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Abstract. Equivalence of the spectral gap, exponential integrability of hitting times and
Lyapunov conditions are well known. We give here the correspondance (with quantitative
results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov
in the one dimensional case on the value of the Poincaré constant for logconcave measures
to superlinear potentials. Finally, we study various functional inequalities under different
hitting times integrability conditions (polynomial, ...). In particular, in the one dimensional
case, ultracontractivity is equivalent to a bounded Lyapunov condition.
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1. Introduction.1

During the recent years a lot of progress has been made in the understanding of functional
inequalities and their links with the long time behavior of stochastic processes. Very recently,
starting with [3], the interplay between functional inequalities and the Lyapunov functions
used in the “Meyn-Tweedie” theory ([20, 26]) has emerged (see [2, 16, 12] and the recent
survey [15]).

In the present paper we shall go a step further by showing the equivalence between the (usual)
Poincaré inequality, the existence of a Lyapunov function and the exponential integrability
of the hitting times of open bounded subsets.

As we shall recall below, this equivalence is well known in the Markov chains setting, a key
tool being the renewal theory. We shall discuss here the diffusion process setting. In order to
avoid technical intricacies, we only look at “very regular” cases, i.e. hypoelliptic processes.

Note that the question of the existence of exponential moments for hitting times when a
Poincaré inequality holds was addressed in [8] almost thirty years ago. We will precise
explicit values for the constants, and add Lyapunov functions to the picture.

The one dimensional situation was recently discussed in [24], but as it is well known, mono-
tonicity arguments make things easier in the one dimensional situation.

Date: December 23, 2010.
1This work has benefited from the support of the Agence Nationale de la Recherche project EVOL.

1



2 P. CATTIAUX, A. GUILLIN, AND P. A. ZITT

The main theorem is derived in Section 2. The proof being constructive, it allows us to
give quantitative estimates for hitting times as well as versions of the Poincaré inequality
where the mean is replaced by any “local mean” control. This is done in Section 3. In
Section 4 we look at the one dimensional setting. We show that Boltzmann-Gibbs measures
with a super-linear potential at infinity satisfy a Poincaré inequality and recover (up to the
universal constant) the control of the Poincaré constant for log-concave Probability measures
obtained by Bobkov ([5]). In the final section 5 we shall also discuss polynomial moments
of hitting times, instead of exponential ones, in connection with weak Poincaré inequalities.
This section is reminiscent of the work of Mathieu ([25]).

2. Poincaré inequality and hitting times.

2.1. The main result. Let us first recall the known situation for Markov chains. For
simplicity assume that the state space E is countable, and that Q is a Markov transition
kernel on E which is irreducible and aperiodic. Denote by (Xn)n∈N the associated Markov
chain. For a ∈ E we denote by Ta the hitting time of {a} i.e. Ta = inf{n ≥ 0 ; Xn = a}.
Then

Theorem 2.1. Under the previous assumptions, the following statements are equivalent

(1) there exist a ∈ E and ρ > 1 such that for all x ∈ E, Ex

(

ρTa
)

< +∞ ,
(2) there exist an invariant probability measure π and 0 < θ < 1 such that for all x ∈ E

one can find C(x) with

‖Qn(x, .)− π(.)‖
TV

≤ C(x) θn ,

where ‖ν − µ‖
TV

denotes the total variation distance between µ and ν,
(3) there exists a Lyapunov function, i.e. a function W : E → R, such that W ≥ 1,

(Q− Id)W := LW ≤ αW + b1Ia for some 0 < α < 1 and some b ≥ 0.

In addition if the (unique) invariant measure is symmetric, these statements are equivalent
to the following two additional ones

(4) there exists a constant CP such that the Poincaré inequality

Varπ(f) ≤ CP 〈(Id−Q2)f , f〉
holds for all f ∈ l2(π) (〈., .〉 being the scalar product in l2(π)),

(5) there exists some 0 < λ < 1 such that Varπ(Q
nf) ≤ Varπ(f)λ

2n.

The equivalence between (1) and (3) is an exercise, while (3) implies (2) can be nicely shown
as remarked by M. Hairer and J.C. Mattingly ([22]) even in a stronger form. The converse
(2) implies (1) is more intricate, and usual proofs call upon Kendall’s renewal theorem and
an argument of analytic continuation (see e.g. S. Meyn and R. Tweedie’s monograph [26]).
In particular we can give explicit expressions for the constants for all implications, except
this one (i.e. if (2) holds, we only know that (1) holds for some non explicit ρ.)

The equivalence between (4) and (5) is well known, while (5) clearly implies (2). Finally,
(3) implies that (2) holds for Q hence for Q2 changing θ. Hence (3) holds for Q2, and this
implies that the Poincaré inequality (4) holds according to an argument due to Mu-Fa Chen
([18] p. 221-235).
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The aim of this section is to extend this result to some continuous time diffusion processes
on Rd (or a finite dimensional Riemannian manifold). We also want to get bounds for all the
constants, as precisely as possible. Actually, an accurate study of the literature provides (in
possibly more general situations) almost all the results we shall state. One possible way is to
use some skeleton chain and Theorem 2.1 (with some loss for the constants). Our approach
will be more direct and elementary.

For simplicity we shall consider Rn valued diffusion processes (Xt)t>0 with generator

L =
∑

i,j

aij ∂
2
ij +

∑

i

b ∂i

where a = σ∗ σ, σij and bi being smooth enough (C∞ for instance). We introduce the “carré
du champ” operator

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) = 〈σ∇f , σ∇g〉 .

In addition we assume that µ(dx) = e−V (x)dx is a symmetric probability measure for the
process, where the potential V is also assumed to be smooth. Thus L generates a µ-symmetric
semi-group Pt and the L2 ergodic theorem (in the symmetric case) tells us that for all
f ∈ L2(µ),

lim
t→+∞

‖ Ptf −
∫

f dµ ‖L2(µ) = 0 .

If U is an open subset of Rd we define

TU = inf{t > 0 ; Xt ∈ U} .

Consider the following statements:

(H1) There exists a Lyapunov function W , i.e. there exist a smooth function W : Rn → R,
s.t. W ≥ 1, a constant λ > 0 and an open connected bounded subset U such that

LW ≤ −λW on (Ū)c .

(H2) There exist an open connected bounded subset U and a constant θ > 0 such that for
all x,

Ex

(

eθ TU

)

< +∞ ,

and x 7→ Ex

(

eθ TU
)

is locally bounded.
(H2µ) There exist an open connected bounded subset U and a constant θ > 0 such that,

Eµ

(

eθ TU

)

< +∞ .

(H3) There exist constants β > 0 and C > 0 and a function W ≥ 1 belonging to L1(µ)
such that for all x

‖Pt(x, .)− µ‖
TV

≤ CW (x) e−β t .

(H4) µ satisfies a Poincaré inequality, i.e. there exists a constant CP such that for all
smooth f ,

Varµ(f) ≤ CP

∫

Γ(f, f) dµ .
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(H5) There exist constants η > 0 and C > 0 such that for all bounded f ,

Varµ(Ptf) ≤ C e−η tOsc2(f) ,

where Osc(f) denotes the oscillation of f .
(H6) There exists a constant CS such that for all f ∈ L2(µ),

Varµ(Ptf) ≤ e−CS tVarµ(f) .

Finally we also introduce the following definition

Definition 2.2. We shall say that L is strongly hypoelliptic if it can be written in Hörmander
form L =

∑

j X
2
j +Y where the Xj ’s and Y are smooth vector fields such that the Lie algebra

generated by the Xj ’s is full at each x ∈ Rn (i.e. spans the tangent space at each x). Note
that in this situation Γ(f, f) =

∑

j |Xjf |2.
We shall say that L is uniformly strongly hypoelliptic if all the Xj ’s are bounded with bounded
derivatives (of any order) and there exist N ∈ N, α > 0 such that for all ξ ∈ Rn,

∑

Z∈LN (x)

〈Z(x), ξ〉2 ≥ α|ξ|2

where LN (x) denotes the set of Lie brackets of length smaller or equal to N computed at x.

