D′
1 is mapped into D0. To extend over the annulus

Ci between Ai−1 and Ai, note that both boundary components of Ci map either
to the least, or to the greatest, component of ∂A. It is easy to see that there is a
smooth proper degree di−1 + di + 1 branched covering of Ci to the corresponding
disk D0 (if i is even) or D1 (if i is odd). This completes the definition of the
extension F .

It is easy to arrange that F is smooth, hence quasiregular. We may further
arrange so that the locus where F is not conformal is contained in a small neigh-
borhood of C1 ∪ . . . ∪ Cm−1. This locus is nonrecurrent, so the iterates of F are
uniformly quasiregular. By a theorem of Sullivan [Sul2, Thm 9], F is conjugate via

a quasiconformal homeomorphism h : S2 → Ĉ to a rational map f . By construc-
tion, every point not in h(X) converges under f to a superattracting fixed-point
h(x) in the disk h(D0), so f is hyperbolic and h(X) = Jf . �

We now establish a converse.

Proposition 2.2. Suppose f : Ĉ → Ĉ is a rational map for which there exists
a closed annulus A and essential pairwise disjoint subannuli A0, A1, . . . , Am−1, m
even, contained in the interior of A such that (with respect to a linear ordering
induced by A) A0 < A1 < . . . Am−1. Let D0, D1 be the disks bounded by the
least (respectively, greatest) boundary component of A. Further, suppose that for
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each i = 0, . . . , m − 1, f |Ai
: Ai → A is a proper covering map of degree di,

with f mapping the greatest component of Ai and the least component of Ai+1

to the boundary of D1 if i is even, and to the boundary of D0 if i is odd. Put
D = (d0, d1, . . . , dm−1). Let f̃ = f |⊔m−1

i=0
Ai

and put Y = ∩n≥0f̃
−n(A). Then Y ⊂ Jf ,

f̃(Y ) = Y = f̃−1(Y ), and there is a quasisymmetric homeomorphism h : Y → X

conjugating f̃ |Y : Y → Y to F̃ |X : X → X where F̃ is the family of annulus maps
defined by the data D.

Proof: The conformal dynamical systems of annulus maps defined by f̃ and by
F̃ are combinatorially equivalent in the sense of McMullen [McM3, Appendix A],
so by [McM3, Thm. A.1] there exists a quasiconformal (hence quasisymmetric)

conjugacy h̃ from f̃ to F̃ ; we set h = h̃|Y . �

Combined with Proposition 1.1, this yields:

Corollary 2.1. Under the assumptions of Proposition 2.2, ARconfdim(Jf) ≥ 1 +
λ(D), with equality if Y = Jf .

Proof of Theorem 1. For ǫ ∈ C let fǫ(z) = z2 + ǫ/z3. McMullen [McM1, §7]
shows that for |ǫ| sufficiently small the map fǫ restricts to a family of annulus
maps with the combinatorics determined by the data D = (2, 3) and with Julia
set homeomorphic to the repellor X(2,3) determined by D; it is easy to see that
ǫ = 10−9 will do.

Exactly the same arguments applied to the family gǫ(z) = z2 + ǫ/z4 show that
if |ǫ| is sufficiently small, the family gǫ restricts to a family of annulus maps with
the combinatorics determined by D = (2, 4) and whose Julia set is homeomorphic
to the corresponding repellor X2,4. It is easy to see that ǫ = 10−20 will do; one
may take A = {10−6 < |z| < 1010}. By Corollary 2.1 and Proposition 1.1, the
Ahlfors-regular conformal dimensions 1+ λf , 1+ λg of Jf , Jg satisfy the respective
equations 2−λf + 3−λf = 1, 2−λg + 4−λg = 1 and are therefore unequal. Since
the Ahlfors-regular conformal dimension is a quasisymmetry invariant, the proof
is complete. �

Proof of Theorem 2. For an even integer n ≥ 4, let Dn = (d0, d1, . . . , dn−1)
where d0 =

1
n+1

and di =
1
n
for i = 1, . . . , n− 1. Let fn be the rational map given

by Proposition 2.1. By Corollary 2.1 ARconfdim(Jfn) is 1 plus the unique positive
root λn of the equation

(n + 1)−λ + (n− 1)n−λ = 1.

The left-hand side is larger than 1 when λ = log(n−1)
log(n)

, so λn > log(n−1)
logn

and thus

λn → 1 as n → ∞. Hence ARconfdim(Jfn) → 2 as n → ∞. �

3. Proof of Theorem 3

Fix an even integer n ≥ 2. For each such n, we will build a rational function

fn : Ĉ → Ĉ with the following properties: (1) its Julia set is homeomorphic to the



QUASISYMMETRICALLY INEQUIVALENT HYPERBOLIC JULIA SETS 7

A0 0

(1+i)/2

δ

Q
+

Figure 2. The rational map fn when n = 2. The domain and
codomain are the doubles of the two polygons across their bound-
aries. Note the conformal symmetries.

Sierpiński carpet, and (2) there exists an annulus A ⊂ Ĉ, and parallel pairwise
disjoint essential subannuli A0, . . . , An−1 such that for each i = 0, . . . , n − 1, the
restriction f |Ai

: Ai → A is a proper holomorphic covering of degree (n + 4), just
as in the previous section. Theorem 3 will then follow immediately from Corollary
2.1 with D = ( n+ 4, . . . , n+ 4︸ ︷︷ ︸

n

).

