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Chapter 1

Introduction

This thesis is about logical models of belief (and knowledge) representation and belief change.
This means that we propose logical systems which are intended to represent how agents per-
ceive a situation and reason about it, and how they update their beliefs about this situation
when events occur. These agents can be machines, robots, human beings. . . but they are
assumed to be somehow autonomous.

The way a fixed situation is perceived by agents can be represented by statements about
the agents’ beliefs: for example ‘agent A believes that the door of the room is open’ or ‘agent
A believes that her colleague is busy this afternoon’. ‘Logical systems’ means that agents can
reason about the situation and their beliefs about it: if agent A believes that her colleague is
busy this afternoon then agent A infers that he will not visit her this afternoon. We moreover
often assume that our situations involve several agents which interact between each other.
So these agents have beliefs about the situation (such as ‘the door is open’) but also about the
other agents’ beliefs: for example agent A might believe that agent B believes that the door
is open. These kinds of beliefs are called higher-order beliefs. Epistemic logic [Hintikka, 1962;
Fagin et al., 1995; Meyer and van der Hoek, 1995], the logic of belief and knowledge, can
capture all these phenomena and will be our main starting point to model such fixed (‘static’)
situations. Uncertainty can of course be expressed by beliefs and knowledge: for example
agent A being uncertain whether her colleague is busy this afternoon can be expressed by
‘agent A does not know whether her colleague is busy this afternoon’. But we sometimes
need to enrich and refine the representation of uncertainty: for example, even if agent A does
not know whether her colleague is busy this afternoon, she might consider it more probable
that he is actually busy. So other logics have been developed to deal more adequately with
the representation of uncertainty, such as probabilistic logic, fuzzy logic or possibilistic logic,
and we will refer to some of them in this thesis (see [Halpern, 2003] for a survey on reasoning
about uncertainty).

But things become more complex when we introduce events and change in the pic-
ture. Issues arise even if we assume that there is a single agent. Indeed, if the incoming
information conveyed by the event is coherent with the agent’s beliefs then the agent can
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2 Chapter 1. Introduction

just add it to her beliefs. But if the incoming information contradicts the agent’s beliefs
then the agent has somehow to revise her beliefs, and as it turns out there is no obvious
way to decide what should be her resulting beliefs. Solving this problem was the goal
of the logic-based belief revision theory developed by Alchourrón, Gärdenfors and Makin-
son (to which we will refer by the term AGM) [Alchourrón et al., 1985; Gärdenfors, 1988;
Gärdenfors and Rott, 1995]. Their idea is to introduce ‘rationality postulates’ that spec-
ify which belief revision operations can be considered as being ‘rational’ or reasonable, and
then to propose specific revision operations that fulfill these postulates. However, AGM
does not consider situations where the agent might also have some uncertainty about the
incoming information: for example agent A might be uncertain due to some noise whether
her colleague told her that he would visit her on Tuesday or on Thursday. In this thesis
we also investigate this kind of phenomenon. Things are even more complex in a multi-
agent setting because the way agents update their beliefs depends not only on their be-
liefs about the event itself but also on their beliefs about the way the other agents per-
ceived the event (and so about the other agents’ beliefs about the event). For example,
during a private announcement of a piece of information to agent A the beliefs of the other
agents actually do not change because they believe nothing is actually happening; but dur-
ing a public announcement all the agents’ beliefs might change because they all believe
that an announcement has been made. Such kind of subtleties have been dealt with in
a field called dynamic epistemic logic [Gerbrandy and Groeneveld, 1997; Baltag et al., 1998;
van Ditmarsch et al., 2007b]. The idea is to represent by an event model how the event is
perceived by the agents and then to define a formal update mechanism that specifies how
the agents update their beliefs according to this event model and their previous representa-
tion of the situation. Finally, the issues concerning belief revision that we raised in the single
agent case are still present in the multi-agent case.

So this thesis is more generally about information and information change. However,
we will not deal with problems of how to store information in machines or how to actu-
ally communicate information. Such problems have been dealt with in information theory
[Cover and Thomas, 1991] and Kolmogorov complexity theory [Li and Vitányi, 1993]. We
will just assume that such mechanisms are already available and start our investigations
from there.

Studying and proposing logical models for belief change and belief representation has
applications in several areas. First in artificial intelligence, where machines or robots need to
have a formal representation of the surrounding world (which might involve other agents),
and formal mechanisms to update this representation when they receive incoming infor-
mation. Such formalisms are crucial if we want to design autonomous agents, able to act
autonomously in the real world or in a virtual world (such as on the internet). Indeed, the
representation of the surrounding world is essential for a robot in order to reason about the
world, plan actions in order to achieve goals. . . and it must be able to update and revise its
representation of the world itself in order to cope autonomously with unexpected events.
Second in game theory (and consequently in economics), where we need to model games
involving several agents (players) having beliefs about the game and about the other agents’
beliefs (such as agent A believes that agent B has the ace of spade, or agent A believes that
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agent B believes that agent A has the ace of heart. . . ), and how they update their represen-
tation of the game when events (such as showing privately a card or putting a card on the
table) occur. Third in cognitive psychology, where we need to model as accurately as possi-
ble epistemic state of human agents and the dynamics of belief and knowledge in order to
explain and describe cognitive processes.

The thesis is organized as follows. In Chapter 2, we first recall epistemic logic. Then
we observe that representing an epistemic situation involving several agents depends very
much on the modeling point of view one takes. For example, in a poker game the repre-
sentation of the game will be different depending on whether the modeler is a poker player
playing in the game or the card dealer who knows exactly what the players’ cards are. In this
thesis, we will carefully distinguish these different modeling approaches and the different
kinds of formalisms they give rise to. In fact, the interpretation of a formalism relies quite a
lot on the nature of these modeling points of view. Classically, in epistemic logic, the models
built are supposed to be correct and represent the situation from an external and objective
point of view. We call this modeling approach the perfect external approach. In Chapter 2,
we study the modeling point of view of a particular modeler-agent involved in the situa-
tion with other agents (and so having a possibly erroneous perception of the situation). We
call this modeling approach the internal approach. We propose a logical formalism based
on epistemic logic that this agent uses to represent ‘for herself’ the surrounding world. We
then set some formal connections between the internal approach and the (perfect) external
approach. Finally we axiomatize our logical formalism and show that the resulting logic is
decidable.

In Chapter 3, we first recall dynamic epistemic logic as viewed by Baltag, Moss and
Solecki (to which we will refer by the term BMS). Then we study in which case seriality of
the accessibility relations of epistemic models is preserved during an update, first for the
full updated model and then for generated submodels of the full updated model. Finally,
observing that the BMS formalism follows the (perfect) external approach, we propose an
internal version of it, just as we proposed an internal version of epistemic logic in Chapter 2.

In Chapter 4, we still follow the internal approach and study the particular case where
the event is a private announcement. We first show, thanks to our study in Chapter 3, that
in a multi-agent setting, expanding in the AGM style corresponds to performing a private
announcement in the BMS style. This indicates that generalizing AGM belief revision theory
to a multi-agent setting amounts to study private announcement. We then generalize the
AGM representation theorems to the multi-agent case. Afterwards, in the spirit of the AGM
approach, we go beyond the AGM postulates and investigate multi-agent rationality postu-
lates specific to our multi-agent setting inspired from the fact that the kind of phenomenon
we study is private announcement. Finally we provide an example of revision operation
that we apply to a concrete example.

In Chapter 5, we follow the (perfect) external approach and enrich the BMS formalism
with probabilities. This enables us to provide a fined-grained account of how human agents
interpret events involving uncertainty and how they revise their beliefs. Afterwards, we
review different principles for the notion of knowledge that have been proposed in the liter-
ature and show how some principles that we argue to be reasonable ones can all be captured
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in our rich and expressive formalism. Finally, we extend our general formalism to a multi-
agent setting.

In Chapter 6, we still follow the (perfect) external approach and enrich our dynamic
epistemic language with converse events. This language is interpreted on structures with
accessibility relations for both beliefs and events, unlike the BMS formalism where events
and beliefs are not on the same formal level. Then we propose principles relating events and
beliefs and provide a complete characterization, which yields a new logic EDL. Finally, we
show that BMS can be translated into our new logic EDL thanks to the converse operator:
this device enables us to translate the structure of the event model directly within a particular
axiomatization of EDL, without having to refer to a particular event model in the language
(as done in BMS).

In Chapter 7 we summarize our results and give an overview of remaining technical is-
sues and some desiderata for future directions of research.

Parts of this thesis are based on publication, but we emphasize that they have been en-
tirely rewritten in order to make this thesis an integrated whole. Sections 4.2.2 and 4.3 of
Chapter 4 are based on [Aucher, 12 16 May 2008]. Sections 5.2, 5.3 and 5.5 of Chapter 5 are
based on [Aucher, 2007]. Chapter 6 is based on [Aucher and Herzig, 2007].



Chapter 2

Epistemic logic

2.1 Introduction

Epistemic logic is a modal logic [Blackburn et al., 2001] that is concerned with the logical
study of the notions of knowledge and belief. It is then concerned with understanding the
process of reasoning about knowledge and belief. As epistemology, it stems from the Greek
word ǫπιστημη or ‘episteme’ meaning knowledge. But epistemology is more concerned
with analyzing the very nature of knowledge (addressing questions such as “What is the
definition of knowledge?” or “How is knowledge acquired?”). In fact, epistemic logic grew
out of epistemology in the middle ages thanks to the efforts of Burley and Ockham [Boh,
1993]. But the formal work, based on modal logic, that inaugurated contemporary research
into epistemic logic dates back only to 1962 and is due to Hintikka [Hintikka, 1962]. It then
sparked in the 1960’s discussions about the inherent properties of knowledge and belief and
many axioms for these notions were proposed and discussed [Lenzen, 1978]. More recently,
these kind of philosophical theories were taken up by researchers in economics [Battigalli
and Bonanno, 1999], artificial intelligence and theoretical computer science [Fagin et al., 1995]
[Meyer and van der Hoek, 1995] where reasoning about knowledge is a central topic. Due to
the new setting in which epistemic logic was used, new perspectives and new features such
as computability issues were then added to the agenda of epistemic logic.

In this chapter, we first give an outline of contemporary epistemic logic. Then we pro-
pose a new approach to epistemic logic by stressing the importance of choosing a particular
modeling point of view. This leads us to distinguish two main modeling approaches that
we call the internal and the external approach. We then focus on the internal approach and
study its relationship with the external one.

5



6 Chapter 2. Epistemic logic

2.2 State of the art

In this section we briefly describe the modal approach to epistemic logic initiated by Hin-
tikka, focusing on the multi-agent case. We first define the semantics of epistemic logic based
on the notion of epistemic model in Section 2.2.1. We axiomatize it in Section 2.2.2 and dis-
cuss some axioms. Then we concentrate on the notion of common belief in Section 2.2.3.
Finally in Section 2.2.4, we recall results and notions from modal logic, such as bisimulation,
which will be used throughout this thesis. We focus mainly on the notion of belief. The
notion of knowledge and its relationship with belief will be tackled at more length in Section
5.4.1 of Chapter 5.

2.2.1 Semantics

First some important notations. Throughout the thesis Φ is a set of propositional letters and
G is a finite set of agents. We assume that the number of agents N is bigger than 1.

As we said, epistemic logic is a modal logic. So what we call an epistemic model is just
a particular kind of Kripke model as used in modal logic. The only difference is that instead
of having a single accessibility relation we have a set of accessibility relations, one for each
agent.

Definition 2.2.1 (Epistemic model)

An epistemic model M is a triple M = (W,R, V ) such that

• W is a non-empty set of possible worlds;

• R : G→ 2W×W assigns an accessibility relation to each agent;

• V : Φ→ 2W assigns a set of possible worlds to each propositional letter and is called a
valuation.

If M = (W,R, V ) is an epistemic model, a pair (M,wa) with wa ∈ W is called a pointed
epistemic model. We also write Rj = R(j) and Rj(w) = {w

′ ∈ W | wRjw
′}, and w ∈ M for

w ∈W . 2

Intuitively, a pointed epistemic model (M,wa) represents from an external point of view
how the actual world wa is perceived by the agents G. The possible worlds W are the rel-
evant worlds needed to define such a representation and the valuation V specifies which
propositional facts (such as ‘it is raining’) are true in these worlds. Finally the accessibil-
ity relations Rj can model either the notion of knowledge or the notion of belief. We set
w′ ∈ Rj(w) in case the world w′ is compatible with agent j’s belief (respectively knowledge)
in world w.

Now inspiring ourselves from modal logic, we can define a language for epistemic mod-
els. The modal operator is just replaced either by a ‘belief’ or a ‘knowledge’ operator, one for
each agent. As we said, we focus on the notion of belief, and we write Bj the belief operator;
the notion of knowledge, whose operator is written Kj , will be studied in more depth in
Section 5.4.1.
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Definition 2.2.2 (Language L)

The language L is defined as follows:

L : ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Bjϕ

where p ranges over Φ and j overG. Moreover, ϕ∨ϕ′ is an abbreviation for ¬(¬ϕ∧¬ϕ′); ϕ→
ϕ′ is an abbreviation for ¬ϕ∨ϕ′; B̂jϕ is an abbreviation for ¬Bj¬ϕ; and ⊥ is an abbreviation
for ¬⊤. 2

Intuitively, Bjp means that the agent j believes that the propositional fact p is true. But
in fact, in this language we can express not only what the agents believe about the world
but also what they believe about what the other agents believe about what the other agents
believe, and so on. This is exemplified by formulas of the form BjBip or BjBkBiq. . . These
kinds of belief are called ‘higher-order’ beliefs. In fact we can quantify this nesting of belief
operators thanks to the notion of degree of a formula.

Definition 2.2.3 (Degree of an epistemic formula)

The degree deg(ϕ) of an epistemic formula ϕ is defined inductively as follows:

• deg(p) = deg(⊤) = 0;

• deg(¬ϕ) = deg(ϕ); deg(ϕ ∧ ψ) = max{deg(ϕ), deg(ψ)};

• deg(Bjϕ) = 1 + deg(ϕ).

2

Now we can give meaning to the formulas of this language by defining truth conditions
for these formulas on the class of epistemic models.

Definition 2.2.4 (Truth conditions for L)

Let M = (W,R, V ) be an epistemic model and w ∈ W . M,w |= ϕ is defined inductively as
follows:

M,w |= ⊤
M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff not M,w |= ϕ
M,w |= ϕ ∧ ϕ′ iff M,w |= ϕ and M,w |= ϕ′

M,w |= Bjϕ iff for all v ∈ Rj(w),M, v |= ϕ

We write M |= ϕ for M,w |= ϕ for all w ∈M . 2

So the agent j believes ϕ in world w (formally M,w |= Bjϕ) if ϕ is true in all the worlds
that the agent j considers possible (in world w).

But note that the notion of belief might comply to some constraints (or axioms) such
as Bjϕ → BjBjϕ: if agent j believes something, she knows that she believes it. These
constraints might affect the nature of the accessibility relations Rj which may then comply
to some extra properties. So, we are now going to define some particular classes of epistemic
models that all add some extra constraints on the accessibility relations Rj . We will see in the
next section that these constraints are matched by particular axioms for the belief operator
Bj .
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Definition 2.2.5 (Properties of accessibility relations)

We list below a list of properties for the accessibility relations Rj that will be used in the
sequel.

• seriality: for all w, Rj(w) 6= ∅;

• transitivity: for all w,w′, w′′, if w′ ∈ Rj(w) and w′′ ∈ Rj(w
′) then w′′ ∈ Rj(w);

• euclidicity: for all w,w′, w′′, if w′ ∈ Rj(w) and w′′ ∈ Rj(w) then w′ ∈ Rj(w
′′);

• reflexivity: for all w, w ∈ Rj(w);

• confluence: for all w,w′, w′′, if w′ ∈ Rj(w) and w′′ ∈ Rj(w) then there is v such that
v ∈ Rj(w

′) and v ∈ Rj(w
′′);

• weakly connected: for all w,w′, w′′, if (w′ ∈ Rj(w) and w′′ ∈ Rj(w)) then (w′ ∈ Rj(w
′′) or

w′ = w′′ or w′′ ∈ Rj(w
′);

• .3.2: for all w,w′, w′′, if w′′ ∈ Rj(w) and not w ∈ Rj(w
′′) then w′ ∈ Rj(w) implies

w′′ ∈ Rj(w
′);

• .4: for all w,w′, w′′, if (w′′ ∈ Rj(w) and w 6= w′′) then (w′ ∈ Rj(w) implies w′′ ∈ Rj(w
′)).

We list below classes of epistemic models that will be used in the sequel.

• KG-models: no restriction;

• KD45G-models: the accessibility relations are serial, transitive and euclidean;

• S4G-models: the accessibility relations are reflexive and transitive;

• S4.2G-models: the accessibility relations are reflexive, transitive and confluent;

• S4.3G-models: the accessibility relations are reflexive, transitive and weakly connected;

• S4.3.2G-models: the accessibility relations are reflexive, transitive and satisfy .3.2;

• S4.4G-models: the accessibility relations are reflexive, transitive and satisfy .4;

• S5G-models: the accessibility relations are reflexive and euclidean (and thus transi-
tive).

2

Now we define the notions of satisfiability, validity and epistemic consequence with re-
spect to a certain class of epistemic models.

Definition 2.2.6 (Satisfiability, validity and consequence)

Let L ∈ {KG,KD45G,S4G,S4.2G,S4.3G,S4.3.2G,S4.4G,S5G}.
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Let ϕ ∈ L. We say that ϕ is L-satisfiable if there is an L-model M and w ∈ M such that
M,w |= ϕ. We say that ϕ is L-valid, written |=L ϕ, if for all L-models M and all w ∈ M ,
M,w |= ϕ.

More generally, if C is a class of epistemic models, we say that ϕ is C-valid, written |=C ϕ,
if for all M ∈ C M |= ϕ.

Let Γ ⊆ L. We say that ϕ is an epistemic L-consequence of Γ, written Γ |=L ϕ, if for every
pointed epistemic model (M,w), if M,w |= Γ then M,w |= ϕ. (M,w |= Γ means that for all
ϕ ∈ Γ, M,w |= ϕ.) 2

These notions of satisfiability, validity and epistemic consequence have an intuitive im-
port. Satisfiability of ϕ means that there exists an actual situation in which ϕ is true. Validity
of ϕ means that in any situation, ϕ is true. Finally, ϕ is an epistemic consequence of Γ if in
any situation where Γ is true, ϕ is also true. This notion of epistemic consequence corre-
sponds in modal logic to the notion of local consequence. In fact, there is another notion of
logical consequence in modal logic called global consequence, namely: Γ |= ϕ if for every
epistemic model M if M,w |= Γ for all w ∈ M then M,w |= ϕ for all w ∈ M [Blackburn
et al., 2001]. But we prefer to choose the notion of local consequence because this notion
of global consequence does not really have a natural intuitive meaning in epistemic logic.
Indeed one could prove that ϕ |= Bjϕ with the global notion of consequence, which is of
course counterintuitive if we want to include agents that are ignorant of some facts.

Example 2.2.7 (‘Coin’ example)

We take up more or less the coin example of [Baltag and Moss, 2004]:

‘Ann and Bob enter a room where a quizmaster holds a coin in his hand. The quizmaster
throws the coin in the air which lands in a small box on a table in front of the quizmaster.
The quizmaster can see the coin but Ann and Bob cannot. The quizmaster then closes the
box.’

This situation is modeled in the pointed epistemic model (M,wa) of Figure 2.1. The
quizmaster is not considered as an agent involved in the situation, so he is not represented in
the epistemic model (he might simply be a robot or a computer program). The accessibility
relations are represented by arrows indexed by A (standing for Ann) or B (standing for
Bob); p stands for ‘the coin is heads up’ and the boxed world wa stands for the actual world.
In any world, Bob and Ann consider the world where the coin is heads up and the world
where the coin is tails up as being possible. So any world is accessible to any other world
for A and B. Now, thanks to the language L we can express formally what is actually true

wa : p

A,B

A,B
¬p

A,B

Figure 2.1: ‘Coin’ example.
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in this situation. For example M,wa |= p ∧ (B̂Ap ∧ B̂A¬p) ∧ (B̂Bp ∧ B̂B¬p) means that
the coin is heads up but both Ann and Bob do not know wether it is heads or tails up.
M,wa |= BB(B̂Ap ∧ B̂A¬p) ∧ BA(B̂Bp ∧ B̂B¬p) means that Bob believes that Ann does not
know wether the coin is heads or tails up, and that Ann does so about Bob as well. 2

Epistemic models are one way to model multi-agent epistemic states. In fact, other se-
mantic frameworks have been proposed in the literature: for example ‘interpreted systems’
[Fagin et al., 1995] used in distributed systems, Cantwell’s ‘N-agent frame’ [Cantwell, 2005],
Lomuscio’s ‘hypercubes’ [Lomuscio, 1999] or ‘type spaces’ [Harsanyi, 1967 1968] used in
game theory and economics and axiomatized in [Heifetz and Mongin, 2001] (but note that
this formalism uses also probability). Nevertheless it has been showed that all these for-
malisms can be mapped equivalently to (certain types of) epistemic models.

2.2.2 Axiomatization

Now we are going to axiomatize the semantics just defined with the help of particular
(modal) logics. Generally speaking, a modal logic L is built from a set of axiom schemes
and inference rules, called a proof system. Then a formula ϕ belongs to this logic either if it is
an axiom or if it is derived by applying successively some inference rules to some axioms. In
that case we say that ϕ is L-provable or that ϕ is a theorem of L and we write it ⊢L ϕ. A formula
is L-consistent if its negation is not L-provable, formally 0L ¬ϕ. (see [Blackburn et al., 2001] for
more details.)

An epistemic logic is obtained by joining together N modal logics (we recall that N is
the cardinality of G). For sake of simplicity, it is often assumed that the axioms are the same
for all the agents, meaning that they all reason with the same principles. Below is defined
the simplest epistemic logic KG obtained by putting together N modal logics K (which is the
simplest modal logic).

Definition 2.2.8 (Proof system of KG)

The logic KG is defined by the following axiom schemes and inference rules:

Taut ⊢KG ϕ for all propositional tautologies ϕ
K ⊢KG Bj(ϕ→ ψ)→ (Bjϕ→ Bjψ) for all j ∈ G (Distribution)
Nec If ⊢KG ϕ then ⊢KG Bjϕ for all j ∈ G (Necessitation)
MP If ⊢KG ϕ and ⊢KG ϕ→ ψ then ⊢KG ψ (Modus Ponens).

2

The axioms of an epistemic logic obviously display the way the agents reason. For exam-
ple the axiom K together with the rule of inference MP entail that if you believe ϕ (Bjϕ) and
you believe that ϕ implies ψ (Bj(ϕ→ ψ)) then you believe that ψ (Bjψ). Stronger constraints
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can be added. The following are often used in the literature.

D Bjϕ→ B̂jϕ (Consistency)
4 Bjϕ→ BjBjϕ (Positive introspection)
5 ¬Bjϕ→ Bj¬Bjϕ (Negative introspection)
T Bjϕ→ ϕ (Knowledge property)
.2 ¬Bj¬Bjϕ→ Bj¬Bj¬Bjϕ (Confluence)

.3 B̂jϕ ∧ B̂jψ → B̂j(ϕ ∧ B̂jψ) ∨ B̂j(ϕ ∧ ψ) ∨ B̂j(ψ ∧ B̂jϕ) (Weakly connected)

.3.2 (B̂jϕ ∧ B̂jBjψ)→ Bj(B̂jϕ ∨ ψ)

.4 (ϕ ∧ B̂jBjψ)→ Bj(ϕ ∨ ψ) (True belief)

Axiom D intuitively means that the agents’ beliefs cannot be inconsistent: they do not
believe both a formula and its negation. Axioms 4 and 5 intuitively mean that our agents
know what they believe and disbelieve. The other axioms are more suitable for the notion of
knowledge studied in Chapter 5. For example, axiom T intuitively means that everything an
agent knows is true (which is not generally the case for the notion of belief). The commonly
used logics are specified as follows:

KD45G : KG + D+ 4+ 5;
S4G : KG + T+ 4;
S4.2G : S4G + .2;
S4.3G : S4G + .3;
S4.3.2G : S4G + .3.2;
S4.4G : S4G + .4;
S5G : S4G + 5.

The relative strength of the logics for knowledge is as follows: S4G,S4.2G,S4.3G,S4.3.2G,
S4.4G,S5G. The logics are in increasing order, so for instance all the theorems of S4.2G are
also theorems of S4.3G,S4.3.2G,S4.4G and S5G.

An interesting feature of epistemic (and modal) logic is that we can somehow match
the constraints imposed by the axioms on the belief operator Bj with constraints on the
accessibility relations Rj . So for example any logic containing the axiom schemes 4 and T
will be valid on the class of reflexive and transitive models, and any formula valid on the
class of reflexive and transitive models is provable in S4G. In other words, the notions of
validity and provability coincide.

Theorem 2.2.9 (Soundness and completeness)

For all ϕ ∈ L and L ∈ {KG,KD45G,S4G,S4.2G,S4.3G,S4.3.2G,S4.4G,S5G},

⊢L ϕ iff |=L ϕ

The ‘if’ direction is called completeness and the ‘only if’ direction is called soundness.
Soundness is often easily proved by induction on the length of the proof. Completeness is
often proved by contraposition, building a L-model (usually called canonical model) satisfy-
ing a given L-consistent formula.
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Finally, all the logics introduced are decidable, which intuitively means that we can run
an algorithm that decides wether or not a given formula is satisfiable (see [Blackburn et al.,
2001] for details). Below, we list the complexity of the satisfiability problem for each of them.
All these results are due to Halpern and Moses [Halpern and Moses, 1992].

• NP-complete for N=1 in KD45G and S5G;

• PSPACE-complete for N ≥ 2 in KD45G and S5G;

• PSPACE-complete for any N in KG and S4G.

So far we have not really exploited the fact that we are in a multi-agent setting. That is
what we are going to do now.

2.2.3 Common belief

In a multi-agent setting there are two important concepts: general belief (or knowledge) and
common belief (or knowledge). The notion of common belief (or knowledge) was first stud-
ied by Lewis in the context of conventions [Lewis, 1969]. It was then applied to distributed
systems [Fagin et al., 1995] and to game theory [Aumann, 1976], where it allows to express
that the rationality of the players, the rules of the game and the set of players are commonly
known [Aumann, 1977].

General belief of ϕ means that everybody in the group of agents G believes that ϕ. For-
mally this corresponds to

∧

j∈G

Bjϕ and it is written EGϕ. Common belief of ϕ means that

everybody believes ϕ but also that everybody believes that everybody believes ϕ, that ev-
erybody believes that everybody believes that everybody believes ϕ, and so on ad infinitum.
Formally, this corresponds to EGϕ ∧ EGEGϕ ∧ EGEGEGϕ ∧ . . . As we do not allow infinite
conjunction the notion of common knowledge will have to be introduced as a primitive in
our language.

Before defining the language with this new operator, we are going to give an example
introduced by Lewis [Lewis, 1969] that illustrates the difference between these two notions
(here we exceptionally use the notion of knowledge instead of belief to make things clearer).
Lewis wanted to know what kind of knowledge is needed so that the statement p: “every
driver must drive on the right” be a convention among a group of agents. In other words he
wanted to know what kind of knowledge is needed so that everybody feels safe to drive on
the right. Suppose there are only two agents i and j. Then everybody knowing p (formally
EGp) is not enough. Indeed, it might still be possible that the agent i considers possible that
the agent j does not know p (formally ¬KiKjp). In that case the agent i will not feel safe to
drive on the right because he might consider that the agent j, not knowing p, could drive on
the left. To avoid this problem, we could then assume that everybody knows that everybody
knows that p (formally EGEGp). This is again not enough to ensure that everybody feels
safe to drive on the right. Indeed, it might still be possible that agent i considers possible
that agent j considers possible that agent i does not know p (formally ¬KiKjKip). In that
case and from i’s point of view, j considers possible that i, not knowing p, will drive on the
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left. So from i’s point of view, j might drive on the left as well (by the same argument as
above). So i will not feel safe to drive on the right. Reasoning by induction, Lewis showed
that for any k ∈ N, EGp∧E

1
Gp∧ . . .∧E

k
Gp is not enough for the drivers to feel safe to drive on

the right. In fact what we need is an infinite conjunction. In other words, we need common
knowledge of p: CGp.

Definition 2.2.10 (Language LC)

• The language LC is defined inductively as follows:

LC : ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Bjϕ | EG1ϕ | CG1ϕ

where p ranges over Φ, j over G and G1 ranges over subsets of G. Moreover, EG1ϕ is
an abbreviation for

∧

j∈G1

Bjϕ.

• For every epistemic model M and w ∈M ,

M,w |= CG1ϕ iff for all v ∈ (
⋃

j∈G1

Rj)
+(w), M,v |= ϕ;

where (
⋃

j∈G1

Rj)
+ is the transitive closure of

⋃

j∈G1

Rj .

2

Despite the fact that the notion of common belief has to be introduced as a primitive in
the language, we can notice in this definition that epistemic models do not have to be modi-
fied in order to give truth value to the common belief operator.

Finally, we can define logics with the common knowledge operator that extend the ex-

isting logics without it. For all L ∈ {KG,KD45G,S4G,S4.2G,S5G}, the logic LC is defined by
adding the following axiom schemes and inference rule to those of L.

E ⊢LC EG1ϕ↔
∧

j∈G1

Bjϕ

Mix ⊢LC CG1ϕ→ EG1(ϕ ∧ CG1ϕ)
Ind if ⊢LC ϕ→ EG1(ψ ∧ ϕ) then ⊢LC ϕ→ CG1ψ (induction rule)

We can then show that the logic LC is sound and complete with respect to the class of
L-models. Note that other axiomatizations exist: for instance by Lismont and Mongin [Lis-
mont and Mongin, 1994] and Bonanno [Bonanno, 1996] (without induction rule). All these
logics are still decidable but their complexity is higher, which is the price to pay for more
expressivity.

2.2.4 An epistemic logic toolkit

In this section, we will list techniques stemming from modal logic that will be used through-
out this thesis.
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Bisimulation

Definition 2.2.11 (Bisimulation)

LetM = (W,R, V ) andM ′ = (W ′, R′, V ′) be two epistemic models, and let w ∈M , w′ ∈M ′.
A non-empty binary relation Z ⊆ W ×W ′ (with wZw′) is called a bisimulation between M
and M ′, written Z :M,w - M ′, w′, if the following conditions are satisfied.

1. If wZw′ then for all p ∈ Φ, w ∈ V (p) iff w′ ∈ V ′(p);

2. if wZw′ and v ∈ Rj(w) then there exists v′ ∈ Rj(w
′) such that vZv′;

3. if wZw′ and v′ ∈ Rj(w
′) then there exists v ∈ Rj(w) such that vZv′.

We can define bisimilarity between M,w and M ′, w′, written M,w - M ′, w′ as follows.
M,w - M ′, w′ iff there is a relation Z such that Z :M,w - M ′, w′. 2

The main theorem about bisimulation is the following.

Theorem 2.2.12 [Blackburn et al., 2001]

Let M , M ′ be two epistemic models and w ∈ M , w′ ∈ M ′. If M,w - M ′, w′ then for all ϕ ∈ LC ,
M,w |= ϕ iff M ′, w′ |= ϕ.

So intuitively, if two epistemic models are bisimilar then they contain the same informa-
tion. It can be shown that the converse also holds in case the epistemic models are finite.

Generated submodel and height

Definition 2.2.13 (Generated submodel)

Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two epistemic models and Wa ⊆W .

• We say that M ′ is a submodel of M if W ′ ⊆ W ; for all j ∈ G, R′j = Rj ∩ (W
′ ×W ′) and

for all p ∈ Φ, V ′(p) = V (p) ∩W ′. We also say that M ′ is the restriction of M to W ′.

• The submodel of M generated by Wa is the restriction of M to {(
⋃

j∈G

Rj)
∗(w) | w ∈ Wa}

1.

In case the submodel of M generated by Wa is M itself, we say that M is generated by
Wa.

2

Note that in the above definition, Wa could be a singleton {w}. In that case w is called
the root of the generated submodel. The main property about generated submodels is the
following.

Proposition 2.2.14 [Blackburn et al., 2001]

Let M = (W,R, V ) be an epistemic model and M ′ a submodel of M generated by some Wa ⊆ W .
Then for all w ∈M ′ and all ϕ ∈ LC , M,w |= ϕ iff M ′, w |= ϕ.

1if R is a relation, the reflexive transitive closure of R, written R∗, is defined by R∗(w) = {w} ∪ {v| there is
w = w1, . . . , wn = v such that wiRwi+1}, see [Blackburn et al., 2001]
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This property then means in particular that if we are interested only in the worlds Wa in
M , then the submodel of M generated by these worlds contains all the relevant information
in M about these worlds.

Now we define the related notion of height of worlds and models.

Definition 2.2.15 (Height)

Let (M,w) be an epistemic model generated by w. The notion of height of worlds in M is
defined by induction. The only world of height 0 is the root w; the worlds of height n+1 are
those immediate successors of worlds of height n that have not yet been assigned a height
smaller than n+ 1.

The height of a (generated) model (M,w) is the maximum n such that there is a world of
height n in (M,w), if such a maximum exists; otherwise the height of (M,w) is infinite. 2

Syntactic characterization of finite epistemic models

Proposition 2.2.16 [Barwise and Moss, 1997; van Benthem, 2006]

Let Φ be finite, and let M be a finite epistemic model and w ∈M . Then there is an epistemic formula
δM (w) ∈ L

C (involving common knowledge) such that

1. M,w |= δM (w)

2. For every finite epistemic model M ′ and world w′ ∈ M ′, if M ′, w′ |= δM (w) then M,w -

M ′, w′.

This proposition intuitively means that any finite epistemic model can be completely
characterized by an epistemic formula.

The universal modality

Definition 2.2.17 (Language LU )

We define the language LU inductively as follows.

LU : ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Bjϕ | Uϕ,

where p ranges over Φ and j over G. Moreover Oϕ is an abbreviation for ¬U¬ϕ.The truth
condition for the universal modality U is defined as follows.

M,w |= Uϕ iff for all v ∈M,M, v |= ϕ.

2

So the universal modality is something stronger than common belief. Its axiomatization
is made of the axioms for S5 [Blackburn et al., 2001].
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2.3 A new approach: internal versus external perspectives of the

world

2.3.1 Intuitions

In the literature about epistemic logic, when it comes to model epistemic situations involv-
ing several agents j1, . . . , jN , not much is said explicitly about which modeling point of view
is considered. However, modeling an epistemic situation depends very much on the mod-
eling point of view. Indeed, the models built will be quite different whether the modeler is
one of the agents j1, . . . , jN or not. Let us take up the Example 2.2.7. Now, assume that the
quizmaster somehow manages to privately announce to Bob that the coin is heads up (by
showing him the coin for example), Ann suspecting nothing about it (she might be inatten-
tive or out of the room for a while). On the one hand, if the modeler is somebody external
(different from Ann and Bob) knowing everything that has happened, then in the model
that this modeler builds to represent this resulting situation Bob knows whether the coin is
heads or tails up. On the other hand, if the modeler is Ann herself then in the model that
Ann builds to represent this resulting situation Bob does not know whether the coin is heads
or tails up. As we see in this example, specifying the modeling point of view is also quite
essential to interpret the formal models.2

But what kinds of modeling points of view are there? For a start, we can distinguish
whether the modeler is one of the agents j1, . . . , jN or not.

1. First, consider the case where the modeler is one of the agents j1, . . . , jN . In the rest of
the thesis we call this modeler-agent agent Y (like Y ou). The models she builds could
be seen as models she has ‘in her mind’. They represent the way she perceives the
surrounding world. In that case, agent Y is involved in the situation, she is considered
on a par by the other agents and interacts with them. So she should be represented
in the formalism and her models should deal not only with the other agents’ beliefs
but also with the other agents’ beliefs about her own beliefs. This is an internal and
subjective point of view, the situation is modeled from the inside. Therefore, for this
very reason her beliefs might be erroneous. Hence the models she builds might also be
erroneous. We call this agent point of view the internal point of view.

2. Second, consider the case where the modeler is not one of the agents j1, . . . , jN . The
modeler is thus somebody external to the situation. She is not involved in the situ-
ation and she does not exist for the agents, or at least she is not taken into consid-
eration in their representation of the world. So she should not be represented in the
formalism and particularly the agents’ beliefs about her own beliefs should also not
be represented because they simply do not exist. The models that this modeler builds

2This is somehow similar to what happens in Newtonian mechanics in physics where we always have to
specify which (Galilean) referential we consider when we want to model a phenomenon because the perception
of this phenomenon depends on this referential. For example, assume somebody drops a ball from the top of a
ship’s high mast sailing rapidly nearby a harbor. Then, viewed from the referential of the ship, the trajectory of
the ball will be a straight line. But viewed from the referential of the harbor, the trajectory will be a parabola.
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are supposed to represent the situation from an external and objective point of view.
Typically, as in the internal point of view, her models deal with the epistemic states of
all the agents j1, . . . , jN and also the actual state of the world. There are then two other
possibilities depending on whether or not the modeler has a perfect knowledge of the
situation.

(a) In case the modeler has a perfect knowledge of the situation then everything that
is true in the model that she builds is true in reality and vice versa, everything that
is true in reality is also true in the model. This thesis was already introduced in
[Baltag and Moss, 2004]. Basically, the models built by the modeler are perfectly
correct. The modeler has access to the minds of the agents and knows perfectly
not only what they believe but also what the actual state of the world is. This is a
kind of ‘divine’ point of view and we call it the perfect external point of view.

(b) In case the modeler does not have a perfect knowledge of the situation then, un-
like the perfect external point of view, the models built might be erroneous. The
models could also be correct but then, typically, the modeler would be uncer-
tain about which is the actual world (in that sense, she would not have a perfect
knowledge of the situation). What the modeler knows can be obtained for exam-
ple by observing what the agents say and do, by asking them questions . . . We call
this point of view the imperfect external point of view.

Because we proceeded by successive dichotomies, we claim that the internal, the perfect
external and the imperfect external points of view are the only three possible points of view
when we want to model epistemic situations. From now on we will call them the internal, the
external and the imperfect external approaches. In the literature, these three approaches are
sometimes mixed leading to technical or philosophical problems. We will give an example
of such problems in Section 3.5. However, note that if in the external approach the object of
study is not the epistemic states of all the agents j1, . . . , jN (and the actual state of the world)
but rather the epistemic state of only one of these agents, then the perfect external approach
focused on this agent boils down to the internal approach (for this agent). Note also that in
the imperfect external approach, in practice, the modeler could perfectly be one of the agents
who wants to reason about the other agents from an external point of view, as if she was not
present.

