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On the Central Limit Theorem for the Eigenvalue

Counting Function of Wigner and Covariance Matrices

S. Dallaporta

University of Toulouse, France

Abstract. This note presents some central limit theorems for the eigenvalue counting
function of Wigner matrices in the form of suitable translations of results by Gustavsson and
O’Rourke on the limiting behavior of eigenvalues inside the bulk of the semicircle law for Gaus-
sian matrices. The theorems are then extended to large families of Wigner matrices by the Tao
and Vu Four Moment Theorem. Similar results are developed for covariance matrices.

Recent developments in random matrix theory have concerned the limiting behavior of linear
statistics of random matrices when the size n of the matrix goes to infinity (see for example: [4],
[11], [17], [2], [15], [14]). In this work, we restrict ourselves to the families of so-called Wigner
and covariance matrices.

Wigner matrices are Hermitian or real symmetric matrices Mn such that, if Mn is complex,
for i < j, the real and imaginary parts of (Mn)ij are iid, with mean 0 and variance 1

2
, (Mn)ii are

iid, with mean 0 and variance 1. In the real case, (Mn)ij are iid, with mean 0 and variance 1
and (Mn)ii are iid, with mean 0 and variance 2. In both cases, set Wn = 1√

n
Mn. An important

example of Wigner matrices is the case where the entries are Gaussian. If Mn is complex, then
it belongs to the so-called Gaussian Unitary Ensemble (GUE). If it is real, it belongs to the
Gaussian Orthogonal Ensemble (GOE). In this case, the joint law of the eigenvalues is known,
allowing for complete descriptions of their limiting behavior both in the global and local regimes
(cf. for example [1]).

Covariance matrices are Hermitian or real symmetric semidefinite matrices Sm,n such that
Sm,n = 1

n
X∗X where X is a m× n random complex or real matrix (with m > n) whose entries

are iid with mean 0 and variance 1. We only consider here the situation where m
n
→ γ ∈ [1,+∞)

as n → ∞. If the entries are Gaussian, then the covariance matrix belongs to the so-called
Laguerre Unitary Ensemble (LUE) if it is complex and Laguerre Orthogonal Ensemble (LOE)
if it is real. Again in this Gaussian case, the joint law of the eigenvalues is known allowing, as
for Wigner matrices, for a complete knowledge of their asymptotics (see for example [3], [5],
[13]).

Both Wn and Sm,n have n real eigenvalues λ1, . . . , λn for which one may investigate the
linear statistics

Nn[ϕ] =

n
∑

j=1

ϕ(λj)
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where ϕ : R → C. The classical Wigner theorem states that the empirical distribution
1
n

∑n
j=1 δλj

on the eigenvalues of Wn converges weakly almost surely to the semi-circle law

dρsc(x) =
1
2π

√
4− x21[−2,2](x)dx. Consequently, for any bounded continuous function ϕ,

1

n
Nn[ϕ] →

n→+∞

∫

ϕdρsc almost surely.

At the fluctuation level, various results have been obtained in the last decade for different
subclasses of Wigner matrices. As usual in random matrix theory, the case of GUE or GOE
matrices is easier and was investigated first. For a regular function ϕ, it has been shown
by Johansson (see [12]) that the random variable No

n[ϕ] = Nn[ϕ] − E[Nn[ϕ]] converges in
distribution to a Gaussian random variable with mean 0 and variance

V β
Gaussian[ϕ] =

1

2βπ2

∫ 2

−2

∫ 2

−2

(

ϕ(x)− ϕ(y)

x− y

)2
4− xy√

4− x2
√

4− y2
dxdy,

where β = 1 if the matrix is from the GOE and β = 2 if it is from the GUE. Cabanal-Duvillard
in [7] proved this theorem using different techniques. It is remarkable that due to the repelling
properties of the eigenvalues, no normalization appears in this central limit theorem. Recentely,
Lytova and Pastur [14] proved this theorem with weaker assumptions for the smoothness of ϕ:
if ϕ is continuous and has a bounded derivative, the theorem is true.

The case of covariance matrices is very similar. The Marchenko-Pastur theorem states that
the empirical distribution 1

n

∑n
j=1 δλj

on the eigenvalues of Sm,n converges weakly almost surely

to the Marchenko-Pastur law (with parameter γ) dµγ(x) = 1
2πx

√

(x− α)(β − x)1[α,β](x)dx,
where α = (

√
γ − 1)2 and β = (

√
γ + 1)2. Consequently, for any bounded continuous function

ϕ,
1

n
Nn[ϕ] →

n→+∞

∫

ϕdµγ almost surely.

At the fluctuation level, Guionnet (cf. [10]) proved that, for Sm,n from the LUE and ϕ a
polynomial function, the random variable No

n[ϕ] = Nn[ϕ]−E[Nn[ϕ]] converges in distribution
to a Gaussian random variable with mean 0 and variance

V β
Laguerre[ϕ] =

1

2βπ2

∫ β

−α

∫ β

−α

(

ϕ(x)− ϕ(y)

x− y

)2
4γ − (x− δ)(y − δ)

√

4γ − (x− δ)2
√

4γ − (y − δ)2
dxdy,

where β = 1 if the matrix is from the LOE and β = 2 if it is from the LUE, and δ = α+β
2

=
1+γ. Again, Cabanal-Duvillard in [7] proved this theorem using different techniques. Recently,
Lytova and Pastur in [14] proved that this result is true for continuous test functions ϕ with a
bounded derivative.

Numerous recent investigations (cf. [2], [4]) have been concerned with the extension of
the preceding statements to non-Gaussian Wigner and covariance matrices. More or less, the
results are the same but so far stronger smoothness assumptions on ϕ are required. Various
techniques have been developed toward this goal: moment method for polynomial functions
ϕ (see [2]), Stieltjès transform for analytical functions ϕ (see [4]) and Fourier transforms for
essentially C4 functions ϕ (see [14]). The latest and perhaps more complete results are due to
Lytova and Pastur [14] who proved that, under some suitable assumptions on the distribution
of the entries of the Wigner matrix, the smoothness condition C4 on ϕ is essentially enough
to ensure that No

n[ϕ] converges in distribution to a Gaussian random variable with mean 0
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and variance VWig[ϕ] which is the sum of V β
Gaussian[ϕ] and a term which is zero in the Gaussian

case. In the same article, they proved a similar result for covariance matrices: under the same
assumptions, No

n[ϕ] converges in distribution to a Gaussian random variable with mean 0 and
variance VCov[ϕ] which is the sum of V β

Laguerre[ϕ] and a term which is zero in the Gaussian case.
These results are deduced from the Gaussian cases by using an interpolation procedure.