We may state now our main

Theorem 2.3. The following relations hold true (recall that µ is symmetric)

(1) (H1) ⇒ (H3) ⇒ (H4) ⇔ (H5) ⇔ (H6),
(2) (H1) ⇒ (H2) and (H2 µ).
(3) If L is uniformly strongly hypoelliptic then (H4) ⇒ (H2) and (H2 µ), and (H2) or

(H2 µ) ⇒ (H1).

Hence if L is uniformly strongly hypoelliptic all statements (H1) up to (H6) are equivalent.

Let us make a few remarks on the hypotheses.

Remark 2.4 (Hypo-ellipticity).

In particular, the diffusion with a gradient drift L = ∆ − ∇V · ∇ is of course hypo-elliptic.
We will see later precise computations for the constants in this case, under the additional
assumption:

(2.5) LV +
1

2
Γ(V, V ) ≤ Cm <∞.

♦
Remark 2.6 (Symmetry). Actually several implications are still true without the symmetry
assumption. However symmetry is required for (H5) ⇒ (H6) (counter-examples are known
in the non-symmetric situation, see e.g. [3] section 6 with kinetic Fokker-Planck equations).
It is also required for our proof of (H1) ⇒ (H4), but it is not for the one in [20, 19].
Symmetry is used in the proof of (H4) ⇒ (H2), but it is not required for the first partial
result i.e. the existence of the exponential moment for µ almost all x (which holds in much
more general cases according to the framework of [13]). This result appears in the paper by
Carmona and Klein ([8]) where the exponential integrability of hitting times is shown under
exponential rate of convergence in the ergodic theorem (hence Poincaré) and we are able to
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give a precise bound for the exponent (answering the question in Remark 2 of [8]).
Note also that the implications (H1) to (H5) holds also, with additional assumptions (lo-
cal Poincaré inequality and (slight) conditions on the constants involved in (H1)) using
Lyapunov-Poincaré inequalities as in [3].
Let us finally remark that Rockner-Wang [27] proves (H5) to (H6) without symmetry but
assuming that L is normal (i.e. LL∗ = L∗L). ♦
Remark 2.7. Of course, provided W is everywhere defined and smooth, (H1) can be rewrit-
ten: there exists a Lyapunov function W , i.e. there exist a smooth function W ≥ 1, a
constant λ > 0 and an open connected bounded subset U such that

LW ≤ −λW + b 1IU ,

with b = supU (LW + λW ). This formulation is the one used in [2] yielding another bound
for the Poincaré constant, namely

(2.8) CP ≤ 1

λ
(1 + bCP (U)) .

The bound we will get below (eq. (2.14)) is not immediately comparable with this one.

In particular if (H2) holds in our strong hypoelliptic framework, x 7→ Ex(e
θTU ) is smooth

(provided the boundary ∂U is non characteristic) on U c (see again [10]) hence can be smoothly
extended to the whole Rn according to Seeley’s theorem. But an explicit bound for b is
difficult to obtain. ♦

2.2. Proof of the main theorem. Let us begin by a small remark on (H1).

Remark 2.9 (Integrability of W ). We did not impose any integrability condition for W in
(H1). Actually if W satisfies (H1), W automatically belongs to L1(µ).

Indeed choose some smooth, non-decreasing, concave function ψ defined on R+, satisfying
ψ(u) = u if u ≤ R, ψ(u) = R + 1 if u ≥ R + 2 and with ψ′(u) ≤ 1 (such a function exists).
Then ψ(W ) is smooth and bounded. According to the chain rule

(2.10) L(ψ(W )) = ψ′(W )LW + ψ′′(W ) Γ(W,W ) ≤ −λψ′(W )W on Ū c ,

thanks to our assumptions. For R large enough, W ≤ R on U , so that ψ(W ) = W on U . It
follows

λ

∫

W 1IW≤R dµ ≤ λ

∫

ψ′(W )W dµ

=

∫

L(ψ(W )) dµ + λ

∫

ψ′(W )W dµ since (

∫

Lg dµ = 0)

≤
∫

U

(

L(ψ(W )) + λψ′(W )W
)

dµ using (2.10)

≤
∫

U
(LW + λW ) dµ = C(U) ,

where C(U) does not depend on R. We conclude by letting R go to ∞. ♦

We now turn to the proof of the theorem.

(H4) ⇔ (H6). This is well known and we have in addition CS = 2/CP .
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(H6) ⇔ (H5). (H6) clearly implies (H5). Since µ is symmetric the converse is proven in
[27] using the spectral resolution. For the sake of completeness we shall give below a very
elementary proof of this fact based on the following

Lemma 2.11. t 7→ log ‖ Ptf ‖L2(µ) is convex.

Indeed if n(t) =‖ Ptf ‖2
L2(µ), the sign of the second derivative of log n is the one of n′′n−(n′)2.

But

n′(t) = 2

∫

Ptf LPtf dµ

and

n′′(t) = 2

∫

(LPtf)
2 dµ+ 2

∫

Ptf LPtLf dµ = 4

∫

(LPtf)
2 dµ ,

so that the lemma is just a consequence of Cauchy-Schwarz inequality.

This convexity is a key argument in the proof of the following

Lemma 2.12. Let C be a dense subset of L2(µ). Suppose that there exists β > 0, and, for
any f ∈ C, a constant cf such that:

∀t, Varµ(Ptf) ≤ cfe
−βt.

Then

∀f ∈ L2(µ),∀t, Varµ(Ptf) ≤ e−βtVarµ(f).

Our claim (H5) implies (H6) immediately follows with η = CS . In order to prove lemma
2.12, assuming that

∫

f dµ = 0 which is not a restriction, it is enough to look at

t 7→ log ‖ Ptf ‖L2(µ) +(βt/2) ,

which is convex, according to lemma (2.11), and bounded since Varµ(Ptf) ≤ cf e
−βt. But a

bounded convex function on R+ is necessarily non-increasing. Hence

‖ Ptf ‖L2(µ)≤ e−βt/2 ‖ P0f ‖L2(µ)

for all f ∈ C, the result follows using the density of C.

(H3) ⇒ (H5). This is shown in [3] Theorem 2.1 and we may choose the constant C in (H5)
equal to 8C

∫

W dµ where C is the constant in (H3), and η = β.

(H1) ⇒ (H3). This is the key result in [20] (also see [19]), unfortunately with an essentially
non explicit control of the constants.

Combining all these results we get the first statement of the theorem, in particular we already
know that (H1) implies (H4).

A direct and short proof of (H1) ⇒ (H4) is given in [2] for L = ∆ − ∇V.∇ which is the
natural symmetric operator associated with µ. Let us give a slightly modified proof, yielding
a better control on the constants and extending it to more general operators.

The key is the following (f being smooth)

(2.13)

∫ −LW
W

f2 dµ ≤
∫

Γ(f, f) dµ ,
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which is a consequence of

∫ −LW
W

f2 dµ =

∫

Γ

(

f2

W
,W

)

dµ

= 2

∫

f

W
Γ(f,W ) dµ −

∫

f2

W 2
Γ(W,W ) dµ

= −
∫
∣

∣

∣

∣

f

W
σ∇W − σ∇f

∣

∣

∣

∣

2

dµ +

∫

Γ(f, f) dµ .

Next for r > 0 introduce Ur = {x ; d(x,U) < r} for the (euclidean or riemannian) distance
d. Let 0 ≤ χ ≤ 1 be a C∞ function such that χ = 1 on U and χ = 0 on U c

r . Then
∫

f2 dµ =

∫

(f(1− χ) + fχ)2 dµ

≤ 2

∫

f2(1− χ)2 dµ+ 2

∫

f2χ2 dµ

≤ 2

λ

∫ −LW
W

f2 (1− χ)2 dµ+ 2

∫

Ur

f2 dµ

≤ 2

λ

∫

Γ(f(1− χ), f(1− χ)) dµ + 2

∫

Ur

f2 dµ

by (2.13). Since Γ(fg, fg) ≤ 2(f2 Γ(g, g) + g2 Γ(f, f)), we get:
∫

f2 dµ ≤ 4

λ

∫

Γ(f, f) dµ+
4

λ

∫

f2 Γ(χ, χ) dµ + 2

∫

Ur

f2 dµ

≤ 4

λ

∫

Γ(f, f) dµ+

(

4 ‖Γ(χ, χ)‖∞
λ

+ 2

)
∫

Ur

f2 dµ .