The fields of application of these three approaches are different. The internal and imper-
fect external approaches have rather applications in artificial intelligence where agents/robots
acting in the world need to have a formal representation of the surrounding world and to
cope with uncertain information. The internal approach has also applications in cognitive
psychology where the aim is to model the cognition of one agent (possibly in a multi-agent
setting). The perfect external approach has rather applications in game theory [Battigalli and
Bonanno, 1999], cognitive psychology or distributed systems [Fagin et al., 1995] for example.
Indeed, in these fields we need to model situations accurately from an external point of view
in order to explain and predict what happens in these situations.

In this thesis we will focus only on the perfect external and the internal approach. That
is why from now on we omit the term ‘perfect’ in ‘perfect external’. For a work considering
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similar questions as ours using an imperfect external approach, see [Nittka, 2008; Booth and
Nittka, 2007b; Booth and Nittka, 2007a].

Standard epistemic logic described in Section 2.2 and all the papers cited there rather
follow the (perfect) external approach. On the other hand, AGM belief revision theory [Al-
chourrón et al., 1985] rather follows the internal approach. But AGM is designed for a single
agent. In fact there is no logical formalism for the internal approach in a multi-agent setting.
That is what we are going to propose in this chapter.

2.3.2 A semantics for the internal approach

To define a semantics for the internal approach in a multi-agent setting, we will start from
the AGM approach, based on the notion of possible world, and then extend it to the multi-
agent case. Then we will propose an equivalent formalism which will be used in the rest of
this thesis.

But first we have to make some assumption. As we said in the previous section, the in-
ternal approach has applications in artificial intelligence and in cognitive psychology. So the
objects we introduce should be essentially finite. Indeed, computers cannot easily deal with
infinite structures and a human cognition is by nature finite. So the set Φ of propositional
letters is assumed to be finite in the rest of this chapter.

Multi-agent possible world and internal model

In the AGM framework, one considers a single agent Y . The possible worlds are supposed to
represent how the agent Y perceives the surrounding world. As she is the only agent, these
possible worlds deal only with propositional facts about the surrounding world. Now, if we
suppose that there are other agents than agent Y , a possible world for Y in that case should
also deal with how the other agents perceive the surrounding world. These “multi-agent”
possible worlds should then not only deal with propositional facts but also with epistemic
facts. So to represent a multi-agent possible world we need to add a modal structure to our
(single agent) possible worlds. We do so as follows.

Definition 2.3.1 (Multi-agent possible world)

A multi-agent possible world (M,w) is a finite pointed epistemic model M = (W,R, V,w) gen-
erated by w ∈W such that Rj is serial, transitive and euclidean for all j ∈ G, and

1. RY (w) = {w};

2. there is no v and j 6= Y such that w ∈ Rj(v).

2

Let us have a closer look at the definition. Condition 2 will be motivated later, but note
that any pointed epistemic model satisfying the conditions of a multi-agent possible world
except condition 2 is bisimilar to a multi-agent possible world. Condition 1 ensures that in
case Y is the only agent then a multi-agent possible world boils down to a possible world,
as in the AGM theory. Condition 1 also ensures that in case Y assumes that the situation is
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correctly represented by the multi-agent possible world (M,w) then for herw is the (only) ac-
tual world. In fact the other possible worlds of a multi-agent possible world are just present
for technical reasons: they express the other agents’ beliefs (in world w). One could get rid
of the condition that a multi-agent possible world (M,w) is generated by w but the worlds
which do not belong to the submodel generated by w would have neither philosophical nor
technical motivation. Besides, for the same reason that Φ is finite, a multi-agent possible
world is also assumed to be finite. Finally, notice that we assume that accessibility rela-
tions are serial, transitive and euclidean. This means that the agents’ beliefs are consistent
and that agents know what they believe and disbelieve (see Section 2.2.2). These seem to
be very natural constraints to impose on the notion of belief. Intuitively, this notion of be-
lief corresponds for example to the kind of belief in a theorem that you have after having
proved this theorem and checked the proof several times. In the literature, this notion of be-
lief corresponds to Lenzen’s notion of conviction [Lenzen, 1978] or to Gärdenfors’ notion of
acceptance [Gärdenfors, 1988] or to Voorbraak’s notion of rational introspective belief [Voor-
braak, 1993]. In fact, in all the agent theories the notion of belief satisfies these constraints:
in Cohen and Levesque’s theory of intention [Cohen and Levesque, 1990] or in Rao and
Georgeff BDI architecture [Georgeff and Rao, 1991] [Rao and Georgeff, 1991] or in Meyer et.
al. KARO architecture [van Linder et al., 1998] [Meyer et al., 2001] or in Wooldridge BDI logic
LORA [Wooldridge, 2000]. However, one should note that all these agent theories follow the
external approach and thus use standard epistemic models (defined in Definition 2.2.1) to
represent the situation. This is of course at odds with their intention to implement their
theories in machines.3

Remark 2.3.2 In this chapter we deal only with the notion of belief but one could also add
the notion of knowledge. Indeed, it might be interesting to express things such as ‘the agent
Y believes that agent j does not know p’ (even if this could be rephrased in terms of beliefs).
We refrain to do so in order to highlight the main new ideas and because in most applications
of the internal approach the notion of knowledge is not essential. 2

Example 2.3.3 We see in Figure 2.2 that a multi-agent possible world is really a generaliza-
tion of a possible world. 2

In the single agent case (in AGM belief revision theory), the epistemic state of the agent Y
is represented by a finite set of possible worlds. In a multi agent setting, this is very similar:
the epistemic state of the agent Y is represented by a (disjoint and) finite set of multi-agent
possible worlds. We call this an internal model of type 1.

3One could argue that the epistemic models of these theories could be somehow used by the agent at stake
(the machine/robot) to reason about the other agents’ beliefs from an external point of view, as if she was not
present. But in that case, because this agent would have some uncertainty about the situation, a single epistemic
model would not be enough for the agent to represent the situation. Instead, the agent would need a set of
epistemic models, each epistemic model representing a possible determination of the situation (for the agent).
So, even in that case, the formalism would still be very different because the primitive semantical object to
consider should not be a single epistemic model but rather a set of epistemic models. In fact, this boils down to
follow the imperfect external approach.
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a (single-agent) possible world:

w : p,¬q

a multi-agent possible world:

w′ : p,¬q

Y

A
A

B

p, qA
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BY
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¬p,¬q

A,B,Y
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¬p, q

A,B,Y
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Y

¬p,¬q

A,B,Y

Figure 2.2: From possible world to multi-agent possible world

Definition 2.3.4 (Internal model of type 1)

An internal model of type 1 is a disjoint and finite union of multi-agent possible worlds. 2

An internal model of type 1 will sometimes be written (M,Wa) where Wa are the roots
of its multi-agent possible worlds.

Example 2.3.5 (‘Coin’ example)

Let us take up the ‘coin example’ of Example 2.2.7 before the private announcement of the
quizmaster and let us consider Bob’s internal point of view. So in this example, Bob stands
for the designated agent Y . Bob’s internal model of type 1 is depicted in Figure 2.3. There p
stands for ‘the coin is heads up’, A for Ann and B for Bob. In this internal model, Bob does
not know wether the coin is heads or tails up (formally ¬BBp∧¬BB¬p). Indeed, in one multi-
agent possible world (on the left) p is true at the root and in the other (on the right) p is false
at the root. Bob also believes that Ann does not know whether the coin is heads or tails up
(formally BB(¬BAp∧¬BA¬p). Indeed, in both multi-agent possible worlds, ¬BAp∧¬BA¬p
is true (at the roots). Finally, Bob believes that Ann believes that she does not know whether
the coin is heads or tails up (formally BBBA(¬BBp ∧ ¬BB¬p)) since BA(¬BBp ∧ ¬BB¬p) is
true at the roots of both multi-agent possible worlds. 2

Thanks to condition 2 in the definition of a multi-agent possible world, we could define
the notion of internal model differently. Indeed, we could perfectly set an accessibility re-
lation between the roots of the multi-agent possible worlds. Figure 2.4 gives an example
of such a process, starting from the example of Figure 2.3. Condition 2 ensures us that by
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w : p

B

A A

w′ : ¬p

B

A A

p

A,B

A,B
¬p

A,B
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A,B

A,B
¬p
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Figure 2.3: Bob’s internal model of type 1 before the private announcement

doing so we do not modify the information present in the original internal model. Indeed,
if condition 2 was not fulfilled then it might be possible that j’s beliefs about Y ’s beliefs (for
some j 6= Y ) might be different between the original internal model and the new one, due
to the creation of these new accessibility relations between the multi-agent possible worlds.
This phenomenon will become explicit when we define the language for the internal models
of type 1. (Condition 2 will turn out to be useful in Chapter 4 as well.)

w : p

B
B

A A

w′ : ¬p

B

A A

p

A,B

A,B
¬p

A,B

p

A,B

A,B
¬p

A,B

Figure 2.4: A new definition of internal model

Then in this new formalism, one can notice that the former roots of the multi-agent pos-
sible worlds form an equivalence class for the accessibility relation indexed by B, which
stands in this example for the agent Y . Note also that the accessibility relations are still se-
rial, transitive and euclidean. This leads us to the following new definition of an internal
model.

Definition 2.3.6 (Internal model of type 2)

An internal model of type 2 is a couple (M,Wa) where M is a finite epistemic model M =
(W,R, V ) generated by Wa ⊆W such that Rj is serial, transitive and euclidean for all j ∈ G,
and RY (wa) =Wa for all wa ∈Wa. Wa is called the actual equivalence class. 2

Definition 2.3.7 (Internal model of type 2 associated to an internal model of type 1)

Let (M,Wa) = {(M
1, w1), . . . , (Mn, wn)} be an internal model of type 1 (withMk = (W k, Rk, V k)).
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The internal model of type 2 associated to (M,Wa) is the internal model of type 2, S2(M,Wa) =
(W ′, R′, V ′,Wa), defined as follows.

• W ′ =
⋃

k

W k;

• R′j =
⋃

k

Rkj for j 6= Y , and R′Y = {(w
k, wk

′

) | wk, wk
′

∈Wa} ∪
⋃

k

Rkj ;

• V ′(p) =
⋃

k

V k(p).

2

So from an internal model of type 1, one can easily define an equivalent internal model
of type 2. But of course, the other way around, from an internal model of type 2 one can also
define an equivalent internal model of type 1. This will be done in Proposition 2.3.12.

Example 2.3.8 (‘Coin’ example)

In Figure 2.5 Bob’s internal model of type 2 before the private announcement is depicted. We
recall that in this example Bob stands for the designated agent Y . The worlds of the actual
equivalence class are within boxes. It turns out that this internal model is bisimilar to the one
depicted in Figure 2.4, which is itself an equivalent representation of Bob’s internal model of
type 1 depicted in Figure 2.3. So Bob’s internal model of type 2 depicted in Figure 2.5 is an
equivalent representation of the Bob’s internal model of type 1 depicted in Figure 2.3. One
can indeed check for example that the formulas ¬BBp ∧ ¬BB¬p, BB(¬BAp ∧ ¬BA¬p) and
BBBA(¬BBp ∧ ¬BB¬p) are indeed true. Note that this second representation is much more
compact. 2

w : p
A,B

A,B

w′ : ¬p

A,B

Figure 2.5: Bob’s internal model of type 2 before the private announcement

As we said in Section 2.3.1, the internal approach can be applied in artificial intelligence.
In this case, the agent Y is an artificial agent (such as a robot) that has an internal model ‘in
her mind’. But to stick with a more standard approach (used in the single agent case), we
could perfectly consider that the agent Y has sentences from a particular language ‘in her
mind’ and draws inferences from them. In that respect, this language could also be used by
the agent Y in the former approach to perform some model checking in her internal model
in order to reason about the situation or to answer queries. So in any case we do need to
define a language.
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Language for the internal approach

Definition 2.3.9 (Language L)

L : ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Bjϕ

where p ranges over Φ and j over G. 2

For sake of simplicity and in order to highlight the new results, we do not introduce a
common knowledge operator, but this could be done easily. In fact all the results of this
chapter still hold if we add the common knowledge operator to the language. Note that
the language is identical to the usual language of epistemic logic. If we consider the class
of internal models of type 2 then its truth conditions are also the same and are spelled out
in Definition 2.2.4. But if we consider the class of internal models of type 1 then its truth
conditions are a bit different and are set out below.

Definition 2.3.10 (Truth conditions for L)

Let (M, {w1, . . . , wn}) = {(M1, w1), . . . , (Mn, wn)} be an internal model of type 1 and let
w ∈M. Thenw ∈Mk for some k, withMk = (W k, Rk, V k).M, w |= ϕ is defined inductively
as follows:

M, w |= ⊤
M, w |= p iff w ∈ V k(p)
M, w |= ¬ϕ iff notM, w |= ϕ
M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ andM, w |= ϕ′

M, w |= BY ϕ iff

{

for all wi ∈Wa,M, wi |= ϕ if w ∈Wa

for all w′ ∈ RkY (w),M, w′ |= ϕ if w ∈W k −Wa

M, w |= Bjϕ iff for all w′ ∈ Rkj (w),M, w′ |= ϕ if j 6= Y

2

Note that the truth condition for the operator BY is defined as if there were accessibility
relations indexed by Y between the roots of the multi-agent possible worlds. Condition 2 of
Definition 2.3.1 then ensures that the agents j’s beliefs about agent Y ’s beliefs (with j 6= Y ) of
a given multi-agent possible world stay the same whatever other multi-agent possible world
we add to this multi-agent possible world. This would of course be a problem if it was not
the case. Condition 2 thus provides a kind of modularity of the multi-agent possible worlds
in an internal model (of type 1).

This truth condition for the operator BY is of course completely in line with the truth
conditions for the internal models of type 2. In fact, thanks to the definition of this language,
we can show that the two types of internal models are somehow equivalent. Both will be
useful in this thesis, but in the rest of this chapter we consider that all internal models will
be internal models of type 2.

Definition 2.3.11 (Equivalence between internal models of type 1 and 2)

Let (M,Wa) be an internal model of type 1 and (M′,W ′
a) be an internal model of type 2.

(M,Wa) and (M′,W ′
a) are equivalent if and only if
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• for all w ∈Wa there is w′ ∈W ′
a such that for all ϕ ∈ L,M, w |= ϕ iffM′, w′ |= ϕ;

• for all w ∈W ′
a there is w′ ∈Wa such that for all ϕ ∈ L,M, w |= ϕ iffM′, w′ |= ϕ.

2

Proposition 2.3.12 (Internal models of type 1 and 2 are equivalent)

Let (M,Wa) be an internal model of type 2. Then there is an internal model of type 1 (M′,W ′
a)

which is equivalent to (M,Wa).
Let (M,Wa) be an internal model of type 1. Then there is an internal model of type 2 (M′,W ′

a)
which is equivalent to (M,Wa).

PROOF. We only prove the first part. For the second part, it suffices to take the internal
model of type 2 associated to (M,Wa).

Let (M,Wa) = (W,R, V ) be an internal model of type 2. For each w ∈ Wa we define
a corresponding multi-agent possible world (Mw, w) as follows: for all k 6= Y , let Mk =
(W k, Rk, V k) be the submodel of M generated by Rk(w). The multi-agent possible world
(Mw, w) = (Ww, Rw, V w, w) is then defined as follows.

• Ww = {w} ⊔
⊔

k 6=Y

W k;

• Rwj =

(

Rj ∪
⋃

k 6=Y

Rkj

)

∩Ww ×Ww for all j ∈ G;

• V w(p) =

(

V (p) ∪
⋃

k 6=Y

V k(p)

)

∩Ww.

Then one can easily show that (Mw, w) is a multi-agent possible world and that M′ =
{(Mw, w) | w ∈ Wa} is an internal model of type 1 which is equivalent to (M,Wa) =
(W,R, V ). QED

Thanks to the truth conditions we can now define the notions of satisfiability and validity
of a formula. The truth conditions are defined for any world of the internal model. However,
the satisfiability and the validity should not be defined relatively to any possible world of
the internal model (as it is usually done in epistemic logic) but only to the possible worlds
of the actual equivalence class. Indeed, these are the worlds that do count for the agent Y in
an internal model: they are the worlds that agent Y actually considers possible. The other
possible worlds are just here for technical reasons in order to express the other agents’ beliefs
(in these worlds). This leads us to the following definition of satisfiability and validity.

Definition 2.3.13 (Internal satisfiability and validity)

Let ϕ ∈ L. The formula ϕ is internally satisfiable if there is an internal model (M,Wa) and
there is w ∈ Wa such that M, w |= ϕ. The formula ϕ is internally valid if for all internal
models (M,Wa),M, w |= ϕ for all w ∈Wa. In this last case we write |=Int ϕ. 2
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Remark 2.3.14 One could define the notions of internal satisfiability and internal validity
differently. One could say that ϕ ∈ L is satisfiable if there is an internal model (M,Wa) such
thatM, w |= ϕ for all w ∈Wa. Then, following this new definition, ϕ ∈ L is valid if for every
internal model (M,Wa), there is w ∈Wa such thatM, w |= ϕ.

This second notion of internal validity corresponds to Gärdenfors’ notion of validity
[Gärdenfors, 1988]. In fact these two notions of internal validity correspond to the two no-
tions of validity introduced by Levi and Arlo Costa [Arló Costa and Levi, 1996]: they call the
first one “positive validity” and the second one “negative validity”.

These two notions coincide in the single agent case but not in the multi-agent case. In-
deed, the Moore sentence p ∧ ¬BY p is positively satisfiable but not negatively satisfiable.
Nevertheless there are some connections between them. We can indeed prove that ϕ ∈ L is
positively valid if and only if BY ϕ is negatively valid. Moreover, both have advantages and
drawbacks. On the one hand, positive validity is intuitive because it says that a formula ϕ is
valid if in every possible situation, the agent Y believes ϕ. However positive satisfiability is
less intuitive because ϕ is positively satisfiable if there exists a situation in which the agent
Y does not reject ϕ. On the other hand, negative satisfiability is also intuitive because it says
that ϕ is negatively satisfiable if there exists a situation in which agent Y believes ϕ. How-
ever negative validity is less intuitive because it says that ϕ is negatively valid if in every
situation agent Y does not reject ϕ. 2

As we saw in Section 2.2.1, in modal logic [Blackburn et al., 2001] there are two notions of
semantic consequence. In the internal approach we can also define two notions of semantic
consequence.

Definition 2.3.15 (Local and global internal consequence)

Let C be a class of internal models; let Σ be a set of formulas of L and let ϕ ∈ L.

• We say that ϕ is a local internal consequence of Σ over C, written Σ |=C ϕ, if for all
internal models (M,Wa) ∈ C and all w ∈Wa, ifM, w |= Σ thenM, w |= ϕ.

• We say that ϕ is a global internal consequence of Σ over C, written Σ |=gC ϕ, if and only if
for all internal models (M,Wa) ∈ C, ifM, w |= Σ for all w ∈Wa thenM, w |= ϕ for all
w ∈Wa.

2

For example, if we take any class C of internal models then it is not necessarily the case
that ϕ |=C BY ϕ, whereas we do have that ϕ |=gC BY ϕ. Moreover, these two notions can
be informally associated to the two notions of satisfiability mentioned in Remark 2.3.14:
local internal consequence can be associated to positive satisfiability and the global internal
consequence can be associated to negative satisfiability.

2.3.3 Some connections between the internal and the external approach

Intuitively, there are some connections between the internal and the external approach. In-
deed, in the external approach the modeler is supposed to perfectly know how the agents
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perceive the surrounding world. So from the model she builds we should be able to extract
the internal model of each agent. Likewise, it seems natural to claim that for the agent Y a
formula is true if and only if, externally speaking, the agent Y believes this formula. In this
subsection we are going to formalize these intuitions.

From external model to internal model and vice versa

First we define the notion of external model. An external model is a pointed epistemic model
(M,wa) = (W,R, V,wa)where wa ∈W and the accessibility relations Rj are serial, transitive
and euclidean. So what we call an external model is just a standard pointed epistemic model
used in epistemic logic. An external model is supposed to model truthfully and from an
external point of view how all the agents involved in the same situation perceive the actual
world (represented formally by wa). This is thus simply the type of model built by the mod-
eler in the external approach spelled out in Section 2.3.1. The language and truth conditions
for these external models are the same as in epistemic logic and are spelled out in Definitions
2.3.9 and 2.2.4. The notion of external validity is also the same as in epistemic logic and we
say that ϕ ∈ L is externally valid, written |=Ext ϕ, if for all external model (M,w), M,w |= ϕ
(and similarly for external satisfiability).

Now for a given external model representing truthfully how a situation is perceived by
the agents, we can extract for each agent her internal model pertaining to this situation.

Definition 2.3.16 (Model associated to an agent in an external model)

Let (M,wa) be an external model and let j ∈ G. The model associated to agent j in (M,wa) is
the submodel of M generated by Rj(wa). Besides Rj(wa) is its actual equivalence class. 2

Because the external model is supposed to model truthfully the situation, wa does corre-
spond formally to the actual world. So Rj(wa) are the worlds that the agent j actually con-
siders possible in reality. In agent j’s internal model pertaining to this situation, these worlds
should then be the worlds of the actual equivalence class. Finally, taking the submodel gen-
erated by these worlds ensures that the piece of information encoded in the worlds Rj(wa)
in the external model is kept unchanged in the associated internal model. This notion of
model associated to agent j in (M,wa) corresponds to the notion of belief horizon of agent j
of Tallon, Vergnaud and Zamir [Tallon et al., 2004].

Proposition 2.3.17 Let (M,wa) be an external model. The model associated to agent j in (M,wa)
is an internal model (of type 2).

PROOF. Let (M′,W ′
a) be the internal model associated to agent j in (M,wa) (with M′ =

(W ′, R′, V ′)).

Obviously, M′ is generated by Wa. By the generated submodel property, R′j is serial,
transitive and euclidean for all j. Finally, because Rj is euclidean, for all w ∈Wa(= Rj(wa)),
Rj(w) = Rj(wa) =Wa.

So (M′,Wa) is indeed an internal model. QED



2.3. A new approach: internal versus external perspectives of the world 27

Example 2.3.18 (‘Coin’ example)

In Figure 2.6 is depicted the ‘coin example’ after the private announcement to Bob (see Sec-
tion 2.3.1). We can check that in the external model, Ann does not know whether the coin is
heads or tails up and moreover believes that Bob does not know either. This is also true in
the internal model associated to Ann. However, in the external model, Bob knows that the
coin is heads up but this is false in the internal model associated to Ann and true in Bob’s
internal model. Note finally that the internal model associated to Bob is the same as the
external model. This is because we assumed that Bob perceived correctly the situation and
what happened. 2
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Figure 2.6: External model (M,wa) (left); Internal model associated to Ann (center), Internal
model associated to Bob (right).

So we know from an external model how to obtain the internal model of each agent. But
the other way round, we could wonder how to get the external model (of a particular situa-
tion) if we suppose given the internal models of each agent. In that case we must moreover
assume that the modeler knows the real state of the world, more precisely she knows what
propositional facts are true in the actual world. We can then introduce a single world wa
whose valuation Va satisfies these propositional facts. The external model is built by setting
accessibility relations indexed by j from wa to the actual equivalence class of j’s internal
model, and so for each agent j.

Definition 2.3.19 (External model associated to a set of internal models and an actual

world)

Let {(Mj ,W j) | j ∈ G} be a set of internal models of type 2 for each agent j (Mj =
(W j , Rj , V j)) and (wa, Va) a possible world together with a valuation.4

The external model associated to {(Mj ,W j) | j ∈ G} and (wa, Va), written
Ext

[

{(Mj ,W j) | j ∈ G}, (wa, Va)
]

= (W,R, V,wa), is defined as follows.

• W = {wa} ∪
⋃

k∈G

W k;

• Rj = {(wa, w
j) | wj ∈W j} ∪

⋃

k∈G

Rkj for each j ∈ G;

4An internal model for agent j is an internal model where the designated agent is j instead of Y .
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• V (p) = Va(p) ∪
⋃

k∈G

V k(p).

2

We can then easily check that this model is indeed an external model.

A semantic correspondence

As we said in Section 2.3.2, the language of the internal approach is the same as that of
the external approach. This enables us to draw easily some connections between the two
approaches.

Proposition 2.3.20 For all ϕ ∈ L, |=Int ϕ iff |=Ext BY ϕ.

PROOF. For all ϕ ∈ L, |=Int ϕ iff |=Ext BY ϕ amounts to prove that for all ϕ ∈ L, ϕ is internally
satisfiable iff B̂Y ϕ is externally satisfiable.

Assume that ϕ is internally satisfiable. Then there is an internal model (M,Wa) and
w ∈ Wa such that M, w |= ϕ. But w ∈ RY (w), so M, w |= B̂Y ϕ. Besides, (M, w) can be
viewed as an external model. So B̂Y ϕ is externally satisfiable.

Assume that B̂Y ϕ is externally satisfiable. Then there is an external model (M,wa) such
that M,wa |= B̂Y ϕ. Then there is w ∈ RY (wa) such that M,w |= ϕ. Let (M′,Wa) be the
internal model associated to (M,wa) and agent Y . Then w ∈ Wa and M′, w |= ϕ by the
generated submodel property. So ϕ is internally satisfiable. QED

Intuitively, this result is correct: for you ϕ is true if and only if from an external point
of view you believe that ϕ is the case. (Note that this result does not hold for the notion of
negative validity.)

As we said earlier, instead of internal models, agent Y might have formulas ‘in her mind’
in order to represent the surrounding world. But to draw inferences from them she needs
a proof system. In other words, we still need to axiomatize the internal semantics. That is
what we are going to do now.

2.3.4 Axiomatization of the internal semantics

First some notation. Let Ext designate from now on the logic KD45G. So for all ϕ ∈ L, ⊢Ext ϕ
iff ϕ ∈ KD45G.

Definition 2.3.21 (Proof system of Int)
The internal logic Int is defined by the following axiom schemes and inference rules:

T ⊢Int BY ϕ→ ϕ;
I-E ⊢Int ϕ for all ϕ ∈ L such that ⊢Ext ϕ;
MP if ⊢Int ϕ and ⊢Int ϕ→ ψ then ⊢Int ψ.

2
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Let us have a closer look at the axiom schemes. The first one tells us that for you, every-
thing you believe is true. This is coherent if we construe the notion of belief as conviction.
The second one tells us that you should believe everything which is objectively true, i.e.
which is true independently of your own subjectivity. Finally note that the necessitation rule
(⊢Int ϕ implies ⊢Int Bjϕ for all j) is not present, which is intuitively correct. Indeed, if for you
ϕ is true (i.e. you believe ϕ) then in general there is no reason that you should believe that the
other agents believe ϕ as well. For example, BY ϕ → ϕ is internally valid but Bj(BY ϕ → ϕ)
(for j 6= Y ) should not be internally valid.

As we announced it in Section 2.3.2, if we add a common knowledge operator to our
language then the axiomatization for the language with common knowledge is identical to
the one of the above definition.

Remark 2.3.22 In Remark 2.3.14, we proposed an alternative definition of validity for the
internal semantics, called negative validity. We do not have a complete axiomatization for
the negative validity. However we know that the axiom scheme ϕ→ Bjϕ is valid but Modus
Ponens does not hold anymore. 2

Theorem 2.3.23 (Soundness and completeness)

For all ϕ ∈ L, |=Int ϕ iff ⊢Int ϕ.

PROOF. Proving the soundness of the axiomatic system is straightforward. We only focus on
the completeness proof.

Let ϕ be a Int-consistent formula. We need to prove that there is an internal model
(MInt,Wa), there is w ∈Wa such thatMInt, w |= ϕ.

Let Sub+(ϕ) be all the subformulas of ϕ with their negations. Let WInt be the set of
maximal Int-consistent subsets of Sub+(ϕ). Let WExt be the set of maximal Ext-consistent
subsets of Sub+(ϕ). For all Γ,Γ′ ∈ WInt ∪WExt, let Γ/Bj = {ψ | Bjψ ∈ Γ} and BjΓ = {Bjψ |
Bjψ ∈ Γ} ∪ {¬Bjψ | ¬Bjψ ∈ Γ}.

We define the epistemic model M = (W,R, V ) as follows:

• W =WInt ∪WExt;

• for all j ∈ G and Γ,Γ′ ∈W , Γ′ ∈ Rj(Γ) iff Γ/Bj = Γ
′/Bj and Γ/Bj ⊆ Γ

′;

• Γ ∈ V (p) iff p ∈ Γ.

We are going to prove the truth lemma, i.e. for all ψ ∈ Sub+(ϕ), all Γ ∈W

M,Γ |= ψ iff ψ ∈ Γ

We prove it by induction on ψ. The case ψ = p is fulfilled by the definition of the valua-
tion. The cases ψ = ¬χ,ψ = ψ1 ∧ ψ2 are fulfilled by the induction hypothesis. It remains to
prove the case ψ = Bjχ.
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• Assume ψ ∈ Γ. Then χ ∈ Γ/Bj . So for all Γ′ such that Γ′ ∈ Rj(Γ), χ ∈ Γ
′. So for all Γ′

such that Γ′ ∈ Rj(Γ)M,Γ′ |= χ by induction hypothesis. So M,Γ |= Bjχ, i.e.M,Γ |= χ.

• Assume M,Γ |= Bjψ. Then BjΓ ∪ Γ/Bj ∪ {¬ψ} is not Ext-consistent.

Assume on the contrary that BjΓ ∪ Γ/Bj ∪ {¬ψ} is Ext-consistent. Then there is Γ′ ∈
WExt such that BjΓ ∪ Γ/Bj ∪ {¬ψ} ⊆ Γ

′. So Γ/Bj = Γ
′/Bj and Γ/Bj ⊆ Γ

′. Then
Γ′ ∈ Rj(Γ) and ¬ψ ∈ Γ′, i.e. Γ′ ∈ Rj(Γ) and M,Γ′ |= ¬ψ by induction hypothesis. So
M,Γ |= ¬Bjψ, which is impossible by assumption.

So BjΓ∪ Γ/Bj ∪ {¬ψ} is not Ext-consistent. Now we consider two cases: first Γ ∈WInt

and then Γ ∈WExt.

1. Γ ∈WInt. Then there are ϕ1, . . . , ϕn ∈ Γ/Bj , ϕ
′
1, . . . , ϕ

′
m ∈ BjΓ such that

⊢Ext ϕ1 → (ϕ2 → . . .→ (ϕn → (ϕ
′
1 → (ϕ

′
2 → . . .→ (ϕ′m → ψ)))))). So

⊢Ext Bj [ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ
′
1 → (ϕ

′
2 → . . . → (ϕ′m → ψ))))))] by the

necessitation rule of Ext. So

⊢Ext Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (Bjϕ
′
1 → (Bjϕ

′
2 → . . . → (Bjϕ

′
m →

Bjψ)))))). i.e. ⊢Ext Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (ϕ
′
1 → (ϕ

′
2 → . . . → (ϕ′m →

Bjψ)))))) because for all i ⊢Ext ϕ
′
i ↔ Bjϕ

′
i. So

⊢Int Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (ϕ
′
1 → . . . → (ϕ′m → Bjψ)))) by axiom

scheme (I-E).

But Bjϕ1, . . . , Bjϕn, ϕ
′
1, . . . , ϕ

′
m ∈ Γ. So Bjψ ∈ Γ.

2. Γ ∈WExt. Then there are ϕ1, . . . , ϕn ∈ Γ/Bj and ϕ′1, . . . , ϕ
′
m ∈ BjΓ such that

⊢Ext ϕ1 → (ϕ2 → . . .→ (ϕn → (ϕ
′
1 → (ϕ

′
2 → . . .→ (ϕ′m → ψ)))))). So

⊢Ext Bj [ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ
′
1 → (ϕ

′
2 → . . . → (ϕ′m → ψ))))))] by the

necessitation rule of Ext. So

⊢Ext Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (Bjϕ
′
1 → (Bjϕ

′
2 → . . . → (Bjϕ

′
m →

Bjψ)))))). i.e. ⊢Ext Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (ϕ
′
1 → (ϕ

′
2 → . . . → (ϕ′m →

Bjψ)))))) because for all i ⊢Ext ϕ
′
i ↔ Bjϕ

′
i.

But Bjϕ1, . . . , Bjϕn, ϕ
′
1, . . . , ϕ

′
m ∈ Γ. So Bjψ ∈ Γ.

Finally we have shown that in all cases Bjψ ∈ Γ.

So we have proved the truth lemma. Now we need to prove that the accessibility rela-
tions Rj are serial, transitive and euclidean.

• Transitivity. Assume that Γ′ ∈ Rj(Γ) and Γ′′ ∈ Rj(Γ
′). i.e. Γ′/Bj = Γ

′′/Bj and Γ′/Bj ⊆
Γ′′; and Γ/Bj = Γ

′/Bj and Γ/Bj ⊆ Γ
′. Then clearly Γ/Bj = Γ

′′/Bj and Γ/Bj ⊆ Γ
′′. i.e.

Γ′′ ∈ Rj(Γ).

• Euclidicity. Assume that Γ′ ∈ Rj(Γ) and Γ′′ ∈ Rj(Γ). i.e. Γ/Bj = Γ
′/Bj and Γ/Bj ⊆ Γ

′;
and Γ/Bj = Γ

′′/Bj and Γ/Bj ⊆ Γ
′′. Then clearly Γ′/Bj = Γ

′′/Bj and Γ′/Bj ⊆ Γ
′′. i.e.

Γ′′ ∈ Rj(Γ
′).



2.3. A new approach: internal versus external perspectives of the world 31

• Seriality. We only prove the case Γ ∈ WInt. The case Γ ∈ WExt is similar. We are going
to show that BjΓ ∪ Γ/Bj is Ext-consistent.

Assume the contrary. Then there are ϕ1, . . . , ϕn ∈ Γ/Bj and ϕ′1, . . . , ϕ
′
m ∈ BjΓ such

that

⊢Ext ϕ1 → (ϕ2 → . . .→ (ϕn → (ϕ
′
1 → . . .→ (ϕ′m−1 → ¬ϕ

′
m)))). So

⊢Ext Bj [ϕ1 → (ϕ2 → . . .→ (ϕn → (ϕ
′
1 → . . .→ (ϕ′m−1 → ¬ϕ

′
m))))]. So

⊢Ext Bjϕ1 → (Bjϕ2 → . . .→ (Bjϕn → (Bjϕ
′
1 → . . .→ (Bjϕ

′
m−1 → Bj¬ϕ

′
m)))). So

⊢Ext Bjϕ1 → (Bjϕ2 → . . .→ (Bjϕn → (ϕ
′
1 → . . .→ (ϕ′m−1 → ¬ϕ

′
m)))).

But Bjϕ1, . . . , Bjϕn, ϕ
′
1, . . . , ϕ

′
m ∈ Γ. So ¬ϕ′m ∈ Γwhich is impossible because ϕ′m ∈ Γ.

Finally BjΓ ∪ Γ/Bj is Ext-consistent. So there is Γ′ ∈ WExt such that BjΓ ∪ Γ/Bj ⊆ Γ
′.

i.e. there is Γ′ ∈W such that Γ′ ∈ Rj(Γ)

Finally we prove that for all Γ ∈WInt, Γ ∈ RY (Γ) (*).
Let Γ ∈WInt. For all BY ϕ ∈ Γ, ϕ ∈ Γ by axiom scheme (T). So Γ/Bj ⊆ Γ. So Γ ∈ RY (Γ).

ϕ is a Int-consistent formula so there is Γ ∈ WInt such that ϕ ∈ Γ, i.e. M,Γ |= ϕ. LetMInt

be the submodel generated by RY (Γ). Then clearly (M,Wa)with Wa = RY (Γ) is an internal
model. Finally, because Γ ∈ RY (Γ) by (*), there is Γ ∈Wa such thatMInt,Γ |= ϕ. QED

From this axiomatization we can prove other nice properties.

Proposition 2.3.24 For all ϕ ∈ L,

1. ⊢Int ϕ iff ⊢Ext BY ϕ;

2. ⊢Int ϕ iff ⊢Int BY ϕ.

PROOF. Item 1 comes from Proposition 2.3.20. For item 2, let ϕ ∈ L. If ⊢Int BY ϕ then ⊢Int ϕ
by axiom (T). Assume now that ⊢Int ϕ. Then ⊢Ext BY ϕ by item 1. Then ⊢Int BY ϕ by axiom
(I-E). QED

Finally the internal logic Int has also nice computational properties. Its complexity is the
same as in the external approach (see end of Section 2.2.2).

Theorem 2.3.25 (Decidability and complexity of Int)
The internal logic Int is decidable and its validity problem is PSPACE-complete for N ≥ 3.

PROOF.

• The decidability of Int can be proved in two ways. First, because Ext is decidable, Int is
also decidable by Proposition 2.3.20. Second, because Int has the finite model property
(see proof of Theorem 2.3.23), Int is decidable.
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• Because the validity problem is PSPACE-complete for Ext if N ≥ 2 then the validity
problem for Int is in PSPACE by Proposition 2.3.20.

Besides, as a corollary of the lemma below, we get that the validity problem for Int is
PSPACE-complete if N ≥ 3 because the validity problem for Ext is PSPACE-complete
if N = 2.

Lemma 2.3.26 Assume {Y, i, j} ⊆ G and let ϕ ∈ L dealing only with agents Y and j. Then,

|=Ext ϕ iff |=Int t(ϕ)

where t(ϕ) is the formula obtained by replacing every occurence of Y by i.

PROOF. Assume ϕ ∈ L dealing only with agents Y and j is externally satisfiable.
Then clearly t(ϕ) is also externally satisfiable. Let M = (W,R, V ) be an external model
generated by w ∈ M such that M,w |= t(ϕ). Let M ′ be the epistemic model obtained
from M by replacing the accessibility relation RY by R′Y = {(v, v); v ∈ W}. Then
clearly M ′, w |= t(ϕ) and (M ′, w) is a multi-agent possible world. So t(ϕ) is internally
satisfiable.

Finally, if |=Ext ϕ then clearly |=Ext t(ϕ). So |=Int t(ϕ) by axiom I-E. QED

QED

Remark 2.3.27 Soon after Hintikka’s seminal book was published [Hintikka, 1962], an is-
sue now known as the logical omniscience problem was raised by Castañeda about Hin-
tikka’s epistemic logic: his “senses of ‘knowledge’ and ‘belief’ are much too strong [. . . ]
since most people do not even understand all deductions from premises they know to be
true” [Castañeda, 1964]. It sparked a lot of work aimed at avoiding this problem (such as
[Levesque, 1984], [Fagin and Halpern, 1988] or [Duc, 2001]).

While we believe that it is indeed a problem when we want to model or describe human-
like agents, we nevertheless believe that it is not really a problem for artificial agents. Indeed,
these agents are supposed to reason according to our internal logic and because of its decid-
ability, artificial agents are in fact logically omniscient (even if it will take them some time to
compute all the deductions). 2

2.4 Conclusion

In this chapter, we have first identified what we claim to be the only three possible modeling
approaches by proceeding by successive dichotomies. Afterwards, we have focused on the
internal approach for which a logical formalism is missing in a multi-agent setting, although
such a formalism is crucial if we want to design autonomous agents. We have proposed one
by generalizing the possible world semantics of AGM belief revision theory. This formalism
enabled us to draw some formal links between the external and the internal approach which
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are in line with our intuitions of these two approaches. Finally, we have provided an axiom-
atization of our formalism whose axioms are also in line with our intuitions of the internal
approach.