The picture is rather different when ϕ is not smooth, and much is less actually known in this
case. What is best known concerns the case where ϕ is the characteristic function of an interval
I, in which case Nn[ϕ] is the number of eigenvalues falling into the interval I, and which will
be denoted by NI(Wn) or NI(Sm,n) throughout this work.

By Wigner’s and Marchenko-Pastur’s theorems as above, for any interval I ⊂ R,

1

n
NI(Wn) →

n→+∞
ρsc(I) and

1

n
NI(Sm,n) →

n→+∞
µγ(I) almost surely.

In case of the GUE and the LUE, the eigenvalues form a determinantal point process.
This particular structure (cf. [6]) allows for the representation of NI as a sum of independent
Bernoulli random variables with parameters related to the kernel eigenvalues. In particular, this
description underlies the following general central limit theorem going back to Costin-Lebowitz
and Soshnikov (cf. [8] and [16]).

Theorem 1 (Costin-Lebowitz, Soshnikov). Let Mn be a GUE matrix. Let In be an interval in
R. If Var(NIn(Mn)) → ∞ as n → ∞, then

NIn(Mn)−E[NIn(Mn)]
√

Var(NIn(Mn))
→ N (0, 1) (1)

in distribution.

The same result holds for a LUE matrix Sm,n.
In order to efficiently use this conclusion, it is of interest to evaluate the order of growth

of the variance of NI(Mn). As a main result, Gustavsson [11], using asymptotics of Hermite
orthogonal polynomials, was able to show that, say for an interval I strictly in the bulk (−2,+2)
of the semi-circle law, Var(NI(Mn)) is of the order of

√
logn as n → ∞. This behavior is thus

in strong contrast with the smooth case (for which no normalization is necessary). On the basis
of this result, Gustavsson investigated the (Gaussian) limiting behavior of eigenvalues in the
bulk. The main observation in this regard is the link between the k-th eigenvalue λk (sorted
in nondecreasing order) and the counting function NI(Wn) of an interval I = (−∞, a], a ∈ R,
given by

NI(Wn) > k if and only if λk 6 a. (2)

Gustavsson’s results have been extended to the real GOE ensemble by O’Rourke in [15] by
means of interlacing formulas (cf. [9]). Using their already famous Four Moment Theorem,
Tao and Vu (cf. [18]) were able to extend Gustavsson’s theorem to large classes of Wigner
Hermitian matrices. As pointed out at the end of O’Rourke’s paper [15], the extension also
holds for real Wigner matrices.

Su [17] extended Gustavsson’s work for LUE matrices and got the same behavior for the
variance of NI(Sm,n), namely

√
logn. Similar interlacing results (cf. [9]) yield the same conclu-

sions for LOE matrices. Since Tao and Vu extended their Four Moment Theorem to covariance
matrices (cf. [20]), it is then possible to extend Su’s central limit theorems to more general
covariance matrices.

3



The purpose of this note is to translate the aforementioned results on the behavior of eigen-
values inside the bulk directly as central limit theorems on the eigenvalue counting function,
combining thus the Costin-Lebowitz - Soshnikov theorem with the Tao-Vu Four Moment Theo-
rem. While these statements are implicit in the preceding investigations, we found it interesting
and useful to emphasize the conclusions as central limit theorems for the eigenvalue counting
function, in particular by comparison with the case of smooth linear statistics as described
above. In particular, we express central limit theorems for N[an,+∞), an → a, where a is in
the bulk of the spectrum and where an is close to the edge of the spectrum. The results are
presented first, along the lines of Gustavsson [11], for matrices from the GUE, then extended to
Wigner Hermitian matrices by the Tao-Vu Four Moment Theorem. Similar results are devel-
oped for a finite number of intervals, by means of the corresponding multidimensional central
limit theorem. The conclusions are carried over to the real case following O’Rourke’s [15] in-
terlacing approach. The results are then presented for LUE matrices, using Su’s work [17], and
extended to non-Gaussian complex covariance matrices. Following O’Rourke, the results are
then extended to LOE matrices and, at last, to real covariance matrices.

Turning to the content of this note, the first section describes the families of Wigner matrices
of interest, as well as the Tao-Vu Four Moment Theorem. Section 2 then presents the various
central limit theorems for the eigenvalue counting function of Hermitian matrices, both for
single or multiple intervals. In Section 3, we formulate the corresponding statements in the real
case. In the last section, we present the results for covariance matrices.

1 Notations and definitions

1.1 Wigner matrices

Definitions of Wigner matrices somewhat differ from one paper to another. Here we follow Tao
and Vu in [18], in particular for moment assumptions which will be suited to their Four Moment
Theorem.

Definition 1. A Wigner Hermitian matrix of size n is a random Hermitian matrix Mn whose
entries ξij have the following properties:

• For 1 6 i < j 6 n, the real and imaginary parts of ξij are iid copies of a real random
variable ξ with mean 0 and variance 1

2
.

• For 1 6 i 6 n, the entries ξii are iid copies of a real random variable ξ̃ with mean 0 and
variance 1.

• ξ and ξ̃ are independent and have finite moments of high order: there is a constant C0 > 2
such that E[|ξ|C0] 6 C and E[|ξ̃|C0] 6 C

for some constant C.

If ξ and ξ̃ are real Gaussian random variables with mean 0 and variance 1
2
and 1 respectively,

then Mn belongs to the GUE.
A similar definition holds for real Wigner matrices.

Definition 2. A real Wigner symmetric matrix of size n is a random real symmetric matrix
Mn whose entries ξij have the following properties:
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• for 1 6 i < j 6 n, ξij are iid copies of a real random variable ξ of mean 0 and variance
1.

• for 1 6 i 6 n, ξii are iid copies of a real random variable ξ̃ of mean 0 and variance 2.

• the entries are independent and have finite moments of high order: there is a constant
C0 > 2 such that E[|ξ|C0] 6 C and E[|ξ̃|C0] 6 C

for some constant C.

The GOE is the equivalent of the GUE in the real case, namely a real Wigner symmetric
matrix is said to belong to the GOE if its entries are independent Gaussian random variables
with mean 0 and variance 1, 2 on the diagonal.

The Gaussian Unitary and Orthogonal Ensembles are specific sets of random matrices for
which the eigenvalue density is explicitly known. On this basis, the asymptotic behavior of
the eigenvalues, both at the global and local regimes, has been successfully analyzed in the
past giving rise to complete and definitive results (cf. for example [1]). Recent investigations
have concerned challenging extensions to non-Gaussian Wigner matrices. In this regard, a
remarkable breakthrough was achieved by Tao and Vu with their Four Moment Theorem which
is a tool allowing the transfer of known results for the GUE or GOE to large classes of Wigner
matrices. We present next this main statement following the recent papers [18], [19] and [20].