Now, if µ satisfies a Poincaré inequality in restriction to Ur, i.e.
∫

Ur

f2 dµ ≤ CP (U, r)

∫

Ur

Γ(f, f) dµ if

∫

Ur

f dµ = 0 ,

we may apply the previous inequality with g = f −
∫

Ur
f dµ, yielding, since σ∇f = σ∇g,

(2.14) Varµ(f) ≤
∫

g2 dµ ≤
(

4

λ
+

(

4 ‖Γ(χ, χ)‖∞
λ

+ 2

)

CP (U, r)

)
∫

Γ(f, f) dµ ,

i.e. the Poincaré inequality (H4). Note that we may always replace U by a larger euclidean
ball, i.e. we may assume that U is an euclidean ball. According to the discussion in [3]
p.744-745, if L is strongly hypoelliptic, µ satisfies the Poincaré inequality in restriction to
any euclidean ball, so that we have shown that (H1) ⇒ (H4) in this case.

We now turn to the part of the results involving the stochastic process.

(H1) ⇒ (H2). This is a simple application of Ito’s formula applied to (t, x) 7→ eatW (x)
(notice that (H1) implies that the diffusion process is non-explosive or conservative). Indeed
let x ∈ U c, and a ≤ λ. Define TUR as the first hitting time of U ∪ {|y| > R}. For R > |x| we
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thus have

Ex

(

ea(t∧TUR)
)

≤ Ex

(

ea(t∧TUR)W (Xt∧TUR
)
)

≤ W (x) + Ex

(
∫ t∧TUR

0
(aW + LW )(Xs) e

as ds

)

≤ W (x) + Ex

(
∫ t∧TUR

0
(a− λ)W (Xs) e

as ds

)

≤ W (x) ,

so that letting first R then t go to infinity we obtain (H2) for θ = λ, thanks to Lebesgue’s
monotone convergence theorem.

The same proof shows that (H2 µ) holds since we know that W ∈ L1(µ).

Conversely, assume (H2) and the strong hypoellipticity of L. Again we may assume that
U is an euclidean ball so that for any R > 0, the boundary of the euclidean shell UR − U
is non-characteristic for L. We may then use the results in e.g. [10] Theorem 5.14 (local
boundedness in (H2) ensures that hypothesis (HC) in [10] is satisfied), showing that

x 7→WR(x) = Ex

(

e
θ(TU∧TUc

R
)
)

is smooth and solves the Dirichlet problem

LWR + θWR = 0 in UR − U , WR = 1 on ∂(UR − U) .

Using (H2) again it then follows that

x 7→W (x) = Ex

(

eθ TU

)

is well defined, solves the Dirichlet problem with R = +∞ in the sense of Schwartz distribu-
tions, hence is smooth thanks to hypoellipticity. W is then a Lyapunov function in (H1). If
(H2 µ) is satisfied, then an argument below will show that (H2) is satisfied.

To conclude the proof of the theorem it remains to show that the Poincaré inequality (H4)
implies (H2). Let U be an open bounded set. The idea is that, if TU is large, the process
stays for a long time in U c, and spends no time at all in U . However, the ergodic properties
given by the Poincaré inequality tell us that, for large times, the fraction of the time spent
in U should be proportional to µ(U); therefore TU cannot be too large.

To be more precise,

(2.15) {TU > t} ⊆
{

1

t

∫ t

0
1IU (Xs) ds = 0

}

.

Hence

Pν(TU > t) ≤ Pν

(

1

t

∫ t

0
1IU (Xs) ds = 0

)

≤ Pν

(

−1

t

∫ t

0
1IU (Xs) ds+ µ(U) ≥ µ(U)

)

≤
∥

∥

∥

∥

dν

dµ

∥

∥

∥

∥

L2(µ)

· exp
(

− t µ(U)

8CP (1− µ(U))

)

,(2.16)
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provided µ(U) ≤ 1/2. The latter is a consequence of Proposition 1.4 and Remark 1.6 in [13].

From there, we get exponential moments, using the elementary lemma:

Lemma 2.17. For any positive random variable,

E[eθT ] = 1 +

∫ ∞

0
θeθtP[T > t]dt.

If for some s0, θU and for t > s0, P[T > t] ≤ C exp(−(t− s0)θU ), then

∀θ < θU , E[eθT ] ≤ eθs0
(

1 + C
θ

θU − θ

)

.

For s0 = 0, θU = µ(U)/8CP , and ν = µ, using (2.16) and this lemma, we get Eµ(e
θTU ) < +∞,

for any θ < θU . This entails that Ex[e
θTU ] is itself finite, for µ-almost any x.

If we assume the uniform strong hypoellipticity the marginal law at time t of Px has an
everywhere positive smooth density r(t, x, .) w.r.t. µ, and symmetry combined with the
Chapman-Kolmogorov relation yield

∫

r2(t, x, y)µ(dy) = r(2t, x, x) <∞,

showing that the Px law of X1 has a density r(1, x, .) ∈ L2(µ). We may thus apply the
previous result with ν = r(1, x, .)µ.

Notice that this argument also shows that TU has an exponential moment of order θ/2 for
Px as soon as it has an exponential moment of order θ for Pµ, i.e. (H2 µ) implies (H2).

Remark 2.18. The proof shows that H4 implies H2, i.e. the hitting times have finite expo-
nential moments, but do not give explicit bounds on the value of these moments (depending
on x). Such explicit bounds will be given in the next section. ♦

3. Some consequences.

We rephrase here the implication H4 =⇒ H2 of the main theorem, and add explicit
computations of the constants, and the dependence on x of the moments, in special cases.

Proposition 3.1. Assume that the Poincaré inequality holds with constant CP .

Then for all open set U with µ(U) ≤ 1/2, Ex(e
θTU ) < +∞ for

θ < µ(U)/8CP (1− µ(U)) := θ(U) .

If µ(U) ≥ 1/2 we may take θ(U) = µ2(U)/2CP .

If the boundedness assumption (2.5) holds, there exists C such that:

(3.2) ∀x,∀θ < θU , Ex[e
θTU ] ≤ C

(

1 + eV (x)/2 θ

θU − θ

)

.

If, in addition, we are in the elliptic case L = ∆ − ∇V · ∇, (3.2) holds with C replaced by

eθs0 , where s0 =
1
2πe

2Cm/n.
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Proof. The first statement has already been proved.

If we assume the additional boundedness hypothesis (eq. (2.5)), we can use stochastic calculus
to get good bounds: the idea is that the density of the law of Xt with respect to µ is
computable, and its L2 norm can be bounded.

First of all recall that L =
∑

X2
j + Y . Since µ is symmetric

Y =
∑

j

divXj Xj −
∑

j

XjV Xj .

If we denote by Qx the law of the diffusion process starting from x with generator

L′ =
∑

j

X2
j +

∑

j

divXj Xj

we have a Girsanov type representation

Gt :=
dPx

dQx
|Ft = exp

(

−1

2

∫ t

0
〈XjV (ωs), dωs〉 − 1

4

∫ t

0
Γ(V, V )(ωs) ds

)

= exp

(

1

2
V (ω0)−

1

2
V (ωt)−

1

2

∫ t

0
(
1

2
Γ(V, V )− L′V )(ωs) ds

)

,

the latter (Feynman-Kac representation) being obtained by integrating by parts the stochastic
integral. We can now follow an argument we already used in previous works. We write the
details for the sake of completeness.