So far we have described epistemic situations from a static point of view. In the next
chapter we are going to add dynamics to the picture and study belief change from a logical
point of view.





Chapter 3

Dynamic epistemic logic

3.1 Introduction

Dynamic epistemic logic is concerned with the logical study in a multi-agent setting of
knowledge and belief change, and more generally about information change. These changes
can be due to events that change factual properties of the actual world [van Ditmarsch et
al., 2005; Kooi, 2007]: for example a coin is publicly (or privately) flipped over. But what is
mostly studied in dynamic epistemic logic are events that do not change factual properties
of the world (they are called epistemic events) but that nevertheless bring about changes of
(higher-order) beliefs: for example a coin is revealed publicly (or privately) to be heads up.

Dynamic epistemic logic is a young field of research. Some of its predecessors are van
Benthem [van Benthem, 1989] and Moore in artificial intelligence [Moore, 1985]. But it re-
ally started with Plaza’s logic of public announcement [Plaza, 1989]. Independently, Ger-
brandy and Groeneveld proposed a system dealing moreover with private announcement
[Gerbrandy and Groeneveld, 1997; Gerbrandy, 1999] and that was inspired by the work of
Veltman [Veltman, 1996]. Another system was proposed by van Ditmarsch whose main in-
spiration was the Cluedo game [van Ditmarsch, 2000; van Ditmarsch, 2002] and which is
axiomatized in [van Ditmarsch et al., 2003]. It was specifically developed for the logic S5
supposed to model the notion of knowledge. But the most influential and original system
was the BMS system proposed by Baltag, Moss and Solecki [Baltag et al., 1998], [Baltag and
Moss, 2004]. This system can deal with all the types of situations studied in the works above
and provides a general approach to the topic. So we will focus on this system in this chapter.

First we will recall the BMS system, together with new results concerning the preserva-
tion of seriality of the accessibility relations for belief during the update. Afterwards, we will
present an ‘internalization’ of this system done in the same spirit as in Chapter 2. Finally, we
will set some connections between the external and the internal approach in this dynamic
setting, still very much in line with what we did in Chapter 2.

35
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3.2 The BMS system

3.2.1 State of the art

Event model

Just as all the systems proposed in dynamic epistemic logic, the BMS system takes epistemic
logic as a starting point. Epistemic logic is used to model how the agents perceive the actual
world in terms of beliefs about the world and about the other agents’ beliefs. The insight
of the BMS approach is that one can describe how an event is perceived by the agents in a
very similar way. Indeed, the agents’ perception of an event can also be described in terms
of beliefs: for example, while the quizmaster tells Bob that the coin is heads up (event aa)
Ann believes that nothing happens (event b). This leads them to define the notion of event
model whose definition is very similar to that of an epistemic model.

Definition 3.2.1 (Event model)

An event model A is a triple A = (E,R, Pre) such that

• E is a finite and non-empty set of possible events;

• R : G→ 2E×E assigns an accessibility relation to each agent;

• Pre : E → LC assigns an epistemic formula to each possible event (where LC is de-
fined in Definition 2.2.10).

If A = (E,R, Pre) is an event model, a pair (A, aa) where aa ∈ E is called a pointed event
model. We also write Rj = R(j) and Rj(a) = {b ∈ E | aRjb}, and a ∈ A for a ∈ E. 2

The main difference with the definition of an epistemic model is that we no longer have
a valuation V but instead a function Pre. This function is supposed to specify under which
condition an event can physically take place in a possible world.

Example 3.2.2 (‘Coin’ example)

1. Assume that the quizmaster announces privately to Bob that the coin is heads up.
This event is depicted in Figure 3.1. aa stands for the event ‘the quizmaster truthfully
announces that the coin is heads up’ and b stands for the event ‘nothing happens’. The
boxed event corresponds to the actual event. So while the quizmaster announces to
Bob that the coin is heads up (aa), Ann believes that nothing happens (b): this explains
the accessibility relation indexed by A between aa and b. The precondition for aa is
that the coin is indeed heads up (p) while the precondition for b is any tautology (like
⊤) because the event where nothing happens can take place in any world.

2. Assume that the quizmaster announces publicly that the coin is heads up. This event is
depicted in Figure 3.2. There, aa stands for ‘the quizmaster truthfully announces that
the coin is heads up’. Because this event is correctly perceived by Ann and Bob, aa is
the only event considered possible by them. Finally, for this announcement to be made
in a possible world, the coin has to be heads up in this world (p).

2
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aa : p

A

B

b : ⊤

A,B

Figure 3.1: Private announcement of p to Bob

aa : p

A,B

Figure 3.2: Public announcement of p

Product Update

Now, in reality after (or during) this event e, the agents update their beliefs by taking into
account these two pieces of information: the event e and the initial situation s. This gives
rise to a new situation s× e. This actual update is rendered formally by the following math-
ematical update product between a pointed epistemic model and a pointed event model.

Definition 3.2.3 (Update product)

Let M = (W,R, V,wa) be a pointed epistemic model and A = (E,R, Pre, aa) a pointed event
model such that M,wa |= Pre(aa). We define their update product to be the pointed epistemic
model M ⊗A = (W ⊗ E,R′, V ′, w′a)where

1. W ⊗ E = {(w, a) ∈W × E |M,w |= Pre(a)};

2. (v, b) ∈ R′j(w, a) iff v ∈ Rj(w) and b ∈ Rj(a);

3. V ′(p) = {(w, a) ∈W ⊗ E | w ∈ V (p)};

4. w′a = (wa, aa).

2

Intuitive interpretation:

1. The possible worlds that we consider after the update are all the ones resulting from
the performance of one of the events in one of the worlds, under the assumption that
the event can physically take place in the corresponding world (assumption expressed
by the function Pre).
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2. The components of our event model are ‘simple’ events (in the sense of BMS, see [Bal-
tag and Moss, 2004] for more details). In particular this means that the uncertainty
about the situation is independent from the uncertainty about the event. This inde-
pendence allows us to ‘multiply’ these uncertainties to compute the new accessibility
(or uncertainty) relation.

3. The definition of the valuation exemplifies the fact that our events do not change facts.
(That is why we call them epistemic events, as already said above.)

4. Finally, we naturally assume that the actual event can indeed take place in the actual
world.

Example 3.2.4 (‘Coin’ example)

1. Assume that the quizmaster has privately announced to Bob that the coin is heads up.
The resulting situation is depicted in the pointed epistemic model of Figure 3.3. This
pointed epistemic model is obtained by updating the original situation depicted in
Figure 2.1 with the pointed event model depicted in Figure 3.1. (Note that this pointed
epistemic model is the same as the external model of Figure 2.6 in Example 2.3.18.) As
we said in Example 2.3.18, in this resulting epistemic model, Bob knows that the coin
is heads up but Ann does not know whether it is either heads or tails up and believes
Bob does not know either.

(wa, aa) : p

B

A A

p

A,B

A,B
¬p

A,B

Figure 3.3: Situation after the private announcement to B that p is true

2. Assume that the quizmaster has publicly announced that the coin is heads up. The
resulting situation is depicted in Figure 3.4. This pointed epistemic model is obtained
by updating the original situation depicted in Figure 2.1 with the pointed event model
depicted in Figure 3.2. In this resulting epistemic model, it is common knowledge that
the coin is heads up.

2

Language and axiomatization

Of course, it seems natural to extend the language of epistemic logic to incorporate this new
dynamic feature. To do so, we inspire ourselves with the programs of Propositional Dynamic
Logic [Pratt, 1976] and introduce a modality [a].
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(wa, aa) : p

A,B

Figure 3.4: Situation after the public announcement that p is true

Definition 3.2.5 (Language LA)

Let A be an event model. The language LA is defined inductively as follows.

LA : ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | Bjϕ | [a]ϕ

where p ranges over the set of propositional letters Φ, j overG and a over the possible events
of A. 2

Note that the event model A, which a priori is part of the semantics, is given in the very
definition of the syntax of the language. In fact, in the BMS formalism the formula [a]ϕ is
even written [A, a]ϕ. The truth condition for [a]ϕ is defined as follows.

Definition 3.2.6 (Truth conditions for LA)

Let (M,w) = (W,R, V,w) be a pointed epistemic model.

M,w |= [a]ϕ iff (if M,w |= Pre(a) then M ⊗A, (w, a) |= ϕ).

2

So, according to this truth condition, [a]ϕ should be read ‘after every execution of the
possible event a, ϕ holds’. Let C be a class of epistemic models and ϕ ∈ LA. We say that ϕ is
C-valid, written |=C ϕ, iff for all epistemic model M ∈ C and all w ∈ M , M,w |= ϕ. We also
write |= ϕ for |=KG ϕ.

Now we can axiomatize the semantics just defined by the following logic called BMS.

Definition 3.2.7 (Proof system of BMS)

The logic BMS is defined by the proof system of KG together with the following axiom
schemes and inference rules:

R1 ⊢BMS [a]p↔ (Pre(a)→ p)
R2 ⊢BMS [a]¬ϕ↔ (Pre(a)→ ¬[a]ϕ)
R3 ⊢BMS Pre(a)→ ([a]Bjϕ↔ Bj [a1]ϕ ∧ . . . ∧Bj [an]ϕ)

where a1, . . . , an is the list of b such that b ∈ Rj(a)
Nec If ⊢BMS ϕ then ⊢BMS [a]ϕ (Necessitation)
Distr ⊢BMS [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ) (Distribution)

2
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R1, R2, R3 are called reduction axioms. They enable to prove that any formula of LA is
logically equivalent to a formula of L. Then we get that BMS is complete with respect to the
class of KG-models (for LA) thanks to the fact that KG is complete with respect to the class of
KG-models (for L).

Theorem 3.2.8 [Baltag and Moss, 2004](Soundness and completeness)

Let A be a fixed event model. For all ϕ ∈ LA,

⊢BMS ϕ iff |=KG ϕ.

3.2.2 On seriality preservation

We did not assume any particular property for the accessibility relations of event models
and epistemic models, such as seriality or transitivity. But we could perfectly add them.
Then we could wonder which properties are preserved by the update product, i.e. in case
the accessibility relations of the epistemic model and the event model satisfy a property,
do the accessibility relations of the updated model satisfy the same property? We know
that reflexivity, transitivity and euclidicity are preserved [Baltag and Moss, 2004]. However,
seriality is not preserved. For example, if we update the epistemic model depicted in Figure
3.3 by the public announcement that Bob believes that the coin is heads up (formally BBp)
then we get the epistemic model depicted on the right of Figure 3.5 where Ann’s accessibility
relation is not serial.

p

B

A A

⊗ BBp

A,B

= p

B

p

A,B

A,B
¬p

A,B

Figure 3.5: Failure of seriality preservation

We are now going to study under which conditions seriality is preserved. We will split
our account in two parts. First, we will investigate under which conditions the entire up-
dated model is serial. Second, we will investigate under which conditions a generated sub-
model of the entire updated model is serial.

Seriality preservation for the entire BMS product

First of all, for a given epistemic model M and a given event modelA, we say that the update
product M ⊗A is defined if there is w ∈M and a ∈ A such that M,w |= Pre(a). We introduce
this definition because seriality of updated models makes sense only for defined updated
models.



3.2. The BMS system 41

Proposition 3.2.9 Let A be a serial event model1 and let M be an epistemic model. Then

M ⊗A is defined and serial iff M |= O

(

∨

a∈A

Pre(a)

)

∧U
∧

a∈A

(

Pre(a)→
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b)

)

.2

PROOF. M |= O

(

∨

a∈A

Pre(a)

)

clearly means that the modelM⊗A is defined. Now it remains

to prove that M ⊗A is serial iff M |= U
∧

a∈A

(

Pre(a)→
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b)

)

.

• Assume that M |= U
∧

a∈A

(

Pre(a)→
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b)

)

(*). Let (w, a) ∈ M ⊗ A and

j ∈ G. Then M,w |= Pre(a). So M,w |=
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b) by (*). Then M,w |=

B̂j
∨

b∈Rj(a)

Pre(b). So there is v ∈ Rj(w) and b ∈ Rj(a) such that M,v |= Pre(b). Then

there is (v, b) ∈M ⊗ A such that (v, b) ∈ Rj(w, a) by definition of M ⊗ A. So M ⊗ A is
serial.

• Assume that M 2 U
∧

a∈A

(

Pre(a)→
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b)

)

. Then there is w ∈ M and

a ∈ A such that M,w |= Pre(a) ∧

(

∨

j∈G

Bj
∧

b∈Rj(a)

¬Pre(b)

)

. Then there is j ∈ G such

that M,w |= Bj
∧

b∈Rj(a)

¬Pre(b) (**). So (w, a) ∈ M ⊗ A but there is no v ∈ Rj(w)

and b ∈ Rj(a) such that (v, b) ∈ Rj(w, a). Indeed, otherwise we would have M,w |=
B̂j

∨

b∈Rj(a)

Pre(b), which contradicts (**). So M ⊗A is not serial.

QED

From now on, we write P(A) = O

(

∨

a∈A

Pre(a)

)

∧U
∧

a∈A

(

Pre(a)→
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b)

)

.

O

(

∨

a∈A

Pre(a)

)

expresses that the updated model M ⊗A is defined.

U
∧

a∈A

(

Pre(a)→
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b)

)

expresses that the updated model M ⊗ A is serial.

Note thatM does not need to be serial for the proposition to hold. But of course if M is serial
then the proposition still holds. From this proposition we can easily prove the following
corollary.

Corollary 3.2.10 Let C be a class of epistemic models and A a serial event model.

1i.e. all its accessibility relations are serial
2The existential modality O and the universal modality U were defined in Section 2.2.4.
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|=C ¬P(A)
iff there is no epistemic model M ∈ C such that M ⊗A is defined and serial.

In other words this corollary tells us under which condition, for a given event model
A, whatever epistemic model M we chose, M ⊗ A will not be defined or not serial. If this
condition is fulfilled that would mean intuitively that in any epistemic situation, if the event
(corresponding to this event model) is performed, then afterwards in any case (some of) the
agents’ beliefs are inconsistent. This is of course counter intuitive and we should then avoid
such kinds of event (models).

Now we are going to give an example of a family of event models A where such a phe-
nomenon occurs (i.e. there is no M such that M ⊗A is defined and also serial).

Proposition 3.2.11 Let ϕ = ψ ∧Bi¬ψ for some ψ ∈ L, and let A be the event model corresponding
to the public announcement of ϕ. Then there is no KD45G-model M such that M ⊗A is defined and
serial.

PROOF. Thanks to Corollary 3.2.10 it suffices to prove that |=KD45G
¬P(A) i.e. |=KD45G

Oϕ→

O

(

ϕ ∧
∨

j∈G

Bj¬ϕ

)

because P(A) = Oϕ∧U

(

ϕ→
∧

j∈G

B̂jϕ

)

. Let M be a KD45G-model such

that M |= Oϕ. Let w ∈M such that M,w |= ϕ. One can easily prove that |=KD45G
ϕ→ Bi¬ϕ.

So M,w |= ϕ ∧Bi¬ϕ. Then M,w |= ϕ ∧
∨

j∈G

Bj¬ϕ i.e. M |= O

(

ϕ ∧
∨

j∈G

Bj¬ϕ

)

. QED

We can compare this result with the notion of selfrefuting formula studied in [van Dit-
marsch and Kooi, 2006]. Selfrefuting formulas are formulas that are no longer true after they
are publicly announced. An example of such formulas is Moore’s sentence p ∧ ¬Bjp: if it is
announced then p becomes common knowledge and in particular Bjp becomes true. Here
our formulas are a bit different: after they are announced agent j’s beliefs become inconsis-
tent.

Seriality preservation for generated submodels

The results above have certainly a logical interest. But, in practice, the updated models we
are really interested in are generated submodels of the entire updated model. Indeed, by def-
inition, multi-agent possible worlds (M,w) are generated by w and internal models (M,Wa)
are generated by Wa. So, in an updated model (which could be composed of several disjoint
generated submodels), we would like to know under which conditions a particular gener-
ated submodel of the entire updated model is serial, and not necessarily the entire updated
model. That is what we are going to investigate now. We start with a formal definition.

Definition 3.2.12 Let A be an event model, a ∈ A and n ∈ N. We define δn(a) inductively as
follows.

• δ0(a) = Pre(a);



3.2. The BMS system 43

• δn+1(a) = δ0(a) ∧
∧

j∈G

B̂j
∨

b∈Rj(a)

δn(b) ∧
∧

j∈G

Bj
∧

b∈Rj(a)

(Pre(b)→ δn(b)).

2

Intuitively, M,w |= δn(a) means that the submodel of M ⊗ A generated by (w, a) is
defined and serial up to modal depth n. This interpretation is endorsed by the following
two lemmas which will be used to prove the main proposition.

Lemma 3.2.13 Let M be an epistemic model and let A be an event model. For all w ∈ M , a ∈ A,
n ∈ N,

M,w |= δn+1(a) iff

M,w |= δ1(a) and for all v ∈M such that w = w0Rj1w1Rj2 . . . Rjnwn = v such that there are
a = a0Rj1a1Rj2 . . . Rjnan = b such that for all i ∈ {0, . . . , n}, M,wi |= Pre(ai),

M,v |=
∧

j∈G

B̂j
∨

c∈Rj(b)

Pre(c)

PROOF. We prove it by induction on n. The case n = 0 is clear. We prove the induction step.
Assume the property is true for n.

• Assume M,w |= δn+2(a). Then M,w |= δ1(a) because δn+1(b) → Pre(b) and δ1(a) =
Pre(a) ∧

∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b). Let v ∈ M such that w = w0Rj1w1Rj2 . . . Rjn+1 wn+1 = v

and such that there are a = a0Rj1a1Rj2 . . . Rjn+1an+1 = b such that for all i ∈ {0, . . . , n+
1}, M,wi |= Pre(ai).

By assumption, M,w |=
∧

j∈G

Bj
∧

b∈Rj(a)

(Pre(b)→ δn+1(b)). So M,w1 |=

∧

b∈Rj1 (a)

(Pre(b) → δn+1(b)). Besides a1 ∈ Rj1(a) and M,w1 |= Pre(a1). So M,w1 |=

δn+1(a1).

Then, by induction hypothesis, for all v′ such that w1 = w′1Rj2 . . . Rjn+1w
′
n+1 = v′ such

that there are a1 = a
′
1Rj2 . . . Rjn+1a

′
n+1 = a

′ such that for all i, M,w′i |= Pre(a
′
i),

M,v′ |=
∧

j∈G

B̂j
∨

b′∈Rj(a′)

Pre(b′).

So M,v |=
∧

j∈G

B̂j
∨

c∈Rj(b)

Pre(c)

• Assume M,w |= δ1(a) and assume that for all v ∈ M such that w = w0Rj1 . . . Rjn
wn+1 = v such that there are a = a0Rj1 . . . Rjnan+1 = b such that for all i, M,wi |=
Pre(ai),
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M,v |=
∧

j∈G

B̂j
∨

c∈Rj(b)

Pre(c).

Now, assume M,w 2 δn+2(a).

ThenM,w |= ¬Pre(a)∨

(

∨

j∈G

Bj
∧

b∈Rj(a)

¬δn+1(b)

)

∨

(

∨

j∈G

B̂j
∨

b∈Rj(a)

(Pre(b) ∧ ¬δn+1(b))

)

.

– M,w |= ¬Pre(a) is impossible by assumption.

– AssumeM,w |=
∨

j∈G

Bj
∧

b∈Rj(a)

¬δn+1(b). Then for some i ∈ G,M,w |= Bi
∧

b∈Ri(a)

¬δn+1(b).

Then for all v ∈ Ri(w) and all b ∈ Ri(a), M,v |= ¬δn+1(b) (*).

But by assumption M,w |= δ1(a), i.e. M,w |= Pre(a) ∧
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b). Then

M,w |= B̂i
∨

b∈Ri(a)

Pre(b), i.e. there is v ∈ Ri(w) and b ∈ Ri(a) such that M,v |=

Pre(b) (1).

So M,v |=
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b) (2) by assumption (take w1 = . . . = wn = v and

a1 = . . . = an = b).

Then by (1) and (2) we get M,v |= δ1(b).

Besides, by assumption and because wRiv and aRib, for all u such that v =
v0Rj1 . . . Rjnu such that there are b = b0Rj1 . . . Rjnbn = c such that for all i M, vi |=
Pre(bi)

M,u |=
∧

j∈G

B̂j
∨

d∈Rj(c)

Pre(d).

So M,v |= δn+1(b) by induction hypothesis. This is impossible by (*).

– Assume M,w |=
∨

j∈G

B̂j
∨

b∈Rj(a)

(Pre(b) ∧ ¬δn+1(b)).

Then there is i ∈ G, v ∈ Ri(w) and b ∈ Ri(a) such that M,v |= Pre(b) ∧ ¬δn+1(b).

By the same argument as above we get to a contradiction.

So finally M,w |= δn+2(a).

QED

Lemma 3.2.14 Let M be a finite epistemic model and A be a finite serial event model. Let n =
|M | ∙ |A|.3 For all w ∈M and a ∈ A such that M,w |= Pre(a),

1. Rj(w, a) 6= ∅ for all j ∈ G iff M,w |=
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b);

3|M | is the number of possible worlds of M and |A| is the number of possible events of A.
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2. (v, b) ∈

(

⋃

j∈G

Rj

)+

(w, a) iff there are w = w0Rj1w1Rj2 . . . Rjnwn−1 = v and

a = a0Rj1a1Rj2 . . . Rjnan−1 = b such that for all i, M,wi |= Pre(ai).

PROOF.

1. Assume M,w |=
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b). Then for all j ∈ G, there is v ∈ Rj(w) and

b ∈ Rj(a) such that M,v |= Pre(b). Then, by definition of the product update, for all j,
there is (v, b) ∈M ⊗A such that (v, b) ∈ Rj(w, a). So for all j ∈ G, Rj(w, a) 6= ∅.

Assume M,w 2
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b). Then there is j ∈ G such that for all v ∈ Rj(w)

and for all b ∈ Rj(a), M,v 2 Pre(b). Then, by definition of the product update, there is
no (v, b) ∈M ⊗A such that (v, b) ∈ Rj(w, a). So Rj(w, a) = ∅ for some j ∈ G.

2. M ⊗ A is of cardinality at most n due to our hypothesis that n = |M | ∙ |A|. So every

world (v, b) ∈ M ⊗ A such that (v, b) ∈

(

⋃

j∈G

Rj

)+

(w, a) is accessible from (w, a) in at

most n− 1 steps. So,

(v, b) ∈

(

⋃

j∈G

Rj

)+

(w, a) iff

there are j1, . . . , jn−1 and (w1, a1), . . . , (wn−1, an−1) ∈M ⊗A such that

(w, a)Rj1(w1, a1)Rj2 . . . Rjn−1(wn−1, an−1) = (v, b) iff

there are w = w0Rj1w1Rj2 . . . Rjn−1wn−1 = v and a = a0Rj1a1Rj2 . . . Rjn−1an−1 = b
such that for all i, M,wi |= Pre(ai).

QED

Proposition 3.2.15 Let M be a finite epistemic model and let A be a finite serial event model. Let
w ∈M , a ∈ A and n = |M | ∙ |A|.

The submodel of M ⊗A generated by (w, a) is defined and serial iff M,w |= δn(a).

PROOF. First, note that the submodel of M ⊗A generated by (w, a) is defined and serial iff

• (w, a) is defined;

• Rj(w, a) 6= ∅ for all j ∈ G;

• Rj(v, b) 6= ∅ for all (v, b) ∈

(

⋃

j∈G

Rj

)+

(w, a) and for all j ∈ G.
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Then we get easily the expected result by Lemma 3.2.14 and Lemma 3.2.13. Indeed, (w, a)
is defined and Rj(w, a) 6= ∅ for all j ∈ G amounts to say that M,w |= δ1(a). And Rj(v, b) 6= ∅

for all (v, b) ∈

(

⋃

j∈G

Rj

)+

(w, a) and for all j ∈ G amounts to say that for all v ∈M such that

w = w0Rj1w1Rj2 . . . Rjnwn = v such that there are a = a0Rj1a1Rj2 . . . Rjnan = b such that
for all i ∈ {0, . . . , n}, M,wi |= Pre(ai), M,v |=

∧

j∈G

B̂j
∨

c∈Rj(b)

Pre(c). QED

This proposition is coherent with our interpretation of M,w |= δn(a). As we said, in-
tuitively, M,w |= δn(a) means that the submodel of M ⊗ A generated by (w, a) is (defined
and) serial up to modal depth n. So, if n is larger than the modal depth of the submodel
M ⊗ A generated by (w, a) (which is the case if n = |M | ∙ |A|) then all the worlds accessible
from (w, a) are serial. So this generated submodel is indeed serial. Accordingly, this also en-
tails that it should be serial for any given modal depth. That is what the following property
expresses.

Proposition 3.2.16 Let M be a finite epistemic model and let A be a finite and serial event model.
Let w ∈M,a ∈ A and n = |M | ∙ |A|.

If M,w |= δn(a) then for all m ≥ n, M,w |= δm(a).

PROOF. The proof follows from Lemma 3.2.13 and the fact that for all v ∈ M there are
w1, . . . , wn−1 such that w = w0Rj1w1Rj2 . . . Rjnwn = v iff there are w1, . . . , wm−1 such that
w = w0Rj1w1Rj2 . . . Rjmwm = v. QED

Similarly, if a submodel of M⊗A generated by (w, a) is serial up to a given modal depths
d then it should also be serial up to all modal depth smaller than d. The following proposition
proves that it is indeed the case.

Proposition 3.2.17 For all event models A and a ∈ A, if n ≥ n′ then |= δn(a)→ δn
′

(a).

PROOF. Let A be an event model and a ∈ A. We prove it by induction on n. If n = 0 or n = 1
then the result trivially holds. Assume it is true for a given n ≥ 1. Assume |= δn+1(a), i.e.
|= δ0(a) ∧

∧

j∈G

B̂j
∨

b∈Rj(a)

δn(b) ∧
∧

j∈G

Bj
∧

b∈Rj(a)

(Pre(b)→ δn(b)).

By induction hypothesis, for all b ∈ A, |= δn(b)→ δn−1(b). So

|=



δ0(a) ∧
∧

j∈G

B̂j
∨

b∈Rj(a)

δn(b) ∧
∧

j∈G

Bj
∧

b∈Rj(a)

(Pre(b)→ δn(b))



→



δ0(a) ∧
∧

j∈G

B̂j
∨

b∈Rj(a)

δn−1(b) ∧
∧

j∈G

Bj
∧

b∈Rj(a)

(Pre(b)→ δn−1(b))



 .

i.e. |= δn+1(a) → δn(a). So for all n′ ≤ n + 1, |= δn+1(a) → δn
′

(a) by induction hypothesis.
QED
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Finally, we can strike some relationship between the seriality conditions for the entire
updated model and for the generated submodels of the entire updated model. Indeed, one
can notice that the entire updated model is serial if and only if all its generated submodels
are serial. But in fact, because we consider all the generated submodels, it suffices that these
generated submodels be serial only up to modal depth 1. That is actually the intuition that
led to the definition of P(A).

Proposition 3.2.18 Let M be an epistemic model and let A be a serial event model. Then,

M |= P(A)↔ O

(

∨

a∈A

Pre(a)

)

∧ U
∧

a∈A

(

Pre(a)→ δ1(a)
)

.

O

(

∨

a∈A

Pre(a)

)

expresses that the updated model is defined. The rest of the formula ex-

presses its seriality. Note that δ1(a) = Pre(a)∧
∧

j∈G

B̂j
∨

b∈Rj(a)

Pre(b), so we have rediscovered

the definition of P(A).

3.3 Dynamizing the internal approach

One can easily notice that the BMS system, just as standard epistemic logic, is designed for
the external approach. So to complete the work of Chapter 2, it would be nice to propose an
internal version of the BMS system. We would then get a dynamic epistemic logic for the
internal approach. That is what we are going to do in this section.

First, we will propose an internal version of event models. Then we will propose two
update products, one for each type of models and we will show that these products are
in fact equivalent in some sense. Finally, we will give conditions under which an updated
model is an internal model (on the basis of the results of the preceding section).

3.3.1 Multi-agent possible event and internal event model

As we said, in the BMS system, events are represented very similarly to epistemic situations.
This similarity of the formalism in the external approach can naturally be transferred to the
internal approach as well. So the way we represented agent Y ’s perception of the surround-
ing world can easily be adapted to represent her perception of events as well. This leads us
to the following definitions.

Definition 3.3.1 (Multi-agent possible event)

A multi-agent possible event (A, a) is a finite pointed event model A = (E,R,
Pre, w) generated4 by a ∈ E such that Rj is serial, transitive and euclidean for all j ∈ G, and

1. RY (a) = {a};

4An event model A is generated from S if the restriction of A to {(
⋃

j∈G

Rj)
∗(a) | a ∈ S} is A itself. This

definition is completely in line with Definition 2.2.13
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2. there is no b and j 6= Y such that a ∈ Rj(b).

2

The motivations for this definition are completely similar to those for the notion of multi-
agent possible world, so we do not spell them out here. Likewise, we can also define the
notions of internal event model of type 1, of type 2, and the notion of internal event model
of type 2 associated to an internal model of type 1. The motivations are still very similar to
that of the static case.

Definition 3.3.2 (Internal event model of type 1)

An internal event model of type 1 is a disjoint and finite union of multi-agent possible events.
2

Definition 3.3.3 (Internal event model of type 2)

An internal event model of type 2 (A, Aa) is a finite event model A = (E,R,
Pre,Aa) generated by Aa ⊆ E such that Rj is serial, transitive and euclidean for all j ∈ G,
and RY (aa) = Aa for all aa ∈ Aa. Aa is called the actual equivalence class. 2

Definition 3.3.4 Let (A, Aa) = {(A
1, a1), . . . , (Am, am)} be an internal event model of type

1 (with Ak = (Ek, Rk, P rek)). The internal event model of type 2 associated to (A, Aa) is the
internal event model of type 2, S2(A, Aa) = (E

′, R′, P re′, Aa), defined as follows.

• E′ =
⋃

k

Ek;

• R′j =
⋃

k

Rkj for j 6= Y , and R′Y = {(aa, a
′
a) | aa, a

′
a ∈ Aa} ∪

⋃

k

RkY ;

• for all a′ ∈ E′, Pre′(a′) = Prek(a′) if a′ ∈ Ak.

2

Just as in the static case, one could say that an internal event model of type 1 and its
associated internal event model of type 2 are in a sense equivalent (although we did not
define a notion of validity for event models).

Example 3.3.5 (‘Coin’ example)

In Figure 3.6 how the private announcement to Bob is perceived by Ann and Bob is depicted.
As in the BMS system, the formulas in the possible events are their preconditions and the
boxed events are the events of the actual equivalence class. Because Bob perceived correctly
the private announcement, his internal event model does correspond to a private announce-
ment. On the other hand, for Ann nothing happened because she did not notice this private
announcement to Bob. So her internal event model consists of a single possible event with a
tautology as precondition. 2
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p

B

A

⊤

A,B

⊤

A,B

Figure 3.6: Internal event model for Ann (left) and Bob (right) corresponding to the private
announcement to Bob that the coin is heads up

3.3.2 The update product

Definitions

After (or during) the event takes place, the agent Y updates her representation of the world
according to her perception of this event. Formally, this amounts to define a product update
between an internal model and an internal event model. That is what we are going to do
now. But because we have two types of models, we define two types of update products.
We will show afterwards that these two types of update are equivalent.

Definition 3.3.6 (Update product of type 1)

Let (M,Wa) = {(M
1, w1); . . . ; (Mn, wn)} be an internal model of type 1 (withM i = (W i, Ri, V i)).

Let (A, Aa) = {(A
1, a1); . . . ; (Am, am)} be an internal event model of type 1 (with Ak =

(Ek, Rk, P rek)).

IfM, wi 2 Prek(ak) then M i ⊗1 A
k is not defined. Otherwise, M i ⊗1 A

k is defined and it
is the submodel of M = (W,R, V ) generated by (wi, ak), where

• W = {(w, a) | w ∈W i, a ∈ Ak,M, w |= Prek(a)};

• (w′, a′) ∈ Rj(w, a) iff w′ ∈ Rij(w) and a′ ∈ Rkj (a);

• (w, a) ∈ V (p) iff w ∈ V i(p) for all p ∈ Φ.

Then the updated model of type 1 (M⊗1 A) is defined as follows. If for all (M i, wi) ∈ M
and (Ak, ak) ∈ A, M i ⊗1 A

k is not defined thenM⊗1 A is not defined. Otherwise,

M⊗1 A = {(M
i ⊗1 A

k, (wi, ak)) | (M i, wi) ∈M, (Ak, ak) ∈ A and M i ⊗1 A
k is defined}

The updated model of type 1 is written (M⊗1 A,Wa ⊗1 Aa). 2

Note that in the definition of W , the preconditions Pre(ak) are evaluated inM and not in
M i. Indeed, in case Prek(ak) is a formula of the form BY ϕ, then we need the whole internal
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model to evaluate it (see the truth conditions for BY ϕ in Definition 2.3.10). That is why we
need to redefine the product update completely. This is not the case for the internal model
of type 2 where the definition is much more compact.

Definition 3.3.7 (Update product of type 2)

Let (M,Wa) = (W,R, V,Wa) be an internal model of type 2 and (A, Aa) = (E,R, Pre,Aa)
be an internal event model of type 2. If Wa ⊗ Aa = {(w, a) ∈ Wa × Aa | M, w |= Pre(a)} is
empty then the updated model of type 2 is not defined. Otherwise, the updated model of type
2 is defined and it is the submodel ofM⊗A (see Definition 3.2.3) generated by Wa ⊗ Aa. It
is abusively written (M⊗A,Wa ⊗Aa). 2

In Proposition 2.3.12, we saw that the notions of internal (event) models of type 1 and type 2
are equivalent. The following proposition shows that the notions of update product of type
1 and type 2 are also equivalent.

Proposition 3.3.8 (Update products of type 1 and 2 are equivalent)

Let (M,Wa) be an internal model of type 1 and let (A, Aa) be an internal event model of type 1
such thatM⊗1A is defined. Let S2 be the mappings defined in Definition 2.3.7 and Definition 3.3.4.
Then for all (wa, aa) ∈Wa ⊗1 Aa,

S2(M⊗1 A,Wa ⊗1 Aa), (wa, aa) - S2(M,Wa)⊗ S2(A, Aa), (wa, aa).
5

PROOF. Let S2(M⊗1 A,Wa ⊗1 Aa) = (W
1, R1, V 1,Wa ⊗1 Aa), S2(M,Wa) ⊗ S2(A, Aa) =

(W 2, R2, V 2,Wa ⊗Aa) and A = {(A1, a1), . . . , (Am, am)}.
First we show that W 1 =W 2.

(w, a) ∈W1
iff there is some k such that w ∈M, a ∈ Ak andM, w |= Prek(a),
iff there is some k such that w ∈ S2(M,Wa), a ∈ A

k and S2(M,Wa), w |= Pre
k(a),

iff w ∈ S2(M,Wa), a ∈ S2(A, Aa) and S2(M,Wa), w |= Pre(a),
iff (w, a) ∈W 2.

For all (w, a) ∈ S2(M⊗1 A,Wa ⊗1 Aa) and (w′, a′) ∈ S2(M,Wa)⊗ S2(A, Aa), we set

(w, a)Z(w′, a′) iff w = w′ and a = a′.

One can then easily show that Z is a bisimulation between S2(M ⊗1 A,Wa ⊗ Aa) and
S2(M,Wa)⊗ S2(A, Aa). QED

Example 3.3.9 (‘Coin’ example)

In Figure 3.7 and Figure 3.8 Ann’s and Bob’s scenarios of the ‘coin’ example are depicted. The
first model corresponds to how they perceived the initial situation, the second model corre-
sponds to how they perceived the private announcement and the last model corresponds to
how they perceive the resulting situation after this private announcement. We use internal
(event) model of type 2. 2
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Figure 3.7: Ann’s scenario
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Figure 3.8: Bob’s scenario

As you can see, the mechanisms used in the update products of both definitions are
essentially the same as in the external approach. This is how it should be. Indeed, the
external update product is supposed to render how the agents actually update their beliefs.
So the mechanisms used in the update product of the external approach should be the same
as the ones used in the update product of the internal approach. This connection will be
made more precise in the next section.

Because these update mechanisms are essentially the same, it also entails that, as in the
external approach, the updated models of type 2 or of type 1 are not necessarily serial. So
the updated model is not necessarily an internal model. We are now going to study under
which conditions it is an internal model.

Under which conditions updated models are internal models?

We start with the update product of type 2.

Proposition 3.3.10 Let (M,Wa) be an internal model of type 2 and let (A, Aa) be an internal event
model of type 2. Let n = |M| ∙ |A| and assume that (M⊗A,Wa ⊗Aa) is defined. Then,

(M⊗A,Wa ⊗Aa) is an internal model iffM, w |= δn(a) for some w ∈Wa and a ∈ Aa.

PROOF. The proof follows directly from Proposition 3.2.15 because the update product ⊗
used inM⊗A is exactly the same as the BMS product. QED

5Let (M,Wa) and (M′,W ′

a) be internal models of type 2 and w ∈ M, w′ ∈ M′. We write (M,Wa), w -

(M′,W ′

a), w
′ forM, w -M′, w′.
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As we are now going to see, the seriality condition for updated models of type 1 is a
bit more involved. This is because we do not use exactly the BMS product but employ a
slightly different one, which is nevertheless based on the BMS one. This was not the case for
the definition of updated models of type 2 where the BMS update product is used without
any modification.

Proposition 3.3.11 Let (M,Wa) = {(M
1, w1); . . . ; (Mn, wn)} be an internal model of type 1

(with M i = (W i, Ri, V i)). Let (A, Aa) = {(A
1, a1); . . . ; (Am, am)} be an internal event model

of type 1 (with Ak = (Ek, Rk, P rek)). Assume that (M⊗1 A,Wa ⊗1 Aa) is defined. Then,

(M⊗1 A,Wa ⊗1 Aa) is an internal model iff for all wi,M, wi |=
∧

(Ak,ak)∈A

(Prek(ak)→ δd(ak))

where d = max{|M i| ∙ |Ak| | i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}} and δ is defined in Definition
3.2.12.

PROOF. First we prove a lemma.

Lemma 3.3.12 Let di,k = |M
i| ∙ |Ak|. ThenM, wi |= δdi,k(ak) iff M i ⊗1 A

k is defined and
serial.

PROOF. Because the update product M i ⊗1 A
k is not the same as the BMS update

product, we cannot apply directly Proposition 3.2.15.

– AssumeM, wi |= δdi,k(ak). ThenM, wi |= Prek(ak), so M i ⊗1 A
k is defined.