1.2 Tao and Vu’s results

The Tao and Vu Four Moment Theorem indicates that two random matrices whose entries have
the same first four moments have very close eigenvalues. Before recalling the precise statement,
say that two complex random variables ξ and ξ′ match to order k ifE [

Re(ξ)mIm(ξ)l
]

= E [

Re(ξ′)mIm(ξ′)l
]

for all m, l > 0 such that m+ l 6 k.

Theorem 2 (Four Moment Theorem). There exists a small positive constant c0 such that, for
every k > 1, the following holds. Let Mn = (ξij)16i,j6n and M ′

n = (ξ′ij)16i,j6n be two random
Wigner Hermitian matrices. Assume that, for 1 6 i < j 6 n, ξij and ξ′ij match to order 4
and that, for 1 6 i 6 n, ξii and ξ′ii match to order 2. Set An =

√
nMn and A′

n =
√
nM ′

n. Let
G : Rk → R be a smooth fonction such that:

∀ 0 6 j 6 5, ∀x ∈ R
k, |∇jG(x)| 6 nc0 . (3)

Then, for all 1 6 i1 < i2 · · · < ik 6 n and for n large enough (depending on k and constants C
and C ′),

|E[G(λi1(An), . . . , λik(An))]−E[G(λi1(A
′
n), . . . , λik(A

′
n))]| 6 n−c0. (4)

This theorem applies to any kind of Wigner matrices. It will be used with one of the two
matrices in the GUE giving thus rise to the following corollary.

Corollary 3. Let Mn be a Wigner Hermitian matrix such that ξ satisfies E[ξ3] = 0 andE[ξ4] = 3
4
. Let M ′

n be a matrix from the GUE. Then, with G,An, A′
n as in the previous

theorem, and n large enough,

|E[G(λi1(An), . . . , λik(An))]−E[G(λi1(A
′
n), . . . , λik(A

′
n))]| 6 n−c0. (5)

5



For the further purposes, let us briefly illustrate how this result may be used in order
to estimate tail probabilities of eigenvalues. Consider matrices satisfying the conditions of
Theorem 2. Let I = [a, b], I+ = [a − n−c0/10, b + n−c0/10] and I− = [a + n−c0/10, b − n−c0/10].
Take a smooth bump function G such that G(x) = 1 if x ∈ I and G(x) = 0 if x /∈ I+ and such
that G satisfies condition (3). Theorem 2 applies in this setting so that, for every i ∈ {1, . . . , n}
(possibly depending on n),

|E[G(λi(An))]−E[G(λi(A
′
n))]| 6 n−c0 .

But now, P(λi(An) ∈ I) 6 E[G(λi(An))] and P(λi(A
′
n) ∈ I+) > E[G(λi(A

′
n))]. Therefore, by

the triangle inequality, P(λi(An) ∈ I) 6 P(λi(A
′
n) ∈ I+) + n−c0.

Taking another smooth bump function H such that H(x) = 1 if x ∈ I− and H(x) = 0 if x /∈ I
and using the same technique yieldsP(λi(A

′
n) ∈ I−)− n−c0 6 P(λi(An) ∈ I).

Combining the two preceding inequalities,P(λi(A
′
n) ∈ I−)− n−c0 6 P(λi(An) ∈ I) 6 P(λi(A

′
n) ∈ I+) + n−c0 . (6)

This inequality will be used repeatedly. Combined with the equivalence (2), it will yield
significant informations on the eigenvalue counting function. In the next section we thus present
the central limit theorems for GUE matrices, and then transfer them, by this tool, to Hermitian
Wigner matrices. The real case will be addressed next.

2 Central limit theorems (CLT) for Hermitian matrices

2.1 Infinite intervals

2.1.1 CLT for GUE matrices

We first present Gustavsson’s results [11] on the limiting behavior of the expectation and
variance of the eigenvalue counting function of the GUE, and then deduce the corresponding
central limit theorems through the Costin-Lebowitz - Soshnikov Theorem (Theorem 1). Set
G(t) = ρsc((−∞, t]) = 1

2π

∫ t

−2

√
4− x21[−2,2](x)dx for t ∈ [−2, 2].

Theorem 4. Let Mn be a GUE matrix.

• Let t = G−1
(

k
n

)

with k
n
→ a ∈ (0, 1). The number of eigenvalues of Mn in the interval

In = [t
√
n,+∞) has the following asymptotics:E[NIn(Mn)] = n− k +O

( logn

n

)

. (7)

• The expected number of eigenvalues of Mn in the interval In = [tn
√
n,+∞), when tn →

2−, is given by: E[NIn(Mn)] =
2

3π
n(2− t)3/2 +O(1). (8)
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• Let δ > 0. Assume that tn satisfies tn ∈ [−2+ δ, 2) and n(2− tn)
3/2 → +∞ when n → ∞.

Then the variance of the number of eigenvalues of Mn in In = [tn
√
n,+∞) satisfies

Var(NIn(Mn)) =
1

2π2
log[n(2 − tn)

3/2](1 + η(n)), (9)

where η(n) → 0 as n → ∞.

As announced, together with Theorem 1, we deduce central limit theorems for the eigenvalue
counting function of the GUE.

Theorem 5. Let Mn be a GUE matrix and Wn = 1√
n
Mn Set In = [an,+∞), where an → a ∈

(−2, 2) when n → ∞. Then

NIn(Wn)− nρsc([an,+∞))
√

1
2π2 log n

→ N (0, 1), (10)

in distribution when n goes to ∞.

The proof is an immediate consequence of Theorem 4 together with the Costin-Lebowitz -
Soshnikov Theorem (Theorem 1). Note that the statement holds similarly with E[NIn(Wn)] in-
stead of nρsc([an,+∞)) (and actually the latter is a consequence of the result with E[NIn(Wn)]).

Theorem 5 concerns intervals in the bulk. When the interval is close to the edge, the second
part of Theorem 4 yields the corresponding conclusion.

Theorem 6. Let Mn be a GUE matrix and Wn = 1√
n
Mn. Let In = [an,+∞) where an → 2−

when n goes to infinity. Assume actually that an satisfies an ∈ [−2+δ, 2) and n(2−an)
3/2 → +∞

when n → ∞. Then, as n goes to infinity,

NIn(Wn)− 2
3π
n(2− an)

3/2

√

1
2π2 log [n(2− an)3/2]

→ N (0, 1), (11)

in distribution.

2.1.2 CLT for Wigner matrices

On the basis of the preceding results for GUE matrices, we now deduce the corresponding
statements for Hermitian Wigner matrices using the Four Moment Theorem (Theorem 2).