Thanks to the uniform strong hypoellypticity we know that the marginal law at time t of Qx

has an everywhere positive smooth density q(t, x, .) w.r.t. Lebesgue measure satisfying for
some M (see e.g. [9] theorem 1.5)

|q(t, x, y)| ≤ C (1 ∧ t)−M for all x, y ∈ Rn .

Hence

Ex[f(Xt)] = EQx[f(ωt)E
Qx[G|ωt]]

=

∫

f(y)EQx [G|ωt = y] q(t, x, y) dy

=

∫

f(y)EQx [G|ωt = y] q(t, x, y) eV (y) µ(dy) ,

In other words, the law of Xt has a density with respect to µ given by

r(t, x, y) = EQx[G|ωt = y] q(t, x, y) eV (y) .



POINCARÉ AND HITTING TIMES. 11

Hence
∫ +∞

0
r2(t, x, y)µ(dy) =

∫

(

EQx[G|ωt = y] q(t, x, y) eV (y)
)2

e−V (y) dy

= EQx

[

q(t, x, ωt) e
V (ωt)

(

EQx[G|ωt]
)2
]

≤ EQx

[

q(t, x, ωt) e
V (ωt) EQx[G2|ωt]

]

≤ eV (x) EQx

[

q(t, x, ωt) e
−

∫ t

0
( 1
2
Γ(V,V )−L′V )(ωs)ds

]

≤ C (1 ∧ t)−M eV (x) eCmt .

Hence the law at time 1 of X. has a density belonging to L2(µ). Using the result in [13] we
have recalled and the Markov property we thus have for t > 1

Px(TU > t) ≤ D eV (x)/2 e
−

(t−1)µ(U)
8CP (1−µ(U))

hence the result by lemme 2.17.

Finally, if L = ∆−∇V.∇, we can be even more precise.

Indeed q(t, x, y) ≤ (2πt)−n/2 so that for t > s > 0, using (2.16) we obtain

Px(TU > t) ≤ (2πs)−n/4 eCms/2 eV (x)/2 e− (t−s) θ(U) .

Choosing s0 =
1
2π e

2Cm/n we get for t > s0,

Px(TU > t) ≤ eV (x)/2 e− (t−s0) θ(U) ,

so that for θ < θ(U), using lemma 2.17, we get

Ex

(

eθ TU

)

≤ eθs0
(

1 +
θ

θ(U)− θ
eV (x)/2

)

.

If µ satisfies a Poincaré inequality with constant CP , so does µ⊗k for any k ∈ N∗. It thus
follows as before that for x = (x1, ..., xk) and θ < θ(U),

Px(TU > t) ≤ (2πs)−nk/4 ek Cms/2 e
∑

i V (xi)/2 e− (t−s) θ(U) ,

so that for the same s0,

Ex

(

eθ TU

)

≤ eθs0

(

1 +
e
∑

i V (xi)/2

θ(U)− θ

)

.

�

Remark 3.3. In the same way, when L = ∆−∇V.∇, one can improve upon the constant if
we assume in addition that

(3.4)
U has a smooth boundary and ∂W

∂n ≤ 0 on ∂U
where n denotes the outward normal to the boundary.
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Indeed in this case we can directly integrate by parts in U c using Stokes theorem. This yields
∫

Uc

f2 dµ ≤ 1

λ

∫

Uc

f2
−LW
W

e−V dx

≤ 1

λ

∫

Uc

f2

W
(−∆W +∇V.∇W ) e−V dx

≤ 1

λ

∫

Uc

(

∇
(

f2 e−V

W

)

.∇W eV +
f2

W
∇V.∇W

)

e−V dx

+
1

λ

∫

∂U

(

f2 e−V

W

)

∂W

∂n
dm∂U

≤ 1

λ

∫

Uc

∇
(

f2

W

)

.∇W e−V dx

≤ 1

λ

∫

Uc

(

|∇f |2 − |∇f − f

W
∇W |2

)

dµ

≤ 1

λ

∫

Uc

|∇f |2 dµ .

Therefore we obtain in this case

(3.5) CP ≤ 1

λ
+ CP (U) ,

which is of course much better than any other bound we gave. ♦

Recall that if mµ(f) denotes a µ median of f , one has

(3.6) Varµ(f) ≤ Eµ[(f −mµ(f))
2] ≤ 2Varµ(f) ,

so that one may replace the variance by the squared distance to any median in Poincaré
inequality up to some universal constants. Using our previous results, we shall see that we
may replace the mean of f by local means or values. Here is a first result in this direction.

Theorem 3.7. Let dµ = e−V dx be a probability measure satisfying a Poincaré inequality
with constant CP , a ∈ Rn and r > 0.

We assume that one can find a sequence Vk of smooth functions such that dµk = e−Vkdx
converges weakly to µ and Vk converges uniformly to V on B(a, 2r).

Then there exists an universal constant κ such that for all f ∈ C1
b with

∫

B(a,2r) f dµ = 0, the

following inequality holds
∫

f2 dµ ≤
(

32CP

µ(B(a, r))

[

1 + 2
κ eOscB(a,2r)V

n

]

+ 2
κ r2 eOscB(a,2r)V

n

)
∫

|∇f |2 dµ .

Proof. The underlying stochastic process has for infinitesimal generator L = ∆−∇V.∇. We
start with assuming that V is smooth.

If U = B(a, r), Ur = B(a, 2r) and we may find some function χ such that 1IU ≤ χ ≤ 1IUr

with |∇χ|2 ≤ 2/r2. According to previous arguments and the proof of theorem 2.3 we know
that W (x) = Ex[e

λTU ] is a Lyapunov function for λ = µ(U)/8CP . Hence for all smooth f

(3.8)

∫

f2 dµ ≤ 4

λ

∫

|∇f |2 dµ+

(

8

r2 λ
+ 2

)
∫

Ur

f2 dµ .
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It is well known that the Lebesgue measure satisfies a Poincaré inequality

(3.9)

∫

Ur

f2 dx ≤ κ
r2

n

∫

|∇f |2 dx ,

for all f such that
∫

Ur
f dx = 0 for some universal constant κ (we shall revisit similar results

later on). Accordingly, using a standard perturbation argument, we have

(3.10)

∫

Ur

f2 dµ ≤ κ
r2

n
eOscUrV

∫

Ur

|∇f |2 dµ +

(
∫

Ur

f dµ

)2

.

The result follows for smooth V ′s. In the general case we approximate V and remark that,
first the Poincaré constants for the approximating measures converge to CP as well as the
Oscillation term with our assumptions. �

Remark 3.11. We state the result for balls B(a, r) for simplicity. Of course the proof can
be adapted to more general subsets. Also notice that the possible interesting situations are
for small r′s.

If A is a connected open domain the previous result applies to the uniform measure on A
and B(a, 2r) ⊂ A. The oscillation of V is then equal to 0.

♦

4. Probability measures on the line.

In this section we shall look at the case n = 1, µ(dx) = Z−1 e−V (x) dx where Z is a normal-
ization constant. Since the Poincaré constant is unchanged by translating the measure we
may also assume that

∫

xdµ = 0.

General bounds for the Poincaré constant are well known using Hardy-Muckenhoupt weighted
inequalities (see e.g. [1]). Another approach was recently proposed in [24] where bounds for
both the Poincaré constant and the exponential moment for hitting times are obtained,
through the rate function and speed measure. Notice that the results of section 2 seem to be
less precise in the one-dimensional situation but cover all possible dimensions.

4.1. Super-linear and log-concave one dimensional distributions.

Our interest here is to describe the Poincaré constant for particular µ including the log-
concave situation. The log-concave situation indeed deserved a lot of interest due to the belief
that, in the multidimensional isotropic case (namely the covariance matrix is the identity),
it is close to the independent one. It is therefore particularly relevant to get bounds on
functional inequalities in terms of the variance. For log-concave measures µ on the line
Bobkov ([5]) proved that

(4.1) Varµ(x) ≤ CP (µ) ≤ 12Varµ(x)

where x denotes the identity function. One can also look at another approach in [21].