Besides, note that M i ⊗1 A
k is serial iff (O)

1. for all j ∈ G, Rj(w
i, ak) 6= ∅

2. for all j 6= Y , for all vj ∈ Rj(w
i) and bj ∈ Rj(a

k) such thatM, vj |= Prek(bj),
the submodel of M i(vj)⊗Ak(bj) generated by (vj , bj) is serial, where
M i(vj) is the submodel of M i generated by vj ,
Ak(bj) is the submodel of Ak generated by bj .

M i(vj) ⊗ Ak(bj) is the usual BMS update product. Indeed, for all ϕ ∈ L, all
uj ∈ M i(vj), M i(vj), uj |= ϕ iff M, uj |= ϕ. So for the worlds of M i(vj), the
update product ⊗1 is the same as the BMS update product ⊗. This will allow us
to apply Proposition 3.2.15.

1. M, wi |= δ1(ak) because di,k ≥ 1 and Proposition 3.2.17. SoM, wi |=
∧

j∈G

B̂j
∨

b∈Rj(ak)

Prek(b). So Rj(w
i, ak) 6= ∅ for all j ∈ G.

2. Let vj ∈ Rj(w
i) and bj ∈ Rj(a

k) such that M, vj |= Pre(bj), i.e. M i, vj |=
Prek(bj).
ThenM i, vj |= δdi,k−1(bj) by definition of δdi,k(ak). Besides, |M i(vj)| ≤ |M i|−
1 and |Ak(bj)| ≤ |Ak| − 1. So n = |M i(vj)| ∙ |Ak(bj)| ≤ di,k − 1.
So M i, vj |= δn(bj) by Proposition 3.2.17.
So the submodel of M i(vj)⊗Ak(bj) generated by (vj , bj) is defined and serial
by Proposition 3.2.15.



3.3. Dynamizing the internal approach 53

– We prove by induction on m ≤ di,k that if M, wi |= ¬δm(ak) then M i ⊗1 A
k is

either not defined or not serial.

m=0 δ0(ak) = Prek(ak). SoM, wi |= ¬Prek(ak). So M i ⊗1 A
k is not defined.

m+1 M, wi |= ¬δ
m(ak) iffM, wi |= ¬Pre

k(ak) orM, wi |=
∨

j∈G

Bj
∧

b∈Rj(ak)

¬δm−1(b)

orM, wi |=
∨

j∈G

B̂j
∨

b∈Rj(ak)

(

Pre(b) ∧ ¬δm−1(b)
)

.

1. IfM, wi |= ¬Prek(ak) then M i ⊗1 A
k is not defined.

2. IfM, wi |=
∨

j∈G

Bj
∧

b∈Rj(ak)

¬δm−1(b) then there is j ∈ G such thatM, wi |=

Bj
∧

b∈Rj(ak)

¬δm−1(b)

(a) If j = Y then M, wi |= ¬δm−1(ak). So M i ⊗ Ak is not defined or not
serial by Induction Hypothesis.

(b) If j 6= Y then for all vj ∈ Rj(w
i), all bj ∈ Rj(ak), M

i, vj |= ¬δm−1(bj).
SoM i(vj)⊗Ak(bj) is not defined or not serial by Proposition 3.2.15. So,
because M i and Ak are serial, M i⊗1A

k is not serial by observation (O).

3. IfM, wi |=
∨

j∈G

B̂j
∨

b∈Rj(ak)

(Pre(b) ∧ ¬δm−1(b) then there is j ∈ G and vj ∈

Rj(w
i) and bj ∈ Rj(a

k) such thatM, vj |= Prek(bj) ∧ ¬δm−1(bj).

(a) If j = Y then M, wi |= ¬δm−1(ak). So the result holds by Induction
Hypothesis.

(b) If j 6= Y then by the same reasoning as in 2)b), we get that M i ⊗1 A
k is

not defined or not serial.

QED

• Assume for all wi that M, wi |=
∧

(Ak,ak)∈A

(Prek(ak) → δd(ak)) (*). Let (M i, wi) ∈ M

such that there is (Ak, ak) ∈ A such thatM, wi |= Prek(ak). ThenM, wi |= δd(ak) by
(*).

But |= δd(ak)→ δdi,k(ak) because di,k ≤ d and because of Proposition 3.2.17.

SoM, wi |= δdi,k(ak). ThenM i⊗1A
k is serial by Lemma 3.3.12, and so for all (M i, wi) ∈

M and (Ak, ak) ∈ A such that M i ⊗1 A
k is defined.

So finally,M⊗1 A is an internal model.

• Assume that there is wi and (Ak, ak) ∈ A such thatM, wi |= Prek(ak) ∧ ¬δd(ak).

d ≥ di,k = |M
i| ∙ |Ak| by assumption. So M, wi |= ¬δdi,k(ak) by Proposition 3.2.16.

So M i ⊗1 A
k is defined but not serial by Lemma 3.3.12. SoM⊗1 A is not an internal

model.

QED
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3.4 Some connections between the external and the internal ap-

proach

Just as in Chapter 2, we can perfectly set some connections between the external and the
internal approach, and so even in a dynamic setting. We saw in Chapter 2 that from an
external model, we could extract the internal model of each agent. We are going to see that
we can do the same for the event models: from an external event model, we can extract the
internal event model of each agent. Besides, in reality each agent updates her internal model
with her respective internal event model, leading to a new situation. It seems natural to
wonder whether this new situation corresponds formally to the one obtained by updating
classically the two external models. We are going to see that this is indeed the case.

3.4.1 From (external) event model to internal event model

First we define the notion of external event model. An external event model is a pointed
event model which is serial, transitive and euclidean. This notion is of course very similar
to the notion of external model in the static case. Besides, still similarly, we can easily get
from an external event model the event model associated to any agent just as we get from
the external model the model associated to any agent.

Definition 3.4.1 (Event model associated to an agent in an external event model)

Let (A, aa) be an external event model and let j ∈ G. The event model associated to the agent
j in (A, aa) is the submodel of A generated by Rj(aa), and Rj(aa) is its actual equivalence
class. 2

Proposition 3.4.2 Let (A, aa) be an external event model. The event model associated to agent j in
(A, aa) is an internal event model (of type 2).

The proof is identical to the static case.

Example 3.4.3 (‘Coin’ example)

In Figure 3.9 is depicted the external event model corresponding to the private announce-
ment to Bob that the coin is heads up and the event models associated to Ann and Bob. Note
that these associated event models are the same as in Figure 3.6. 2

Finally, as in the static case, we could perfectly define the external event model of a
particular event if we suppose given the internal event models of each agent and the actual
event. The definition is completely similar to Definition 2.3.19 so we do not spell it out here.

3.4.2 Preservation of the update product

The BMS system is made up of three main notions: the static models, the event models and
the update product. So far, we have set some connections between the external and internal
approach for the first two notions. It remains to set some connections between the external
and the internal approach for the update product. This is what we are going to do now.
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aa : p
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b : ⊤

A,B

⊤

A,B
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Figure 3.9: External event model (A, aa) (left); Event model associated to Ann (center); Event
model associated to Bob (right)

Theorem 3.4.4 Let (M,wa) be an external model and let (A, aa) be an external event model. Let Va
be the restriction of the valuation of M to wa. We assume that M,wa |= Pre(aa).

Let {(Mj ,W j) | j ∈ G} be the models associated to (M,wa) and the agents j ∈ G. Let
{(Aj , Aj) | j ∈ G} be the event models associated to (A, aa) and the agents j ∈ G. Then,

M ⊗A, (wa, aa) - Ext
(

{(Mj ⊗Aj ,W j ⊗Aj) | j ∈ G}, (wa, Va)
)

, wa.

where Ext is the mapping defined in Definition 2.3.19.

This theorem tells us that the way the agents update their beliefs from an internal point
of view coincides with the way they update their beliefs from an external point of view. This
is what we should expect.

PROOF. As in [Baltag et al., 1999], one can define a notion of bisimulation between event
models by replacing condition 1 of Definition 2.2.11 by ‘if aZa′ then Pre(a) and Pre(a′) are
logically equivalent’. 6 Then if M,w - M ′, w′ and A, a - A′, a′ and M,w |= Pre(a) and
M ′, w′ |= Pre(a′) then M ⊗A, (w, a) - M ′ ⊗A′, (w′, a′).

Then for all j ∈ G, if there is wj ∈ Rj(wa) and aj ∈ Rj(aa) such that M,wj |= Pre(aj)
then Mj , wj - M,wj and Aj , aj - A, aj by Proposition 2.2.14. Hence Mj ⊗ A, (wj , aj) -

M ⊗A, (wj , aj).

So for all (wj , aj) ∈ Rj(wa, aa) there is (wj , aj)′ ∈ Rj(wa) such that

Ext
[

{(Mj ⊗Aj ,W j ⊗Aj) | j ∈ G}, (wa, Va)
]

, (wj , aj) - M ⊗A, (wa, aa).

Vice versa, for all (wj , aj) ∈ Rj(wa) there is (wj , aj)′ ∈ Rj(wa, aa) such that

Ext
[

{(Mj ⊗Aj ,W j ⊗Aj) | j ∈ G}, (wa, Va)
]

, (wj , aj) - M ⊗A, (wj , aj).

Finally, in Ext
[

{(Mj ⊗Aj ,W j ⊗Aj) | j ∈ G}, (wa, Va)
]

, the actual world wa satisfies the
same propositional letters as (wa, aa) in M ⊗A.

So M ⊗A, (wa, aa) - Ext
[

{(Mj ⊗Aj ,W j ⊗Aj) | j ∈ G}, (wa, Va)
]

, wa. QED

6Instead of bisimulation between event models we could also use instead the weaker notion of event emulation
between event models introduced by Ruan in [Ruan, 2004]. Then all that follows would still hold.
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3.5 Concluding remarks

As we said in Section 2.3.1, when we want to deal with epistemic situations, specifying
which modeling approach one considers and sticking to this approach is quite important.
As we also said, mixing the different approaches leads to technical or philosophical prob-
lems. For example, in [Herzig et al., 2004], to model an epistemic situation the authors start
by considering pointed epistemic models whose pointed world is supposed to be the actual
world. So they apparently follow the external approach. Then they consider what they call
“purely ontic events” and try to model them. These events are events that do not “bring any
feedback to any of the agents” such as “sending an email to somebody without knowing
whether it will be received by the addressee”. These events are supposed to transform a
given world w in a non-empty set of worlds, each being a possible outcome of the execution
of this event in world w. In case this set contains two or more worlds, this event is said
to be nondeterministic. So, if such an event is performed in the actual world, this yields a
set of “potential actual worlds”. They represent such a situation by a multi-pointed epis-
temic model and throughout the paper they deal with both pointed epistemic model and
multi-pointed epistemic models. This introduction of multi-pointed models seems a bit ad
hoc but the real problem with this approach is that it is difficult to give intuitive meaning
to this set of “potential actual worlds”, at least in the external approach. It seems to us that
this problem stems from a confusion in the different modeling approaches. Indeed, these
“purely ontic events” are not truly nondeterministic. “Sending an email to somebody with-
out knowing whether it will be received by the addressee” is not per se a nondeterministic
event but rather reveals a lack of knowledge about the event from the modeler. In fact, mod-
eling such an event, defined as it is, makes sense only in the imperfectly external approach.
Multi-pointed epistemic models are also a way to model epistemic situations in the imper-
fectly external approach: the pointed worlds are the worlds that the imperfect and external
modeler considers as being possibly the actual world. In fact, if we stick from the begin-
ning to this imperfectly external approach, then this set of pointed worlds in the resulting
multi-pointed epistemic model can be given a natural meaning: these are the worlds that the
modeler considers as being possibly the actual world given his knowledge of the situation
and what has happened.

In this chapter we have proposed an internal version of the BMS system, very much in
line with what we did for epistemic logic in the preceding chapter. Besides, we have set some
connections between the internal and the external approach for all the notions introduced in
both approaches: (internal/external) model, (internal/external) event model and product
update. So, now we do have a dynamic epistemic logic for the internal approach.

However, we do not have a way to ensure that the updated model is serial (i.e. is an
internal model). Intuitively, an updated model which is not serial means that for agent Y
there is an agent i (possibly Y herself) whose beliefs are inconsistent. More precisely, it
means that for agent Y , it is not common belief that the agents’ beliefs are consistent. Of
course we would like to avoid it and in that case agent Y needs to revise her beliefs. In the
next chapter we are going to propose ways to cope with this issue for the case of private
announcement by generalizing AGM belief revision theory to a multi-agent setting.



Chapter 4

Internal approach: the case of private
announcements

4.1 Introduction

As we said, dynamic epistemic logic is about the logical study of belief change. But actually,
there is another formal approach to belief change that is also based on logic, namely AGM be-
lief revision theory. Unlike dynamic epistemic logic, AGM belief revision theory is designed
for a single agent and is not a genuine logical system. It typically deals with changes that
the agent’s representation of the surrounding world must undergo after receiving conflicting
information. This differs as well from the systems of dynamic epistemic logic presented so
far because in these systems the incoming information is assumed to be consistent with the
agents’ beliefs.

Belief revision theory was developed before the beginning of dynamic epistemic logic.
It really started with Alchourrón, Gärdenfors and Makinson’s seminal paper [Alchourrón
et al., 1985]. The original motivations for these authors were a bit different from how the
theory is used nowadays. Alchourrón’s motivation was to model the revision of norms in
legal systems whereas Gärdenfors’ motivation was to model the revision of scientific theo-
ries. Soon after, Grove [Grove, 1988] provided a semantic account of revision based on the
possible world semantics. His system was inspired by the sphere semantics that Lewis gave
for counterfactuals [Lewis, 1973]. It was then followed by a stream of publications on fine-
tuning the notion of epistemic entrenchment [Meyer et al., 2000], on revising belief bases
[Benferhat et al., 2002], on the difference between belief revision and belief update [Katsuno
and Mendelzon, 1991] and on the problem of iterated belief revision [Darwiche and Pearl,
1997].

The semantics of AGM belief revision theory was the starting point to define our seman-
tics for the internal approach in a multi-agent setting. In fact, our semantics is a generaliza-
tion of the AGM semantics to the multi-agent case. So we would expect that results about
AGM theory can be generalized to the multi-agent case too. In Section 4.2 we are going to

57
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see that it is indeed the case. Then in Section 4.3, we will propose new rationality postulates
which are specific to our multi-agent setting. Finally, in Section 4.4 we will give a concrete
example of revision operation together with a concrete example.

4.2 Generalizing AGM to the multi-agent case

In AGM belief revision theory, the epistemic state of the agent is often represented by a belief
set. A belief set K is a set of propositional formulas that is closed under logical consequence.
These propositional formulas represent the beliefs of the agent. AGM distinguishes three
types of belief change: expansion, revision and contraction. The expansion of K with a
propositional formula ϕ, written K + ϕ, consists of adding ϕ to K and taking all the logical
consequences. Note that this might yield inconsistency. The revision of K with ϕ, written
K ∗ ϕ, consists of adding ϕ to K, but in order that the resulting set be consistent, some
formulas are removed from K. Finally, the contraction of K with ϕ, written here K ⊜ ϕ,
consists in removing ϕ from K, but in order that the resulting set be consistent, some other
formulas are also removed. Of course there are some connections between these operations.
From a contraction operation, one can define a revision operation thanks to the Levi identity:

K ∗ ϕ = (K ⊜ ¬ϕ) + ϕ.

And from a revision operation, one can define a contraction operation thanks to the
Harper identity:

K ⊜ ϕ = K ∩ (K ∗ ¬ϕ).

In this chapter, we will focus on the revision and the expansion operation. We will show
how these operations can be generalized to a multi-agent setting.

4.2.1 Expansion

State of the art

In this chapter, we assume that the set of propositional letters Φ is finite, and in this para-
graph, all the formulas belong to the propositional language L0 defined over Φ.

Let Cn(.) be the classical consequence operation, i.e. for a set of propositional formulas
Σ, Cn(Σ) = {χ | Σ ⊢ χ}. We can now define formally a belief set.

Definition 4.2.1 (Belief set)

A belief set K is a set of propositional formulas in L0 such that Cn(K) = K. We denote by
K⊥ the unique inconsistent belief set consisting of all propositional formulas. 2

Classically, in AGM theory, we start by proposing rationality postulates that belief change
operations must fulfill. These postulates make precise our intuitions about these operations
and what we mean by rational change. Below are the rationality postulates for the expansion
operation + proposed by Gärdenfors [Gärdenfors, 1988].

K+1 K + ϕ is a belief set
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K+2 ϕ ∈ K + ϕ

K+3 K ⊆ K + ϕ

K+4 If ϕ ∈ K then K = K + ϕ

K+5 K + ϕ is the smallest set satisfying K + 1-K + 4.

K + 1 tells us that the expansion operation + is a function from pairs of belief set and
formula to belief sets. This entails that we can iterate the expansion operation. K + 2 tells
us that when the agent expands her belief set by ϕ then as a result ϕ is one of her beliefs.
All the other postulates refer to some kind of minimal change. K + 3 tells us that when the
agent expands by ϕ she does not throw away any of her former beliefs. K + 4 tells us that if
the agent already believes ϕ then expanding by ϕ should not change her beliefs: the change
made to add ϕ to the belief set is minimal.

The following (representation) theorem tells us that these postulates actually determine
a unique expansion operation on belief sets.

Theorem 4.2.2 [Gärdenfors, 1988]

A function + satisfies K+1−K+5 iff for each belief set K and formula ϕ, K+ϕ = Cn(K ∪{ϕ}).

So from now on, we define the expansion operation + by K + ϕ = Cn(K ∪ {ϕ}).
So far our approach to expansion was syntactically driven. Now we are going to give a

semantical approach to expansion and set some links between these two approaches.

We use the possible world semantics. First we consider the set W consisting of all the
(logically) possible worlds. A possible world w can be viewed as an interpretation, i.e. a
function from Φ to {⊤,⊥}which specifies which propositional letters (such as ‘it is raining’)
are true in this world w. For a propositional formula χ, we write w |= χ when χ is true at w
in the usual sense1. Then a formula χ is true in a set W of possible worlds, written W |= χ,
if and only if for all w ∈ W , w |= χ. Besides, because Φ is finite, W is also finite. We can
then represent the agent’s epistemic state by a subset W ofW (which is consequently finite
as well). Intuitively, W is the smallest set of possible worlds in which the agent believes that
the actual world is located.

There is actually a very close correspondence between belief sets and sets of possible
worlds.

Definition 4.2.3

Let W be a finite set of possible worlds. We define the belief set KW associated to W by
KW = {χ |W |= χ}.

Let K be a belief set. We define the set of possible worlds WK associated to K by WK =
{w | w |= χ for all χ ∈ K}. Then,

1w |= χ is defined inductively by: w |= p iff w(p) = ⊤; w |= ¬χ iff not w |= χ; and w |= χ ∧ χ′ iff w |= χ and
w |= χ′.
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W |= χ iff χ ∈ KW , and χ ∈ K iff WK |= χ.

2

Now we can define the semantic counterpart of the expansion operation defined previ-
ously.

Definition 4.2.4 ((Semantic) expansion)

Let W be a finite set of possible worlds and ϕ of formula. The expansion of W by ϕ, written
W + ϕ, is defined as follows.

W + ϕ = {w ∈W | w |= ϕ}.

2

¬ϕ ϕ

Figure 4.1: AGM expansion by ϕ

This semantic counterpart of the expansion is described graphically in Figure 4.1. The
initial model W is on the left of the arrow and the expanded model W + ϕ is on the right
of the arrow. The dots represent possible worlds and the straight line separates the worlds
satisfying ϕ from the worlds satisfying ¬ϕ.

Finally, we show that these two definitions of expansion, syntactic and semantic, are in
fact equivalent.

Theorem 4.2.5 For all belief sets K and all finite set of possible worlds W ,

χ ∈ K + ϕ iff WK + ϕ |= χ, and W + ϕ |= χ iff χ ∈ KW + ϕ.

PROOF. χ ∈ K + ϕ
iff χ ∈ Cn(K ∪ {ϕ})
iff K ∪ {ϕ} ⊢ χ
iff for all w such that w |= ψ for all ψ ∈ K ∪ {ϕ}, w |= χ
iff for all w ∈WK , if w |= ϕ then w |= χ
iff for all w ∈WK + ϕ, w |= χ
iff WK + ϕ |= χ.

χ ∈ KW + ϕ
iff χ ∈ Cn(KW ∪ {ϕ})
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iff KW ∪ {ϕ} ⊢ χ

iff for all w such that w |= KW ∪ {ϕ}, w |= χ

iff for all w such that w |= KW and w |= ϕ, w |= χ

iff for all w ∈W + ϕ, w |= χ

iff W + ϕ |= χ. QED

This ends our account about expansion. Now we are going to propose a generalization
of this operation to the multi-agent case.

Expansion and private announcement in a multi-agent setting

Assume we are now in a multi-agent setting and we follow the internal approach. Let us
have a closer look at the case of private announcement. The event model of a private an-
nouncement of ϕ ∈ L to agent Y is depicted in Figure 4.2.

We will show that private announcements is the counterpart of AGM expansion.

a : ϕ

Y

A

b : ⊤

A,Y

Figure 4.2: Private announcement of ϕ to agent Y

Proposition 4.2.6 Let (A, {a}) = ({a, b}, R, Pre, {a}) be the internal event model of a private
announcement of ϕ ∈ L to Y . Then for all n ∈ N, |=Ext δ

n(b)↔ ⊤ and |=Int δ
n(a)↔ ϕ.

PROOF. We prove both results by induction on n. Clearly, the result holds for n = 0. Assume
it is true for n.

Then δn+1(a) = δ0(a)∧ B̂Y δ
n(a)∧ B̂Aδ

n(b)∧BY (Pre(a)→ δn(a))∧BA(Pre(b)→ δn(b))
by Definition 3.2.12. So |=Int δ

n+1(a) ↔ ϕ ∧ B̂Y ϕ ∧ B̂A⊤ ∧ BY (ϕ → ϕ) ∧ BA(ϕ → ⊤) by
induction hypothesis. Then |=Int δ

n+1(a)↔ ϕ ∧ B̂Y ϕ. So |=Int δ
n+1(a)↔ ϕ by axiom T.

Besides, δn+1(b) = δ0(b)∧B̂Y δ
n(b)∧B̂Aδ

n(b)∧BY (Pre(b)→ δn(b))∧BA(Pre(b)→ δn(b))
by Definition 3.2.12. So |=Ext δ

n+1(b) ↔ ⊤ ∧ B̂Y⊤ ∧ B̂A⊤ ∧ BY (⊤ → ⊤) ∧ BA(⊤ → ⊤), i.e.
|=Ext δ

n+1(b)↔ ⊤. QED

Corollary 4.2.7 Let (M,Wa) be an internal model of type 1 and let (A, {a}) be the internal event
model of the private announcement of ϕ ∈ L to Y . Then (M⊗1 A,Wa ⊗1 {a}) is defined and is an
internal model of type 1 iff there is wa ∈Wa such thatM, wa |= ϕ.
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PROOF. Assume that M ⊗1 A is defined. We know that for all n ∈ N, |=Int (Pre(a) →
δn(a)) ↔ (Pre(a) → Pre(a)) by Proposition 4.2.6. So for all w ∈ Wa, M, w |= (Pre(a) →
δn(a)). This means thatM⊗1 A is an internal model by Proposition 3.3.11. So, ifM⊗1 A
is defined then it is an internal model. ButM⊗1 A is defined iff there is wa ∈ Wa such that
M, wa |= ϕ. So we get the result. QED

This corollary is obtained thanks to our study on seriality preservation for generated
submodels made in Section 3.2.2. It tells us that as soon as the updated model of type 1 by
a private announcement is defined then it must be an internal model, in other words it is
serial. This might seem strange at first sight but the following crucial theorem provides a
good explanation for that.

Theorem 4.2.8 Let (M,Wa) = {(M
1, w1), . . . , (Mn, wn)} be an internal model of type 1 and

(A, {a}) be the internal event model of a private announcement of ϕ ∈ L to Y . Then,

M⊗1 A = {(M
i, wi) | M, wi |= ϕ}

PROOF. It suffices to apply the definition of ⊗1. QED

This theorem is very important. Indeed, it explains why an updated model of type 1
is an internal model of type 1 as soon as it is defined: it is because the updated model is
a submodel of the original internal model of type 1. But more importantly, it bridges the
gap between AGM belief revision theory and dynamic epistemic logic as viewed by BMS.
Indeed, one can note that the definition ofM⊗1 A is very similar to the semantic definition
of expansion in Definition 4.2.4. On the one hand, the expansion of a set of possible worlds
by a propositional formula ϕ consists in the worlds that satisfy ϕ. On the other hand, the
updated model of an internal model of type 1 by a private announcement of an epistemic
formula ϕ consists in the multi-agent possible worlds that satisfy ϕ. This similarity is depicted
in Figure 4.3 where the triangles represent multi-agent possible worlds.

So, informally, the BMS update by a private announcement can be viewed as a ‘multi-
agent’ AGM expansion. In other words, AGM expansion can be viewed as a particular case
of a BMS update by a private announcement in which Y is the only agent. This means that
private announcement is the generalization of AGM expansion to the multi-agent case. This
goes against van Ditmarsch, van der Hoek and Kooi’s claim that public announcement can
be viewed as a belief expansion [van Ditmarsch et al., 2004]. However, their comparison is
rather syntactical and in that respect they only consider special kinds of formulas to repre-
sent belief sets and (public) announcements, namely ‘positive’ formulas. Here, our results
hold independently of any particular chosen language because we compare only the seman-
tics of expansion and private announcement. We believe this semantic correspondence to be
deeper than any syntactic one because the languages in the single agent case and the multi-
agent case are anyway quite different and so do not allow for a straightforward comparison.
Moreover, the fact that private announcement can be viewed as a generalization of expan-
sion in a multi-agent setting is not accidental. Indeed, an important property of private
announcement is that not only the actual world does not change but also the agents’ beliefs
do not change (except of course for agent Y ’s beliefs). For example, suppose you (Y ) believe
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¬ϕ ϕ

¬ϕ ϕ

Figure 4.3: AGM expansion by ϕ (above) and BMS update by a private announcement of ϕ
(below)

p, and agent j believes p (and perhaps even that p is common belief of Y and j). When a
third external agent privately tells you that ¬p then afterwards j still believes p and you still
believe that j believes p (and that j believes that p is common belief). This static aspect of
private announcements is similar to the static aspect of AGM belief revision in a single-agent
case: in both cases the world does not change but only agent Y ’s beliefs about the world
change.

Example 4.2.9 (‘Coin’ example)

Let us take up the ‘coin example’ and let us consider Bob’s internal point of view. Bob’s
internal model of type 1 representing the initial situation is recalled in Figure 4.4. Then,
according to Theorem 4.2.8, the resulting situation after the private announcement to Bob
that the coin is heads up (p) is the internal model of type 1 composed only of the multi-agent
possible world (M,w) on the left of Figure 4.4.

We can check that this result is correct. Indeed, we showed in Proposition 3.3.8 that the
update products of type 1 and 2 are equivalent. So from the representation of type 2 of this
scenario, we should get (M,w) as the resulting internal model of type 2 after the private
announcement. This scenario is recalled in Figure 4.5. The first model represents Bob’s
internal model of type 2 of the original situation, which is equivalent to the internal model
of type 1 depicted in Figure 4.4. The second model is Bob’s internal event model of type 2 of
the private announcement. The last model is Bob’s updated model of type 2 after the private
announcement. This last model is indeed the same model as (M,w) in Figure 4.4. 2

So, now we know that the generalization of expansion to the multi-agent case is private
announcement. We also know by Theorem 4.2.8 how to get easily the updated model of type
1 by a private announcement of ϕ. However, this updated model of type 1 is not necessarily
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w : p

B

A A

w′ : ¬p

B

A A

p

A,B

A,B
¬p

A,B

p

A,B

A,B
¬p

A,B

Figure 4.4: Bob’s initial internal model of type 1 {(M,w), (M ′, w′)}

p

A,B

A,B
¬p

A,B

⊗ p

A

B

= p

B

A A

⊤

A,B

p

A,B

A,B
¬p

A,B

Figure 4.5: Bob’s scenario

defined. For that by Corollary 4.2.7 there must be a multi-agent possible world of the initial
internal model of type 1 that satisfies ϕ . But what happens when there is no multi-agent
possible world that satisfies ϕ? In other words, what happens when the private announce-
ment made to Y contradicts her beliefs? In that case, agent Y must revise her initial internal
model. We call this kind of revision ‘private multi-agent belief revision’.

This is what we will deal with in the next section. First we will recall AGM belief re-
vision, focusing more particularly on the revision operation. Then we will generalize this
framework to the multi-agent case and therefore study private multi-agent belief revision.

4.2.2 Revision

State of the art

In this paragraph, all formulas are propositional formulas. Just as for expansion, Gärdenfors
and his colleagues proposed rationality postulates for revision operations. These postulates
make precise what we mean by rational change, and more precisely rational revision. We
will not provide intuitive motivations for these postulates (even if some of them have been
criticized), see [Gärdenfors, 1988] for details. However, note that these postulates do not
characterize a unique revision operation, unlike the postulates for expansion.

K*1 K ∗ ϕ is a belief set
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K*2 ϕ ∈ K ∗ ϕ

K*3 K ∗ ϕ ⊆ K + ϕ

K*4 If ¬ϕ /∈ K then K + ϕ ⊆ K ∗ ϕ

K*5 K ∗ ϕ = K⊥ iff ϕ is unsatisfiable

K*6 If ϕ↔ ϕ′ then K ∗ ϕ = K ∗ ϕ′

K*7 K ∗ (ϕ ∧ ϕ′) ⊆ (K ∗ ϕ) + ϕ′

K*8 If ¬ϕ′ /∈ K ∗ ϕ then (K ∗ ϕ) + ϕ′ ⊆ K ∗ (ϕ ∧ ϕ′)

Before going on, let us reconsider how we represent agent Y ’s epistemic state. So far we
have proposed two equivalent formalisms: belief set and (finite) set of possible worlds. As
we said, a belief set is an infinite set of formulas closed under logical consequence. However,
this cannot be handled easily by computers because of its infinitude. We would like to have
a more compact and finite representation of the agent’s epistemic state. For that, we follow
the approach of [Katsuno and Mendelzon, 1992].

As argued by Katsuno and Mendelzon, because Φ is finite, a belief set K can be equiv-
alently represented by a mere propositional formula ψ. This formula is also called a belief
base. Then χ ∈ K if and only if χ ∈ Cn(ψ). Besides, one can easily show that χ ∈ K + ϕ if
and only if χ ∈ Cn(ψ ∧ϕ). So in this approach, the expansion of the belief base ψ by ϕ is the
belief base ψ ∧ ϕ, which is possibly an inconsistent formula. Now, given a belief base ψ and
a formula ϕ, ψ ◦ ϕ denotes the revision of ψ by ϕ. But in this case, ψ ◦ ϕ is supposed to be
consistent if ϕ is. Given a revision operation ∗ on belief sets, one can define a corresponding
operation ◦ on belief bases as follows: ψ ◦ ϕ → χ if and only if χ ∈ Cn(ψ) ∗ ϕ. Thanks to
this correspondence, Katsuno and Mendelzon set some rationality postulates for this revi-
sion operation ◦ on belief bases which are equivalent to the AGM rationality postulates for
the revision operation ∗ on belief sets.

Lemma 4.2.10 [Katsuno and Mendelzon, 1992]

Let * be a revision operation on belief sets and ◦ its corresponding operation on belief bases. Then *
satisfies the 8 AGM postulates K ∗ 1−K ∗ 8 iff ◦ satisfies the postulates R1−R6 below:

R1 ⊢ ψ ◦ ϕ→ ϕ.

R2 if ψ ∧ ϕ is satisfiable, then ⊢ ψ ◦ ϕ↔ ψ ∧ ϕ.

R3 If ϕ is satisfiable, then ψ ◦ ϕ is also satisfiable.

R4 If ⊢ ψ ↔ ψ′ and ⊢ ϕ↔ ϕ′, then ⊢ ψ ◦ ϕ↔ ψ′ ◦ ϕ′.

R5 ⊢ (ψ ◦ ϕ) ∧ ϕ′ → ψ ◦ (ϕ ∧ ϕ′).

R6 If (ψ ◦ ϕ) ∧ ϕ′ is satisfiable, then ⊢ ψ ◦ (ϕ ∧ ϕ′)→ (ψ ◦ ϕ) ∧ ϕ′.
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So far our approach to revision was syntactically driven. Now we are going to give a
semantical approach to revision and then set some links between the two approaches.

First some notations. Mod(ψ) denotes the set of all logically possible worlds (also called
models in that case) that make ψ true, i.e. Mod(ψ) = {w ∈ W | w |= ψ}. If M is a set of
possible worlds then form(M) denotes a formula whose set of models is equal toM.

Definition 4.2.11 (Faithful assignment)

A pre-order ≤ over W is a reflexive and transitive relation on W . A pre-order is total if
for every w,w′ ∈ W , either w ≤ w′ or w′ ≤ w. Consider a function that assigns to each
propositional formula ψ a pre-order ≤ψ over W . We say this assignment is faithful if the
following three conditions hold:

1. If w,w′ ∈Mod(ψ), then w <ψ w
′ does not hold;

2. If w ∈Mod(ψ) and w′ /∈Mod(ψ), then w <ψ w
′ holds;

3. If ⊢ ψ ↔ ψ′, then ≤ψ=≤ψ′ .

2

Intuitively, w ≤ψ w
′ means that the possible world w is closer to ψ than w′.

Definition 4.2.12 LetM be a subset ofW . A possible world w is minimal inM with respect
to ≤ψ if w ∈M and there is no w′ ∈M such that w′ <ψ w. Let

Min(M,≤ψ) = {w | w is minimal inMwith respect to ≤ψ}

2

The following representation theorem sets some connections between the semantic ap-
proach and the syntactic one.

Theorem 4.2.13 [Katsuno and Mendelzon, 1992]

Revision operation ◦ satisfies postulates R1−R6 iff there exists a faithful assignment that maps each
belief base ψ to a total pre-order ≤ψ such that

Mod(ψ ◦ ϕ) =Min(Mod(ϕ),≤ψ).

This semantic revision process is described in Figure 4.6. In this figure, the dots repre-
sent possible worlds and the diagonal line separates the worlds satisfying ϕ from the worlds
satisfying ¬ϕ. The worlds in the inner circle are the worlds that satisfy ψ and thus corre-
spond to Mod(ψ). The other circles represent the ordering ≤ψ: if w <ψ w

′ then w is within
a smaller circle than w′ and if w =ψ w′ then w and w′ are in between the same successive
circles. So the further a world is from the inner circle, the further it is from ψ. The worlds in
the hatched part are then the worlds that satisfy ϕ and which are the closest to ψ. Therefore
they represent Mod(ψ ◦ ϕ) =Min(Mod(ϕ),≤ψ).
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¬ϕ
ϕ

ψ ψ

Figure 4.6: AGM belief revision

Grove proposed another semantic approach based on a system of spheres [Grove, 1988].
But one can show that his framework can be recast in the one just described.

This ends our account about revision. Now we are going to propose a generalization of
revision to the multi-agent case.

Private multi-agent belief revision

In the multi-agent case like in the single-agent case, it does not make any sense to revise
by formulas dealing with what the agent Y believes or considers possible. Indeed, due to
the fact that positive and negative introspection are valid in KD45, Y already knows all she
believes and all she disbelieves. So we restrict the epistemic language to a fragment that we
call LC6=Y defined as follows.

Definition 4.2.14 (Language LC6=Y )

LC6=Y : ϕ := ⊤ | p | Bjψ | ϕ ∧ ϕ | ¬ϕ,

where ψ ranges over LC and j over G− {Y }. 2

Note that by restricting ourselves to this kind of formulas, the two notions of validity of
Definition 2.3.13 and Remark 2.3.14 coincide. That is to say, a formula ϕ ∈ LC6=Y is positively

valid if and only if it is negatively valid. It also entails that ϕ ∈ LC6=Y is internally satisfiable
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iff there is a multi-agent possible world (M,w) such that M,w |= ϕ. Besides, if we assume
that agent Y is the only agent then LC6=Y is just the propositional language, i.e. the language
used in AGM belief revision theory.

We can now apply with some slight modifications the procedure spelled out for the single
agent case in the previous paragraph.

First, we defineWG to be the set of all multi-agent possible worlds modulo bisimulation,
and we pick the smallest multi-agent possible world among each class of bisimilarly indis-
tinguishable multi-agent possible worlds. Then we define Mod(ψ) by Mod(ψ) = {(M,w) ∈
WG | M,w |= ψ}. Thanks to Proposition 2.2.16 we can easily prove the following proposi-
tion.

Proposition 4.2.15 (Syntactic characterization of internal models)

LetM be an internal model. There is a formula form(M) ∈ LC6=Y such that Mod(form(M)) =
M.

PROOF. Let (M,w) be a multi-agent possible world. Then we set

δ∗M (w) =





∧

{p|w∈V (p)}

p



∧





∧

{p|w/∈V (p)}

¬p



∧
∧

j∈G−{Y }





∧

v∈Rj(w)

B̂jδM (v) ∧Bj





∨

v∈Rj(w)

δM (v)







 .

Clearly δ∗M (w) ∈ L
C
6=Y , M,w |= δ∗M (w) and for all multi-agent possible worlds (M ′, w′), if

M ′, w′ |= δ∗M (w) thenM,w - M ′, w′ by applying Proposition 2.2.16. LetM = {(M1, w1), . . . ,
(Mn, wn)}. We set form(M) = δ∗M1(w1) ∨ . . . ∨ δ

∗
Mn
(wn). Then form(M) ∈ LC6=Y and

Mod(form(M)) =M. QED

The proof of this proposition is made possible because of the modularity of multi-agent
possible worlds enforced by condition 2 in our definition of multi-agent possible world.
Therefore, this is another motivation for this condition.

We then get the multi-agent generalization of Theorem 4.2.13 by replacing possible worlds
w by multi-agent possible worlds (M,w) and replacing the propositional language L0 by
LC6=Y , the rationality postulates being the same.

Theorem 4.2.16 Revision operation ◦ on LC6=Y satisfies postulates R1−R6 in the internal logic Int
iff there exists a faithful assignment that maps each belief base ψ to a total pre-order ≤ψ such that
Mod(ψ ◦ ϕ) =Min(Mod(ϕ),≤ψ).

PROOF. The proof is identical to the proof of Theorem 4.2.13 except that interpretations are
replaced by multi-agent possible worlds and propositional formulas are replaced by formu-
las of LC6=Y .