Theorem 7. Let Mn be a Wigner Hermitian matrix satisfying the hypotheses of Theorem 2
with a GUE matrix M ′

n. Set Wn = 1√
n
Mn as usual. Set In = [an,+∞) where an → a ∈ (−2, 2).

Then, as n goes to infinity,

NIn(Wn)− nρsc([an,+∞))
√

1
2π2 logn

→ N (0, 1) (12)

in distribution.
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Proof. Let x ∈ R. We haveP(NIn(Wn)− nρsc([an,+∞))
√

1
2π2 log n

6 x

)

= P(NIn(Wn) 6 n− kn)

where kn =
⌈

nρsc((−∞, an])− x
√

1
2π2 log n

⌉

. Hence, by (2),P(NIn(Wn)− nρsc([an,+∞))
√

1
2π2 log n

6 x

)

= P(λkn(Mn) 6 an
√
n) = P(λkn(An) 6 ann)

where An =
√
nMn. Set A

′
n =

√
nM ′

n. By Theorem 2, more precisely (6),P (

λkn(A
′
n) 6 ann− n−c0/10

)

− n−c0 6 P (λkn(An) 6 ann) ,

and P (λkn(An) 6 ann) 6 P (

λkn(A
′
n) 6 ann+ n−c0/10

)

+ n−c0 .

Start with the probability on the right of the preceding inequalities (the term n−c0 going to
0 as n → ∞). We have,P(λkn(A

′
n) 6 ann+ n−c0/10

)

= P(λkn(M
′
n) 6 (an + n−1−c0/10)

√
n
)

= P(N[an+n−1−c0/10,+∞)(W
′
n) 6 n− kn

)

= P(N[a′n,+∞)(W
′
n) 6 nρsc([an,+∞)) + x

√

1

2π2
logn

)

where a′n = an + n−1−c0/10. Therefore,P(λkn(A
′
n) 6 ann+ n−c0/10

)

= P(N[a′n,+∞[(W
′
n)− nρsc([a

′
n,+∞))

√

1
2π2 logn

6
nρsc([an, a

′
n])

√

1
2π2 log n

+ x

)

.

Recall from Theorem 5 that

Xn =
N[a′n,+∞[(W

′
n)− nρsc([a

′
n,+∞[)

√

1
2π2 logn

→ N (0, 1),

in distribution as n goes to infinity. Set now xn = nρsc([an,a′n])
√

1

2π2 logn
+ x. In order to describe the

asymptotic behavior of xn, observe that

ρsc([an, a
′
n]) = G(a′n)−G(an)

= G′(an)(a
′
n − an) + o(a′n − an)

=
1

2π

√

4− a2n n
−1−c0/10 + o(n−1−c0/10).

It immediately follows that xn → x. We are thus left to show that P(Xn 6 xn) → P(X 6 x)
where X ∼ N (0, 1). To this task, let ε > 0. There exists n0 such that, for all n > n0,

8



x − ε 6 xn 6 x + ε. Then, for all n > n0, P(Xn 6 x − ε) 6 P(Xn 6 xn) 6 P(Xn 6 x + ε).
Hence

lim sup
n→+∞

P(Xn 6 xn) 6 lim sup
n→+∞

P(Xn 6 x+ ε) = P(X 6 x+ ε).

and
lim inf
n→+∞

P(Xn 6 xn) > lim inf
n→+∞

P(Xn 6 x− ε) = P(X 6 x− ε).

Since the distribution of X is continuous, the conclusion follows.
The same argument works for the lower bound in equation (2.1.2). The proof of the theorem

is then easily completed.

It should be mentioned that, for arbitrary Wigner matrices, since E[NIn(Wn)] does not
obviously behave like nρsc([an,+∞)), it is not clear thus whether the statement holds similarly
with E[NIn(Wn)] instead of nρsc([an,+∞)).

We next state and prove the corresponding result for intervals close to the edge.

Theorem 8. Let Mn be a Wigner Hermitian matrix satisfying the hypotheses of Theorem 2
with a GUE matrix M ′

n. Set Wn = 1√
n
Mn. Set In = [an,+∞), where an → 2− when n goes to

infinity. Then, as n → ∞,

NIn(Wn)− 2
3π
n(2− an)

3/2

√

1
2π2 log[n(2− an)3/2]

→ N (0, 1). (13)

Proof. Let x ∈ R.P(NIn(Wn)− 2
3π
n(2− an)

3/2

√

1
2π2 log[n(2− an)3/2]

6 x

)

= P(NIn(Wn) 6 kn),

where kn =
⌊

2
3π
n(2− an)

3/2 + x
√

1
2π2 log[n(2− an)3/2]

⌋

. Then, by (2),P(NIn(Wn)− 2
3π
n(2− an)

3/2

√

1
2π2 log[n(2− an)3/2]

6 x

)

= P(λn−kn(Mn) 6 an
√
n)

= P(λn−kn(An) 6 ann),

where An =
√
nMn. Set A

′
n =

√
nM ′

n. Using Theorem 2, more precisely (6),P(λn−kn(A
′
n) 6 ann− n−c0/10

)

− n−c0 6 P(λn−kn(An) 6 ann
)

,

and P(λn−kn(An) 6 ann
)

6 P(λn−kn(A
′
n) 6 ann+ n−c0/10

)

+ n−c0 .

Start with the probability on the right of the preceding inequality (the term n−c0 going to
0 as n → ∞).P(λn−kn(A

′
n) 6 ann+ n−c0/10

)

= P(λn−kn(M
′
n) 6 (an + n−1−c0/10)

√
n
)

= P(N[a′n,+∞)(W
′
n) 6 kn

)

,

9



ThenP(λn−kn(A
′
n) 6 ann+n−c0/10

)

= P(N[a′n,+∞)(W
′
n) 6

2

3π
n(2−an)

3/2+x

√

1

2π2
log[n(2− an)3/2]

)

,

where a′n = an + n−1−c0/10. Set

Xn =
N[a′n,+∞)(W

′
n)− 2

3π
n(2− a′n)

3/2

√

1
2π2 log[n(2− a′n)

3/2]
.

Then P (

λn−kn(A
′
n) 6 ann+ n−c0/10

)

= P (Xn 6 xn) ,

where

xn =
2
3π
n
[

(2− an)
3/2 − (2− a′n)

3/2
]

√

1
2π2 log[n(2− a′n)

3/2]
+ x

√

log[n(2− an)3/2]

log[n(2− a′n)
3/2]

.