In our previous work [2] we have shown how to use the Lyapunov function method to recover
the general result of Bobkov saying that any log-concave probability measure (in any dimen-
sion) satisfies a Poincaré inequality. Here we shall be more precise for the one dimensional
case and we shall recover a bad version of Bobkov’s result (4.1), i.e. with a worse constant
larger than 12 but for more general measures. We start with some definitions.
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Definition 4.2. Let µ(dx) = Z−1 e−V (x) dx be a probability measure on the line. We assume
that there exists Vmin > −∞ such that Vmin ≤ V ≤ +∞. Let a ∈ R such that a ∈ Argmin(V )
(such an a exists if for instance V is continuous on V < +∞). We may assume that
Vmin = minV .

For β > 0 we denote by R+(β) any positive number such that V (a+u)−V (a) ≤ β for all 0 ≤
u ≤ R+(β) and similarly R−(β) on the left hand side of a. Finally R(β) = R+(β) ∨R−(β).

We shall say that V is β-superlinear if for t ≥ R+(β) (resp. t ≥ R−(β)) one has

V (a+ t)− V (a) ≥ cβ
R(β)

t− hβ

(

resp. V (a− t)− V (a) ≥ cβ
R(β)

t− hβ

)

for some non-negative constant cβ and some hβ.

Remark 4.3. Let µ(dx) = Z−1 e−V (x) dx be a probability measure on the line, with V of
class C1. We assume that minV = 0 = V (a) and that there exist β > 0 and θ > 0 such that
sign(x− a)V ′(x) ≥ θ outside some subset Nβ of the level set {V ≤ β}.
Since sign(x−a)V ′(x) ≥ θ outside Nβ it is easily seen that Nβ is necessarily a closed interval.
We thus choose R+(β) and R−(β) such that Nβ = [a−R−(β), a+R+(β)]. We may assume
that R+(β) ≥ R−(β).

For x ≥ a+R+(β), our assumptions furnish

V (x) ≥ V (x)− V (a+R+(β))

≥ θ (x− a−R+(β))

≥ cβ
R+(β)

(x− a)− hβ

where cβ = θ R+(β) = hβ .

For x ≤ a − R−(β) we have the same result of course, still with cβ = θ R+(β) a priori with
h = θ R−(β) which is smaller than hβ, so that the result still holds with hβ.

Hence V is β-superlinear. Actually it is β′-superlinear for any β′ ≥ β.

Our definition looks thus unnecessarily intricate. However, we shall see that is well appro-
priate for the isotropic normalization. ♦

The next lemma allows us to compare the variance and the β level set values,

Lemma 4.4. Assume that V is β-superlinear and that
∫

xdµ = 0. , then

R2
+(β) ∨R2

−(β) ≤ 12Varµ(x) e
β

(

1 +
2 ehβ

cβ

)

,

and

R2
+(β) ∨R2

−(β) ≥
1

2
Varµ(x) e

−β

(

1

3
+
ehβ

cβ

(

1 +
2

cβ
+

2

c2β

))−1

.

The result is of course coherent with the previous remark 4.8.

Proof. We may and will assume that V (a) = 0 (just modify Z). We fix once for all β and
thus skip the dependence in β for notational convenience. Let R = R+ + R− denote by σ2

the variance of µ.
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Since V is β-superlinear we have

R(β) e−β ≤
∫ a+R+

a−R−

e−βdx ≤
∫ a+R+

a−R−

e−V (x)dx ≤ Z

≤
∫ a+R+

a−R−

dx+ eh
(
∫ +∞

a+R+

e
− c

R(β)
(x−a)

dx+

∫ a−R−

−∞
e
− c

R(β)
(a−x)

dx

)

≤ R(β)

(

1 + 2
eh

c

)

,

i.e.

R(β) e−β ≤ Z ≤ R(β)

(

1 +
2eh

c

)

.

By symmetry we may also assume that R+ ≥ R− so that it is enough to get an upper bound
for R+. But

e−β

3

(

(a+R+)
3 − a3

)

=

∫ a+R+

a
e−βx2 dx ≤

∫ a+R+

a
x2 e−V (x)dx ≤ Z σ2 .

Using R(β) = R+ we thus obtain

(4.5) R2
+ + 3aR+ + 3a2 ≤ 3σ2 eβ

(

1 +
2eh

c

)

.

If a > 0 we immediately obtain R2
+ ≤ 3σ2

(

1 + 2eh

c

)

. If a ≤ 0 the minimal value of the left

hand side in (4.5) (considered as a polynomial in a) is obtained for a = −R+/2 and is equal
to R2

+/4 so that we obtain in all cases

(4.6) R2
+ ≤ 12σ2 eβ

(

1 +
2eh

c

)

.

In the same way we see that if a > 0 then a2 ≤ 2σ2 eβ
(

1 + 2eh

c

)

. If a ≤ 0 the minimal value

of the left hand side in (4.5) (considered as a polynomial in R+) is obtained for R+ = −3
2 a

and is equal to 3a2/4 so that we obtain in all cases

(4.7) a2 ≤ 4σ2 eβ
(

1 +
2eh

c

)

.

We turn to the second bound. Again we assume that R+ ≥ R−. Recall that σ
2 ≤

∫

(x−a)2dµ.
Similarly to the first bound we can thus write

Z σ2 ≤
∫

(x− a)2 e−V (x) dx

≤
∫ a+R+

a−R−

(x− a)2 dx+ eh
(
∫ +∞

a+R+

(x− a)2e
− c

R(β)
(x−a)

dx+

∫ a−R−

−∞
(x− a)2e

− c
R(β)

(a−x)
dx

)

,

≤ 1

3
(R3

+ +R3
−) + eh

R3
+ +R3

−

c

(

1 +
2

c
+

2

c2

)

,

≤ 2R3
+

(

1

3
+
eh

c

(

1 +
2

c
+

2

c2

))

.
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Using Z ≥ R+e
−β we thus obtain

R2
+ ≥ 1

2
σ2 e−β

(

1

3
+
eh

c

(

1 +
2

c
+

2

c2

))−1

.

�

We turn to the study of the Poincaré constant.

Remark 4.8. If m =
∫

x dµ the measure e−V (x+m)dx is centered and share the same
Poincaré constant as µ. Replacing a by a+m we may and will assume that m = 0.

Similarly if we consider the probability measure µu = u e−V (ux)dx, we have u2 Varµu(x) =
Varµ(x) and an easy change of variables shows that u2 CP (µu) = CP (µ). So we can assume
that Varµ(x) = 1.

If V is β-superlinear, it is easy to see that Vu (defined by Vu(x) = V (ux)) is still β-superlinear,
with the same constants cβ and hβ, but replacing Rβ by Ru(β) = Rβ/u. ♦ ♦

Proposition 4.9. Let µ(dx) = Z−1 e−V (x) dx be a probability measure on the line, with V
of class C1. We assume that minV = 0 = V (a) and that there exist β0 > 0 and θ > 0 such
that sign(x− a)V ′(x) ≥ θ outside some subset Nβ0 of the level set {V ≤ β0}.
Then there exists a constant C(β0, θ) such that the Poincaré constant CP (µ) satisfies

CP (µ) ≤ C(β0, θ)Varµ(x) .

Proof. As we already remarked we can assume that µ is centered, and V being of C1 class,
we have Lg = g′′ − V ′g′.

We know that V is β-superlinear for any β ≥ β0. We denote by Nβ = [a−R−(β), a+R+(β)].
We shall modify µ introducing

(4.10) µβ(dx) = Z−1
β

(

e−V (x) 1Ix/∈Nβ
+ e−β 1Ix∈Nβ

)

dx.

Note that, according to Lemma 4.4

1 ≤ Z

Zβ
≤ eβ

(

1 +
2 ehβ

cβ

)

.

It follows that

(4.11) e−β ≤ dµβ
dµ

≤ e2β
(

1 +
2 ehβ

cβ

)

.

Accordingly we know that

(4.12) CP (µ) ≤ e3β
(

1 +
2 ehβ

cβ

)

CP (µβ) .