(‘Only if’) Assume that there is a revision operation satisfying conditions R1 − R6. We
will define a total pre-order ≤ψ for each ψ by using the revision operation ◦. For any multi-
agent possible worlds (M,w), (M ′, w′) ((M,w) = (M ′, w′) is permitted), we define a relation
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≤ψ as (M,w) ≤ψ (M
′, w′) if and only if either (M,w) ∈ Mod(ψ) or (M,w) ∈ Mod(ψ ◦

form((M,w), (M ′, w′))).
We first show that ≤ψ is a total pre-order. It follows from R1 and R3 that Mod(ψ ◦

form((M,w), (M ′, w′))) is a non-empty subset of {(M,w), (M ′, w′)}. Hence, ≤ψ is total. In
particular, if we consider the case where (M,w) is equal to (M ′, w′),Mod(ψ◦form((M,w))) =
{(M,w)} holds. Hence, for any (M,w), (M,w) ≤ψ (M,w) (i.e. the reflexivity) holds.

We will show the transitivity. Assume that both (M1, w1) ≤ψ (M2, w2) and (M2, w2)
≤ψ (M3, w3) hold. We show (M1, w1) ≤ψ (M3, w3). There are three cases to consider.

1. (M1, w1) ∈Mod(ψ), (M1, w1) ≤ψ (M3, w3) follows from the definition of ≤ψ

2. (M1, w1) /∈Mod(ψ) and (M2, w2) ∈Mod(ψ). Since

Mod(ψ ∧ form((M1, w1), (M2, w2))) = {(M2, w2)}

holds, Mod(ψ ◦ form((M1, w1), (M2, w2))) follows from R2. Thus (M1, w1) 
 (M2, w2)
follows from (M1, w1) /∈ Mod(ψ). This contradicts (M1, w1) ≤ψ (M2, w2), so case 2 is
impossible.

3. (M1, w1) /∈Mod(ψ) and (M2, w2) /∈Mod(ψ). By R1 and R3,
Mod(ψ◦form((M1, w1), (M2, w2), (M3, w3))) is a nonempty subset of {(M1, w1), (M2, w2),
(M3, w3)}.

(3.1)Mod(ψ ◦ form((M1, w1), (M2, w2), (M3, w3))) ∩ {(M1, w1), (M2, w2)} = ∅

Mod(ψ ◦ form((M1, w1), (M2, w2), (M3, w3))) = {(M3, w3)} holds in this case. If we
regard ϕ and ϕ′ as form((M1, w1), (M2, w2), (M3, w3)) and form((M2, w2), (M3, w3))
respectively in postulates R5 and R6, we obtain

Mod(ψ ◦ form((M1, w1), (M2, w2), (M3, w3))) ∩ {(M2, w2), (M3, w3)} =

Mod(ψ ◦ form((M2, w2), (M3, w3))).

Hence, Mod(ψ ◦ form((M2, w2), (M3, w3))) = {(M3, w3)}. This contradicts (M2, w2)
≤ψ (M3, w3) and (M2, w2) /∈Mod(ψ). Thus (3.1) is not possible.

(3.2)Mod(ψ ◦ form((M1, w1), (M2, w2), (M3, w3))) ∩ {(M1, w1), (M2, w2)} 6= ∅.

Since (M1, w1) ≤ψ (M2, w2) and (M1, w1) /∈Mod(ψ), (M1, w1) ∈Mod(ψ◦form((M1, w1),
(M2, w2))) holds. Hence, by regarding ϕ and ϕ′ as form((M1, w1), (M2, w2), (M3, w3))
and

form((M1, w1), (M2, w2)) in postulates R5 and R6, we obtain

Mod(ψ ◦ form((M1, w1), (M2, w2), (M3, w3))) ∩ {(M1, w1), (M2, w2)} =

Mod(ψ ◦ form((M1, w1), (M2, w2))).

Thus, (M1, w1) ∈ Mod(ψ ◦ form((M1, w1), (M2, w2), (M3, w3))) ∩ {(M1, w1), (M2, w2)}
holds. By using conditions R5 and R6 again in a similar way, we can obtain (M1, w1) ∈
Mod(ψ ◦ form((M1, w1), (M3, w3)). Therefore, (M1, w1) ≤ψ (M3, w3) holds.
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Next we show that the assignment mapping ψ to ≤ψ is faithful. The first condition of
the faithfulness easily follows from the definition of ≤ψ. The third condition follows from
R4. We show the second condition. Assume that (M,w) ∈ Mod(ψ) and (M ′, w′) /∈ Mod(ψ).
Then Mod(ψ ◦ form((M,w), (M ′, w′))) = {(M,w)} follows from R2. Therefore, (M,w) <ψ
(M ′, w′) holds.

Finally, we show Mod(ψ ◦ ϕ) = Min(Mod(ϕ),≤ψ). If ϕ is unsatisfiable then Mod(ψ ◦
ϕ) = ∅ = Min(Mod(ϕ),≤ψ) holds. Hence we assume that ϕ is satisfiable in the following.
We will show Mod(ψ ◦ ϕ) ⊆ Min(Mod(ϕ),≤ψ).

2 Assume that (M,w) ∈ Mod(ψ ◦ ϕ) and
(M,w) /∈ Min(Mod(ϕ),≤ψ). By postulate R1, (M,w) is a model of ϕ. Hence, there is a
model (M ′, w′) of ϕ such that (M ′, w′) <ψ (M,w).

1. (M ′, w′) ∈ Mod(ψ). Since (M ′, w′) ∈ Mod(ϕ), ψ ∧ ϕ is satisfiable. Hence, by postulate
R2, ψ ◦ ϕ ↔ ψ ∧ ϕ holds. Thus, (M,w) ∈ Mod(ψ) follows from (M,w) ∈ Mod(ψ ◦ ϕ).
Therefore, (M,w) ≤ψ (M

′, w′) holds. This contradicts (M ′, w′) <ψ (M,w).

2. Mod(ψ ◦ form((M,w), (M ′, w′))) = {(M ′, w′)}. Since both (M,w) and (M ′, w′) are
models of ϕ, (ϕ ∧ form((M,w), (M ′, w′)))↔ form((M,w), (M ′, w′)) holds. Thus,

Mod(ψ ◦ ϕ) ∩ {(M,w), (M ′, w′)} ⊆Mod(ψ ◦ form((M,w), (M ′, w′)))

follows from postulateR5. Since we assumeMod(ψ◦form((M,w), (M ′, w′))) = {(M ′, w′)},
we obtain (M,w) /∈Mod(ψ ◦ ϕ). This is a contradiction.

Now, to prove the other containment Min(Mod(ϕ),≤ψ) ⊆ Mod(ψ ◦ ϕ), we assume the
opposite, i.e. we assume (M,w) ∈Min(Mod(ϕ),≤ψ) and (M,w) /∈Mod(ψ◦ϕ). Since we also
assume that ϕ is internally satisfiable, it follows from postulate R3 that there is a multi-agent
possible world (M ′, w′) such that (M ′, w′) ∈Mod(ψ ◦ ϕ). Since both (M,w) and (M ′, w′) are
models of ϕ, ⊢Int (form((M,w), (M ′, w′)) ∧ ϕ) ↔ form((M,w), (M ′, w′)) holds. By using
postulates R5 and R6, we obtain

Mod(ψ ◦ ϕ) ∩ {(M,w), (M ′, w′)} =Mod(ψ ◦ form((M,w), (M ′, w′)).

Since (M,w) /∈ Mod(ψ ◦ ϕ),Mod(ψ ◦ form((M,w), (M ′, w′)) = {(M ′, w′)} holds. Hence,
(M ′, w′) ≤ψ (M,w) holds. On the other hand, since (M,w) is minimal in Mod(ϕ) with re-
spect to ≤ψ, (M,w) ≤ψ (M

′, w′) holds. Since
Mod(ψ◦form((M,w), (M ′, w′))) = {(M ′, w′)}, (M,w) ∈Mod(ψ) holds. Therefore, (M,w) ∈
Mod(ψ ◦ ϕ) follows from postulate R2. This is a contradiction.

(‘If’) Assume that there is a faithful assignment that maps ψ to a total pre-order ≤ψ. We
define a revision operation ◦ by

Mod(ψ ◦ ϕ) =Min(Mod(ϕ),≤ψ).

2It should be noted that R6 is not used in the proof of this containment.
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We show that ◦ satisfies conditions R1−R6. It is obvious that postulate R1 follows from the
definition of the revision operator ◦. It is also obvious that postulates R3 andR4 follow from
the definition of the faithful assignment.

We show postulate R2. It suffices to show if Mod(ψ∧ϕ) is not empty then Mod(ψ∧ϕ) =
Min(Mod(ϕ),≤ψ). Mod(ψ∧ϕ) ⊆Min(Mod(ϕ),≤ψ) follows from the conditions of the faith-
ful assignment. To prove the other containment, we assume that (M,w) ∈Min(Mod(ϕ),≤ψ)
and (M,w) /∈Mod(ψ ∧ϕ). Since Mod(ψ ∧ϕ) is not empty, there is an interpretation (M ′, w′)
such that (M ′, w′) ∈ Mod(ψ ∧ ϕ). Then (M,w) 
ψ (M ′, w′) follows from the conditions of
the faithful assignment. Moreover, (M ′, w′) ≤ψ (M,w) follows from the conditions of the
faithful assignment. Hence, (M,w) is not minimal in Mod(ϕ) with respect to ≤ψ. This is a
contradiction.

We show postulates R5 andR6. It is obvious that if (ψ◦ϕ)∧ϕ′ is not internally satisfiable
then R6 holds. Hence, it suffices to show that if Min(Mod(ϕ),≤ψ) ∩Mod(ϕ′) is not empty
then

Min(Mod(ϕ),≤ψ) ∩Mod(ϕ′) =Min(Mod(ϕ ∧ ϕ′),≤ψ)

holds.
Assume that

(M,w) ∈Min(Mod(ϕ),≤ψ) ∩Mod(ϕ′)

and
(M,w) /∈Min(Mod(ϕ ∧ ϕ′),≤ψ).

Then, since (M,w) ∈ Mod(ϕ ∧ ϕ′), there is a multi-agent possible world (M ′, w′) such that
(M ′, w′) ∈Mod(ϕ∧ϕ′) and (M ′, w′) <ψ (M,w). This contradicts (M,w) ∈Min(Mod(ϕ),≤ψ
). Therefore, we obtain

Min(Mod(ϕ),≤ψ) ∩Mod(ϕ′) ⊆Min(Mod(ϕ ∧ ϕ′),≤ψ).

To prove the other containment, we assume that

(M,w) ∈Min(Mod(ϕ ∧ ϕ′),≤ψ)

and
(M,w) /∈Min(Mod(ϕ),≤ψ) ∩Mod(ϕ′).

Since (M,w) ∈Mod(ϕ′), (M,w) /∈Min(Mod(ϕ),≤ψ) holds. Since we assume that
Min(Mod(ϕ),≤ψ) ∩Mod(ϕ′) is not empty, suppose that (M ′, w′) is a multi-agent possi-

ble world of Min(Mod(ϕ),≤ψ) ∩Mod(ϕ′). Then (M ′, w′) ∈ Mod(ϕ ∧ ϕ′) holds. Since we
assume that (M,w) ∈ Min(Mod(ϕ ∧ ϕ′),≤ψ) and ≤ψ is total3, (M,w) ≤ψ (M

′, w′) holds.
Thus (M,w) ∈ Min(Mod(ϕ),≤ψ) follows from (M ′, w′) ∈ Min(Mod(ϕ),≤ψ). This is a con-
tradiction. QED

This similarity between Theorem 4.2.13 and Theorem 4.2.16 is depicted in Figure 4.7. We
see in this figure that possible worlds of AGM belief revision are just replaced by multi-agent
possible worlds which are represented by triangles.

3The totality of ≤ψ is used only here in the proof of (If).
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¬ϕ
ϕ

ψ ψ

¬ϕ
ϕ

ψ ψ

Figure 4.7: AGM belief revision (above) and private multi-agent belief revision (below)

Remark 4.2.17 (Important)

We have picked only one of the theorems of [Katsuno and Mendelzon, 1992] but in fact all
the theorems present in [Katsuno and Mendelzon, 1992] transfer to the multi-agent case. It
includes in particular the following theorem, where ≤ψ is a partial order instead of a total
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order:

Revision operation ◦ satisfies postulates R1− R5, R7 and R8 if and only if there exists a
faithful assignment that maps each belief base ψ to a partial pre-order ≤ψ such that Mod(ψ ◦
ϕ) =Min(Mod(ϕ),≤ψ); where

R7 If ⊢ (ψ ◦ ϕ1)→ ϕ2 and ⊢ (ψ ◦ ϕ2)→ ϕ1 then ⊢ (ψ ◦ ϕ1)↔ (ψ ◦ ϕ2).

R8 ⊢ (ψ ◦ ϕ1) ∧ (ψ ◦ ϕ2)→ ψ ◦ (ϕ1 ∨ ϕ2).

2

This theorem entails that we can use all the techniques and methods of AGM belief revi-
sion to deal with private multi-agent belief revision. This similarity will be exploited in the
last section of this chapter. We stress that this transfer is made possible thanks to the notion
of multi-agent possible world which generalizes the notion of possible world.

4.3 Multi-agent rationality postulates

In this section we are going to investigate some multi-agent rationality postulates. Indeed,
because we are now in a multi-agent setting, it is natural to study how (agent Y ’s beliefs
about) the other agents’ beliefs evolve during a private announcement.

As we said, in a private announcement the beliefs of the other agents different from
Y actually do not change, and agent Y knows this. Consequently, agent Y ’s beliefs about
the agents who are not concerned by the formula announced should not change as well.
To formalize this idea, we first need to define who are the agents who are concerned by a
formula.

4.3.1 On the kind of information a formula is about

First note that an input may not only concern agents but also the objective state of nature, i.e.
propositional facts, that we write pf. For example, the formula p ∧ BjBi¬p concerns agent
j’s beliefs but also propositional facts (namely p). Besides, a formula cannot be about Y ’s
beliefs because ϕ ∈ LC6=Y by assumption. So what an input is about includes propositional
facts but excludes agent Y ’s beliefs. This leads us to the following definition.

Definition 4.3.1 (Operator A)

Let A0 = (G ∪ {pf})− {Y }.
We define by induction the agents that a formula is about as follows:

• A(p) = pf; A(Bjϕ) = {j};

• A(¬ϕ) = A(ϕ); A(ϕ ∧ ϕ′) = A(ϕ) ∪A(ϕ′).

2
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For example, A(p ∨ (q ∧BjBir) ∧Bkr)) = {pf, j, k}, and A(Bip ∨BjBk¬p) = {i, j}.
We then define a language LA1 whose formulas concern only agents in A1, and possibly

propositional facts if pf ∈ A1.

Definition 4.3.2 (Language LCA1)

Let A1 ⊆ A0. We define the language LCA1 as follows.

LCA1 : ϕ ::= ⊤ | P | Bjψ | ϕ ∧ ϕ | ¬ϕ,

where j ranges over A1−{pf} and ψ over formulas of LC as defined in Definition 2.2.10.
Besides, P = Φ if pf ∈ A1 and P = ∅ otherwise. 2

Now we define a notion supposed to tell us whether two pointed and finite epistemic
models contain the same information about some agents’ beliefs and possibly about propo-
sitional facts.

Definition 4.3.3 (A1-bisimilarity)

Let A1 ⊆ A0. We say that (M,w) and (M ′, w′) are A1-bisimilar, written M,w -A1 M
′, w′, iff

• if pf ∈ A1 then for all p ∈ Φ, w ∈ V (p) iff w′ ∈ V ′(p); and

• for all j1 ∈ A1,

if v ∈ Rj1(w) then there is v′ ∈ Rj1(w
′) such that M,v - M ′, v′,

if v′ ∈ Rj1(w
′) then there is v ∈ Rj1(w) such that M,v - M ′, v′.

2

Proposition 4.3.4 Let A1 ⊆ A0. Then,

M,w -A1 M
′, w′ iff for all ϕ ∈ LCA1 , M,w |= ϕ iff M ′, w′ |= ϕ.

PROOF. We assume that pf ∈ A1, the proof without this assumption is essentially the same.

• Assume M,w -A1 M
′, w′. We are going to prove by induction on ϕ ∈ LCA1 that M,w |=

ϕ iff M ′, w′ |= ϕ.

– ϕ = p. As pf ∈ A1, M,w |= p iff M ′, w′ |= p.

– ϕ = ϕ1 ∧ ϕ2, ϕ = ¬ϕ
′ work by induction hypothesis.

– ϕ = Bj1ϕ
′, j1 ∈ A1. Assume M,w |= Bj1ϕ

′ then for all v ∈ Rj1 , M,v |= ϕ′ (*). But
for all v′ ∈ Rj1(w

′) there is v ∈ Rj1(w) such that M,v - M ′, v′.

So for all v′ ∈ Rj1(w
′),M ′, v′ |= ϕ′ by property of the bisimulation and (*). Finally

M ′, w′ |= Bj1ϕ
′, i.e. M ′, w′ |= ϕ.

The other way around we could show that if M ′, w′ |= Bj1ϕ then M,w |= Bj1ϕ.

• Assume that for all ϕ ∈ LCA1 , M,w |= ϕ iff M ′, w′ |= ϕ (*).
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– Clearly for all p ∈ Φ, w ∈ V (p) iff w′ ∈ V ′(p).

– Let j1 ∈ A1 and v ∈ Rj1(w).

Assume for all v′ ∈ Rj1(w
′) it is not the case that M,v - M ′, v′ (**).

Then for all v′ ∈ Rj1(w
′) there is ϕ(v′) ∈ L such that M,v |= ¬ϕ(v′) and M ′, v′ |=

ϕ(v′).

As by hypothesis W ′ is finite, let ϕ(w′) = Bj1

(

∨

v′∈Rj1 (w
′)

ϕ(v′)

)

; then ϕ(w′) ∈ LCA1 .

Besides M ′, w′ |= ϕ(w′) but M,w |= ¬ϕ(w′). This is impossible by (*), so (**) is
false.

The other part of the definition of -A1 is proved similarly.

QED

Proposition 4.3.4 ensures us that the notion we just defined captures what we wanted.
Its proof uses that the models are finite (otherwise the if direction would not hold).

Definition 4.3.5 LetM andM′ be two sets of multi-agent possible worlds, we set M -A1

M′ iff for all (M,w) ∈ M there is (M ′, w′) ∈ M′ such that M,w -A1 M
′, w′, and for all

(M ′, w′) ∈M′ there is (M,w) ∈M such that M,w -A1 M
′, w′. 2

4.3.2 Some rationality postulates specific to our multi-agent approach

As we said before, in a private announcement, agent Y ’s beliefs about the beliefs of the
agents who are not concerned by the formula should not change. This can be captured by
the following postulate:

RG1 Let ψ,ϕ, ϕ′ ∈ LC6=Y such that A(ϕ) ∩A(ϕ′) = ∅.

If ⊢Int ψ → ϕ′ then ⊢Int (ψ ◦ ϕ)→ ϕ′

This postulate is the multi-agent version of Parikh and Chopra’s postulate [Chopra and
Parikh, 1999]. The example in the paragraph just before Example 4.2.9 illustrates this postu-
late: there, ϕ = ¬p and ϕ′ = Bjp ∧BjCGp. Now the semantic counterpart of RG1:

Proposition 4.3.6 Revision operation ◦ satisfies RG1 iff for all ϕ ∈ LC6=Y , for all (M ′, w′) ∈
Mod(ψ ◦ ϕ), there is (M,w) ∈Mod(ψ) such that M,w -A′ M

′, w′, with A′ = A0 −A(ϕ).

PROOF. We first prove a lemma which is the counterpart of Proposition 2.2.16 for this notion
of A1-bisimilarity.

Lemma 4.3.7 Let A1 ⊆ A0, let M be a finite epistemic model and w ∈ M . Then there is a
formula δA1M (w) such that

1. M,w |= δA1M (w);
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2. for every finite epistemic model M ′ and world w′ ∈ M ′, if M ′, w′ |= δA1M (w) then
M,w -A1 M

′, w′.

PROOF. We only sketch the proof. If pf ∈ A1, take

δA1M (w) =
∧

{p|w∈V (p)}

p ∧
∧

{p|w/∈V (p)}

¬p ∧
∧

j∈A1

(

∧

v∈Rj(w)

B̂jδM (v) ∧Bj

(

∨

v∈Rj(w)

δM (v)

))

otherwise if pf /∈ A1, take

δA1M (w) =
∧

j∈A1

(

∧

v∈Rj(w)

B̂jδM (v) ∧Bj

(

∨

v∈Rj(w)

δM (v)

))

QED

We now prove the proposition. The “if” part is straightforward. Let us prove the “only
if” part. Let ϕ ∈ LC6=Y and let (M ′, w′) ∈ Mod(ψ ◦ ϕ). Assume that for all (M,w) ∈ Mod(ψ),

it is not the case that M ′, w′ -A′ M,w. Then for all (M,w) ∈ Mod(ψ), M,w |= ¬δA
′

M ′(w′) by
lemma 4.3.7. So ⊢Int ψ → ¬δ

A′

M ′(w′). Then ⊢Int ψ ◦ ϕ → ¬δ
A′

M ′(w′). Hence M ′, w′ |= ¬δA
′

M ′(w′),
which is contradictory. QED

Let us consider the converse of RG1.

RG2 Let ψ,ϕ, ϕ′ ∈ LC6=Y such that A(ϕ) ∩A(ϕ′) = ∅.

If ψ ∧ ϕ′ is internally satisfiable then (ψ ◦ ϕ) ∧ ϕ′ is internally satisfiable.

This postulate means that if agent Y considers ϕ′ originally possible (ψ ∧ ϕ′ is internally
satisfiable) then after revising by ϕ, which is not about the same kind of information (A(ϕ)∩
A(ϕ′) = ∅), agent Y still considers ϕ′ possible ((ψ ◦ ϕ) ∧ ϕ′ is internally satisfiable). (This
postulate is formally equivalent to: If ⊢Int (ψ ◦ ϕ) → ϕ′ then ⊢Int ψ → ϕ′.) Its semantic
counterpart is:

Proposition 4.3.8 Revision operation ◦ satisfies RG2 iff for all ϕ ∈ LC6=Y , for all (M,w) ∈Mod(ψ)
there is (M ′, w′) ∈Mod(ψ ◦ ϕ) such that M,w -A′ M

′, w′, with A′ = A0 −A(ϕ).

PROOF. Similar to Proposition 4.3.6. QED

Unlike RG1, RG2 is not really suitable for revision because all the worlds representing
Y ’s epistemic state ‘survive’ the revision process if RG2 is fulfilled. This is not the case in
general because new information can discard some previous possibilities. This is however
the case for update where we apply the update process to each world independently (see
[Katsuno and Mendelzon, 1991] for an in depth analysis). So RG2 is more suitable for an
update operation. In that respect, one can show that all the results about propositional up-
date in [Katsuno and Mendelzon, 1992] transfer to the multi-agent case as well, and so still
thanks to our notion of multi-agent possible world.
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For example, consider ψ = Bip∨Bjp and ϕ = ¬Bip. Then the revised formula is ψ ◦ϕ =
Bjp ∧ ¬Bip according to postulate R2. But according to postulate RG2, after the revision
¬Bjp should be satisfiable because ψ ∧ ¬Bjp was satisfiable. This exemplifies the similarity
of postulate RG2 with the propositional update postulate U8.

Postulates RG1 and RG2 together are equivalent to:

RG1+RG2 Let ψ,ϕ, ϕ′ ∈ LC6=Y such that A(ϕ) ∩A(ϕ′) = ∅.

⊢Int ψ → ϕ′ iff ⊢Int (ψ ◦ ϕ)→ ϕ′.

And the semantic counterpart:

Proposition 4.3.9 Revision operation ◦ satisfies RG1 and RG2 iff for all ϕ ∈ LC6=Y , Mod(ψ) -A′

Mod(ψ ◦ ϕ), with A′ = A0 −A(ϕ).

4.4 A revision operation

In this section we propose a revision operation based on a degree of similarity between
multi-agent possible worlds defined very much in the same way as in [Lehmann et al., 2001;
Ben-Naim, 2006]. Besides, for sake of simplicity, we assume that formulas representing belief
bases and private announcements belong to the language associated to Y without common
belief, written L 6=Y :

L6=Y : ϕ ::= ⊤ | p | Bjψ | ϕ ∧ ϕ | ¬ϕ,

where ψ ranges over L and j over G − {Y }. One should note that in this setting, the ‘if’
direction of Theorem 4.2.16 and Proposition 4.3.6 still hold, but not the ‘only if’ direction.

4.4.1 Mathematical preliminaries

Anti-lexicographic ordering

We first recall the definition of an anti-lexicographic ordering.

Definition 4.4.1 (Anti-lexicographic ordering)

Let k ∈ N and (l0, . . . , lk), (l
′
0, . . . , l

′
k) ∈ [0; 1]

k+1. We set

(l0, . . . , lk) <
k (l′0, . . . , l

′
k) iff







lk < l′k or
lk = l

′
k, . . . , lk−j+1 = l

′
k−j+1 and lk−j < l′k−j

for some 1 ≤ j ≤ k.

2

Now we define the Supremum of a set of tuples with respect to the anti-lexicographic
ordering by using the supremum Sup of real numbers.
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Definition 4.4.2 (Anti-lexicographic supremum)

Let k ∈ N and {(li0, . . . , l
i
k) | i ∈ S} ⊆ [0; 1]k+1 (where S is an index set which is possibly

infinite). The anti-lexicographic supremum Supk{(li0, . . . , l
i
k) | i ∈ S} = (A0, . . . , Ak) is defined

as follows.

Ak = Sup{lik | i ∈ S}; and for all m < k,

Am =







Sup{lim | l
i
j = Aj for all k ≥ j > m} if there is i such that lij = Aj

for all k ≥ j > m
Sup{lim | i ∈ S} otherwise.

where Sup is the usual supremum on real numbers. 2

This definition is well-defined because the supremum of a non-empty set of real numbers
with an upper bound always exists. Finally, we check that this anti-lexicographic supremum
does correspond to the maximum of tuples when this one exists.

Proposition 4.4.3 Let L = {(li0, . . . , l
i
k) | i ∈ S} ⊆ [0; 1]

k+1 and (li00 , . . . , l
i0
k ) ∈ L (where S is an

index set which is possibly infinite).

If (li00 , . . . , l
i0
k ) ≥

k (li0, . . . , l
i
k) for all i ∈ S, then (li00 , . . . , l

i0
k ) = Sup

k(L).

PROOF. Let (A0, . . . , Ak) = Sup
k(L). We prove by induction on m that Am = l

i0
m.

• Ak = Sup{l
i
k | i ∈ S} = l

i0
k by definition of ≤k.

• Assume for all k ≥ j > m that li0j = Aj . Then

Am = Sup{l
i
m | l

i
j = Aj for all j > m}

= Sup{lim | l
i
j = l

i0
j for all j > m} by induction hypothesis

= li0m.

QED

n-bisimulation

Our definition of n-bisimulation is a slight modification of the definition of n-bisimulation
in [Balbiani and Herzig, 2007; Blackburn et al., 2001].

Definition 4.4.4 (n-bisimulation)

Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two epistemic models, and let w ∈M , w′ ∈M ′.
Let Z ⊆ W ×W ′. We recursively define the property of Z being n-bisimulation in w and w′,
written Z :M,w -n M

′, w′:

1. Z :M,w -0 M
′, w′ iff wZw′ and there is p ∈ Φ such that w ∈ V (p) and w′ /∈ V ′(p);
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2. Z :M,w -1 M
′, w′ iff wZw′ and for all p ∈ Φ, w ∈ V (p) iff w′ ∈ V ′(p);

3. For all n ≥ 1, Z :M,w -n+1 M
′, w′ iff wZw′ and val(w) = val(w′) and for all j ∈ G,

• for all v ∈ Rj(w) there is v′ ∈ Rj(w
′) such that Z :M,v -n M

′, v′.

• for all v′ ∈ Rj(w
′) there is v ∈ Rj(w) such that Z :M,v -n M

′, v′.

Now we can define n-bisimilarity between w and w′, written M,w -n M
′, w′ by M,w -n

M ′, w′ iff there exists a relation Z such that Z :M,w -n M
′, w′. 2

Two worlds being n-bisimilar (with n ≥ 1) intuitively means that they have the same
modal structure up to modal depth n− 1, and thus they satisfy the same formulas of degree
at most n − 1. For example, in the epistemic models of Figure 4.8, we have M,w -1 M

′, w′,
but M,w -2 M

′, w′ is not the case.

w : p

Y,B

w′ : p

Y

B ¬p

Y,B

Figure 4.8: Epistemic model (M,w) (above) and (M ′, w′) (below)

The usual definition of Z being a bisimulation corresponds to Z : M,w -n M ′, w′ for
all n ∈ N∗. In fact, it suffices that two finite epistemic models be n-bisimilar up to a certain
modal depth to be bisimilar, as the following proposition shows.

Proposition 4.4.5 [Balbiani, 2007]

Let M and M ′ be two finite epistemic models and w ∈M , w′ ∈M ′. Let n = |M | ∙ |M ′|+ 1. Then,

M,w -n M
′, w′ iff M,w - M ′, w′.

4.4.2 Definition of the revision operation

First we are going to define a degree of similarity between two multi-agent possible worlds
that will allow for an anti-lexicographic order.

Definition 4.4.6 (Degree of similarity between multi-agent possible worlds)

Let (M,w) and (M ′, w′) be two multi-agent possible worlds, let v ∈ M and v′ ∈ M ′, let S
and S′ be two finite sets of possible worlds, and let M and M′ be two sets of multi-agent
possible worlds (possibly infinite). Let n = |M | ∙ |M ′|+ 1 and k ∈ N.

If E is a finite set of real numbers, we write m(E) the average of E, i.e. m(E) = 1
|E|

∑

e∈E

e.

• σ(v, v′) = max{ in |M,v -i M
′, v′ and i ∈ {0, . . . , n}};
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• σ(S, S′) = 1
2 (m{σ(s, S

′) | s ∈ S}+m{σ(S, s′) | s′ ∈ S′})

where σ(s, S′) = max{σ(s, s′) | s′ ∈ S′} and σ(S, s′) = max{σ(s, s′) | s ∈ S};

• sk((M,w), (M ′, w′)) = (σ(w,w′),m{σ (Rj(w), Rj(w
′)) | j ∈ G, j 6= Y }, . . . ,

m{σ (Rj1 ◦ . . . ◦Rjk(w), Rj1 ◦ . . . ◦Rjk(w
′)) | j1, . . . , jk ∈ G, ji 6= ji+1, j1 6= Y });

• sk (M,M′) = Supk{sk ((M,w), (M ′, w′)) | (M,w) ∈M, (M ′, w′) ∈M′}.

2

σ(v, v′) measures a degree of similarity between the worlds v and v′. For example in
Figure 4.8, we have σ(w,w′) = 1

3 . Note that 0 ≤ σ(v, v′) ≤ 1 for all v and v′. If σ(v, v′) = 1
then the worlds v and v′ are bisimilar by Proposition 4.4.5. So their degree of similarity is the
highest possible. If σ(v, v′) = 0, that is M,v -0 M

′, v′ then their degree of similarity is the
lowest possible because they differ even on propositional facts. Likewise, σ(S, S′)measures
a degree of similarity between the sets of worlds S and S′. Note also that 0 ≤ σ(S, S′) ≤ 1
for all S and S′. If σ(S, S′) = 1 then for all worlds v ∈ S there is v′ ∈ S′ such that v is
bisimilar with v′, and vice versa, for all v′ ∈ S′ there is v ∈ S such that v′ is bisimilar with
v. So the degree of similarity between S and S′ is the highest possible. If σ(S, S′) = 0 then
for all v ∈ S there is no v′ ∈ S′ such that v and v′ agree on all propositional letters, and vice
versa, for all v′ ∈ S′ there is no v ∈ S such that v and v′ agree on all propositional letters. So
the degree of similarity is the lowest possible. To be more precise, σ(v, S′) is the degree of
similarity of a world v with S′. So m{σ(v, S′) | v ∈ S} is the average degree of similarity of
a world v ∈ S with S′. Likewise, m{σ(S, v′) | v′ ∈ S′} is the average degree of similarity of
a world v′ ∈ S′ with S. So the degree of similarity between S and S′ is just the average of
these two degrees. sk((M,w), (M ′, w′)) is a tuple which represents by how much two multi-
agent possible worlds are similar relatively to their respective modal depth. For example
in Figure 4.8 we have s2((M,w), (M ′, w′)) = (13 , 0, 0). Note that for a given modal depth
we only compare the degree of similarity of worlds which have the same history (i.e. they
are all accessed from w and w′ by the same sequence of accessibility relations Rj1 , . . . , Rjk ).
Doing so, in our comparison we stick very much to the modal structure of both multi-agent
possible worlds. Besides we take the average of their degree of similarity for every possible
history in order to give the same importance to these different possible histories.

Definition 4.4.7 (Revision operation ◦)
Let ψ ∈ L 6=Y and k = deg(ψ)+1. We assign to ψ a total pre-order≤ψ on multi-agent possible
worlds defined as follows:

(M,w) ≤ψ (M
′, w′) iff sk(Mod(ψ), (M,w)) ≥k sk(Mod(ψ), (M ′, w′)).

The revision operation ◦ associated to this pre-order ≤ψ is defined semantically in the
usual way (see Theorem 4.2.13) by:

Mod(ψ ◦ ϕ) =Min(Mod(ϕ),≤ψ).

2
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So (M,w) is closer to ψ than (M ′, w′)when its degree of similarity with the models of ψ is
higher than the degree of similarity of (M ′, w′)with the models of ψ. In the next section, we
are going to motivate our use of anti-lexicographic ordering and explain why we compare
the modal structures of the multi-agent possible worlds only until modal depth k = deg(ψ)+
1.

4.4.3 Properties of the revision operation

Proposition 4.4.8 Let (M,w) be a multi-agent possible world and ψ ∈ L 6=Y a satisfiable formula
such that deg(ψ) = d. Then there is (Mψ, wψ) ∈Mod(ψ) such that

m{σ(Rj1 ◦ . . . ◦Rjd+1(w), Rj1 ◦ . . . ◦Rjd+1(wψ)) | j1, . . . , jd+1 ∈ G, ji 6= ji+1, j1 6= Y } = 1.

PROOF. We first need to introduce a technical device that will be used in the proof of the
proposition.

Definition 4.4.9 (Tree-like multi-agent possible world)

Let d ∈ N. A tree-like multi-agent possible world of height d is a finite pointed epistemic
model (M t, wt) = (W t, Rt, V t, wt) of height d (see Definition 2.2.15) generated by wt

such that:

1. RY (w
t) = {wt};

2. for all j ∈ G, Rj is transitive and euclidean;

3. for all vt 6= wt there are two unique sequences vt0 = wt, . . . , vtn = vt and j1, . . . , jn
such that ji 6= ji+1, j1 6= Y and wt = vt0Rj1v

t
1Rj2 . . . Rjnv

t
n = v

t;

4. for all vt and j such that vt ∈ Rj(v
t),

– if h(vt) < d then for all i, Ri(v
t) 6= ∅;

– if h(vt) = d then for all i 6= j, Ri(v
t) = ∅.

2

Now we can prove the proposition.

• One can easily show that there is a tree-like multi-agent possible world of height d,
(M t, wt) = (W t, Rt, V t, wt), such that:

– M t, wt |= ψ

– for all j1, . . . , jd with ji 6= ji+1, j1 6= Y |Rj1 ◦ . . . ◦Rjd(w
t)| ≥ |Rj1 ◦ . . . ◦Rjd(w)|.

For all j1, . . . , jd, let fj1,...,jd be a surjection from Rj1 ◦ . . . ◦Rjd(w
t) to Rj1 ◦ . . . ◦Rjd(w).

For all j1, . . . , jd and vt ∈ Rj1 ◦ . . . ◦ Rjd(w
t), we write Mvt = (W vt , Rv

t
, V vt) the sub-

model ofM generated by
⋃

i6=jd

Ri(fj1,...,jd(v
t)). Then we define Plug((M t, wt), (M,w)) =

(W ′, R′, V ′, w′) as follows.
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Figure 4.9: A tree-like multi-agent possible world of height 2

– W ′ =W t ∪ {W vt | vt ∈ Rj1 ◦ . . . ◦Rjd(w
t), ji 6= ji+1, j1 6= Y };

– R′j = Rtj ∪ {R
vt
j | v

t ∈ Rj1 ◦ . . . ◦ Rjd(w
t), ji 6= ji+1, j1 6= Y } ∪ {(vt, ut) | vt ∈

Rj1 ◦ . . . ◦Rjd(w
t), ji 6= ji+1, j1 6= Y, jd 6= j, u

t ∈ Rj(fj1,...,jd(v
t))(in M )};

– V ′(p) = V t(p) ∪ {V fj1,...,jd (v
t)(p) | vt ∈ Rj1 ◦ . . . ◦Rjd(w

t), ji 6= ji+1, j1 6= Y };

– w′ = wt.

• Now we prove that Plug((M t, wt), (M,w)) is a multi-agent possible world. We first
prove that Plug((M t, wt), (M,w)) is serial.

– For all v such that h(v) < d, Rj(v) 6= ∅ for all j by definition of a tree-like multi-
agent possible world;

– for all v such that h(v) > d, Rj(v) 6= ∅ for all j by definition of a generated
submodel;

– for all v such that h(v) = d, Rj(v) 6= ∅ for all j by definition of R′j .

We prove that condition 2 of the definition of a multi-agent possible world is fulfilled.

– If d = 0 then condition 2 is fulfilled by definition of R′j ;

– if d > 0 then condition 2 is fulfilled by condition 3 of the definition of a tree-like
multi-agent possible world.

The other conditions are obvious.

• Because deg(ψ) = d and the restriction of Plug((M t, wt), (M,w)) to the worlds of
height at most d is bisimilar to (M t, wt), we get that Plug((M t, wt), (M,w)), w′ |= ψ.

• Let v′ ∈ Rj1 ◦ . . . ◦ Rjd+1(w
′) with ji 6= ji+1 and j1 6= Y . Then there is vt ∈ Rj1 ◦

. . . ◦ Rjd(w
′) such that v′ ∈ Rjd+1(v

t). Then fj1,...,jd(v
t) ∈ Rj1 ◦ . . . ◦ Rjd(w) and there

is v ∈ Rjd+1(fj1,...,jd(v
t)) such that Plug((M t, wt), (M,w)), v′ - M,v by definition of

Plug((M t, wt), (M,w)). So v ∈ Rj1◦. . .◦Rjd+1(w) andM,v - Plug((M t, wt), (M,w)), v′.
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Likewise, let v ∈ Rj1 ◦ . . . ◦ Rjd+1(w) with ji 6= ji+1 and j1 6= Y . Then there is u ∈
Rj1 ◦ . . . ◦ Rjd(w) such that v ∈ Rjd+1(u). Then there is vt ∈ Rj1 ◦ . . . ◦ Rjd(w

′) such
that fj1,...,jd(v

t) = u because fj1,...,jd is surjective. Besides, there is v′ ∈ Rjd+1(v
t) such

that Plug((M t, wt), (M,w)), v′ - M,v by definition of Plug((M t, wt), (M,w)). So v′ ∈
Rj1 ◦ . . . ◦Rjd+1(w

′) and Plug((M t, wt), (M,w)), v′ - M,v.