We need to know if Theorem 6 apply. We must have a′n → 2− and n(2 − a′n)
3/2 → +∞ when

n goes to infinity. First, we can see that an → 2. Suppose now that n is such that a′n − 2 > 0.
Then an − 2 + n−1−c0/10 > 0. Then 2 − an < n−1−c0/10. As 2 − an > 0 for n large enough,

n(2− an)
3/2 < nn− 3c0

20
− 3

2 . And we get n(2− an)
3/2 < n− 3c0

20
− 1

2 . But n(2− an)
3/2 goes to infinity

and n− 3c0
20

− 1

2 goes to 0, which means that this situation is impossible if n is large enough. Then,
for n large enough, 2− a′n > 0 and a′n → 2−. Now, turn to the second condition. Namely,

(2− a′n)
3/2 = (2− an − n−1−c0/10)3/2

= (2− an)
3/2

(

1− n−1−c0/10

2− an

)3/2

= (2− an)
3/2

(

1− 3

2

n−1−c0/10

2− an
+ o

(n−1−c0/10

2− an

)

)

,

as, when n → ∞,
n−1−c0/10

2− an
=

n− c0
10

− 1

3

[n(2− an)3/2]
2/3

→ 0.

Then

n(2− a′n)
3/2 = n(2− an)

3/2

(

1− 3

2

n−1−c0/10

2− an
+ o

(n−1−c0/10

2− an

)

)

.

But n(2 − an)
3/2 goes to +∞ when n → ∞ and n−1−c0/10

2−an
→ 0. Then n(2 − a′n)

3/2 → ∞, and
Theorem 6 apply. Consequently, when n goes to infinity,

N[a′n,+∞)(W
′
n)− 2

3π
n(2− a′n)

3/2

√

1
2π2 log[n(2− a′n)

3/2]
→ N (0, 1),

in distribution.

10



The argument will be completed provided xn → x. Using the preceding,

n
[

(2− an)
3/2 − (2− a′n)

3/2
]

=
3

2
n−c0/10(2− an)

1/2 + o
(

n−c0/10
)

→ 0.

Furthermore,
√

1
2π2 log[n(2 − a′n)

3/2] → ∞. Therefore,

2
3π
n
[

(2− an)
3/2 − (2− a′n)

3/2
]

√

1
2π2 log[n(2− a′n)

3/2]
→ 0.

Moreover,

log[n(2− an)
3/2]

log[n(2− a′n)
3/2]

=
log[n(2 − an)

3/2]

log
(

n(2− an)3/2[1− n−1−c0/10

2−an
]3/2

)

=
log[n(2− an)

3/2]

log[n(2− an)3/2] +
3
2
log[1− n−1−c0/10

2−an
]

→ 1.

Hence xn = x+ o(1). The proof of the theorem may then be concluded as the one of Theorem
7.

2.2 Finite intervals

In this section, we investigate the corresponding results for finite intervals in the bulk. Namely,
we would like to study N[a,b](Wn) (for −2 < a, b < 2). To this task, write N[a,b](Wn) =
N[a,+∞)(Wn)−N[b,+∞)(Wn) so that we are led to study the couple (N[a,+∞)(Wn), N[b,+∞)(Wn)).
For more complicated sets, such as [a, b] ∪ [c,+∞) with a, b, c in the bulk, we need to study
the relations between three or more such quantities. In this subsection, we thus investigate the
m-tuple (N[a1,+∞)(Wn), . . . , N[am,+∞)(Wn)) for which we establish a multidimensional central
limit theorem.

2.2.1 CLT for GUE matrices

As for infinite intervals, we start with GUE matrices.

Theorem 9. Let Mn be a GUE matrix and set Wn = 1√
n
Mn. Let m be a fixed integer. Let

ain → ai for all i ∈ {1, . . . , m}, with −2 < a1 < a2 < · · · < am < 2. Set, for all i ∈ {1, . . . , m},

Xai(Wn) =
N[ain,+∞)(Wn)− nρsc([a

i
n,+∞))

√

1
2π2 logn

.

Then, as n goes to infinity,

(

(Xa1(Wn), . . . , Xam(Wn)
)

→ N (0, Im),

in distribution, where Im is the identity matrix of size m.
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Proof. In order to simplify notations, we will denote NI = NI(Wn) throughout the proof, for
all interval I in R.

By means of the multidimensional version of the Costin-Lebowitz - Soshnikov theorem,
Gustavsson [11] showed that, for all (β1, . . . , βm) ∈ Rm,

∑m
j=1 βjN[ajn,a

j+1
n ) −E[∑m

j=1 βjN[ajn,a
j+1
n )

]

√

Var
(
∑m

j=1 βjN[ajn,a
j+1
n )

)

→
n→∞

N (0, 1),

in distribution, with am+1
n = ∞. But, for all (α1, . . . , αm) ∈ Rm,

∑m
k=1 αkN[akn,+∞) −E[∑m

k=1 αkN[akn,∞)

]

√

Var
(
∑m

k=1 αkN[akn,∞)

)

=

∑m
j=1 βjN[ajn,a

j+1
n ) −E[∑m

j=1 βjN[ajn,a
j+1
n )

]

√

Var
(
∑m

j=1 βjN[ajn,a
j+1
n )

)

,

with βj =
∑j

k=1 αk. Therefore,

∑m
k=1 αkN[akn,+∞) −E[∑m

k=1 αkN[akn,+∞)

]

√

Var
(
∑m

k=1 αkN[akn,+∞)

)

→
n→∞

N (0, 1),

in distribution.
Set now Yk = N[akn,+∞). To see whether

(Yk−E[Yk]√
VarYk

)

16k6m
converges in distribution, we proceed

as follows. Gustavsson showed that the covariance matrix of
(Yk−E[Yk]√

VarYk

)

16k6m
has limit Σ = Im

as n goes to infinity. Let then (β1, . . . , βm) be in Rm. Set αk = βk√
Var(Yk)

. In distribution,

∑m
k=1 αkYk −E[∑m

k=1 αkYk

]

√

Var
(
∑m

k=1 αkYk

)

→
n→∞

N (0, 1).

But

Var

( m
∑

k=1

αkYk

)

=

m
∑

k,l=1

βkβl√
VarYk VarYl

Cov(Yk, Yl) →
n→∞

m
∑

k,l=1

βkβlΣkl,

Then, using Slutsky’s lemma,

m
∑

k=1

βk

(

Yk√
VarYk

− E[Yk]√
VarYk

)

→ N (0, tβΣβ).

Since this is true for every β ∈ Rm and as Σ = Im,
(

Yk −E[Yk]√
VarYk

)

16k6m

→
n→∞

N (0, Im)

in distribution. Using the asymptotics for the mean and the variance that Gustavsson calculated
in the one-dimensional case (cf. Theorem 4), we easily conclude to the announced convergence

(Xa1(Wn), . . . , Xam(Wn)) →
n→∞

N (0, Im),

in distribution. The proof is thus complete.