It remains to find an estimate for the Poincaré constant of µβ.

We have to face a small problem since the potential Vβ of µβ is no more of class C1, but we
still have a drift, i.e. V ′(x)1Ix/∈Nβ

, and an easy approximation procedure allows us to extend
Theorem 2.3 in this situation.

We denote by Lβ the associated generator i.e. Lβf(x) = f ′′(x)− V ′(x)1Ix/∈Nβ
f ′(x).
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We shall now introduce a well chosen Lyapunov function. We define

u(x) = |x| 1I|x|>1 +

(

3

8
+

3

4
x2 − 1

8
x4
)

1I|x|≤1 .

It is easily seen that u is of class C2.

Now for aβ = a+ R+(β)−R−(β)
2 (which is the center of Lβ), and R = R+(β)+R−(β) we define

Wβ(x) = eγ u(x−aβ) .

An easy calculation shows that

LβWβ ≤ γ(γ − θ)Wβ if |x− a| ≥ R .

Choosing γ = θ/2, it follows that Wβ is a Lyapunov function i.e. satisfies (H1) with

λ =
1

2
θ2 =

1

2

c2β
R2

=
v(β)

Varµ(x)
,

according to Lemma 4.4.

It is thus enough to apply (2.14) with some care. First we replace U by Nβ, then Ur by
N2β . We may thus choose some χ such that Γ(χ, χ) is of order (R2β − Rβ)

−2 i.e. such that
Γ(χ, χ)/λ only depends on β (and not explicitly on Varµ(x)).

Since µβ is uniform on Nβ, it is known that its Poincaré constant (in restriction to Nβ) is
equal to R2/π2, and again thanks to Lemma 4.4 it is bounded independently of V by some
constant that only depends on β and λ.

The proof is completed, and the reader easily sees why we did not give an explicit value for
the constant C(β, λ,Varµ(x)).

�

Remark 4.13. The previous proposition is not surprising. It tells us that once the expo-
nential concentration (which is a consequence of the Poincaré inequality) rate at infinity is
known, and the bound of the density is given (at finite horizon), the Poincaré constant has
to be controlled up to the natural scaling in the variance. We have given a proof of this nat-
ural conjecture under a strong form of concentration result. This result entails in particular
double-well potentials. Note that no bound on the second derivative is needed (except that
the first derivative has to stay greater than λ), so that the previous result contains much
more general situations than the log-concave situation. We may even build examples with a
Bakry-Emery curvature equal to −∞. ♦

We turn to the log-concave situation. Since our method covers more general situations, it is
certainly not sharp. So it is an illusion to hope to recover the constant 12 in Bobkov’s result.
Hence we shall even not try to give an explicit constant.

Theorem 4.14. There exists a universal constant C such that for all log-concave probability
measure µ on the real line,

CP (µ) ≤ C Varµ(x) .
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Proof. According to Remark 4.8 the result will follow if we prove the existence of the universal
constant C for any log-concave measure with Varµ(x) = 1.

First we assume that µ(dx) = Z−1 e−V (x) dx is a log-concave probability measure on the line,
with V a C1 function. We assume that minV = 0 = V (a) and Varµ(x) = 1.

Since V is convex it is easily seen that for any β > 0, Nβ is necessarily a closed interval
denoted again [a−R−(β), a +R+(β)].

In particular if x ≥ a+R+(2β), the convexity of V yields

V (x) ≥ V (x)− V (a+R+(β))

≥ β

R+(2β)−R+(β)
(x− a−R+(β))

≥ β

R+(2β)
(x− a−R+(β)) =

c+2β
R+(2β)

(x− a)− h2β

where c+2β = β and 0 ≤ h2β ≤ β.

For x ≤ a − R−(2β) we have a similar result replacing R+ by R− hence with c−(2β) = β
again. Since R+ and R− are both smaller than (or equal to) R(β), V is 2β-superlinear and
Lemma 4.4 yields

R2(2β) ≤ 12 eβ
(

1 +
2e2β

β

)

.

In addition for x ≥ a+R+(2β) convexity yields

V ′(x) ≥ β

R+(2β)
≥ β

R(2β)
≥ β3/2 e−β/2

2
√
3 (β + 2eβ)1/2

,

and the same result is true for x ≤ a − R−(2β). Proposition 4.9 yields a bound for each
β (β = 1 for example). We should optimize in β but as we said we shall never attain the
optimal bound 12.

In the general case (V convex with values in ]−∞,+∞]) we first approximate V by everywhere
finite convex functions, and then approximate such a function by a smooth one convoluing
it for instance with gaussian kernels with small variance. �

4.2. Hardy type inequalities.

In the spirit of Remark 3.3 we can state another particular result of Hardy type, which is
known to hold (with a better constant) if b below is a median of µ

Theorem 4.15. Let dµ = e−V (x) dx be a probability measure on the real line satisfying
a Poincaré inequality with constant CP . We assume that there exist a sequence Vn of C1

functions such that e−Vn converges to e−V weakly in σ(L1,L∞). Then for all b ∈ R the
following inequality holds for all bounded smooth f ,

(4.16)

∫

(f(x)− f(b))2 µ(dx) ≤ 8CP

µ(]−∞, b]) ∧ µ([b,+∞[)

∫

(f ′)2(x)µ(dx) .

Proof. Assume first that V is of class C1. If Xt is the diffusion process with generator Lf =
f ′′ − V ′ f ′ (which is conservative since Poincaré inequality, hence (H1) holds), Proposition
3.1 tells us that for any θ < µ(]−∞, b]/8CP the hitting time of ]−∞, b] has an exponential
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moment of order θ. Hence one can find a Lyapunov function satisfying LW = −θW on
[b,+∞[, namely W (x) = Ex(e

θ Tb). It follows that for a smooth f and A ≥ b,
∫ A

b
(f(x)− f(b))2 µ(dx) =

−1

θ

∫ A

b

LW

W
(x) (f(x)− f(b))2 µ(dx)

≤ 1

θ

(
∫ A

b
(f ′(x))2 µ(dx)−

(

(f(A)− f(b))2
W ′(A)

W (A)
e−V (A)

))

the latter being obtained as in Remark 3.3 using integration by parts, since f(x)− f(b) = 0
for x = b. But W is clearly non-decreasing in x so that the last term into braces is non-
negative, yielding the bound we claimed on [b,+∞[ by letting A go to +∞. The same holds
on the left hand side of b.

Hence the Hardy-Poincaré-Sobolev inequality (4.16) holds for any constant larger than

8CP

µ(]−∞, b]) ∧ µ([b,+∞[)

hence with this value by taking the infimum, and then for a non-necessarily smooth V using
an approximation procedure. �

As it is clear in the previous proof we may replace the full R by any interval containing b
without any change in the constant. Since the Variance of f in restriction to an interval
minimizes the square distance to any value, we thus obtain as a corollary

Corollary 4.17. Let dµ = e−V (x) dx a probability measure on the real line satisfying a
Poincaré inequality with constant CP . Then for all interval (a, b) ⊆ R the following inequality
holds for µ(a,b) the restriction of µ to (a, b) and for all bounded smooth f ,

(4.18) Varµ(a,b)
(f) ≤ 8CP

supu∈(a,b){µ(]−∞, u]) ∧ µ([u,+∞[)}

∫

(f ′)2(x)µ(a,b)(dx) .

In particular if a ≤ mµ ≤ b then µ(a,b) satisfies a Poincaré inequality with a constant not
bigger than 16CP .

This bound can certainly be attained and improved by looking carefully at Muckenhoupt
type constants, at least when the median belongs to the interval.