So σ(Rj1 ◦ . . . ◦Rjd+1(w), Rj1 ◦ . . . ◦Rjd+1(w
′)) = 1 for all j1, . . . , jd+1 such that ji 6= ji+1

and j1 6= Y .

Thereforem{σ
(

Rj1 ◦ . . . ◦Rjd+1(w), Rj1 ◦ . . . ◦Rjd+1(w
′)
)

| j1, . . . , jd+1 ∈ G, ji 6= ji+1, j1 6=
Y } = 1.

• Finally, we define (Mψ, wψ) as the bisimulation contraction of Plug((M t, wt), (M,w)).
Then all the results for Plug((M t, wt), (M,w)) still hold for (Mψ, wψ) and besides

(Mψ, wψ) ∈Mod(ψ).

QED

This proposition tells us that, given a formula ψ of degree d and a multi-agent possible
world (M,w), there is a multi-agent possible world that satisfies ψ and whose structure is
the same as (M,w) beyond modal depth d. That is why, in sk(Mod(ψ), (M,w)), we stop at
modal depth k = d + 1 when we compare models of ψ with (M,w): we know that there
is anyway a model of ψ whose modal structure is the same as (M,w) beyond this modal
depth, so there is no need to check it further. Moreover, we would like to give priority to
this similarity when we compare models of ψ with (M,w). That is to say, we would like to
ensure that the models of ψ closest to (M,w) are such that their modal structure beyond this
modal depth is the same as the one of (M,w). We do so by using the anti-lexicographic order
defined in Definition 4.4.1.

The following proposition shows that we need to consider only finitely many models of
ψ in sk(Mod(ψ), (M,w)) = Supk{sk((M ′, w′), (M,w)) | (M ′, w′) ∈Mod(ϕ)}.

Proposition 4.4.10 Let (M,w) be a multi-agent possible world. For all k ∈ N∗, there are finitely
many multi-agent possible worlds (M ′, w′) such that

m{σ(Rj1 ◦ . . . ◦Rjk(w
′), Rj1 ◦ . . . ◦Rjk(w)) | j1, . . . , jk ∈ G, ji 6= ji+1, j1 6= Y } = 1.

PROOF. We first prove a lemma.

Lemma 4.4.11 LetM = {(M1, w1), . . . , (Mn, wn)} be an internal model of type 1 for agent
j.4

For all k ∈ N, there are finitely many multi-agent possible worlds (M ′, w′) for agent j such
that

(∗) for all j1, . . . , jk with j1 6= j and ji 6= ji+1, for all v ∈ Rj1 ◦ . . . ◦ Rjk(w
′), there is

(M i, wi) ∈M and vi ∈ Rj1 ◦ . . . ◦Rjk(w
i) such that M,v - M i, vi.

4An internal model or a multi-agent possible world for agent j is an internal model or a multi-agent possible
world where the designated agent is j instead of Y .
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PROOF. First, note that every multi-agent possible world (M ′, w′) for agent j can be
seen as the ‘connection’ of an interpretation (the root w) with a finite number of multi-
agent possible worlds for each agent l 6= j.

Now we prove the lemma by induction on k.

k=1 Because Φ is finite, there are finitely many interpretations. So there are finitely
many (valuations for the) roots of multi-agent possible worlds.

By (∗), there are also finitely many worlds accessible from each root modulo
bisimulation. So, by the remark at the beginning of this proof, there are finitely
many multi-agent possible worlds satisfying (∗).

k+1 For all l 6= j, for all (M i, wi) ∈ M, let M i
l be the submodel of M i generated by

Rl(w
i). M i

l is an internal model of type 2 for agent l. Let Mi
l = {(M

1
l , w

1
l ), . . . ,

(Mni
l , w

ni
l )} be its associated internal model of type 1. LetMl =

⋃

i∈{1,...,n}

Mi
l =

⋃

i∈{1,...,n}

{(M1
l , w

1
l ), . . . , (M

ni
l , w

ni
l )}.

Now, using the remark at the beginning of this proof,

there are finitely many multi-agent possible worlds for agent j satisfying (*)

iff for all l 6= j there are finitely many multi-agent possible worlds (M ′, w′) for
agent l such that for all j1, . . . , jk with j1 6= l and ji 6= ji+1,

for all v′ ∈ Rj1 ◦ . . .◦Rjk(w
′), there is (M i, wi) ∈M and vi ∈ Rl ◦Rj1 ◦ . . .◦Rjk(w

i)
such that M ′, v′ - M i, vi.

iff for all l 6= j there are finitely many multi-agent possible worlds (M ′, w′) for
agent l such that

for all j1, . . . , jk with j1 6= l and ji 6= ji+1,

for all v′ ∈ Rj1 ◦ . . . ◦ Rjk(w
′), there is (M i

l , w
i
l) ∈ Ml and vil ∈ Rj1 ◦ . . . ◦ Rjk(w

i
l)

such that M ′, v′ - M i
l , v

i
l ,

which is true by induction hypothesis.

QED

The proof follows easily from the lemma. Indeed, we just take M = {(M,w)} and we
can then apply the lemma because for all k ∈ N∗ and all multi-agent possible world (M ′, w′),
if

m{σ(Rj1 ◦ . . . ◦Rjk(w
′), Rj1 ◦ . . . ◦Rjk(w)) | j1, . . . , jk ∈ G, ji 6= ji+1, j1 6= Y } = 1

then (∗) is fulfilled. QED

Corollary 4.4.12 Let (M,w) be a multi-agent possible world, ψ ∈ L 6=Y and k = deg(ψ) + 1. Then
there is (M ′, w′) ∈Mod(ψ) such that sk((M ′, w′), (M,w)) = sk(Mod(ψ), (M,w)).
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PROOF. It follows for Propositions 4.4.8 and 4.4.10. QED

In other words, this corollary tells us that sk(Mod(ψ), (M,w)) = Supk{sk((M ′, w′), (M,w)) |
(M ′, w′) ∈Mod(ψ)} is actually a maximum.

Finally, we have the following nice property.

Proposition 4.4.13 The assignment defined in Definition 4.4.7 is a faithful assignment. Therefore
the operator ◦ defined in Definition 4.4.7 satisfies the postulates R1 − R6. Besides, ◦ satisfies also
postulate RG1.

PROOF.

• Clearly ≤ψ is a total pre-order because ≤k is a total pre-order. We are going to show
that it is faithful.

– If (M,w), (M ′, w′) ∈ Mod(ψ) then sk(Mod(ψ), (M,w)) = sk(Mod(ψ), (M ′, w′)) =
(1, . . . , 1) by definition of sk. So we cannot have (M,w) <ψ (M

′, w′).

– If (M,w) ∈Mod(ψ) and (M ′, w′) /∈Mod(ψ) then sk(Mod(ψ), (M,w)) = (1, . . . , 1)
and sk(Mod(ψ), (M ′, w′)) = (l1, . . . , lk)with l1 < 1.

So sk(Mod(ψ), (M,w)) >k sk(Mod(ψ), (M ′, w′)), i.e. (M,w) <ψ (M
′, w′).

– Finally, if ⊢Int ψ ↔ ψ′ then clearly ≤ψ=≤ψ′ .

• We are going to show that ◦ satisfies postulate (RG1). Let ϕ ∈ L 6=Y and (M ′, w′) ∈
Mod(ψ ◦ ϕ). Assume that for all (M,w) ∈ Mod(ψ), it is not the case that M,w -A′

M ′, w′ with A′ = A0 −A(ϕ).

Let (M,w) ∈ Mod(ψ) such that sk((M,w), (M ′, w′)) = sk(Mod(ψ), (M ′, w′)). Such a
(M,w) exists by Corollary 4.4.12.

Assume that pf /∈ A′, the case pf ∈ A′ is dealt with similarly. Then by definition of
-A′ ,

there is j0 ∈ A
′, v ∈ Rj0(w) such that for all v′ ∈ Rj0(w

′) it is not the case that M,w -

M ′, v′ (1)

or there is j0 ∈ A′, v′ ∈ Rj0(w
′) such that for all v ∈ Rj0(w) it is not the case that

M,v - M ′, v′ (2).

Assume w.l.o.g. that (1) is the case. Then σ(Rj0(w), Rj0(w
′)) < 1.

Using generated submodels, we can easily build a multi-agent possible world (M ′′, w′′)
such that M ′′, w′′ -A0−{j0} M

′, w′ and M ′′, w′′ -j0 M,w.

– Then for all j 6= j0, σ(Rj(w
′′), Rj(w)) = σ(Rj(w

′), Rj(w)) and σ(Rj0(w
′′), Rj0(w)) =

1 > σ(Rj0(w
′, Rj0(w)).
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– So for all n ∈ N∗, all j1, . . . , jn such that j1 6= j0, ji 6= ji+1, σ(Rj0 ◦ Rj1 ◦ . . . ◦
Rjn(w

′′), Rj0 ◦Rj1 ◦ . . . ◦Rjn(w)) = 1 ≥ σ(Rj0 ◦Rj1 ◦ . . . ◦Rjn(w
′), Rj0 ◦Rj1 ◦ . . . ◦

Rjn(w)).

Besides, for all n ∈ N∗, all j1, . . . , jn such that j1 6= j0, j1 6= Y , ji 6= ji+1,

σ(Rj1 ◦ . . . ◦Rjn(w
′′), Rj1 ◦ . . . ◦Rjn(w)) = σ(Rj1 ◦ . . . ◦Rjn(w

′), Rj1 ◦ . . . ◦Rjn(w))
because M ′′, w′′ -A0−{j0} M

′, w′.

So for all n ≥ 2,

m{σ(Rj1 ◦ . . . ◦Rjn(w
′′), Rj1 ◦ . . . ◦Rjn(w)) | ji 6= ji+1, j1 6= Y } ≥

m{σ(Rj1 ◦ . . . ◦Rjn(w
′), Rj1 ◦ . . . ◦Rjn(w)) | ji 6= ji+1, j1 6= Y }

and

m{σ(Rj(w
′′), Rj(w)) | j ∈ G, j 6= Y } > m{σ(Rj(w

′), Rj(w)) | j ∈ G, j 6= Y }.

So sk((M ′′, w′′), (M,w)) >k sk((M ′, w′), (M,w)).

Finally, because ϕ ∈ LA0−{j0}, M
′′, w′′ -A0−{j0} M ′, w′ and M ′, w′ |= ϕ, we have

M ′′, w′′ |= ϕ. So (M ′′, w′′) ∈Mod(ϕ). Then (M ′, w′) /∈Mod(ψ ◦ ϕ) which is impossible
by assumption.

QED

4.4.4 Concrete example

The revision operations ◦ we introduced so far were syntactic. But in fact we could also
define revision operations directly on internal models. Indeed, as we said internal models
are formal representations that agent Y has ‘in her mind’. So we need revision mechanisms
that she could use to revise her formal representation when she receives an input under the
form of an epistemic formula. Such revision operations would then take an internal model
and an input formula as arguments and would yield another internal model. The following
definition gives an example of such a revision operation.

Definition 4.4.14 (Revision operation ∗)
Let M be an internal model (of type 1) and ϕ ∈ L6=Y a satisfiable formula. We define the
revision ofM by ϕ, writtenM∗ ϕ, as follows.

M∗ ϕ =Min (Mod(ϕ),≤M) .

where for all multi-agent possible worlds (M,w) and (M ′, w′),

(M,w) ≤M (M
′, w′) iff sk(M, (M,w)) ≥k sk(M, (M ′, w′))

where k = deg(ϕ) + 1. 2



4.4. A revision operation 87

The reason why we stop at modal depth k = deg(ϕ) + 1 is the same reason why we
stopped at modal depth k = deg(ψ) + 1 for sk(Mod(ψ), (M,w)) in Definition 4.4.7. It is
because we know thanks to Proposition 4.4.8 that there is a model of ϕ and a multi-agent
possible world ofMwhich agree on their modal structure beyond modal depth deg(ϕ).

However, note that ifM is an internal model thenM∗ ϕ might be infinite and therefore
not an internal model. The following proposition ensures us that it is not the case.

Proposition 4.4.15 LetM be an internal model (of type 1) and ϕ ∈ L 6=Y a satisfiable formula. Then
M∗ ϕ is an internal model (of type 1).

PROOF. Let k = deg(ϕ) + 1. By Proposition 4.4.8, we know that there is (M ′, w′) ∈ Mod(ϕ)
and (M,w) ∈M such that

m{σ(Rj1 ◦ . . . ◦Rjk(w
′), Rj1 ◦ . . . ◦Rjk(w)) | j1, . . . , jk ∈ G, ji 6= ji+1, j1 6= Y } = 1.(∗∗)

So M ∗ ϕ = {(M ′, w′) ∈ Mod(ϕ) | sk((M ′, w′),M) = sk(Mod(ϕ),M)} = {(M ′, w′) ∈
Mod(ϕ) | there is (M,w) ∈ M such that (M ′, w′) satisfies (**) and sk((M ′, w′), (M,w)) =
sk(Mod(ϕ),M)}. By proposition 4.4.10, this last set is finite. SoM∗ ϕ is finite, i.e.M∗ ϕ is
an internal model (of type 1). QED

Example 4.4.16 (‘Coin’ example)

Let us take up the ‘coin’ example after the private announcement to Bob that the coin is
heads up (p). Ann’s internal model of type 1 {(M,w), (M ′, w′)} after this private announce-
ment is depicted in Figure 4.10. The internal model of type 2 associated to {(M,w), (M ′, w′)}
is depicted in Figure 4.11. These internal models are the same as before the private an-
nouncement to Bob because for her it is as if nothing happened. Now, suppose that the

w : p

A

B B

w′ : ¬p

A

B B

v1 : p

A,B

A,B
v2 : ¬p

A,B

v′1 : p

A,B

A,B
v′2 : ¬p

A,B

Figure 4.10: Ann’s internal model of type 1 {(M,w), (M ′, w′)} after the private announce-
ment to Bob that p is true

quizmaster announces her privately that Bob believes that the coin is heads up (formally
BBp). This announcement contradicts of course her beliefs and she has to revise her internal
model. The following proposition tells us that the revised model is {(M r, wr), (M r′ , wr

′

)},
which is depicted in Figure 4.12.

Proposition 4.4.17 {(M,w), (M ′, w′)} ∗BBp = {(M
r, wr), (M r′ , wr

′

)}
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p

A,B

A,B
¬p

A,B

Figure 4.11: Internal model of type 2 associated to {(M,w), (M ′, w′)}

PROOF. We first prove a series of lemmas.

Lemma 4.4.18 Let (M ′′, w′′) such that M ′′, w′′ |= BBp and s2({(M,w), (M ′, w′)}, (M ′′, w′′)) =
s2({(M,w), (M ′, w′)},Mod(BBp)). Then |M ′′| ≥ 4.

PROOF. W.l.o.g. we assume thatM ′′, w′′ |= p. Let v′′ ∈ RB◦RA(w
′′). We know by Proposition

4.4.8 that s2({(M,w), (M ′, w′)}, (M ′′, w′′)) = (α, β, 1). So there is v ∈ RB ◦ RA(w) such that
M ′′, v′′ - M,v.

Then there are v′′1 , v
′′
2 ∈ RB ◦RA(w

′′) such that M ′′, v′′1 |= p∧¬BBp∧¬BAp and M ′′, v′′2 |=
¬p ∧ ¬BBp ∧ ¬BAp. There is also v′′3 ∈ RB(w

′′) such that M ′′, v′′3 |= BBp ∧ ¬BAp. Finally,
M ′′, w′′ |= BAp ∧ BBp. So we have 4 worlds w′′, v′′1 , v

′′
2 and v′′3 satisfying different formulas.

Therefore, there are at least 4 worlds in M ′′. QED

Lemma 4.4.19 Let (M ′′, w′′) such thatM ′′, w′′ |= BBp. Then s2({(M,w), (M ′, w′)}, (M ′′, w′′)) =
(

1
3|M ′′|+1 ,

3
4(3|M ′′|+1) , α

)

for some α ∈ [0; 1].

Therefore s2({(M,w), (M ′, w′)},Mod(BBp)) ≤ (
1
13 ,

3
52 , 1).

PROOF. Assume w.l.o.g. that M ′′, w′′ |= p. Then max{i |M ′′, w′′ -i M,w} = 1.
Let v′′ ∈ RB(w

′′). Then max{i | M ′′, v′′ -i M,v and v ∈ RB(w)} = 1 because M ′′, v′′ |=
BBp and M,vi 2 BBp for i = 1, 2.

max{i | M ′′, v′′ -i M,v1 and v′′ ∈ RB(w
′′)} = 1 because for all v′′ ∈ RB(w

′′), M ′′, v′′ |=
BBp and M,vi 2 BBp for i = 1, 2.

max{i |M ′′, v′′ -i M,v2 and v′′ ∈ RB(w
′′)} = 0 because for all v′′ ∈ RB(w

′′), M ′′, v′′ |= p
and M,v2 |= ¬p.

So σ(w,w′) = 1
|M ||M ′′|+1 , and

σ(RB(w), RB(w
′′)) = 1

2

(

1
2

(

1
|M ||M ′′|+1 +

0
|M ||M ′′|+1

)

+ 1
|RB(w′′)|

∑

v′′∈RB(w′′)

1
|M ||M ′|+1

)

=

1
2

(

1
2

1
|M ||M ′′|+1 +

1
|M ||M ′′|+1

)

= 3
4(|M ||M ′′|+1) .

Therefore s2({(M,w), (M ′, w′)}, (M ′′, w′′)) =
(

1
3|M ′′|+1 ,

3
4(3|M ′′|+1) , α

)

for some α ∈ [0; 1].

We get that s2({(M,w), (M ′, w′)},Mod(BBp)) ≤
(

1
13 ,

3
52 , 1

)

thanks to Lemma 4.4.18. QED

Lemma 4.4.20

s2({(M,w), (M ′, w′)}, (M r, wr)) =
(

1
13 ,

3
52 , 1

)

.

s2({(M,w), (M ′, w′)}, (M r′ , wr
′

)) =
(

1
13 ,

3
52 , 1

)

.
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Lemma 4.4.21 Let (M ′′, w′′) such that M ′′, w′′ |= BBp. Then,

if s2((M,w), (M ′′, w′′)) =
(

1
13 ,

3
52 , 1

)

then M ′′, w′′ - M r, wr;

if s2((M ′, w′), (M ′′, w′′)) =
(

1
13 ,

3
52 , 1

)

then M ′′, w′′ - M r′ , wr
′

.

PROOF. Assume s2 ((M,w), (M ′′, w′′)) =
(

1
13 ,

3
52 , 1

)

. Then |M ′′| = 4 by Lemma 4.4.19. Then
one can easily show that |RB(w

′′)| = 1 and |RB ◦ RA(w
′′)| = 2. We set RB(w

′′) = {v1} and
RB ◦RA(w

′′) = {v′′3 , v
′′
4}with M ′′, v′′3 |= p and M ′′, v′′4 |= ¬p.

Let Z = {(wr, w′′), (vr2, v
′′
2), (v

r
3, v
′′
3), (v

r
4, v
′′
4)}. One can easily show that Z is a bisimulation

between (M r, wr) and (M ′′, w′′).

The proof is similar if s2 ((M ′, w′), (M ′′, w′′)) =
(

1
13 ,

3
52 , 1

)

. QED

The proof of Proposition 4.4.17 then follows easily from Lemma 4.4.19, Lemma 4.4.20 and
Lemma 4.4.21. QED

wr : p

A

B

wr
′

: ¬p

A

B
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2 : p
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A,B
vr4 : ¬p

A,B
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′

3 : p
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A,B
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′

4 : ¬p
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Figure 4.12: Revised internal model {(M r, wr), (M r′ , wr
′

)} after the private announcement
made to her that Bob believes the coin is heads up (BBp)

The internal model of type 2 associated to {(M r, wr), (M r′ , wr
′

)} is depicted in Figure 4.13. If
we compare this internal model with the original internal model of Figure 4.11, we observe
that Ann still does not know whether the coin is heads or tails up. This is what we should ex-
pect since the announcement was only about Bob’s beliefs and did not give any information
about the actual state of the coin (as it would have been the case if the private announcement
was that Bob knows that the coin is heads up). Of course, Ann’s beliefs about Bob’s beliefs
have changed because she now believes that Bob believes that the coin is heads up, unlike
before. But (Ann’s beliefs about) Bob’s beliefs about Ann’s beliefs have not changed. This is
also what we should expect. Indeed, Bob is not aware of this private announcement to Ann,
so his beliefs about Ann’s beliefs do not change, and Ann knows that they do not change.
And because these beliefs are independent from his beliefs about propositional facts like p,
Ann’s beliefs about Bob’s beliefs about Ann’s beliefs should not change during the revision
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p Y

A

Y

¬p

Y

A

p

Y Y

A

p

A,Y

A,Y
¬p

A,Y

Figure 4.13: Internal model of type 2 associated to {(M r, wr), (M r′ , wr
′

)}

process. More generally, Ann’s beliefs about beliefs of degree greater than 1, i.e. larger than
the degree of BBp, should not change. Formally, this is exactly what our anti-lexicographic
ordering and Proposition 4.4.8 ensure. 2

Remark 4.4.22 This example suggests that we could strengthen our postulate RG1 and re-
quire more demanding conditions. For example, if ϕ = p∧ (BjBiq ∨Bip)∧BiBjBiBjp, then
the information this formula is about is not really A(ϕ) = {pf, j, i} as we defined it, but is
more precisely made of the set of sequences of agents S(ϕ) = {pf, (j, i), (i), (i, j, i, j)}. So,
what should not change during a revision by ϕ are all beliefs ϕ′ whose corresponding set
of sequences S(ϕ′) does not intersect with S(ϕ), which includes here all formulas of degree
higher than 4 (because deg(ϕ) = 4). Formally, this corresponds to replacing RG1 by the
following postulate.

RG1’ Let ψ,ϕ, ϕ′ ∈ LC6=Y such that S(ϕ) ∩ S(ϕ′) = ∅.

If ⊢Int ψ → ϕ′ then ⊢Int ψ ◦ ϕ→ ϕ′.

2

4.5 Conclusion

We have shown in this chapter that generalizing belief revision theory to the multi-agent
case amounts to studying private announcement. Indeed, when the incoming information
is consistent with agent Y ’s beliefs, we have shown that expanding by ϕ in the AGM style
corresponds to updating by the private announcement of ϕ in the BMS style. As we said, this
result bridges the gap between AGM theory and BMS theory: AGM expansion can be seen
as a particular kind of BMS update. On the other hand, when the incoming information
is not consistent with agent Y ’s beliefs then agent Y has to revise her beliefs. To do so,
we have generalized the techniques of AGM theory to the multi-agent case by replacing the
notion of possible world by the notion of multi-agent possible world. Afterwards, we have
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proposed rationality postulates for private multi-agent belief revision which are specific to
our multi-agent setting. Finally, we have given a concrete example of private multi-agent
belief revision based on the ‘coin’ example.

However, we have studied revision in the internal approach only for the case of private
announcement. It still remains to study revision in the internal approach for any kind of
events, and not only for private announcement. In general, revision has to take place for an
internal model (M,Wa), given an internal event model (A, Aa), if the updated model is not
serial (and thus not an internal model). Indeed, if the updated model is not serial then this
means that for agent Y it is not common belief that the agents’ beliefs are consistent (as we
said in Section 3.5). The ultimate goal is thus to preserve seriality. Formally speaking, by
Proposition 3.3.10, revision has to take place when for all a ∈ Aa and all w ∈ Wa, M, w 2
δn(a) (where n = |M|∙|A|). One obvious solution would be to revise (M,Wa) by the formula
∨

a∈Aa

δn(a) and then update by (A, Aa). The problem is that this formula does not necessarily

belong to LC6=Y and our revision mechanisms work only for formulas of LC6=Y . Besides, even
if we managed to revise by

∨

a∈Aa

δn(a), it is not necessarily the case that the resulting updated

model would be serial. Indeed, the model revised by
∨

a∈Aa

δn(a) could be of size larger than

|M|, and so Proposition 3.3.10 could not be applied anymore. So we do not know how
to proceed for such general cases. Nevertheless, revision in the internal approach for any
kind of internal event model is essential, not only for the internal approach but also for the
external approach. Indeed, from the external model corresponding to an initial situation, one
can get easily the internal model of each agent by Definition 2.3.16; and from the external
event model corresponding to an event performed in this initial situation, one can easily get
the internal event model for each agent by Definition 3.4.1. Now, in reality, when an event
takes place, each agent updates and possibly revises her internal model on the basis of her
internal event model. So given these internal models and internal event models, if we knew
how to revise internal models, we should also be able to obtain in any case the updated
and possibly revised internal model of each agent. Then the updated and possibly revised
external model after the event would be obtained by applying Definition 2.3.19 to this set
of updated and possibly revised internal models. So we see that knowing how to revise
internal models by any kind of internal event model is essential if we want to revise external
models as well. Steiner and Studer in [Steiner, 2006; Steiner and Studer, 2007] have proposed
a system that preserves seriality in updated external models, but when the formula that is
announced contradicts the beliefs of (some of) the agents, this formula is just ignored. By
doing so, they simply avoid the issue of revising external models.

However, there are other ways than external models to represent epistemic situations
from an external point of view. These formalisms often enrich modal logic with probability
or plausibility. This enables to provide a more fine grained account not only of the epistemic
state of agents but also of the process of belief change. In particular, they allow for belief
revision. In the following chapter, we are going to propose such a general formalism for the
external approach.





Chapter 5

External approach: a general formalism

5.1 Introduction

As we said in Section 2.3.1, the external approach has rather applications in cognitive psy-
chology or game theory. In these fields, one needs to have a formalism which models as
accurately as possible epistemic states of (human) agents and the dynamics of belief and
knowledge. In that respect, the logical dynamics underlying the interpretation of an event
by a human agent are complex and are rather neglected in the literature. To get a glimpse
of them, let us have a look at two examples. Assume that you see somebody drawing a
ball from an urn containing n balls which are either black or white. If you believe that it is
equally probable that there are 0,1,. . . , or n black balls in the urn then you expect with equal
probability that he draws a white ball or a black ball; but if you believe there are more black
than white balls in the urn then you expect with a higher probability that he draws a black
ball rather than a white ball. We see in this example that your beliefs about the situation con-
tribute actively to interpret the event: they determine the probability with which you expect
the white-ball drawing to happen. But this expectation, determined by your beliefs about
the situation, can often be balanced consciously or unconsciously by what you actually ob-
tain by the pure perception of the event happening. For example, assume that you listen to a
message of one of your colleagues on your answering machine which says that he will come
to your office on Tuesday afternoon, but you cannot distinguish precisely due to some noise
whether he said Tuesday or Thursday. From your beliefs about his schedule on Tuesday and
Thursday, you would have expected him to say that he would come on Tuesday because,
say you believe he is busy on Thursday. But this expectation has to be balanced by what you
actually perceive and distinguish from the message on the answering machine: you might
consider more probable of having heard Tuesday than Thursday, which is independent of
this expectation. Thus we see in these examples that in the process of interpreting an event,
there is an interplay between two main informational components: your expectation of the
event to happen and your pure perception (observation) of the event happening.

Up to now, this kind of phenomenon, although very common in everyday life is not dealt

93



94 Chapter 5. External approach: a general formalism

with neither in dynamic epistemic logic [Baltag and Moss, 2004], [van Benthem, 2003] nor in
the situation calculus [Bacchus et al., 1999]. To model such phenomena, we have to resort to
probability because the formalism for the external approach based on modal logic that we
used in the preceding chapters is not expressive enough. Besides, in order to represent the
agent’s epistemic state accurately we also use hyperreal numbers. This enables us to model
both degrees of belief and degrees of potential surprise, thanks to infinitesimals. The expres-
siveness of this formalism will then allow us to tackle the dynamics of belief appropriately,
notably revision, and also to express in a suitable language what would surprise the agent
(and how much) by contradicting her beliefs. Finally, for sake of generality, the events we
consider in this chapter can also change the (propositional) facts of the situation.

This chapter is organized as follows. In Section 5.2 we will introduce some mathematical
objects needed to represent the epistemic state of agents accurately. In Section 5.3 we will
propose a general formalism for the external approach but we will deal only with the notion
of belief. This formalism will be built in the BMS style. Then in Section 5.4 we will add
knowledge to this formalism and in Section 5.5 we will generalize our formalism to the
multi-agent setting. In Section 5.6, we will compare our formalism to existing ones and
finally in Section 5.7 we will conclude.

5.2 Mathematical preliminaries

In our formalism, the probabilities of worlds and formulas will take values in a particular
mathematical structure (V,/) (abusively written (V,≤)) different from the real numbers,
based on hyperreal numbers (∗R,≤). (The approach in [Adams, 1975] uses them as well to
give a probabilistic semantics to conditional logic.) In this section, we will briefly recall the
main features of hyperreal numbers that will be useful in the sequel (for details see [Keisler,
1986]). Afterwards we will motivate and introduce our particular structure (V,/).

Roughly speaking, hyperreal numbers are an extension of the real numbers to include
certain classes of infinite and infinitesimal numbers. A hyperreal number x is said to be
infinitesimal iff |x| < 1/n for all integers n, finite iff |x| < n for some integer n, and infinite
iff |x| > n for all integers n. Infinitesimal numbers are typically written ε, finite numbers
are written x and infinite numbers are written ∞. Note that an infinitesimal number is a
finite number as well, that 1ε is an infinite number and that 1

∞ is an infinitesimal number.
Two hyperreal numbers x and y are said to be infinitely close to each other if their difference
x− y is infinitesimal. If x is finite, the standard part of x, denoted by St(x), is the unique real
number which is infinitely close to x. So for example St(1 + ε) = 1, St(ε) = 0.

Hyperreal numbers will be used to assign probabilities to facts (formulas). A fact is
considered consciously probable by the agent when its probability is real. A fact would
surprise the agent if she learnt that it was true when its current probability is infinitesimal.
We want to refine the ordering given by the infinitesimals and introduce a global ranking
among these potentially surprising facts. Indeed, a fact of probability ε2 is infinitely more
surprising than a fact of probability ε and hence, for the agent, the importance of the former
should be negligible compared to the importance of the latter. This can be done algebraically
by approximating our expressions. More precisely, in case a hyperreal number x is infinitely
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smaller than y, i.e. there is an infinitesimal ε such that x = ε ∙ y, then we want y + x = y. For
example we want 1 + ε = 1 (here x = ε and y = 1), ε+ ε2 = ε (here x = ε2 and y = ε),. . . In
other words, in case x is negligible compared to y, then y+ x = y. The hyperreal numbers do
not allow us to do that, so we are obliged to devise a new structure (V,/).

First we introduce some definitions. By semi-field (resp. ordered semi-field), we mean a field
(resp. ordered field) which lacks the property of ‘existence of additive inverse’. For example,
(R+,+, ∙,≤) and (∗R+,+, ∙,≤) are ordered semi-fields, where ∗R+ denotes the positive hy-
perreal numbers. Now we define V, which will be the quotient structure of the set of positive
hyperreal numbers ∗R+ by a particular equivalence relation.

Definition 5.2.1 (Equivalence relation ≈)

Let x, y ∈ ∗R+, we set

x ≈ y iff

{

St(xy ) = 1 if y 6= 0

x = 0 if y = 0.

We can easily check that ≈ is an equivalence relation on ∗R+. 2

For instance, we have 1 + ε ≈ 1 and ε+ ε2 ≈ ε.

Theorem 5.2.2 The quotient structure V = (∗R+/≈,+, ∙) is a semi-field. (Elements of V, being
equivalence classes of ∗R+, are classically denoted x. And ∙,+ denote the quotient relations of ∙ and
+.)

PROOF. We only need to prove that + and ∙ are well defined, since the rest is standard and
straightforward.

Assume x = x′ and y = y′. We have to show x+y = x′+y′ and x∙y = x′∙y′.

First, let us show that x+y = x′+y′.

Assume x = 0 (similar proof for y = 0). Then x = x′ = 0. In that case x+y = x+ y = y =
y′ = 0 + y′ = x′ + y′ = x′+y′.

Assume x 6= 0 and y 6= 0. Then x, x′, y, y′ are all different from 0. So x + y 6= 0 because
x, y ≥ 0.

x+y = x′+y′

iff x+ y = x′ + y′

iff St(x
′+y′

x+y ) = 1 because x+ y 6= 0 (see above)

iff St( x
x+y ) + St(

y′

x+y ) = 1

iff St(x
′

x ∙
1
1+ y

x

) + St(y
′

y ∙
1
1+x

y

) = 1

iff St(x
′

x ) ∙ St(
1
1+ y

x

) + St(y
′

y ) ∙ St(
1
1+x

y

) = 1

iff St( 1
1+ y

x

) + St( 11+x
y

) = 1 because St(x
′

x ) = St(
y′

y ) = 1

iff 1
1+St( y

x
)
+ 1
1+St(x

y
) = 1
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iff 1
1+St( y

x
)
+ 1
1+ 1

St(
y
x )

= 1 which is true.

Now, let us show that x∙y = x′∙y′.

Assume x = 0 (similar proof for y = 0). Then x = x′ = 0 and the equality is fulfilled.

Assume x 6= 0 and y 6= 0. Then x, x′, y, y′ are different from 0. So x ∙ y 6= 0.

x∙y = x′∙y′

iff x ∙ y = x′ ∙ y′

iff St(x
′∙y′

x∙y ) = 1 because x ∙ y 6= 0

iff St(x
′

x ) ∙ St(
y′

y ) = 1
iff 1 ∙ 1 = 1 which is true. QED

Now we need to define the ordering relation / on V.

Definition 5.2.3 We define a relation / on V by

x / y iff there are x ∈ x, y ∈ y such that x ≤ y

2

V equipped with / turns out to be an ordered semi-field thanks to the following lemma:

Lemma 5.2.4 If x / y then for all x′ ∈ x and all y′ ∈ y, x′ ≤ y′

PROOF.

1. Assume x 6= 0 and y 6= 0 (then x, y are different from 0).

(a) If x = y then we have the result.

(b) If x 6= y then by definition there are x0 ∈ x and y0 ∈ y such that x0 < y0.

Assume there are x′ ∈ x, y′ ∈ y such that x′ > y′.

- Assume that either x0 ≤ y
′ ≤ x′ ≤ y0 or x0 ≤ y

′ ≤ y0 ≤ x
′ or x0 ≤ y0 ≤ y

′ ≤ x′.

Then x0 ≤ y
′ ≤ x′, so x0

x0
≤ y′

x0
≤ x′

x0
because x0 6= 0. Then 1 ≤ St( y

′

x0
) ≤ St( x

′

x0
) = 1

because x′, x0 ∈ x. Then St( y
′

x0
) = 1, y′ ∈ x0 = x, x = y′ = y which is impossible

by assumption.

- Assume that either y′ ≤ x0 ≤ x
′ ≤ y0 or y′ ≤ x′ ≤ x0 ≤ y0 or y′ ≤ x0 ≤ y0 ≤ x

′.

Then y′ ≤ x0 ≤ y0, so y′

y0
≤ x0

y0
≤ 1 because y0 6= 0. Then 1 = St( y

′

y0
) ≤ St(x0y0 ) ≤ 1.

Then St(x0y0 ) = 1. So x = x0 = y0 = y which is impossible by assumption.

So in all possible cases we reach a contradiction. This means that for all x′ ∈ x, all
y′ ∈ y x′ ≤ y′
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2. (a) If x = 0 and y 6= 0, then 0 / y. So there is y0 ∈ y such that 0 < y0.

Assume there is y′ ∈ y such that 0 > y′. Then

y′ < 0 ≤ y0
y′

y0
< 0 ≤ y0

y0
= 1

1 = St( y
′

y0
) ≤ 0 ≤ 1 because y′, y0 ∈ y

i.e. 0 = 1, which is counterintuitive.

So for all y′ ∈ y, 0 ≤ y′.

(b) if y = 0 and x 6= 0 then

x ≤ 0, so there is x0 ∈ x such that x0 < 0.

Assume there is x′ ∈ x such that x′ > 0.

x0 ≤ 0 < x′

1 = x0
x0
≤ 0 < x′

x0

1 ≤ 0 ≤ St( x
′

x0
) = 1 because x′, x0 ∈ x

i.e. 0 = 1 which is again counterintuitive.

So for all x′ ∈ x, x′ ≤ 0.

QED

Theorem 5.2.5 The structure (V,/) is an ordered semi-field.

PROOF. First we prove a lemma.

Lemma 5.2.6 / is a total order on ∗R+ such that

1. if x / y then x+z / y+z,

2. if 0 / x and 0 / y then 0 / x∙y.

PROOF. Follows easily from Lemma 5.2.4 and the fact that ≤ is a total order on ∗R+

satisfying also conditions 1 and 2 above. QED

The proof then follows easily from the lemma above and Theorem 5.2.2. QED

In the sequel, we will denote abusively x, +, ∙, / by x,+, ∙,≤. The elements x containing
an infinitesimal will be called abusively infinitesimals and denoted ε, δ, . . .. Those containing
a real number will be called abusively reals and denoted a, b, . . . Those containing an infinite
number will be called infinites and denoted∞,∞′, . . . Moreover, when we refer to intervals,
these intervals will be in V; so for example ]0; 1] refers to {x ∈ V | 0 / x / 1 and not x ≈ 0}.

We can then easily check that now we do have at our disposal the following identities:
1 + ε = 1; 0.6 + ε = 0.6; ε+ ε2 = ε; . . .
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5.3 Starting with beliefs as probabilities

As in the BMS system, we divide our task into three parts. Firstly, we propose a formal-
ism called proba-doxastic (pd) model to represent how the actual world is perceived by the
agent from a static point of view (Section 5.3.1). Secondly, we propose a formalism called
generic event model to represent how an event occurring in this world is perceived by the
agent (Section 5.3.2). Thirdly, we propose an update mechanism which takes as arguments
a pd-model and a generic event model, and yields a new pd-model; the latter is the agent’s
representation of the world after the event represented by the above generic event model
took place in the world represented by the above pd-model (Section 5.3.3). In this section,
our account will be presented for a single agent to highlight the main new ideas and we will
focus only on the notion of belief.

5.3.1 The static part

The Notion of pd-model

Definition 5.3.1 (Proba-doxastic model)

A proba-doxastic model (pd-model) is a tuple M = (W,P, V,wa)where:

1. W is a finite set of possible worlds;

2. wa is the possible world corresponding to the actual world;

3. P :W → ]0; 1] is a probability measure such that

∑

{P (w) | w ∈W} = 1;

4. V : Φ→ 2W assigns a set of possible worlds to each propositional letter.

2

Intuitive interpretations.