12



2.2.2 CLT for Wigner matrices

We use the same techniques as in the one-dimensional case in order to extend the preceding
theorem to Wigner Hermitian matrices.

Theorem 10. Let Mn be a Wigner Hermitian matrix satisfying the hypotheses of Theorem 2
with a GUE matrix M ′

n. Using the same notations as before, as n → ∞,

(Xa1(Wn), . . . , Xam(Wn)) → N (0, Im)

in distribution, where Im is the identity matrix of size m.

Proof. Let x1, . . . , xm be in R.P (Xa1(Wn) 6 x1, . . . , Xam(Wn) 6 xm)

= P(

N[ain,+∞)(Wn) 6 nρsc([a
i
n,+∞)) + xi

√

1
2π2 log n, 1 6 i 6 m

)

= P (

N[ain,+∞)(Wn) 6 n− ki, 1 6 i 6 m
)

,

where ki =
⌈

nρsc((−∞, ain])− xi

√

1
2π2 logn

⌉

. ThenP (Xa1(Wn) 6 x1, . . . , Xam(Wn) 6 xm) = P (

λki(Mn) 6 ain
√
n, 1 6 i 6 m

)

= P (

λki(An) 6 ainn, 1 6 i 6 m
)

,

where An =
√
nMn. Set A′

n =
√
nM ′

n. Now, use Theorem 2 with m eigenvalues. What is
important to note here is that the inequalities do not depend on which eigenvalues are chosen.
They only depend on the number m of eigenvalues. Applying thus the same arguments as for
one eigenvalue, we getP (

λki(A
′
n) ∈ I−i , 1 6 i 6 m

)

− om(n
−c0) 6 P (λki(An) ∈ Ii, 1 6 i 6 m) , (14)

and P (λki(An) ∈ Ii, 1 6 i 6 m) 6 P (

λki(A
′
n) ∈ I+i , 1 6 i 6 m

)

+ om(n
−c0), (15)

where Ii are intervals, I+i and I−i are intervals deduced from Ii by adding ±n−c0/10. Thus,P (

λki(A
′
n) 6 ainn− n−c0/10, 1 6 i 6 m

)

− om(n
−c0) 6 P (

λki(An) 6 ainn, 1 6 i 6 m
)

,

andP (

λki(An) 6 ainn, 1 6 i 6 m
)

6 P (

λki(A
′
n) 6 ainn+ n−c0/10, 1 6 i 6 m

)

+ om(n
−c0).

Consider the probability on the right in the preceding inequality (the term om(n
−c0) going

to 0 when n → ∞). We have,P (

λki(A
′
n) 6 ainn+ n−c0/10, 1 6 i 6 m

)

= P (

λki(M
′
n) 6 (ain + n−1−c0/10)

√
n, 1 6 i 6 m

)

= P (

N[(ain)
′,+∞)(W

′
n) 6 n− ki, 1 6 i 6 m

)

where (ain)
′ = ain + n−1−c0/10. ThenP (

λki(A
′
n) 6 ainn+ n−c0/10, 1 6 i 6 m

)

= P (

X(ai)′(W
′
n) 6 (xi

n)
′, 1 6 i 6 m

)

13



with

X(ai)′(W
′
n) =

N[(ain)
′,+∞)(W

′
n)− ρsc([(a

i
n)

′,+∞))
√

1
2π2 log n

and

(xi
n)

′ =
nρsc([a

i
n, (a

i
n)

′])
√

1
2π2 log n

+ xi.

We know that (ain)
′ → ai. Then, Theorem 10 apply and we have

(

X(a1)′(W
′
n), . . . , X(am)′(W

′
n)
)

→ N (0, Im).

We are left with the asymptotics of (xi
n)

′. To this task, note that

ρsc([a
i
n, (a

i
n)

′]) =

∫ (ain)
′

ain

1

2π

√
4− x2dx =

1

2π

√

4− (ain)
2((ain)

′ − ain) + o((ain)
′ − ain).

Then

nρsc([a
i
n, (a

i
n)

′])
√

1
2π2 logn

=
n

√

1
2π2 log n

(

1

2π

√

4− (ain)
2n−1−c0/10 + o(n−1−c0/10)

)

=
1

√

1
2π2 log n

(

1

2π

√

4− (ain)
2n−c0/10 + o(n−c0/10)

)

→ 0,

when n goes to infinity. Therefore xi
n → xi. Since

(

X(a1)′(W
′
n), . . . , X(am)′(W

′
n)
)

→ (Y1, . . . , Ym)
where Y = (Y1, . . . , Ym) ∼ N (0, Im), as in the one-dimensional case, it easily follows thatP(X(ai)′(Wn) 6 (xi

n)
′, 1 6 i 6 m

)

→ P(Yi 6 xi, 1 6 i 6 m
)

.

Together with the same considerations for the lower bounds, the conclusion follows. The theo-
rem is thus established.

On the basis of the preceding result, we conclude to the announced central limit theorem
for the number of eigenvalues in a finite interval [an, bn].

Theorem 11. Let Mn be a Wigner Hermitian matrix satisfying the hypotheses of Theorem
2 with a GUE matrix M ′

n. Set Wn = 1√
n
Mn. Let In = [an, bn] where an → a, bn → b and

−2 < a < b < 2. Then, as n goes to infinity,

NIn(Wn)− nρsc([an, bn])
√

1
2π2 logn

→ N (0, 2) (16)

in distribution.

Proof. From the preceding theorem, we know that
(

N[an,+∞)(Wn)− nρsc([an,+∞))
√

1
2π2 log n

,
N[bn,+∞)(Wn)− nρsc([bn,+∞))

√

1
2π2 logn

)

→ N (0, I2).
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But

N[an,bn](Wn) = N[an,+∞)(Wn)−N[bn,+∞)(Wn) =
(

1 −1
)

(

N[an,+∞)(Wn)
N[bn,+∞)(Wn)

)

.

Therefore,

N[an,+∞)(Wn)− nρsc([an,+∞))
√

1
2π2 log n

− N[bn,+∞)(Wn)− nρsc([bn,+∞))
√

1
2π2 log n

behaves asymptotically like a Gaussian random variable with mean 0 and variance
(

1 −1
) (

1 −1
)T

= 2, as n → ∞. Then

N[an,bn](Wn)− nρsc([an, bn])
√

1
2π2 log n

→ N (0, 2),

which concludes the proof.

Remark: The result on the m-tuple

(

N[a1n,+∞)(Wn)− nρsc([a
1
n,+∞))

√

1
2π2 logn

, . . . ,
N[amn ,+∞)(Wn)− nρsc([a

m
n ,+∞))

√

1
2π2 log n

)

,

with ain → ai and −2 < a1 < · · · < am < 2, yields further central limit theorems. For example,
we can deduce a central limit theorem for N[an,bn]∪[cn,+∞)(Wn) where an → a, bn → b, cn → c
and −2 < a < b < c < 2. Indeed,

N[an,bn]∪[cn,+∞)(Wn) = N[an,+∞)(Wn)−N[bn,+∞)(Wn) +N[cn,+∞)(Wn).