4.3. L1 inequalities.

It is well known that one obtains a stronger inequality replacing the L2 norm by a Lp norm
for 1 ≤ p ≤ 2 (see e.g. [7] chapter 2). The L1 Poincaré inequality (sometimes called Cheeger
inequality) is of particular interest since it yields controls for the isoperimetric constant (see
e.g. [6, 5]). Due to the standard

(4.19)
1

2

∫

|f − µ(f)| dµ ≤
∫

|f −mµ(f)| dµ ≤
∫

|f − µ(f)| dµ ,

where µ(f) and mµ(f) denote respectively the mean and a µ median of f , such an inequality
can be written indifferently

(4.20)

∫

|f − µ(f)| dµ ≤ CC

∫

|∇f | dµ or

∫

|f −mµ(f)| dµ ≤ C ′
C

∫

|∇f | dµ .
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(4.20) is true for any log-concave distribution and actually CC and CP differ by an universal
multiplicative constant (see [23]). For one dimensional log-concave distribution CC is uni-
versally bounded (see [6]). In our previous paper ([2]) we have shown that the existence of
a Lyapunov function W as in (H1) implies a Cheeger type inequality, provided ∇W/W is
bounded.

We shall here derive such an inequality, with the correct normalization factor µ(|x − µ(x)|)
which immediately follows by a linear change of variables in (4.20).

Theorem 4.21. Under the hypotheses of Proposition 4.9 there exists a constant C(β, λ, µ(|x−
µ(x)|)) such that the Cheeger constant CC(µ) satisfies

CC(µ) ≤ C(β, λ, µ(|x − µ(x)|)) .

In particular if µ is a log-concave probability measure on the line, there exists an universal
constant C such that CC(µ) ≤ C µ(|x− µ(x)|).

Proof. We follow the proof of Proposition 4.9 (see the notations therein) proving a Cheeger
inequality for the measure µβ. Recall that Wβ satisfies LβWβ ≤ −λ2/4Wβ + b(R, β, λ)1INβ

.

The first thing to do is to show that R+ ∨ R− is controlled, from above and from below by
a quantity depending only on β, λ and µ(|x − µ(x)|) i.e. to prove the analogue of Lemma
4.4. Denote by s the quantity µ(|x− µ(x)|). Then mimiking the proof of Lemma 4.4 we can
prove

R+ ∨R− ≤ 2(1 +
2eh

c
) s ,

and

R+ ∨R− ≥ 1

2
s e−β C(h, c) ,

for some C(h, c) > 0.

Now we may assume that s = 1. The second thing to do is to recall the reasoning in [2] i.e.
if f is smooth and g = f −m for some constant m we have
∫

|g|µβ(dx) ≤ 4

λ2

∫

|g|
(

− LβWβ

Wβ

)

µβ(dx) +
4b(β, λ)eβ

λ2 Zβ

∫

Nβ

|g| dx

≤ 4

λ2

∫

(

|g′|
(

|W ′
β |

Wβ

)

− |g|
(

|W ′
β|2

W 2
β

))

µβ(dx) +
4b(β, λ)eβ

λ2 Zβ

R

π

∫

Nβ

|g′| dx

if we choose m =
∫

Nβ
f(x) dx. The first term is obtained after integrating by parts, the

second one is using the standard Cheeger inequality for the uniform measure on an interval.

Now remark that |W ′
β |/Wβ is bounded by some constant depending only on β and λ. Finally

we have obtained (if µ(|x− µ(x)|) = 1),
∫

|f − µβ(f)|dµβ ≤ 2

∫

|f −mµβ
(f)|dµβ ≤ 2

∫

|g| dµβ ≤ K(β, λ)

∫

|f ′| dµβ ,

hence the result for µβ and then for µ as in Proposition 4.9.

The log-concave case is then similar to Theorem 4.14. �
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As we already said the previous Theorem contains Proposition 4.9 thanks to Cheeger’s in-
equality CP ≤ 4C2

C . Actually our proof yields so bad constants in both cases that it is really
tedious to check when the previous relation gives a better bound than Proposition 4.9. We
also insist on the proof of both properties using Lyapunov function. As we have seen, the
proof of a L1 inequality requires the boundedness of W ′/W . In particular if we choose for
W the Laplace transform of hitting times Ex(e

θ Tb), this latter property is not ensured. So
we cannot obtain similar results as in subsection 4.2.

5. φ moments and Poincaré like inequalities.

Since the status of the existence of exponential moments for hitting times is now characterized
through the results of section 2, it is certainly interesting to look at more general φ moments.
The first result is a direct consequence of (2.13):

Proposition 5.1. Assume that L is uniformly strongly hypoelliptic. If U is an open connected
set with µ(U) < 1, then

sup
{

λ , such that Eµ

(

eλTU

)

< +∞
}

< +∞ .

In particular if φ growths faster, at infinity, that any exponential Eµ (φ(TU )) = +∞ .

Proof. We already saw that, in the uniform strong hypoelliptic situation, Ex

(

eλTU
)

< +∞
for all x as soon as Eµ

(

e2λTU
)

< +∞. According to the proof of Theorem 2.3, we thus know
that there exists a Lyapunov function satisfying (H1). (2.13) implies that

∫

f2 dµ ≤ 1

λ

∫

Γ(f, f) dµ

for all smooth f with support in Ū c. This cannot hold for all λ since µ(U) < 1, just looking
at λ→ +∞. �

This result is in accordance with the fact that one cannot improve on the exponential conver-
gence in L2 (or in total variation distance) even for very strong repelling forces. In order to
discriminate diffusions satisfying a Poincaré inequality, one has to introduce new inequalities
(e.g. F -Sobolev inequalities or super-Poincaré inequalities) or contraction properties of the
semi-group (see e.g. [4, 16]). Another connected possibility is to look at exponential decay
to equilibrium for weaker norms than Lp norms (see e.g. [14]). The certainly best known
case is the one when a logarithmic Sobolev inequality holds or equivalently the semi-group
is hypercontractive or equivalently exponential convergence holds in entropy (or in L logL
Orlicz norm) (see e.g. [1] for an elementary introduction to all these notions).

The use of Lyapunov functions for studying such stronger inequalities is detailed in [16]. It
should be very interesting to understand these phenomena in terms of hitting times. We
strongly suspect that what is important is the behavior of W (x) = Ex

(

eλTU
)

as x goes to
infinity. For instance if W is bounded, we suspect that the semi-group is ultracontractive (or
more properly ultrabounded). Some hints in this direction are contained in [11] Theorem 7.3
at least for diffusion processes on the real line. Let us state a result in this direction:
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Proposition 5.2. Assume that L = ∆−∇V.∇, where V is smooth, is defined on R. µ(dx) =

e−V (x)dx (supposed to be a probability measure) is then symmetric for L. Assume in addition
that |∇V |2 −∆V ≥ −C for some non-negative constant C.

Then there is an equivalence between

(1) the associated semi-group Pt is ultrabounded (i.e. Pt maps continuously L1(µ) in
L∞(µ) for all t > 0), and there exists an open interval U such that for all x ∈ R,
Px(TU < +∞) = 1,

(2) there exists a bounded Lyapunov function W ,
(3) there exists an open interval U and λ > 0 such that

sup
x

Ex

(

eλ TU

)

< +∞ .

Proof. The equivalence between (2) and (3) follows from the proof of Theorem 2.3, since L
is uniformly elliptic.

If (1) holds, it follows from the arguments in Appendix B of [17], that there exists an unique
quasi limiting distribution for the process (starting from the right of U) killed when hitting
any interior point of U . For all definitions connected with quasi-stationary measures and
quasi-limiting distributions we refer to [11, 17]. The same holds for the process coming from
the left of U . According to [11] Theorem 7.3, this implies that the killed process “comes
down from infinity” i.e. satisfies (3).

Conversely, [11] Theorem 7.3 tells us that (3) implies the condition (called (H5) therein)

∫ +∞

a
e−V (y)

∫ y

a
eV (z) dz dy < +∞ ,

for a = supU . Define, for x > a, u(x) = µ([x,+∞[) and

F (z) = z

(

∫ u−1(1/z)

a
eV (y) dy

)−1

.

z 7→ F (z)/z is thus non-increasing and we have

(5.3) u(x)F

(

1

u(x)

)
∫ x

a
eV (y) dy = 1 .