The possible worlds W are determined by the modeler (who is somebody different from
the agent and who has perfect knowledge of the situation). One of them, wa, corresponds
to the actual world. Among these worlds W there are some worlds that the agent conceives
as potential candidates for the world in which she dwells, and some that she would be sur-
prised to learn that they actually correspond to the world in which she dwells (disregarding
whether this is true or false). The first ones are called conceived worlds and the second surpris-
ing worlds. The conceived worlds are assigned by P a real value and the surprising worlds
are assigned an infinitesimal value, both different from 0. For example, some people would
be surprised if they learnt that some swans are black, although it is true. To model this sit-
uation, we introduce two worlds: one where all swans are white (world w) and one where
some swans are not white (world v). So for these people the actual world v is a surprising
world, whereas the world w is a conceived world.
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Of course for the agent some (conceived) worlds are better candidates than others, and
this is expressed by the probability value of the world: the larger the real probability value
of the (conceived) world is, the more likely it is for the agent. But that is the same for the
surprising worlds: the agent might be more surprised to learn about some worlds than oth-
ers. For example, if you play poker with somebody you trust, you will never suspect that he
cheats. However he does so, and so carefully that you do not suspect anything. When at the
end of the game he announces to you that he has cheated, you will be surprised: it is true in
the actual world, but this world was a surprising world for you. But you will be even more
surprised if he tells you that he has cheated five times before. So the world where he has
cheated five times will be more surprising than the world where he has cheated once, and
these are both surprising worlds for you. Infinitesimals enable us to express this: the larger
the infinitesimal probability value of the (surprising) world is, the less the agent would be
surprised by this world. Anyway, that is why we need to introduce hyperreal numbers: to
express these degrees of potential surprise that cannot be expressed by a single number like
0, which then becomes useless for us.

The agent does not think consciously that the surprising worlds are possible (unlike con-
ceived worlds), she is just not aware of them. In other words, from an internal point of
view, the agent’s representation of the surrounding world is composed only of the conceived
worlds. So these surprising worlds are useless to represent her beliefs which we assume are
essentially conscious. But still, they are relevant for the modeling from an external point of
view. Indeed they provide some information about the epistemic state of the agent: namely
what would surprise her and how firmly she holds to her belief. Intuitively, something that
you do not consider consciously as possible and that contradicts your beliefs is often sur-
prising for you if you learn that it is true. These worlds will moreover turn out to be very
useful technically in case the agent has to revise her beliefs (see Section 5.3.3).

In Figure 5.1 an example of a pd-model (without any valuation) is depicted. The dots
correspond to worlds and the numbers next to them represent their respective probabilities.
The conceived worlds are the ones in the inner circle, the other worlds are surprising worlds.
Note that both the sum of the probabilities of the conceived worlds and the global sum of all
these worlds (conceived and surprising) are equal to 1:

∑

{P (v) | v ∈ W} =
∑

{P (v) | v is
real} = 1 (see Section 5.2).

Examples

In this chapter we will follow step by step two examples: the ‘Urn’ example and the ‘An-
swering Machine’ example of the introduction.

Example 5.3.2 (‘Urn’ example)

Suppose the agent is in a fair, and there is an urn containing n = 2.k > 0 balls which are
either white or black. The agent does not know how many black balls there are in the urn
but believes that it is equally probable that there are 0,1,..., or n black balls in the urn. Now
say there is actually no black ball in the urn. This situation is depicted in Figure 5.2. The
worlds are within squares and the double bordered world is the actual world. The numbers
within squares stand for the probabilities of the worlds and the propositional letter pi stands
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Figure 5.1: Example of pd-model

for: “there are i black balls in the urn”. 2

w0 : p0,
1

n+1 wi : pi,
1

n+1 wn : pn,
1

n+1

Figure 5.2: ‘Urn’ example

Example 5.3.3 (‘Answering machine’ example)

Assume a professor (the agent) comes back after lunch to her office. She ate with a colleague
who just told her at lunch about his new timetable for this year. However she does not
remember quite precisely what he said, in particular she is a bit uncertain whether his 1.5
hour lecture at 2.00 pm is on Tuesday or on Thursday, and she believes with probability 4

5
(resp. 15 ) that his lecture is on Tuesday (resp. Thursday). In fact it is on Tuesday at 2.00 pm.
We represent this situation in the model of Figure 5.3. As in Figure 5.2, the double bordered
world is the actual world. The numbers within squares stand for the probabilities of the
worlds and p (resp. ¬p) stands for “her colleague has his 1.5 hour lecture on Tuesday (resp.
Thursday)”1. 2

1Note that strictly speaking we would need two propositional variables p and p′, where p (resp. p′) would
stand for “her colleague has his lecture on Tuesday (resp. Thursday)” because the fact that he does not have his
lecture on Tuesday (¬p) should not imply logically that he has his lecture on Thursday (p′).
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w : p, 45 v : ¬p, 15

Figure 5.3: ‘Answering Machine’ Example

Static language

We can define naturally a language LSt for pd-models (St standing for Static).

Definition 5.3.4 (Language LSt)
The syntax of the language LSt is defined by

LSt : ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ψ | P (ϕ) ≥ x | Bϕ

where x ∈ [0; 1[, and p ranges over Φ.

Its semantics is inductively defined by

M,w |= ⊤
M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff not M,w |= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= P (ϕ) ≥ x iff

∑

{P (v) |M,v |= ϕ} ≥ x
M,w |= Bϕ iff

∑

{P (v) |M,v |= ϕ} = 1

2

M,w |= P (ϕ) ≥ x should be read “ϕ has probability greater than x for the agent”. (Note
that the world w does not really play a role here because we could pick any world of the
pd-model M .) M,w |= Bϕ should be read “the agent believes ϕ”. However we have to be
careful about what notion of belief we refer to in this definition. Indeed the term “belief”
refers in natural language to different concepts (that we distinguish here through LSt). As-
sume that you conjecture an arithmetical theorem ϕ from a series of examples and particular
cases. The more examples you have checked, the more you will “believe” in this theorem.
This notion of belief corresponds to the type of formula P (ϕ) ≥ a for a real and smaller
than 1; the bigger a is the more you “believe” in ϕ. But if you come up with a proof of this
theorem that you have checked several times, you will still “believe” in this theorem but
this time with a different strength. Your belief will be a conviction and corresponds here to
the formula Bϕ. However, note that this conviction (belief) might still be false if there is a
mistake in the proof that you did not notice (like what happened to Wilson for his first proof
of Fermat’s theorem). This notion of belief actually corresponds to the notion of belief we
used in the preceding chapters. Moreover, if we define the operator Bw by M,w |= Bwϕ iff
M,w |= P (ϕ) > 0.5, then Bw corresponds to Lenzen’s notion of “weak belief” and B and Bw

satisfy Lenzen’s axioms defined in [Lenzen, 1978]. This operator B satisfies the axioms K, D,
4, 5 but not the axiom T. So it does not correspond to the notion of knowledge. For a more in
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depth account on the different significations of the term “belief”, see for example [Lenzen,
1978].

Moreover, we can also express in this language what would surprise the agent, and how
much so. Indeed, in case x is an infinitesimal ε, P (ϕ) = ε should be read “the agent would be
surprised with degree ε if she learnt that ϕ ”.2 (P (ϕ) = ε is defined by P (ϕ) ≥ ε ∧ P (¬ϕ) ≥
1 − ε.) Note that the smaller x is, the higher the intensity of surprise is. But this use of
infinitesimals could also express how firmly we believe something, in Spohn’s spirit. Indeed,
P (¬ϕ) = ε > ε′ = P (¬ϕ′)would then mean that ϕ′ is believed more firmly than ϕ.

In the truth condition for P (ϕ) ≥ x, note that if x is real then only the conceived worlds
have to be considered in the sum

∑

{P (v) |M,v |= ϕ} because the sum of any real (different
from 0) with an infinitesimal is equal to this real (see Section 5.2). Likewise, the semantics of
B amounts to say that ϕ is true at least in all the conceived worlds of W . So it is quite possible
to have a surprising actual world where ¬ϕ is true and still the agent believing ϕ (i.e. Bϕ):
just take ϕ=“All swans are white” in the above example.

5.3.2 The dynamic part

Definition 5.3.5 (Generic event model)

A generic event model is a structure A = (E,S, P, {PΓ | Γ is a maximal consistent subset of S
}, {Prea | a ∈ E}, aa)where

1. E is a finite set of possible events;

2. aa is the actual event;

3. S is a set of formulas of LSt closed under negation;

4. PΓ : E → [0; 1] is a probabilistic measure indexed by a maximal consistent subset Γ of
S, and assigning to each possible event a a real number in [0; 1] such that

∑

{PΓ(a) | a ∈ E} = 1;

5. P : E →]0; 1] is a probabilistic measure such that

∑

{P (a) | a ∈ E} = 1;

6. Prea : Φ→ LSt is a function indexed by each possible event a.

2

2Note that this does not necessarily model all the things that would surprise the agent since there might still
be things that the agent might conceive as possible with a low real probability and still be surprised to hear
them claimed by somebody else (Gerbrandy, private communication). For a more in depth formal account on
the notion of surprise, see [Lorini and Castelfranchi, 2007]
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Intuitive interpretation.

Items 1 and 2 are similar to Definition 5.3.1. It remains to give an interpretation to items
3-6 of the definition.

Items 3 and 4. S corresponds to the set of facts about the world that are relevant to
determine the probabilities PΓ of Item 4. The maximal consistent sets Γ then cover all the
relevant eventualities needed for the modeling. The choice of the formulas of S is left to the
modeler but they should be as elementary and essential as possible in order to give rise to
all the relevant eventualities. In that respect, one should avoid infinite sets S.

PΓ(a) is the probability that the agent would expect (or would have expected) a to happen
(among the possible events of E), if the agent assumed that she was in a world where the
formulas of Γ are true. In other words, PΓ(a) can be viewed as the probability for the agent
that the event a would occur in a world where the formulas of Γ are true. Note that this is
a conditional probability of the form P (a|Γ). Moreover, because we assume the agent to be
rational, the determination of the value of this probability can often be done objectively and
coincides with the agent’s subjective determination (see examples).

This probability value is real and cannot be infinitesimal (unlike P ), and (still unlike P )
we can have PΓ(a) = 0. This last case intuitively means that the event a cannot physically be
performed in a world where Γ is true. These operators PΓ generalize the binary notion of
precondition in [Baltag and Moss, 2004], [Aucher, 2004] and [van Benthem, 2003].

Remark 5.3.6 In our definition of generic event model, instead of referring directly to worlds
w of a particular pd-model, we refer to maximal consistent subsets Γ of a set S. This is for
several reasons. Firstly, the determination of the probability Pw(a) does not depend on all
the information provided by the world w but often on just a part of it expressed by Γ. Sec-
ondly, for philosophical reasons, the same event might be performed in different situations,
modelled by different pd-models, and be perceived differently by the agent in each of these
situations, depending on what her epistemic state is (see Example 18). The use of maximal
consistent sets enables us to capture this generic aspect of events: in our very definition we do
not refer to a particular pd-model. Finally, for computational reasons, we do not want that
in practice the definition of generic event models depends on a particular pd-model because
we want to be able to iterate the event without having to specify at each step of the iteration
the new event model related to the new pd-model. The use of maximal consistent sets allows
us to do so. However, from now on and for better readability we write Pw(a) = PΓ(a) for

the unique Γ such thatM,w |= Γ (such a Γ exists because S contains the negation of each
formula it contains). 2

Item 5. P (a) is the probability for the agent that a actually occurs among E, determined
solely by the agent’s perception and observation of the event happening. This probability is
independent of the agent’s beliefs of the static situation which could alter and modify this
determination consciously or unconsciously (see the ‘answering machine’ example). This
probability is thus independent of the probability that the agent would have expected a to
happen, because to determine this last probability the agent takes into account what she
believes about the static situation (this fact will be relevant in Section 5.3.3).
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a, 12 b, 12

S = {pi,¬pi | i = 0..n}

P {pi}(a) = i
n , P {pi}(b) = 1− i

n for all i.
Prea(pn) =⊥ and Prea(pi) = pi+1 if i < n
Preb(pn) =⊥ and Preb(pi) = pi if i < n

Figure 5.4: Someone else draws a (white) ball and puts it in his pocket and the agent is
uncertain whether he draws a white (b) or a black ball (a).

Just as in the static case, we have conceived events (which are assigned a real number)
and surprising events (which are assigned an infinitesimal). The former are events that the
agent conceives as possible candidates while one of the events of E actually takes place.
The latter are events that the agent would be surprised to learn that they actually took place
while one of the other events took place. To take up the poker example of Section 5.3.1, if
you play poker with somebody you trust and at a certain point he cheats while you do not
suspect anything, then the actual event of cheating will be a surprising event for you (of
value ε) whereas the event where nothing particular happens is a conceived event (of value
1). Just as in the static case, the relative strength of the events (conceived and surprising) is
expressed by the value of the operator P . The probabilities values are different from 0 for
the same reasons that the probability values in a pd-model are different from 0 (see Section
5.3.1).

Item 6. The function Prea deals with the problem of determining what facts will be true
in a world after the event a takes place. Intuitively, Prea(p) represents the necessary and
sufficient Precondition in any world w for p to be true after the performance of a in this
world w.

Example 5.3.7 (‘Urn’ example)

Consider the event whereby someone else draws a ball from the urn (which is actually a
white ball) and puts it in his pocket, the agent sees him doing that but she cannot see the
ball. This event is depicted in Figure 5.4. Action a (resp. b) stands for “someone else draws a
black (resp. white) ball and puts it in his pocket”. The numbers within the squares stand for
the probabilities P (a) of the possible events. The maximal consistent sets are represented by
their ‘positive’ components, so {pi} refers to the set {pi,¬pk | k 6= i}.

The observation and perception of the event in itself does not provide the agent any
reason to have a preference between him drawing a black ball or a white ball; so we set
P (a) = P (b) = 1

2 .3 However if the agent assumed she was in a world where there are i black
balls then the probability that she would (have) expect(ed) him drawing a black (resp. white)

3We could nevertheless imagine some exotic situation where the agent’s observation of him drawing the
ball would give her some information on the color of the ball he is drawing. For example, if black balls were
much heavier than white balls and the agent sees him having difficulty drawing a ball, she could consider more
probable that he is drawing a black ball.
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a, 35 b, 25

S = {p,¬p}.

P {p}(a) = 1
5 , P {p}(b) = 4

5

P {¬p}(a) = 4
5 , P {¬p}(b) = 1

5 .
Prea(p) = p, Preb(p) = p.

Figure 5.5: The agent is uncertain whether her colleague says that he will come on Tuesday
(a) or on Thursday (b) between 2.00 pm and 4.00 pm, but she considers more probable having
heard Tuesday than Thursday.

ball would be i
n (resp. 1 − i

n ); so we set P {pi}(a) = i
n and P {pi}(b) = 1 − i

n . Moreover there
cannot be n black balls in the urn after he put one ball in his pocket; so we set Prea(pn) =⊥
and Preb(pn) =⊥. But if he draws a black ball then there is one black ball less; so we set
Prea(pi) = pi+1 for all i < n. Otherwise if he draws a white ball the number of black balls
remains the same; so we set Preb(pi) = pi for all i < n. 2

Example 5.3.8 (‘Answering machine’ example)

Assume now that when the professor enters her office, she finds a message on her answering
machine from her colleague. He tells her that he will bring her back a book he had borrowed
next Tuesday in the beginning of the afternoon between 2.00 pm and 4.00 pm. However,
there is some noise on the message and she cannot distinguish precisely whether he said
Tuesday or Thursday. Nevertheless she considers more probable of having heard Tuesday
rather than Thursday. We model this event in Figure 5.5. a stands for ”her colleague says
that he will come on Tuesday between 2.00 pm and 4.00 pm” and b stands for ”her colleague
says that he will come on Thursday between 2.00 pm and 4.00 pm”. P (a) and P (b) represent
the probabilities the agent assigns to a and b on the sole basis of what she has heard and
distinguished from the answering machine (and are depicted within the squares). These
probabilities are determined on the basis of her sole perception of the message. On the
other hand, P {p}(a) is the probability that she would have expected her colleague to say
that he will come on Tuesday (rather than Thursday) if she assumed that his lecture was on
Tuesday. This probability can be determined objectively. Indeed, because we assume that
her colleague has a lecture on Tuesday from 2.00 pm to 3.30 pm, the only time he could come
on Tuesday would be between 3.30 pm and 4.00 pm (only 0.5 hour). So we set P {p}(a) =
0.5hr
2.5hrs =

1
5 . Similarly, P {p}(b) = 2hrs

2.5hrs =
4
5 . Finally, the message does not change the fact of

her colleague having a lecture or not on Tuesday; so we set Prea(p) = p and Preb(p) = p. 2

5.3.3 The update mechanism

Definition 5.3.9 (Update product)

Given a pd-model M = (W,P, V,wa) and a generic event model A = (E,S, P,
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{PΓ | Γ is a m.c. subset of S}, {Prea | a ∈ E}, aa), we define their update product to be the
pd-model M ⊗A = (W ′, P ′, V ′, w′a), where:

1. W ′ = {(w, a) ∈W × E | Pw(a) > 0};

2. We set

P ′(a) =
P (a) ∙ PW (a)

∑

{P (b) ∙ PW (b) | b ∈ E}
where PW (a) =

∑

{P (v) ∙ P v(a) | v ∈W};

then

P ′(w, a) =
P (w)

∑

{P (v) | v ∈W and P v(a) > 0}
∙ P ′(a);

3. V ′(p) = {(w, a) ∈W ′ |M,w |= Prea(p)};

4. w′a = (wa, aa).

2

Intuitive interpretation and motivations.

Items 1 and 4 As in BMS, in the new model we consider all the possible worlds (w, a)
resulting from the occurrence of the possible event a in the possible world w, granted that
this event a can physically take place in w (i.e. Pw(a) > 0). The new actual world is the result
of the performance of the actual event aa in the actual world wa.4

Item 2. We want to determine P ′(w, a) = P (W ∩ A), where W stands for the event ‘we
were in world w before a occurred’ and A for ‘event a just occurred’. More formally, in the
probability space W ′, W stands for {(w, b) | b ∈ E} and A for {(v, a) | v ∈ W} and we can
check that W ∩ A = {(w, a)}. But of course to determine these probabilities we have to rely
only on M and A.
Probability theory tells us that

P (W ∩A) = P (W |A) ∙ P (A).

We first determine P (W |A), i.e. the probability that the agent was in world w given the
extra assumption that event a occurred in this world. We claim it is reasonable to assume

P (W |A) =
P (w)

∑

{P (v) | v ∈W and P v(a) > 0}
.

That is to say, we conditionalize the probability of w for the agent (i.e. P (w)) to the worlds
where the event a took place and that may correspond for the agent to the actual world w

4In this chapter we follow the external approach. So our pd-models and generic event models are correct
and the actual world and actual event of our models do correspond to the actual world and actual event in
reality. It is then natural to assume that the actual event aa can physically be performed in the actual world wa:
Pwa(aa) > 0. Hence, the existence of the (actual) world (wa, aa) is justified.
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(i.e. {v | v ∈ W and P v(a) > 0}). That is the way it would be done in classical probability
theory. The intuition behind it is that we now possess the extra piece of information that a
occurred in w. So the worlds where the event a did not occur do not play a role anymore for
the determination of the probability of w. We can then get rid of them and conditionalize on
the remaining relevant worlds.

It remains to determine P (A), which we also denote P ′(a); that is to say the probability
for the agent that a occurred. We claim that

P (A) = P1 ∙ P2

where P1 is the probability for the agent that a actually occurred, determined on the sole
basis of her perception and observation of the event happening; and P2 is the probability that
the agent would have expected a to happen determined on the sole basis of her epistemic
state (i.e. her beliefs). Because P1 and P2 are independent, we simply multiply them to get
P ′(a).

By the very definition of P (a) (see Definition 5.3.5), P1 = P (a).
As for P2, the agent’s epistemic state is represented by the worlds W . So she could expect

a to happen in any of these worlds, each time with probability P v(a). We might be tempted

to take the average of them: P2 =
∑
{P v(a)|v∈W}

n , where n is the number of worlds in W .
But we have more information than that on the agent’s epistemic state. The agent does not
know in which world of W she is, but she has a preference among them, which is expressed
by P . So we can refine our expression above and take the center of mass (or barycenter) of the
P v(a)s balanced respectively by the weights P (v)s (whose sum equals 1), instead of taking
roughly the average (which is actually also a center of mass but with weights 1

n ). We get
P2 = P

W (a) =
∑

{P (v) ∙ P v(a) | v ∈W}. (Note that this expression could also be viewed as
an application of a theorem of conditional probability if we rewrote P v(a) to P (a|v).)

Finally, we normalize P ′(a) on the set of events E to get a probabilistic space. We get

P (A) = P ′(a) =
P (a) ∙ PW (a)

∑

{P (b) ∙ PW (b) | b ∈ E}
where PW (a) =

∑

{P (v) ∙ P v(a) | v ∈W}.

We can easily check that
∑

{P ′(w, a) | (w, a) ∈ W ′} = 1, which ensures that P ′ is a
probability measure on 2W

′

.
Item 3. Intuitively, this formula says that a fact p is true after the performance of a in w

iff the necessary and sufficient precondition for p to be true after a was satisfied in w before
the event occurred.5

Example 5.3.10 (‘Urn’ example)

Assume now that someone else just drew a (white) ball from the urn and put it in his pocket,
event depicted in Figure 5.4. Then because the agent considered equally probable that there
was 0,1,..., or n black balls in the urn, she would expect that the other person drew a black
ball or a white ball with equal probability. That is indeed the case:

5This solution of determining which propositional facts are true after an update was first proposed by Re-
nardel De Lavalette [Renardel De Lavalette, 2004] and Kooi [Kooi, 2007], [van Ditmarsch et al., 2005].
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(w1, a) : p0,
1
2n

(wk, a) : pk−1,
1
2n

(wk+1, a) : pk,
1
2n

(wn, a) : pn−1,
1
2n

(w0, b) : p0,
1
2n

(wk−1, b) : pk−1,
1
2n

(wk, b) : pk,
1
2n

(wn−1, b) : pn−1,
1
2n

Figure 5.6: Situation of the urn example after somebody else drew a white ball and put it in
his pocket (a).

PW (a) =
∑

{P (v) ∙ P v(a) | v ∈W} =
∑

{ 1n+1 ∙
i
n | i = 0..n} =

1
2 = P

W (b).

Independently from that, her perception of the event did not provide her any reason to
prefer a over b (i.e. P (a) = P (b)). So, in the end she should believe equally that the other
agent drew a black ball or a white ball, and this is indeed the case: P ′(a) = P ′(b).

If we perform the full update mechanism, then we get the pd-model of Figure 5.6. In this
model all the worlds are equally probable for the agent. Note that there cannot be n black
balls in the urn (pn) any longer since one of them has been withdrawn.

Now consider another scenario where this time the agent initially believes that there are
more black balls than white balls (for example she believed somebody else that told her so
in the beginning). This can be modelled by assigning the initial probabilities P (wi) = ε for
i = 0, .., k and P (wi) =

1
k for i = k + 1, .., n to the worlds of the model depicted in Figure 5.2

(recall that there are n = 2.k balls). Then, if somebody else draws a ball from the urn and we
compute again the probabilities of the events a and b, we get what we expect, namely that
the agent considers more probable that a black ball has been withdrawn rather than a white
ball:

P ′(a) = PW (a) =
∑

{ε ∙ in | i = 0..n}+
∑

{ 1k ∙
i
n | i = k + 1..n} =

3
4 +

1
4k >

1
4 −

1
4k =

PW (b) = P ′(b).

2

Example 5.3.11 (‘Answering machine’ example)

Now that the professor has heard the message, she updates her representation of the world
with this new information. We are not going to perform the full update and display the new
pd-model, but rather just concentrate on how she computes her event probabilities P ′(a)
and P ′(b).

After this computation, the probability P ′(a) that her colleague said that he will come on
Tuesday is a combination of: (1) how much she would have expected him to say so, based
on what she knew and believed of the situation, and (2) what she actually distinguished and
heard from the answering machine.

The first value (1) is PW (a) =
∑

{P (v) ∙ P v(a) | v ∈ W}, and the second (2) is P (a). We
get P ′(a) = 12

29 <
17
29 = P

′(b). The important thing to note here is that a has become less prob-
able than b for her: P ′(a) < P ′(b) while before the update P (a) > P (b). On the one hand,
because the probability that she heard her colleague saying that he would come on Tuesday
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(w, a) : p, 4ε2 (w, b) : p, ε

(v, a) : ¬p, 4ε (v, b) : ¬p, 1

Figure 5.7: Situation after she believed that her colleague’s lecture is on Thursday (¬p) and
she heard him saying that he would come on Thursday (b).

has decreased due to her lower expectation of him to say so: PW (a) = 8
25 <

3
5 = P (a); expec-

tation which is based on her belief that he is busy on Tuesday because he has got a lecture
(P (p) = 4

5 ). On the other hand, this is due to the fact that the probability that she heard her
colleague saying that he would come on Thursday has increased due to her higher expecta-
tion of him to say so: P (b) = 2

5 <
17
25 = P

W (b)).

Now consider a second scenario where this time she initially believes with a higher prob-
ability that he has got a lecture on Thursday than on Tuesday (P (w) = 1

5 and P (v) = 4
5 in

Figure 5.3). This time her belief that she heard him saying that he will come on Tuesday
(resp. Thursday) is strengthened (resp. weakened) by her independent expectation of him to
say so: P ′(a) > P (a) > P (b) > P ′(b). 2

Example 5.3.12 (‘Answering machine’ example 2)

In this variant of the answering machine example, we are going to show the usefulness of
infinitesimals and show an example of belief revision.

Basically, we consider the same initial situation, except that the agent’s beliefs are differ-
ent. This time she is convinced that her colleague’s lecture is on Thursday and she is also
convinced that she heard him saying that he would come on Thursday. Formally, everything
remains the same except that now in Figure 5.3 P (w) = ε and P (v) = 1, and in Figure 5.5
P (a) = ε and P (b) = 1. If we apply the full update mechanism with these new parameters
we get the model depicted in Figure 5.7. In this model she is convinced that he has got a
lecture on Thursday and that he said he would come on Thursday (world (v, b)). Moreover,
she would be surprised (with degree 5ε) if she learnt that her colleague has got his lecture on
Tuesday or he said he will come on Tuesday (worlds (w, b), (v, a) and (w, a); remember that
5ε+ 4ε2 = 5ε). But she would be much more surprised (with degree ε2) if she learnt that he
has got his lecture on Tuesday and he said he will come on Tuesday (world (w, a)), because
that contradicts twice her original convictions.

Now later her colleague tells her that he has got his lecture on Tuesday, then she will
have to revise her beliefs. The event model of this announcement is depicted in Figure 5.8.
The resulting model is depicted in Figure 5.9. In this model, she now believes that he has got
his lecture on Tuesday, but she is still convinced that her colleague said that he will come on
Thursday because no new information has contradicted this. This is made possible thanks
to the (global) ranking of surprising worlds by infinitesimals. What happened during this
revision process is that the least surprising world where p is true became the only conceived
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c, 1

S = {p,¬p}
P p(c) = 1, P¬p(c) = 0

Prea(p) = p.

Figure 5.8: Her colleague announces to her that his lecture is on Tuesday.

((w, a), c) : p, 4ε ((w, b), c) : p, 1

Figure 5.9: Situation after her colleague announced his lecture is on Tuesday (c) and she then
revised her beliefs.

world. 2

5.4 Adding knowledge

5.4.1 State of the art

The definition of knowledge and its relationship with the notion of belief is an old issue of
epistemology dating back at least to Plato. In the Theaetetus, Plato came to the conclusion
that knowledge is true belief plus something else, namely logos. Ayer is more specific than
Plato and claims that “the necessary and sufficient conditions for knowing that something is
the case are first that one is said to know be true, secondly that one be sure of it, and thirdly
that one should have the right to be sure” [Ayer, 1956]. So, we could say more succinctly that
until then knowledge was conceived as ‘justified true belief’. Seven years later, Gettier [Get-
tier, 1963] provided two counterexamples to such an analysis of knowledge. One of these
two examples is the following. Suppose that Smith has strong evidence that ‘Jones owns a
Ford’ (1) (for instance, Jones has always owned a Ford since Smith knows him). Then, be-
cause of (1) and by propositional logic, Smith is also justified in believing that ‘Jones owns a
Ford or his friend Brown is in Barcelona’ (2), even if Smith has no clue about where Brown
is at the moment. However it turns out that Jones does not own a Ford and that by pure
coincidence Brown is actually in Barcelona. Then, (a) (2) is true, (b) Smith believes (2), and
(c) Smith is justified in believing (2). So Smith has a true and justified belief in (2). However,
intuitively, one could not say that Smith knows (2). This counterexample sparked a lot of
discussion and many other definitions of knowledge were proposed, analyzed and refined
to avoid the now-called ‘Gettier problem’ [Lycan, 2006]. However no consensus came out of
this epistemological industry.

At about the same time Hintikka inaugurated contemporary epistemic logic with his
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seminal book Knowledge and Belief. An Introduction to the Logic of the Two Notions [Hintikka,
1962]. His aim was not to propose another definition of knowledge like in epistemology but
rather to propose a formal approach to the topic in order to study the logic of the notions
of knowledge and belief. So he was more concerned with the investigation of reasonable
principles that these notions could fulfill. In that respect, he claims in his book that the logic
of knowledge is S4, which is obtained by adding to the normal modal logic K the axioms
T and 4: if the agent knows something then this thing is true (formally Kϕ → ϕ, axiom T)
and if the agent knows something then she knows that she knows it (formally Kϕ→ KKϕ,
axiom 4). We believe these are reasonable assumptions to adopt for the notion of knowledge
and refer to [Lenzen, 1978] or [Hintikka, 1962] for justifications.

Then comes the problem of adding belief to the picture. An attempt was proposed by
Kraus and Lehman in [Kraus and Lehmann, 1988]. For this purpose, they introduce in the
semantics two accessibility relations D and R, D modeling the notion of belief and R mod-
eling the notion of knowledge. They then propose to add to the logic S4 of knowledge the
following axioms to capture the interactions between these two notions.

D Bϕ→ ¬B¬ϕ (Consistency)
5 ¬Kϕ→ K¬Kϕ (Negative introspection)
KB Kϕ→ Bϕ (Bridge axiom)
KB’ Bϕ→ KBϕ (Bridge axiom’)

However, Voorbraak observed that these axioms entail the following theorem: BKϕ →
Kϕ.6 This theorem says that one cannot believe to know a false proposition, which is of
course counterintuitive. Besides, we can also prove the following one: Bϕ → ϕ, which is
even more counterintuitive.

Van der Hoek in [van der Hoek, 1993] has proposed a systematic approach to this prob-
lem. He showed thanks to correspondence theory that any bimodal axiomatic system that
includes the axioms D, KB, 5 and the axiom SB below entails the theorem Bϕ → Kϕ. This
theorem is of course counterintuitive because it produces a collapse of the distinction be-
tween knowledge and belief. However, he also showed that for each proper subset of
{D,KB,5,SB}, counter-models can be built which show that none of those sets of axioms
entail the collapse of the distinction between knowledge and belief.

SB Bϕ→ BKϕ (Strong belief)

6Here is the proof:
1 Kϕ→ Bϕ Axiom KB
2 K¬Kϕ→ B¬Kϕ KB : ¬Kϕ/ϕ
3 Bϕ→ ¬B¬ϕ Axiom D
4 B¬ϕ→ ¬Bϕ 3, contraposition
5 B¬Kϕ→ ¬BKϕ 4 : Kϕ/ϕ
6 ¬Kϕ→ K¬Kϕ Axiom 5
7 ¬Kϕ→ B¬Kϕ 6,2, Modus Ponens
8 ¬Kϕ→ ¬BKϕ 7,5, Modus Ponens
9 BKϕ→ Kϕ 8, contraposition.
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So we have to drop at least one principle in {D,KB, 5,SB}. Voorbraak proposed to drop
the axiom KB. His notion of knowledge is therefore unusual in so far as it does not require the
agent to be aware of its belief state. We do not believe this is a reasonable principle, at least
for modeling human agents. Axioms SB and D are also intuitively correct: SB expresses
that our notion of belief corresponds to a notion of conviction or of ‘being sure of’, while
axiom D expresses that our beliefs are consistent. On the other hand, most philosophers
(including Hintikka) have quite rightly attacked the axiom 5. Let us take up the ‘answering
machine’ example and assume as in Example 5.3.12 that the agent believes (is sure that)
her colleague’s lecture is on Thursday (formally B¬p). She is actually wrong because it is
actually on Tuesday. Therefore, she does not know that her colleague’s lecture is on Tuesday
(¬Kp). If we assume that axiom 5 is valid then we should conclude that she knows that
she does not know that her colleague’s lecture is on Tuesday (K¬Kp) (and therefore she
also believes that she does not know it (B¬Kp)). This is of course counterintuitive. More
generally, axiom 5 is invalidated when the agent has wrong beliefs. Despite such blatant
counterexamples, axiom 5 is still considered in computer science and economics as a valid
principle for the notion of knowledge. It is however true that most examples and particular
models studied in these fields do validate this axiom (such as Halpern et al.’s interpreted
systems [Fagin et al., 1995]), but that should not be a reason to accept this principle in general.
We should instead propose a general system for knowledge and belief which boils down to
accept axiom 5 when we restrict our attention to the examples and cases studied in these
fields. Such systems have been proposed for example by Lenzen [Lenzen, 1978; Lenzen,
1979] and Stalnaker [Stalnaker, 2006].

Lenzen and Stalnaker proposed to add to the logic S4 of knowledge the following axioms
to capture the interactions between the notions of belief and knowledge.

PI Bϕ→ KBϕ (Positive introspection)
NI ¬Bϕ→ K¬Bϕ (Negative introspection)
KB Kϕ→ Bϕ (Bridge axiom)
D Bϕ→ ¬B¬ϕ (Consistency)
SB Bϕ→ BKϕ (Strong belief)

These axioms are clearly intuitively correct. One can even show that the belief operator
B satisfies the KD45 logic. In fact, the belief operator B can be defined in terms of the knowl-
edge operator K because one can prove the following theorem: Bϕ ↔ ¬K¬Kϕ. Thanks to
this result, one can also show that the knowledge operator satisfies the logic S4.2 which is
obtained by adding to the logic S4 the axiom .2 (see Section 2.2.1). This logic is also the logic
of the notion of justified knowledge studied by Voorbraak in [Voorbraak, 1993].

Thanks to this connection between the belief and the knowledge operator, one can define
an accessibility relation D for the notion of belief on the basis of the accessibility relation R
for the notion of knowledge: for any worlds w and v, we set wDv iff for all u, wRu implies
uRv. Then one can show that this accessibility relation is indeed serial, euclidean and tran-
sitive. Finally, note that if we are in a world w such that wDw then the accessibility relation
for knowledge R is euclidean at w. So in this system, when the agent does not have wrong
beliefs, axiom 5 is indeed valid (and the notions of knowledge and belief collapse).
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But we could go the other way around and try to define from the accessibility relation
D for belief an accessibility relation R for knowledge which satisfies the above principles
PI, NI, KB, D and SB. We know by the bridge axiom that if wDv then wRv. We also know
by the strong belief axiom that if wDw then (wRv iff wDv). So we still have to specify the
worlds accessible by R for worlds w such that it is not the case that wDw. In [Stalnaker,
2006], Stalnaker introduces four such possible extensions of the belief accessibility relations
D to the knowledge accessibility relations R. The first extension consists in the reflexive
closure of the accessibility relation D. This is the minimal extension possible and it yields the
objectionable definition of knowledge as true belief. This yields the logic S4.4.7 The second
extension consists in defining wRv as ((wDw and wDv) or (not wDw)). This is the maximal
extension possible and it yields the logic S4.3.2 (which has been used in non-monotonic
logic).8 The third extension consists in defining knowledge as true belief which cannot be
defeated by any true fact. In other words, a fact is known if and only if it is true and it will
still be believed after any possible truthful announcement. 9 This last extension yields the
logic S4.3.10 This last condition was also proposed to be added to the classical notion of
knowledge as justified true belief by Lehrer and Paxson [Lehrer and Paxson, 1969] in order
to cope with the ‘Gettier Problem’. In fact, this definition of knowledge as undefeated true
belief can be formalized thanks to the arbitrary announcement modality 2 introduced in
[Balbiani et al., 2007]. Intuitively, 2ϕ means that ϕ is true after any truthful announcement
of an epistemic formula. So in any logic whose revision mechanism satisfies AGM postulate
K*2 of Section 4.2.2 one can show that this definition of knowledge can be formalized as
Kϕ = 2Bϕ (whether the announced formulas are propositional or epistemic does not make
any difference here). However, Stalnaker argues further that this definition of knowledge
as undefeated true belief should not be a sufficient and necessary condition for knowledge
but only a sufficient one. This contention gives the last possible extension to the accessibility
relation for knowledge.

5.4.2 Our proposal

We are not going to propose a new approach to the logics of knowledge and belief since we
agree with Lenzen’s and Stalnaker’s approach. Instead, in order to exemplify the richness
and expressivity of our formalism, we are going to show how the different notions of knowl-
edge spelled out in the last paragraph can be captured in our framework. This includes in
particular the notion of knowledge conceived as undefeated justified true belief. So for that,

7That is S4 plus .4: (ϕ ∧ K̂Kψ)→ K(ϕ ∨ ψ) (True belief); see Section 2.2.
8That is S4 plus .3.2: (K̂ϕ ∧ K̂Kψ)→ K(K̂ϕ ∨ ψ); see Section 2.2.
9For this definition to be consistent, we have to add another constraints that Stalnaker does not mention: in

this definition, knowledge should only deal with propositional facts belonging to the propositional language L0.
Indeed, assume that the agent believes non-p (formally B¬p). Then clearly the agent knows that she believes
non-p by PI (formally KB¬p). However, assume that p is actually true. If we apply this definition of knowledge
then if she learnt that p (which is true), she should still believe that she believes non-p (formally BB¬p), so she
should still believe non-p (formally B¬p), which is of course counterintuitive. This restriction to propositional
knowledge does not produce a loss of generality because we assumed that the agent knows everything about
her own beliefs and disbeliefs.

10That is S4 plus .3: K̂ϕ ∧ K̂ψ → K̂(ϕ ∧ K̂ψ) ∨ K̂(ϕ ∧ ψ) ∨ K̂(ψ ∧ K̂ϕ) (Weakly connected); see Section 2.2.
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we first need to study a bit more how belief revision is performed in our framework. That is
what we are going to do in the next section.

Structure of pd-models and belief revision

We first study a bit more the structure of pd-model because it will be relevant to better
understand how belief revision is performed in our formalism.

In Section 5.2, we said that a fact of probability ε2 should be negligible compared to a
fact of probability ε because it is infinitely more surprising. We even refined the structure
of hyperreal numbers in order to account for such a phenomenon. We can specify it a bit
further by defining an equivalence relation ≈0 which states in which case one number is not
negligible compared to another.

Definition 5.4.1 (Equivalence relation ≈0)
Let V′ = {x ∈ V | x is real or x is infinitesimal}. Let x, y ∈ V′, we set

x ≈0 y iff

{ x
y is real different from 0 if y 6= 0

x = 0 if y = 0.