And then, when n goes to infinity,

N[an,bn]∪[cn,+∞)(Wn)− nρsc([an, bn])− nρsc([cn,+∞))
√

1
2π2 log n

→ N (0, 3),

in distribution.

3 Real matrices

In this section, we briefly indicate how the preceding results for Hermitian random matrices
may be stated similarly for real Wigner symmetric matrices. To this task, we follow the same
scheme of proof, relying in particular on the Tao and Vu Four Moment Theorem (Theorem 2)
which also holds in the real case (cf. [15]). The main issue is actually to establish first the
conclusions for the GOE. This has been suitably developed by O’Rourke in [15] by means of
interlacing formulas (cf. [9]).
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3.1 Links between the GOE and the GUE

We first recall O’Rourke’s [15] conclusions for the GOE relying on the following interlacing
formula of Forrester and Rains [9].

Theorem 12 (Forrester-Rains). The following relation holds between matrix ensembles:

GUEn = even(GOEn ∪GOEn+1). (17)

This statement can be interpreted in the following way. Take two independent matrices from
the GOE, one of size n and the other of size n+1. If we surimperpose the 2n+1 eigenvalues on
the real line and then take the n even ones, they have the same distribution as the eigenvalues
of a n× n matrix from the GUE.

Now, if In is an interval of R,

NIn(M
C

n ) =
1

2

(

NIn(M
R

n ) +NIn(M
R

n+1) + ξn(In)
)

,

where MC

n is a n×n GUE matrix, MR

n a n×n GOE matrix and ξn(In) takes values in {−1, 0, 1}.
The following interlacing property will then lead to the expected conclusions.

Theorem 13 (Cauchy’s interlacing theorem). If A is a Hermitian matrix and B is a principle
submatrix of A, then the eigenvalues of B interlace with the eigenvalues of A. In other words,
if λ1 6 · · · 6 λn are the eigenvalues of A and µ1 6 · · · 6 µn−1 the eigenvalues of B, then

λ1 6 µ1 6 λ2 6 · · · 6 µn−1 6 λn.

This theorem enables us to make a link between the eigenvalues of a (n+1)× (n+1) GOE
matrix and a n×n one: NIn(M

R

n ) = NIn(M
R

n+1)+ξ′n(In) where ξ
′
n(In) takes values in {−1, 0, 1}.

In particular,
NIn(M

C

n ) = NIn(M
R

n ) + ζn(In), (18)

where ζn(In) takes values in
{

−1,−1
2
, 0, 1

2
, 1
}

.

3.2 Infinite intervals

3.2.1 CLT for GOE matrices

On the basis of the preceding tools, O’Rourke extends in [15] Gustavsson’s results from the GUE
to the GOE. The first statement is the analogue of the Costin-Lebowitz - Soshnikov Theorem
(Theorem 1).

Theorem 14. Let MR
n be a GOE matrix and MC

n a GUE matrix. Let In be an interval in R.
If Var(NIn(M

C

n )) → +∞ when n → ∞,

NIn(M
R

n )−E[NIn(M
R

n )]
√

Var(NIn(M
C
n ))

→ N (0, 2). (19)

In a second step, using the interlacing principle, O’Rourke develops estimates for the mean
of the number of eigenvalues in an interval for GOE matrices.

Lemma 15. Let MR

n be a GOE matrix.
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• Let t = G−1
(

k
n

)

with k
n
→ a ∈ (0, 1). Let In = [t

√
n,+∞). ThenE[NIn(M

R

n )] = n− k +O(1). (20)

• Let In = [tn
√
n,+∞), where tn → 2−. ThenE[NIn(M

R

n )] =
2

3π
n(2− t)3/2 +O(1). (21)

Following the same line of arguments as in the complex case, we may thus formulate the
corresponding central limit theorems for the eigenvalue counting function of the GOE.

Theorem 16. Let MR

n be a GOE matrix and set WR

n = 1√
n
MR

n . Let In = [an,+∞), where

an → a ∈ (−2, 2) when n → +∞. Then, as n goes to infinity,

NIn(W
R
n )− nρsc([an,+∞))
√

1
2π2 logn

→ N (0, 2) (22)

in distribution.

Similar results hold for intervals close to the edge, as in the complex case. The corresponding
statement is presented for general Wigner matrices in the next sub-section.

3.2.2 CLT for real Wigner matrices

In this section, we state the central limit theorems for real symmetric Wigner matrices, as a
consequence of the preceding statements and the Four Moment Theorem (Theorem 2), which
is completely similar in the real case. The proofs are exactly the same as in the complex case.

Theorem 17. Let MR

n be a Wigner symmetric matrix satisfying the hypotheses of Theorem 2
with a GOE matrix (MR

n )
′. Set WR

n = 1√
n
MR

n . Set In = [an,+∞), where an → a ∈ (−2, 2).
Then,

NIn(W
R

n )− nρsc([an,+∞))
√

1
2π2 log n

→ N (0, 2). (23)

Theorem 18. Let MR

n be a Wigner symmetric matrix satisfying the hypotheses of Theorem 2
with a GOE matrix (MR

n )
′. Set WR

n = 1√
n
MR

n . Set In = [an,+∞), where an → 2− when n goes

to infinity. Assume that an satisfies an ∈ [−2 + δ, 2) and n(2 − an)
3/2 → +∞ when n → ∞.

Then
NIn(W

R

n )− 2
3π
n(2− an)

3/2

√

1
2π2 log[n(2− an)3/2]

→ N (0, 2). (24)

3.3 Finite intervals

As in the complex case, we turn now to finite intervals. Following exactly the same scheme, we
get similar results.
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3.3.1 CLT for GOE matrices

The next statement may be found in [15].

Theorem 19. Let MR

n be a GOE matrix and set WR

n = 1√
n
MR

n . Let m be a fixed integer. and

let ain → ai for all i ∈ {1, . . . , m}, with −2 < a1 < a2 < · · · < am < 2. Set

Xai(W
R

n ) =
N[ain,+∞)(W

R
n )− nρsc([a

i
n,+∞))

√

1
2π2 log n

for all i ∈ {1, . . . , m}. Then, as n goes to infinity,

(

Xa1(W
R

n ), . . . , Xam(W
R

n )
)

→ N (0, 2Im),

in distribution, where Im is the identity matrix of size m.

3.3.2 CLT for finite intervals

Using the same techniques as in the complex case, this theorem can be extended to real Wigner
symmetric matrices.