According to results in [4] (see Remark 3.3 in [14]), µ satisfies a F̃ -Sobolev inequality for a
slight modification of F . Condition (H5) of [11] recalled above implies that

∫ +∞ 1

uF (u)
du < +∞ .

The same holds with F̃ in place of F . According to a result of [28] explained p.135 of [14],
this implies that the semi-group is ultrabounded. �
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5.1. Weak Poincaré inequalities and polynomials moments. In this section we shall
look at the existence of φ-moments for functions φ growing slower at infinity than an expo-
nential, and actually we shall mainly focus on power functions. In all the discussion below
we shall assume, for simplicity, that L is uniformly strongly hypoelliptic and our symmetry
assumption.

First of all recall that under our assumptions, defining for q ∈ N,

(5.4) vq(x) = Ex

(

T q
U

)

and provided vq is well defined for all x, vq is smooth and satisfies for q ≥ 1

(5.5) Lvq(x) = −q vq−1(x) for all x ∈ U c ,

as a simple application of the Markov property. We thus have some “nested” Lyapunov
functions.

Henceforth we assume that U is bounded (which is clearly not a restriction). Then, since
vq(x) > 0 when d(x,U) ≥ 1, the Markov property together with the continuity of vq and
the compactness of {d(x,U) = 1}, show that there exists κ > 0 such that for all x with
d(x,U) ≥ 1, vq(x) ≥ κ and vq−1(x) ≥ κ. Remark that equality (5.5) is still true for all x
such that d(x,U) ≥ 1. Note that vq−1 ≤ vq and we set vq−1(x)/vq(x) = 1 if vq(x) = 0. We
then obtain the following consequences

Proposition 5.6. (1) Weak Poincaré like inequalities.
Assume that a local Poincaré inequality holds. Suppose that vq(x) is finite for all x.
Then for all positive s < 1, there exists a positive function β such that for all bounded
f

(5.7) Varµ(f) ≤ β(s)

∫

Γ(f, f)dµ+ sOsc(f)2

and β(s) = C
(

inf{u ; µ(vq−1

vq
< u) > s}

)−1
for some explicit constant C.

(2) Assume that L = ∆ − ∇V.∇, where V is smooth, is defined on R. Then, if v1
is bounded, the associated semi-group Pt is ultrabounded (hence for some λ > 0,
supx Ex(e

λ TU < +∞).
(3) If there exists C such that vq(x) ≤ C vq−1(x) for all x with d(x,U) ≥ 1, then µ

satisfies a Poincaré inequality (and consequently TU has some exponential moment
for all Px).

The first part of the theorem gives that in the reversible setting, finiteness of moments of
return times implies a weak Poincaré like inequality, a result that we are not aware of in dis-
crete times. It is however very difficult to get precise estimates of β as we need concentration

properties of µ and sharp control of vq and vq−1. Using that vq−1 ≤ v
q−1
q

q we may get a lower
bound for β using only vq.
Note that the second part of the Proposition is not so surprising and corresponds to the
similar discrete situation of birth and death processes on the half line (see Proposition 7.10
in [11]). The third part is only expressing that vq is a Lyapunov function.

Proof. The first part of the theorem, inspired by [12] and the proof of the main theorem,
may be proved in two steps that we sketch here. First, using the Lyapunov conditions (5.5)
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and the same line of reasoning than (H1) implies (H4) in our main theorem, we get some
weighted Poincaré inequality: for some constant C, we have

inf
a

∫

vq−1

vq
(f − a)2dµ ≤ C

∫

Γ(f, f).

Then, with af = µ(f
vq−1

vq
)/µ(

vq−1

vq
), for all bounded f and for all u > 0

Varµ(f) ≤
∫

(f − af )
2dµ

=

∫

vq−1
vq

≥u
(f − af )

2dµ+

∫

vq−1
vq

<u
(f − af )

2dµ

≤ u−1 inf
a

∫

vq−1

vq
(f − a)2dµ+ µ

vq−1

vq
< u)Osc(f)2

which gives the result.

For the second part just remark that

Lv1(x) ≤ − v1(x)

sup v1
for x ∈ Ū c .

Hence v1/κ is a bounded Lyapunov function satisfying (H1) (with Ū c replaced by {d(x,U) >
1}) and we may apply Proposition 5.2.

For the third part we similarly have

Lvq(x) ≤ − vq−1(x)

vq(x)
vq(x) for x such that d(x,U) ≥ 1 .

Hence vq/κ is a Lyapunov function satisfying (H1) (with Ū c replaced by {d(x,U) > 1}), and
we may apply Theorem 2.3. �

An immediate generalization of (3) in the previous proposition is the following assumption :
there exists an increasing function ϕ growing to infinity and R > 0, such that

(5.8) ϕ(vq(x)) ≤ q vq−1(x) for |x| ≥ R .

Indeed if (5.8) holds, we have

Lvq(x) ≤ −ϕ(vq(x))

for |x| large enough, and vq is thus a ϕ-Lyapunov function in the terminology of [19] and [12]
(see definition 2.2 in the latter reference).

Conversely, is it possible to get the existence of φ-moments starting from a functional inequal-
ity ? The first answer to this question was given in [25] where some Nash type inequalities
are shown to imply the existence of moments. The proof uses the fact that the Laplace
transform of TU , h

U
t (x) = Ex(e

−t TU ) satisfies Lh− th = 0 for all t > 0.

Using the results in section 3 of [13] again we can derive similar (actually stronger) results.
Recall that

Pµ(TU > t) ≤ Pµ

(

− 1

t

∫ t

0
1IU (Xs) ds + µ(U) ≥ µ(U)

)

.
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According to Proposition 3.5 in [13] we thus have for t large enough,

Pµ(TU > t) ≤ C(k) t−k (µ(U))−2k

provided the process is α-mixing with a mixing rate α(u) ≤ C(1 + u)−k for some integer
k ≥ 1.

The mixing rate is connected to the rate of convergence to equilibrium of the semi group,
as explained in [13]. This rate of convergence can be bounded using either a Weak Poincaré
Inequality (see [27]) or a ϕ-Lyapunov function (see [19, 3]). Let us collect these results in
the next (and final) theorem

Theorem 5.9. Assume that L is uniformly strongly hypoelliptic. Let U be a bounded con-
nected open set. Assume in addition one of the following conditions,

(1) µ satisfies a weak Poincaré inequality, i.e. there exists a non-increasing function
β such that for all s > and all bounded and smooth f ,

Varµ(f) ≤ β(s)

∫

Γ(f, f) dµ+ sOsc2(f)

where Osc(f) denotes the oscillation of f ; in which case the process is α-mixing with
a mixing rate

α(t) ≤ (inf{s > 0 ; β(s) log(1/s) ≤ t/2})2 .
(2) there exists a ϕ-Lyapunov function W for some smooth increasing concave function

ϕ with ϕ′ → 0 at infinity; in which case the process is α-mixing with a mixing rate

α(t) ≤ C

(
∫

W dµ

)

1

ϕ ◦H−1
ϕ (t)

,

where Hϕ(t) =
∫ t
1 (1/ϕ(s))ds and we assume that

∫

W dµ < +∞.

If in addition α(t) ≤ C (1 + t)−k for some positive integer k, then

Pµ(TU > t) ≤ C(k) t−k (µ(U))−2k

for some constant C(k).

In particular for all j < k, Eµ(T
j
U ) < +∞. The same holds for µ almost all x, and for all x,

and j < k/2, Ex(T
j
U ) < +∞.

The interested reader will find in [3, 12] in particular many examples (including the so called
κ-concave measures) of measures satisfying one (or both) of the previous conditions.
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Lyapunov versus Poincaré. J. Func. Anal., 254:727–759, 2008.



26 P. CATTIAUX, A. GUILLIN, AND P. A. ZITT

[4] F. Barthe, P. Cattiaux, and C. Roberto. Interpolated inequalities between exponential and gaussian,
Orlicz hypercontractivity and application to isoperimetry. Revista Matematica Iberoamericana, 22:993–
1066, 2006.

[5] S. G. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Prob.,
27(4):1903–1921, 1999.
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