We will first build fn as a function from one Riemann sphere to another, and
then re-identify domain and range. We are grateful to Daniel Meyer for suggesting
this construction which is more explicit than our original one.

We shall suppress the dependence on n in our construction. For z ∈ Ĉ set

j(z) = z̄, and let us consider the unique Weierstrass function P : C → Ĉ which is
Z[i]-periodic, which maps 0, 1/2, (1+i)/2 and i/2 to∞, (−1), 0 and 1 respectively.

We may thus consider the Riemann sphere Ĉ as the quotient Euclidean rectangle
[0, 1/2]× [(−1/2), 1/2] upon identifying boundary-points via the map j. We view

Ĉ as the union of two Euclidean squares: the “white square” [0, 1/2]× [0, 1/2] and
the “black square” [0, 1/2]× [(−1/2), 0]. The map P maps the white square to the
upper half-plane H+ and the black square to the lower half-plane H−.

To define the codomain, put δ = 1
2(n+4)

, and let

Q+ = [0, 1/2]2 ∪ ([−δ, 0]× [0, δ]) ∪ ([0, δ]× [−δ, 0])

and Q− = j(Q+). Both polygons Q+ and Q− are tiled by (n + 4)2 + 2 squares of
size δ. Let Σ be the sphere obtained from the disjoint union Q+ ⊔ Q− by gluing
their boundaries via the map j. Then Σ inherits a conformal structure from that
of Q±: away from the corners this is clear; by the removable singularities theorem,
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this conformal structure extends over the corners. Note that the map j gives an
anticonformal involution of Σ which we denote again by j.

Define F+ : Q+ → Ĉ by F+(z) = P((n + 4)z)) and F− : Q− → Ĉ by F− =

j ◦ F+ ◦ j. This defines a holomorphic map F : Σ → Ĉ of degree (n + 4)2 + 2.
Considering the tiling of Σ by the squares of size δ, we may color them into white
and black in such a way that a white square is mapped under to F to H+ and
a black one to H−, see Figure 2. The critical points of F occur at where four or
more squares meet. By construction, the image of every critical point is one of the
points −1, 0, 1,∞.

By the Riemann mapping theorem, there exists a unique conformal map ϕ+ :
Q+ → H+ such that ϕ+(0, 1/2, (1 + i)/2) = (∞, (−1), 0). Note that the map
x+iy 7→ y+ix defines an anticonformal involution of Q+ which fixes 0 and (1+i)/2
and interchanges 1/2 and i/2: this forces ϕ+(i/2) = 1. Set ϕ− : Q− → H− by

ϕ− = j ◦ ϕ+ ◦ j. Both maps patch together to form a conformal map ϕ : Σ → Ĉ.
Let us finally set

f = F ◦ ϕ−1 : Ĉ → Ĉ .

Every critical point of f is first mapped to −1, 0, 1,∞, and every point of this set
maps to ∞ under f , which is therefore a fixed critical point at which f has local
degree 3. Hence f is a critically finite hyperbolic rational map.

Let A′
+ = [2δ, 1/2 − 2δ] × [0, 1/2] ⊂ Q+ and A′

− = j(A+) ⊂ Q−. Their union
defines an annulus A of Σ, and we let A = ϕ(A′).

The preimage F−1(A) consists of (n + 5) disjoint annuli, each compactly con-
tained in vertical strips of width δ tiled by squares. Among them, there are n
subannuli A′

0, . . . , A
′
n−1 compactly contained in A′, each map under F by degree

n + 4. Let Aj = ϕ(A′
j): then Aj is compactly contained in A and f : Aj → A

has degree n + 4. By Corollary 2.1, ARconfdim(Jf) ≥ 1 + λ, where λ = λn is the
unique positive root of the equation

n(n+ 4)−λ = 1.

As n → ∞, clearly λn → 1 and so ARconfdim(Jfn) → 2.
It remains only to show that Jf is a Sierpiński carpet. We imitate the arguments

of Milnor and Tan Lei given in [Mil, Appendix]. They first show the following:

Lemma 3.1. Let f be a hyperbolic rational map and z a fixed-point at which the
local degree of f equals k ≥ 2. Suppose W is the immediate basin of attraction
of z. Suppose there exist domains U, V each homeomorphic to the disk such that
Ω ⊂ U ⊂ U ⊂ V and f |U : U → V is proper and of degree k. Then ∂Ω is a Jordan
curve.

Note that the conformal isomorphism ϕ : Σ → Ĉ sends the union of the top
and right-hand edges of the square to [−1, 1] and sends the point in Figure 2

labelled 0 to infinity. Let V = Ĉ \ [−1, 1]. The map f has a unique periodic Fatou
component W —the immediate basin of ∞— and clearly W ⊂ V . The domain
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V is simply connected and contains exactly one critical value of f , namely, the
point ∞. It follows that there is exactly one component U of f−1(V ) containing
∞, and W ⊂ U ⊂ U ⊂ V and f |U : U → V is proper and of degree 3. By Lemma
3.1, ∂W is a Jordan curve. The remaining arguments needed are identitical to
those given in op. cit.: since f is hyperbolic and critically finite, the Julia set is
one-dimensional, connected and locally connected, and there are no critical points
in the Julia set. It follows that every Fatou component is a Jordan domain, and
that the closures of the Fatou components are pairwise disjoint. Therefore Jf is
homeomorphic to the Sierpiński carpet [Why]. �
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