4 Covariance matrices

In this section, we briefly present the analogous results for covariance matrices. We rely here
on Su’s work [17] who developed for the LUE the results corresponding to those of Gustavsson
in case of the GUE. We then make use of the Tao and Vu Four Moment Theorem for general
covariance matrices [20]. We first recall below precise definitions of the covariance matrices
under investigation and Su’s contributions.

4.1 Complex covariance matrices

As for Wigner matrices, we add to the usual definition of a covariance matrix an assumption
on moments, in order to apply Tao and Vu’s Four Moment Theorem.

Definition 3. Let n and m be integers such that m > n and limn→∞
m
n
= γ ∈ [1,+∞). Let X

be a random m× n matrix with entries ζij such that:

• Re(ζij) and Im(ζij) have mean 0 and variance 1
2
.

• ζij are independent and identically distributed.

• there exists C0 > 2 and C > 0 (independent of n and m) such that supij E[|ζij|C0 ] 6 C.

Then Sm,n = 1
n
X∗X is called a covariance matrix.

Sm,n is Hermitian and positive semidefinite with rank at most n. Hence it has at most n
non zero eigenvalues, which are real and nonnegative. Denote them by 0 6 λ1(Sm,n) 6 · · · 6
λn(Sm,n).
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An important example of covariance matrices is the case where the entries are Gaussian.
These matrices form the so-called Laguerre Unitary Ensemble (LUE). In this case, the distri-
bution of the eigenvalues of Sm,n can be explicitely computed. Similarly to the GUE case, it is
then possible to compute various local statistics (see for example [3], [5], [13]). In particular,
Su [17] was able to estimate the mean and the variance of the number of eigenvalues of Sm,n in
a given interval. We recall below some of his main conclusions.

Set µm,n(x) =
1

2πx

√

(x− αm,n)(βm,n − x)1[αm,n,βm,n](x), where αm,n = (
√

m
n
−1)2 and βm,n =

(
√

m
n
+ 1)2. And, if t ∈ [αm,n, βm,n], set H(t) =

∫ t

αm,n
µm,n(x)dx.

Theorem 20. Let Sm,n be a LUE matrix.

• Let t = H−1
(

k
n

)

with k
n
→ a ∈ (0, 1). The number of eigenvalues of Sm,n in the interval

In = [t,+∞) has the following asymptotics:E[NIn(Sm,n)] = n− k +O(1). (25)

• The expected number of eigenvalues of Sm,n in the interval In = [tn,+∞), when βm,n −
tn → 0+ and n(βm,n − tn)

3/2 > C for some C > 0, is given by:E[NIn(Sm,n)] =

√

βm,n − αm,n

3πβn,m
n(βm,n − t)3/2(1 + o(1)). (26)

• Let δ > 0. Assume that tn 6 βm,n − δ for some δ > 0. Then the variance of the number
of eigenvalues of Sm,n in In = [tn,+∞) satisfies

Var(NIn(Sm,n)) =
1

2π2
log n(1 + o(1)). (27)

• Assume that tn is such that βm,n − tn → 0+ and n(βm,n − tn)
3/2 > C for some C > 0.

Then the variance of the number of eigenvalues of Sm,n in In = [tn,+∞) satisfies

Var(NIn(Sm,n)) =
1

2π2
log[n(βm,n − tn)

3/2](1 + o(1)). (28)

Arguing as in the preceding sections, together with these asymptotics and the Costin-
Lebowitz - Soshnikov Theorem 1, the following central limit theorems may be achieved.

Theorem 21. Let Sm,n be a LUE matrix. Set In = [tn,+∞), where tn → t ∈ (α, β) when
n → ∞. Then

NIn(Sm,n)− n
∫ βm,n

tn
µm,n(x)dx

√

1
2π2 log n

→ N (0, 1), (29)

in distribution when n goes to ∞.

Theorem 22. Let Sm,n be a LUE matrix. Let In = [tn,+∞) where βm,n − tn → 0+ when n
goes to infinity. Assume actually that tn satisfies n(βm,n − tn)

3/2 → ∞ when n → ∞. Then, as
n goes to infinity,

NIn(Sm,n)−
√

βm,n−αm,n

3πβm,n
n(βm,n − tn)

3/2

√

1
2π2 log [n(βm,n − tn)3/2]

→ N (0, 1), (30)

in distribution.
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As was done for Wigner matrices, one can extend these theorems to more general covariance
matrices, following exactly the same scheme. Namely, Tao and Vu extended their Four Moment
Theorem to the case of covariance matrices in [20]. Using it in the same way as for Wigner
matrices, similar comparison properties may be obtained in the form for example ofP(nλi(S

′
m,n) ∈ I−)− n−c0 6 P(nλi(Sm,n) ∈ I) 6 P(nλi(S

′
m,n) ∈ I+) + n−c0, (31)

where Sm,n is a covariance matrix, S ′
m,n is a Laguerre matrix, I = [a, b], I+ = [a− n−c0/10, b+

n−c0/10] and I− = [a+n−c0/10, b−n−c0/10]. The preceding theorems are then established exactly
as in the Wigner case.

4.2 Real covariance matrices

Real covariance matrices are defined similarly to complex ones. The special case where the
entries are Gaussian random variables is called the Laguerre Orthogonal Ensemble (LOE). As
in the case of Wigner matrices, there is a link between the eigenvalues of real covariance matrices
and those of complex covariance matrices expressed by

LUEm,n = even(LOEm,n ∪ LOEm+1,n+1) (32)

(cf. [9]). The Cauchy interlacing Theorem 13 (used twice in this case) then indicates that

NIn(S
C

m,n) = NIn(S
R

m+1,n+1) + ξm,n(In) (33)

where ξm,n(In) takes values in {−2,−1, 0, 1, 2}, SC

m,n and SR

m+1,n+1 are independent. Slightly
modifying then the proof by O’Rourke in the Wigner case yields the following statement.

Theorem 23. Let SC

m,n be a LUE matrix and let SR

m,n be a LOE matrix. Let In be an interval
of R. If VarNIn(S

C
m,n) → ∞ when n → ∞, then

NIn(S
R

m,n)−E[NIn(S
R

m,n)]
√

Var(NIn(S
C
m,n))

→ N (0, 2).

Note that (33) yields E[NIn(S
R

m,n)] = E[NIn(S
C

m,n)] +O(1). Together with Su’s Theorem 20
for the mean and the variance of NIn(S

C
m,n), we then conclude to similar central limit theorems

for intervals in the bulk and near the edge.
On the basis of the Tao and Vu Four Moment Theorem in the real case, the conclusions

may be extended to large families of non-Gaussian real covariance matrices.
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