We can easily check that ≈0 is an equivalence relation on V′. 2

So for example, ε is negligible compared to 13 but not compared to 3.ε, i.e. ε ≈0 3.ε.

Definition 5.4.2 (Ranking and global degree of a world)

We define the ranking V0 = (V 0,+0, .0, 00, 10,≤0) as the quotient structure of V′ by the
equivalence relation ≈0.

Given a pd-model, the global degree of a worldw in this pd-model is defined as α((P (w))0) ∈
P (w)0, where α is a given choice function. 2

Example 5.4.3 In Figure 5.10 is depicted the pd-model of Figure 5.1 to which we have added
other circles which specify the global degrees of its worlds. So all the worlds in between two
circles have the same global degree. Besides, if the world w is in a circle closer to the inner
circle than v, then w0 ≥0 v0, i.e. the world w has a global degree larger than v. But among
the worlds of the same global degree exists also a local ranking corresponding to the usual

order relation. So for example, in the figure we have the local ranking ε2

3 < ε2, even if the
worlds with these probabilities have the same global degree. This refinement of the global
ranking will play a role during the revision process. 2

One can then show that our structure V′ is isomorphic to a cumulative algebra, which is
a notion introduced by Weydert [Weydert, 1994].

Theorem 5.4.4 V′ is isomorphic to a cumulative algebra.

PROOF. We assume the validity of the axiom of choice and so the existence of a function
α : V0 → V′ which assigns to each element x0 of V0 (which is a subset of V′) an element of
V′ such that α(x0) ∈ x0.
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Figure 5.10: Example of pd-model with (global) ranking

Now we can define an isomorphism f : V′ → H(V0,R+) between V′ and the cumulative
algebra with global structure V0 and local structure R+ as follows: f(x) = (x0, x

α(x0)
). Its

inverse isomorphism g : H(V0,R+)→ V′ is defined by g(x0, y) = α(x0).y. QED

So Weydert’s comparisons with Spohn’s theory [Spohn, 1988] and possibility theories
[Dubois and Prade, 1991] transfer. In particular the ranking V0 determines a global ranking
of worlds similar in spirit to Spohn’s degrees of disbelief or possibility degrees in possibility
theory or to the faithful ordering induced by a formula in Definition 4.2.11. More precisely,
our conceived worlds correspond to Spohn’s worlds of plausibility 0, and our surprising
worlds correspond to Spohn’s worlds of plausibility strictly larger than 0. Moreover our
global degrees correspond to Spohn’s plausibility degrees (although the order has to be re-
versed). The same correspondence applies for possibility theory and for the notion of faithful
assignment.

There are actually several other proposals in the literature which cumulate features of
ranking theories (Spohn-type or possibility theories) and probability: for example general-
ized qualitative probability [Lehmann, 1996], lexicographic probability [Blume et al., 1991],
big-stepped probabilities [Dubois and Fargier, 2004]. All these proposals are very similar in
spirit and seem to be equivalent in one way or another.

Remark 5.4.5 In the literature (including myself in [Aucher, 2004]), one often considers de-
grees of possibility/plausibility (present in possibility theory and Spohn’s theory) and prob-
abilities as two different means to represent and tackle the same kind of information. How-
ever, as it is stressed in this chapter, for us they are meant to model two related but different
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kinds of information. In our sense, the first rather corresponds to degrees of potential surprise
about facts absent from the agent’s mind. The second rather corresponds to degrees of belief or
acceptance about facts present (or accessible) in the agent’s mind (which can be a knowledge
base for example). The same distinction is also present in [Gärdenfors, 1988]. 2

Our structure V is richer than the cumulative algebra V′ because it allows its elements to
have multiplicative inverses. This feature turns out to be quite useful in a dynamic setting
because it allows conditionalization and in particular belief revision, that we are now going
to study.

The event model corresponding to the truthful announcement of ϕ is depicted in Figure
5.10. Given a pd-model (M,wa), its revised model by ϕ is then defined by M ⊗A(ϕ), (wa, a).

a

S = {ϕ,¬ϕ} and P {ϕ}(a) = 1, P {¬ϕ}(a) = 0.

Figure 5.11: Event model (A(ϕ), a) corresponding to the truthful announcement of ϕ to the
agent.

Proposition 5.4.6 Let (M,wa) be a pd-model and (A(ϕ), a) the event model depicted in Figure 5.11.
Then the conceived worlds of M ⊗ A(ϕ) consist of the restriction of M to Max({w ∈ M | M,w |=
ϕ},≤0), where for a given set of possible worlds W ′, Max(W ′,≤0) = {w ∈ W ′ | for all v ∈ W ′,
v0 ≤0 w0}.

PROOF. (v, a) ∈M ⊗A(ϕ) is a conceived world
iff P (v, a) is real and M,v |= ϕ

iff P (v)∑
{P (w)|M,w|=ϕ} is real and M,v |= ϕ

iff P (v) ≈0
∑

{P (w) |M,w |= ϕ} and M,v |= ϕ
iff v ∈Max({w ∈M |M,w |= ϕ},≤0). QED

This proposition is important because it shows that in a single-agent setting, updating in
the BMS style amounts to perform belief revision in the AGM style as described in Section
4.2.2. This complements the correspondence established for the multi-agent case in Chapter3
between these two approaches to belief change.

Let us have a closer look at the mechanisms involved in this process. Suppose ϕ is false
in every conceived world. When we revise by ϕ then the surprising worlds where ϕ is true
and which have the least global degree become the conceived worlds. More interestingly, the
local structure of these surprising worlds remains the same, that is to say their relative order
of probability is the same before and after the revision. So we see here that the richness of
our formalism enables not only a fine-grained account of the agent’s epistemic state as we
saw in Section 5.3.1 but also a fine-grained account of belief revision.

Unsurprisingly, our framework fulfills the AGM postulates.
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Theorem 5.4.7 If, as in the AGM theory, we restrict our attention to propositional beliefs then our
update mechanism satisfies the eight AGM postulates for belief revision (see Section 4.2.2).

PROOF. To check whether the AGM postulates are fulfilled, we first need to define the belief
set, the expanded belief set and the revised belief set associated to a pd-model. We will deal
with the propositional language L0 as in the AGM theory.

Definition 5.4.8 (Belief set, revision, expansion)

Let (M,wa) be a pd-model and ϕ ∈ L0. We define

• the belief set K = {ψ ∈ L0 |M,wa |= Bψ},

• the revision of the belief set K by ϕ, K ∗ ϕ = {ψ ∈ L0 |M ⊗A(ϕ), (wa, a) |= Bψ},

• the expansion of the belief set K by ϕ, K + ϕ = {ψ ∈ L0 |M,wa |= B(ϕ→ ψ)}.

2

Now we can prove the theorem.

K*1 This postulate is clearly satisfied.

K*2 This postulate is satisfied, because we deal with propositional formulas which are per-
sistent formulas (that is formulas which remain true after an announcement if true
beforehand).

K*3 M ⊗A(ϕ), (wa, a) |= Bψ

⇔
∑

{P (w, a) |M ⊗A(ϕ), (w, a) |= ψ} = 1

⇔
∑

{ P (w)∑
{P (v)|v∈M and M,v|=ϕ} ;w ∈ M and M,w |= ϕ and M,w |= ψ} = 1 because

propositional formulas are persistent.

⇔
∑

{P (w) | w ∈ M and M,w |= ϕ and M,w |= ψ} =
∑

{P (w) | w ∈ M and
M,w |= ϕ}

⇒∗
∑

{P (w) | w ∈M and M,w |= ϕ→ ψ} = 1 (1)

⇔M,wa |= B(ϕ→ ψ)

K*4 ¬ϕ /∈ K

⇔M,wa |= ¬B¬ϕ

⇔ there is a conceived world w ∈M such that M,w |= ϕ (H).

We have to prove the other direction of⇒∗.

Formula (1) tells us that for all conceived worlds w ∈M M,w |= ϕ→ ψ. So,

∑

{P (w) | w ∈M and M,w |= ϕ}
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=
∑

{P (w) | w ∈M and M,w |= ϕ and w conceived } by (H), because if v is conceived
and v′ surprising then P (v) + P (v′) = P (v) (see Section 5.2)

=
∑

{P (w) | w ∈M and M,w |= ϕ and M,w |= ψ and w conceived } by (1)

=
∑

{P (w) | w ∈ M and M,w |= ϕ and M,w |= ψ} because there does exist a con-
ceived world w satisfying ϕ ∧ ψ by (H) and (1).

K*5 It is fulfilled because K ∗ ϕ 6= K⊥.

Indeed, otherwise M ⊗A(ϕ), (wa, a) |= B ⊥. Then M ⊗A(ϕ) does not have conceived
worlds, so M ⊗A(ϕ) is not a pd-model. This is impossible because the announcement
of ϕ is supposed to be truthful (i.e. Pwa(a) > 0, see the footnote on p. 106) so the
updated model should be a pd-model.

K*6 This postulate is clearly satisfied.

K*7 First note that M ⊗A(ϕ), wa |= B(ϕ
′ → ψ)⇔ ϕ ∈ K∗ϕ+ ϕ′

M ⊗A(ϕ ∧ ϕ′), wa |= Bψ

⇔ if M,wa |= ϕ ∧ ϕ
′ then M ⊗A(ϕ ∧ ϕ′), (wa, a) |= Bψ

⇔M ⊗A(ϕ ∧ ϕ′), (wa, a) |= Bψ because M,wa |= ϕ ∧ ϕ
′ (see the footnote on p. 106)

⇔
∑

{P (w, a) | w ∈M and M,w |= ϕ ∧ ϕ′ and M,w |= ψ} = 1

⇔
∑

{ P (w)∑
{P (v)|v∈M and M,v|=ψ∧ϕ′} | w ∈M and M,w |= ϕ ∧ ϕ′ and M,w |= ψ} = 1

⇔
∑

{P (w) | w ∈ M and M,w |= ϕ ∧ ϕ′ and M,w |= ϕ} =
∑

{P (w) | w ∈ M and
M,w |= ϕ ∧ ϕ′}

⇔
∑

{ P (w)∑
{P (v)|v∈M and M,v|=ϕ} | w ∈M and M,w |= ϕ ∧ ϕ′ and M,w |= ψ} =

∑

{ P (w)∑
{P (v)|v∈M and M,v|=ϕ} | w ∈M and M,w |= ϕ ∧ ϕ′}

⇔
∑

{P (w, a) | (w, a) ∈ M ⊗ A(ϕ) and M,w |= ϕ ∧ ϕ′ and M,w |= ψ} =
∑

{P (w, a) |
(w, a) ∈M ⊗A(ϕ) and M,w |= ϕ ∧ ϕ′}

⇔
∑

{P (w, a) | (w, a) ∈M ⊗A(ϕ) and M ⊗A(ϕ), (w, a) |= ϕ′ and M ⊗A(ϕ), (w, a) |=
ψ} =

∑

{P (w, a) | (w, a) ∈M ⊗A(ϕ) and M ⊗A(ϕ), (w, a) |= ϕ′}

⇒∗
′ ∑

{P (w, a) | (w, a) ∈M ⊗A(ϕ) and M ⊗A(ϕ), (w, a) |= ϕ′ → ψ} = 1 (1’)

⇔M ⊗A(ϕ), (wa, a) |= B(ϕ
′ → ψ)

⇔ ψ ∈ K∗ϕ+ ϕ′

K*8 ¬ϕ′ /∈ K∗ϕ

⇔M ⊗A(ϕ), (wa, a) |= ¬B¬ϕ
′

⇔ there is a conceived world (w, a) ∈M ⊗A(ϕ) such that M ⊗A(ϕ), (w, a) |= ϕ′ (H’)
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We have to prove the other direction of ⇒∗
′

. (1’) tells us that for all conceived worlds
(w, a) ∈M ⊗A(ϕ)M ⊗A(ϕ), (w, a) |= ϕ′ → ψ. So,

∑

{P (w, a) | (w, a) ∈M ⊗A(ϕ) and M ⊗A(ϕ), (w, a) |= ϕ′}

=
∑

{P (w, a) | (w, a) ∈M ⊗A(ϕ) and M ⊗A(ϕ), (w, a) |= ϕ′ and (w, a) is conceived }
by (H’), because of (H’) and if v is conceived and v′ surprising then P (v)+P (v′) = P (v)
(see Section 5.2).

=
∑

{P (w, a) | (w, a) ∈M⊗A(ϕ) andM⊗A(ϕ), (w, a) |= ϕ′ andM⊗A(ϕ), (w, a) |= ψ
and (w, a) conceived } by (1’)

=
∑

{P (w, a) | (w, a) ∈M⊗A(ϕ) andM⊗A(ϕ), (w, a) |= ϕ′ andM⊗A(ϕ), (w, a) |= ψ}
by (H’).

So the other direction of⇒∗
′

is proved.

QED

Adding knowledge to our formalism

First, note that the semantics for the belief operator B defined in Definition 5.3.4 could also
be defined in terms of an accessibility relation D: if (M,wa) is a pd-model then for all w ∈M ,
D(w) = {v ∈M | P (v) is real}. Now we are going to give the counterparts in our formalism
of the four extensions of the accessibility relation D for belief to the accessibility relation
R for knowledge spelled out in the last paragraph of the previous section. In the sequel,
(M,wa) = (W,P, V,wa) is a pd-model and w ∈M .

1. The first possible extension was that the accessibility relation for knowledge is just the
reflexive closure of the accessibility relation for belief. Formally, this amounts to define
R(w) as

R(w) = D(w) ∪ {(w,w)}.

One can indeed check that R satisfies .4: for all w, v, if (wRv and w 6= v) then (for all u,
(if wRu then uRv)) (see Section 2.2.1).

2. The second possible extension was already completely specified as follows: for all
w, v ∈ M , wRv iff ((wDw and wDv) or (not wDw)). Equivalently, this amounts to
state that

R(w) =

{

D(w) if w is a conceived world
W otherwise.
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One can indeed check that R satisfies .3.2: for all w, v, u, if (wRu and not uRw) then
(wRv implies vRu) (see Section 2.2.1).

3. The third possible extension specifies that for all w ∈M and all ϕ ∈ L0, M,w |= Kϕ iff
(M,w |= ϕ∧Bϕ and for all ψ ∈ L0, if M,w |= ψ then M ⊗A(ψ), (w, a) |= Bϕ). One can
easily show thanks to Proposition 5.4.6 that this amounts to define R(w) as

R(w) = {v ∈M | v0 ≥0 w0}.

One can indeed check that R satisfies Weak Connectedness: for all w, v, u, if (wRv and
wRu) then (vRu or u = v or uRv) (see Section 2.2.1).

4. The last possible extension specifies that for all w ∈M and all ϕ ∈ L0, if (M,w |= ϕ∧Bϕ
and for all ψ ∈ L0, if M,w |= ψ then M ⊗A(ψ), (w, a) |= Bϕ) then M,w |= Kϕ, but not
necessarily the other way round. One can easily show that this amounts to constrain
R(w) as follows

D(w) ⊆ R(w) ⊆ {v ∈M | v0 ≥0 w0}.

In that case, the only semantic constraint we can impose on the accessibility relation
for knowledge is Confluence: for all w, v, u, if (wRv and wRu) then there is z such that
(vRz and uRz) (see Section 2.2.1).

The fourth possible extension is the one adopted by Stalnaker. The advantage of the third
extension is that the specification of the accessibility relation R for knowledge is completely
determined by the belief structure of the pd-model. This entails that the dynamics of knowl-
edge is also completely determined by the dynamics of belief that we already defined. This
is not the case for the other definitions where we would have to add some further conditions
in the update product of Definition 5.5.3 in order to specify how to update the accessibility
relations R. The problem would then be to determine such conditions.

5.5 Adding agents

A generalization of our formalism to the multi-agent case could consist in simply indexing
the probabilities PΓ of the generic event model by the agents j ∈ G; and indexing the prob-
abilities P of the pd-model (resp. generic event model) by the agents j ∈ G and possible
worlds w (resp. possible events a). If we do so we have to allow these probability measures
to take the value 0 (note that it was not the case for the single-agent case). Pj,w(v) = 0would
then mean that if the agent j is in world w then the world v is not relevant to describe her
own epistemic state (and similarly for possible events). However, if we want to have a for-
malism equivalent to the first one, we have to add constraints to the Pj,w (and Pj,a), namely

1. Pj,w(w) > 0 for all w ∈W ,

2. if Pj,w(v) > 0 then for all u ∈W Pj,w(u) = Pj,v(u),
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3.
∑

{Pj,w(v) | v ∈W} = 1.

Note that these constraints look similar to seriality (3), transitivity and euclidianity (2) con-
straints. Finally, the update product is the same except that the probabilities P have to be
replaced by Pj,w (or Pj,a) and the probabilities PΓ by PΓj .

This generalization could be criticized because we have to resort to the 3 constraints
above. We propose below another equivalent generalization where we do not have to resort
to additional constraints. Instead, we introduce a rough uncertainty relation Rj for each
agent. Like for the single agent case we divide our task into three parts: the static part, the
dynamic part and finally the update mechanism.

5.5.1 The static part

Definition 5.5.1 (Multi-agent proba-doxastic model)

A multi-agent proba-doxastic model is a tuple M = (W,R,P, V,wa)where:

1. W is a finite set of possible worlds;

2. wa is the possible world corresponding to the actual world;

3. R : G→ 2W×W is an equivalence relation defined on W for each agent j;

4. P : G→ (W →]0; 1]) is a probability measure for each agent j defined on each equiva-
lence class Rj(w) such that

∑

{Pj(v) | v ∈ Rj(w)} = 1;

5. V : Φ→ 2W is a valuation.

2

We introduce for each agent j ∈ G an equivalence relation Rj on the set of worlds W ,
modeling agent j’s rough uncertainty. This equivalence relation Rj partitions the model
into equivalence classes which can each be considered as a ‘single-agent’ pd-model with
probability measure Pj .

5.5.2 The dynamic part

Definition 5.5.2 (Multi-agent generic action model)

A multi-agent generic action model is a structure A = (E,S,R, P, {PΓ | Γ is a maximal consis-
tent subset of S}, {Prea | a ∈ E}, aa)where:

1. E is a finite set of possible events;

2. aa is the actual event;

3. S is a set of formulas of LSt closed under negation;
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4. R : G→ 2E×E is an equivalence relation defined on E for each agent j;

5. PΓ : G → (E → [0; 1]) is a probabilistic measure (assigning real numbers in [0;1]) for
each agent j and each maximal consistent subset Γ of S defined on each equivalence
class Rj(a) such that

∑

{PΓj (b) | b ∈ Rj(a)} = 1;

Besides, for each possible event a and agent j0

if PΓj0(a) = 0 then PΓj (a) = 0 for all j ∈ G (*);

6. P : G→ (E →]0; 1]) is a probabilistic measure for each agent j defined on each equiv-
alence class Rj(a) and such that

∑

{Pj(b) | b ∈ Rj(a)} = 1;

7. Prea : Φ→ LSt is a function indexed by each possible event a.

2

We proceed as in the static part by introducing for each agent j ∈ G an equivalence re-
lation Rj on the set of possible events E modeling agent j’s rough uncertainty. This equiva-
lence relationRj partitions the multi-agent generic event model in equivalence classes which
can each be considered as a ‘single-agent’ generic event model with probability measures Pj
and PΓj .

Moreover, we assume that the condition under which an event cannot physically take
place in a world is common knowledge among agents. That is why we add in the definition
of the (multi-agent) generic event model that for each possible event a and agent j0 ∈ G, if
PΓj0(a) = 0 then PΓj (a) = 0 for all j ∈ G (note that this constraint should also be added to our
first proposal of generalization to the multi-agent case).

5.5.3 The update mechanism

Definition 5.5.3 (Update product)

Given a multi-agent pd-model M = (W,R,P, V,wa) and a multi-agent generic event model
A = (E,S,R, P, {PΓ | Γ is a m.c. subset of S}, {Prea | a ∈ E}, aa), we define their update
product to be the pd-model M ⊗A = (W ′, R′, P ′, V ′, w′a), where:

1. W ′ = {(w, a) ∈W × E | Pwj (a) > 0};

2. (v, b) ∈ Rj(w, a) iff v ∈ Rj(w) and b ∈ Rj(a);

3. We set

P ′j(a) =
Pj(a) ∙ P

W
j (a)

∑

{Pj(b) ∙ PWj (b) | b ∈ E}
where PWj (a) =

∑

{Pj(v) ∙ P
v
j (a) | v ∈W};
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Then

P ′j(w, a) =
Pj(w)

∑

{Pj(v) | v ∈W and P vj (a) > 0}
∙ P ′j(a);

4. V ′(p) = {(w, a) ∈W ′ |M,w |= Prea(p)};

5. w′a = (wa, aa).

2

The update mechanism is the same as for the single-agent case: the P operators just have
to be indexed by the agents j ∈ G. However we also have to deal with the new component
R. As in BMS, we set (v, b) ∈ Rj(w, a) iff v ∈ Rj(w) and b ∈ Rj(a) because the uncer-
tainty relations Rj for the multi-agent pd-model and the multi-agent generic event model
are assumed to be independent from one another.

5.6 Comparisons

Comparison with Kooi’s system. Kooi’s dynamic probabilistic system [Kooi, 2003] is
based on the static approach by Fagin and Halpern in [Fagin and Halpern, 1988; Fagin and
Halpern, 1994]. Unlike in our system, probability is not meant only to model the agents’ epis-
temic states. In that respect, his probability measures are defined relatively to each world
without any constraint on them. Moreover he only deals with public announcement. But in
this particular case our update mechanism is a bit different from his. The worlds of his initial
model are the same as in his updated model, only the accessibility relations and probabil-
ity distributions are changed, depending on whether or not the probability of the formula
announced is zero in the initial model. However, our probabilistic update rule in this partic-
ular case boils down to the same as his for the worlds where the probability of the formula
announced is different from zero. Finally, he does not consider events changing facts (he
tackles this topic independently in [Kooi, 2007] and [van Ditmarsch et al., 2005]).

Comparison with van Benthem’s system. van Benthem’s early system [van Benthem,
2003] is similar to ours in its spirit and goals. However he does not introduce the prob-
abilities PW (a) and P (a) but only a single Pw(a). Hence, his probabilistic update rule is
different. The intended interpretation of his Pw(a) seems also to be different from ours if we
refer to his example. Anyway, his discussion and comparison with the Bayesian setting in
his Section 5 are still valid here.

A more elaborated version of his system which is very similar to ours has been developed
independently by him, Kooi and Gerbrandy [van Benthem et al., 2006a]. In this system, they
have three kinds of probability which correspond in their terms to our three kinds of prob-
ability: prior probabilities on worlds (here P (w)), observation probabilities for events (here
P (a)), and occurrence probabilities on events in worlds (here Pw(a)). Nevertheless, their
probabilistic update rule is still different and does not comply to the Jeffrey update, contrary
to ours. They also study some parameterized versions of their probabilistic rule and they
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show that one of them actually complies to the Jeffrey update. They provide a sketch of a
completeness proof via reduction axioms. However, they do not resort to infinitesimals to
represent epistemic states and thus can neither express degrees of potential surprise nor al-
low for belief revision. Finally they do not consider events changing facts.

Comparison with Baltag and Smets’ system. In [Baltag and Smets, 2007], Baltag and
Smets propose a system which combines update logic, belief revision and probability, like
our system. But instead of resorting to infinitesimals to deal with belief revision in a prob-
abilistic setting, they resort to Popper-Renyi theory of conditional probabilities. On the one
hand and despite this different primary formalism, their static part has similar features to
ours. Indeed, our ranking defined in Definition 5.4.2 corresponds to what they call a priority
relation (they even mention that this was originally called “ranking ordering” by different
authors). Besides, they also use Stalnaker’s non-standard notion of knowledge but in their
system it is not intended to model the notion of knowledge but rather what they call ‘safe
belief’, being a very strong belief. They even refine this notion by defining degrees of safety,
these degrees belonging to [0; 1] and a safe belief being a belief of degree of safety 1. They
also analyze the role of this concept in game theory. Their notion of knowledge is instead
modeled by a S5 modality: a formula is known by the agent if it is true in all the worlds of
the pd-model. Their primary notion being conditional probability instead of standard prob-
ability, they also introduce a notion of conditional belief. On the other hand, their dynamic
and update parts are different. The uncertainty about events is still assumed to be indepen-
dent of the uncertainty about the world. So they still use rough preconditions and therefore
cannot really account for the intricate logical dynamics present in the interpretation of events
that we have studied. In consequence their probabilistic update rule is also different and is
based on the principle that “beliefs of changes induce (and “encode”) changes of beliefs”.
Finally, unlike our system, they are able to axiomatize their semantics but they do not deal
with events changing facts.

Comparison with the situation calculus of Bacchus, Halpern and Levesque. Their sys-
tem [Bacchus et al., 1999] can be viewed as the counterpart of van Benthem’s early system in
the situation calculus except that they deal as well with events changing facts. Their prob-
abilistic update rule is also the same as van Benthem’s (modulo normalization). So what
applies to van Benthem’s early system applies here too. In particular, the logical dynamics
present in the interpretation of an event are not explored.

Comparison with the observation systems of Boutilier, Friedman and Halpern. Their
system [Boutilier et al., 1998] deals with noisy observations. Their approach is semantically
driven like ours. However they use a different formalism called observation system based
on the notion of (ranked) interpreted system. On the one hand their system is more general
because it incorporates the notion of time and a ranking of evolutions of states over time
(called runs). On the other hand the only events they consider are noisy observations (which
do not change facts of the situation). An advantage of our system is its versatility because
we can represent many kinds of events. In that respect, their noisy observations can be
modelled in our formalism using two possible events, the first corresponding to a truthful
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observation and the second to an erroneous one. Then by a suitable choice of probabilities
we can for example express, as they do, that the observation is “credible”. However, their
formalism seems to enable them to characterize formally more types of noisy observations.
Finally, because we do not introduce the notions of time and history, our formalism is rather
comparable to a particular case of their system called Markovian observation system. But
nothing precludes us to introduce these notions as an extension of our system.

5.7 Conclusion

In order to represent as accurate as possible the agent’s epistemic state, we have introduced a
rich formalism based on hyperreal numbers (and which is an extension of Weydert’s cumu-
lative algebra). Our epistemic state representation includes both degrees of belief expressed
by a subjective probability and degrees of potential surprise expressed by infinitesimals. We
have seen that the richness of this formalism enabled genuine belief revision thanks to the
existence of infinitesimals (and multiplicative inverse). By a closer look at this revision pro-
cess, we could even notice some interesting and meaningful patterns due to the dual aspect
(local and global) of this formalism. So, our formalism indirectly offers a new (probabilistic)
approach to belief revision.

But other important logical dynamics were studied, namely the ones present in the pro-
cess of interpreting an event. Starting from the observation that this interpretation hinges
on two features, the actual perception of the event happening and our expectation of it to
happen, we have proposed a way to model this phenomenon. Incidentally, note that in a
sense our approach complements and reverses the classical view (as in belief revision the-
ory) whereby only our interpretation of events affects our beliefs and not the other way
round. For sake of generality, we have also taken into account in our formalism events that
may change the facts of a situation.

Finally, we have reviewed different approaches to model the notion of knowledge and
showed how they can be captured in our formalism in a straightforward way. This illustrates
the richness and expressivity of our formalism.

Our formalism is semantically driven and it would be interesting to look for a complete-
ness result, and in particular for reduction axioms. But because of its high expressivity, it is
likely that we will not get decidability (and therefore, that such reduction axioms cannot be
formulated). However this system can be of use as it is in several areas. Firstly, in game the-
ory where the kinds of phenomena we studied are quite common. Secondly, in psychology
if we want to devise realistic formal models of belief change. Finally, the logical dynamics
we modeled could be used in artificial intelligence.





Chapter 6

Exploring the power of converse events

6.1 Introduction

In this chapter we follow the perfect external approach. Our first aim is to enrich the (dy-
namic) epistemic language with a modal operator expressing what was true before an event
occurred. Our second aim is to propose a unified language which does not refer in its syntax
to an event model as in the BMS formalism. Indeed, this event model can be viewed as a
semantic object and it seems to us inappropriate to introduce it directly into the syntax of the
language (although the way it is actually done in the BMS formalism is formally correct).

Semantics of events: products vs. accessibility relations. Expressing within the BMS for-
malism what was true before an event a occurred, i.e. to give semantics to the converse event
a− is not simple.

On the other hand, in PDL [Harel et al., 2000], events are interpreted as transition re-
lations on possible worlds, and not as restricted products of models as in BMS. Converse
events a− can then easily be interpreted by inverting the accessibility relation associated to
a. The resulting logic is called the tense extension of PDL. To this we then add an epistemic
accessibility relation. We call (tensed) Epistemic Dynamic Logic EDL the combination of
epistemic logic and PDL with converse.1

A semantics in terms of transition relations is more flexible than the BMS product se-
mantics: we have more options concerning the interaction between events and beliefs. In
Section 6.2, we will propose an account for this delicate relationship by means of constraints
on the respective accessibility relations: a no-forgetting and a no-learning constraint, and a
constraint of epistemic determinism.

1 EDL is related to Segerberg’s Doxastic Dynamic Logic DDL [Segerberg, 1995; Segerberg, 1999]. But research
on DDL focusses mainly on its relation with AGM theory of belief revision, and studies particular events of the
form +ϕ (expansion by ϕ), ∗ϕ (revision by ϕ), and −ϕ (contraction by ϕ).

127
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Translating BMS into EDL. To demonstrate the power of our approach we will provide
in Section 6.3 a translation from BMS to EDL. To do so, we will express the structure of an
event model A by a nonlogical theory Γ(A) of EDL, and prove that any formula ϕ is valid in
BMS if and only if it is a logical consequence of Γ(A) in EDL.

So, unlike BMS, we avoid to refer to a semantical structure (i.e. the BMS event model
A) in the very definition of the language. Encoding the structure of a BMS event model
A by a nonlogical theory Γ(A) of EDL is done thanks to converse events. For example
[a]Bi(〈a

−〉⊤ ∨ 〈b−〉⊤) expresses that agent i perceives the occurrence of a as that of either
a or b.

Finally, in Section 6.4, we conclude and compare our formalism with related works.

6.2 EDL: Epistemic Dynamic Logic with converse

6.2.1 The language LEDL of EDL

Just as for BMS (see Chapter 3), we suppose given sets of propositional symbols Φ and of
agent symbols G, and a finite set of event symbols E.

Definition 6.2.1 (Language LEDL)

The language LEDL is defined as follows

LEDL : ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ
′ | Bjϕ | [a]ϕ | [a

−]ϕ,

where p ranges over Φ, j over G and a over E.
The dual modal operators 〈a〉 and 〈a−〉 are defined as follows: 〈a〉ϕ abbreviates ¬[a]¬ϕ;

〈a−〉ϕ abbreviates ¬[a−]¬ϕ. 2

The formula [a]ϕ reads “ ϕ holds after every possible occurrence of event a”. [a−]ϕ reads
“ϕ held before a”.

Note that the language LA of Definition 3.2.5 is the set of those formulas of LEDL that do
not contain the converse operator [a−]. Note also that the epistemic language L of Definition
2.2.2 is the set of those formulas of LEDL that do not contain any dynamic operator, i.e. built
from Φ, the Boolean operators and the Bj operators alone. For example [a]Bj [a

−]⊥ is an
LEDL-formula that is not in LA.

6.2.2 Semantics of EDL

When designing models of events and beliefs the central issue is to account for the interplay
of these two concepts. In our PDL-based semantics this is done by means of constraints on
the respective accessibility relations.

Definition 6.2.2 (EDL-model, no-forgetting, no-learning, epistemic determinism)

An EDL-model is a tuple M = (W,R,R, V ) such that

• W is a set of possible worlds;
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• R : G→ 2W×W assigns an accessibility relation to each agent;

• R : E → 2W×W assigns an accessibility relation to each possible event; and

• V : Φ→ 2W is a valuation.

Moreover an EDL-model satisfies the constraints of no-forgetting, no-learning and epistemic
determinism:

nf If v′ ∈ Ra ◦Rj(w) then there is b ∈ E such that v′ ∈ Rj ◦ Rb(w).
nl If (Ra ◦Rj ◦ R

−1
b )(w) 6= ∅ then (Rj ◦ Rb)(w) ⊆ (Ra ◦Rj)(w).

ed If v1, v2 ∈ Ra(w) then Rj(v1) = Rj(v2).

We write R−1a (v) = {w | w ∈ R
−1
a (v)} = {w | v ∈ Ra(w)}. 2

The no-forgetting principle says that if after an event agent j considers a world v′ possible,
then before this event agent j already considered possible that there was an event leading
to this world (see Figure 6.1, left). So everything agent j considers possible after the perfor-
mance of an event stems from what she considered possible before the event. This principle
is a generalization of the perfect-recall principle [Fagin et al., 1995].

To understand the principle no-learning, also known as no-miracle [van Benthem and
Pacuit, 2006], assume that agent j perceives the occurrence of a as that of b1, b2. . . or bn. Then,
informally, the no-learning principle says that all such alternatives resulting from occurrence
of b1, b2,. . . , bn in j’s alternatives before a are indeed alternatives after a. In a sense there
is no-miracle: everything the agent was supposed to consider possible after the event is
indeed considered possible after the event if this one actually takes place. Formally, assume
that agent j perceives b as a possible alternative of a, i.e. (Ra ◦ Rj ◦ R

−1
b )(w) 6= ∅. If at w

world v′ was a possible outcome of event b for j, then v′ is possible for j at some v ∈ Ra(w)
(see Figure 6.1, middle).

Finally, the epistemic determinism principle says that an agent’s epistemic state after an
event does not depend on the particular nondeterministic outcome. Formally, suppose we
have wRav1 and wRav2. Then ed forces that the epistemic states at v1 and v2 are identical:
Rj(v1) = Rj(v2) (see Figure 6.1, right).

These constraints restrict the kind of events we consider. Our events are such that the
epistemic state of an agent after the occurrence of an event depends only on the previous
epistemic state of the agent and on how the event is perceived by the agent, and not on what
is true in the world before or after the event. This feature of our events is somehow formally
captured by Proposition 6.2.3 below: Rj(w) is the epistemic state of the agent before the
event and Aa,w = {b ∈ E | Ra ◦ Rj ◦ R

−1
b (w) 6= ∅} specifies how the event a is perceived

by the agent. For example an agent testing whether ϕ is the case is not an event dealt with
by our formalism. Indeed the epistemic state of this agent after the test (the agent knowing
whether ϕ is true) depends on the actual state of the world (whether ϕ is true or not). In this
example the no-learning constraint might be violated. Another example of event which is
not dealt with by our formalism is that of tossing a coin and looking at it. In this example, the
epistemic state of the agent after the toss depends on the state of the world after the event,
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Figure 6.1: no-forgetting, no-learning and epistemic determinism constraints

i.e. whether the coin lands heads or tails up. Here the epistemic determinism constraint is
violated. On the other hand, both public and private announcement are dealt with by our
framework. More generally, any kind of announcement (public, private. . . ) about any kind
of information (epistemic, stating that an event just occurred. . . ) is dealt with by our frame-
work. Our events are sometimes called ontic events, feedback-free events or uninformative
events [Herzig et al., 2000; de Lima, 2007].

Proposition 6.2.3 Let M = (W,R,R, V ) be a tuple. M is an EDL-model, i.e. M satisfies nf, nl,
ed, iff for all j ∈ G, all w ∈M , all a ∈ E, all w′ ∈ Ra(w),

Rj(w
′) =

⋃

{Rb(v) | b ∈ Aa,w, v ∈ Rj(w)}(∗),

where Aa,w = {b ∈ E | Ra ◦Rj ◦ R
−1
b (w) 6= ∅}.

PROOF.

• Assume M satisfies nf, nl and ed.

– Let v′ ∈ Rj(w
′). Then v′ ∈ Ra ◦Rj(w). So by nf there is b ∈ E and v ∈ Rj(w) such

that v′ ∈ Rb(v). So Ra ◦ Rj ◦ R
−1
b (w) 6= ∅ and b ∈ Aa,w. So v′ ∈ ∪{Rb(v) | b ∈

Aa,w, v ∈ Rj(w)}.

– Let v′ ∈ ∪{Rb(v) | b ∈ Aa,w, v ∈ Rj(w)}. Then there is b ∈ E such that v′ ∈
Rj ◦ Rb(w) and Ra ◦ Rj ◦ R

−1
b (w) 6= ∅. So by nl, v′ ∈ Ra ◦ Rj(w), i.e. there is

w′′ ∈ Ra(w) such that v′ ∈ Rj(w
′′). Then by ed, v′ ∈ Rj(w

′).

• Assume M satisfies (*).

nf Assume that v′ ∈ Ra ◦ Rj(w). Then there is w′ ∈ Ra(w) such that v′ ∈ Rj(w
′). By

(*) there is b ∈ Aa,w and v ∈ Rj(w) such that v′ ∈ Rb(v). So there is b ∈ E such that
v′ ∈ Rj ◦ Rb(w).

nl Assume thatRa ◦Rj ◦R
−1
b (w) 6= ∅ and v′ ∈ Rj ◦Rb(w). Then there is v ∈ Rj(w) and

b ∈ Aa,w such that v′ ∈ Rb(v). So v′ ∈ Rj(w
′) for all w′ ∈ Ra(w), i.e. v′ ∈ Ra ◦Rj(w).
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ed is clearly fulfilled.

QED

Definition 6.2.4 (Truth conditions for LEDL)

The semantics of LEDL is defined inductively as follows. Let M be an EDL-model and w ∈
M .

M,w |= ⊤
M,w |= p iff w ∈ V (p)
M,w |= ϕ ∧ ϕ′ iff M,w |= ϕ and M,w |= ϕ′

M,w |= Bjϕ iff for all v ∈ Rj(w),M, v |= ϕ
M,w |= [a]ϕ iff for all v ∈ Ra(w),M, v |= ϕ
M,w |= [a−]ϕ iff for all v ∈ R−1a (w),M, v |= ϕ.

Truth of ϕ in a EDL-model M is written M |= ϕ and is defined as: M,w |= ϕ for every
w ∈M . Let Γ be a set of LEDL-formulas. The (global) consequence relation is defined by:

Γ |=EDL ϕ iff for every EDL-model M , if M |= ψ for every ψ ∈ Γ then M |= ϕ.

2

For example we have
{[b]ϕ, 〈a〉Bj〈b

−〉⊤} |=EDL [a]Bjϕ
and

|=EDL (Bj [b]ϕ ∧ 〈a〉Bj〈b
−〉⊤)→ [a]Bjϕ. (*)

Consider ϕ = ⊥ in (*): Bj [b]⊥means that perception of event b was unexpected by agent
j, while 〈a〉Bj〈b

−〉⊤ means that j actually perceives a as b. By our no-forgetting constraint
it follows that [a]Bj⊥. In fact, one would like to avoid agents getting inconsistent: in such
situations some sort of belief revision should take place. We do not investigate this further
here.

6.2.3 Completeness

Definition 6.2.5 (Proof system of EDL)

The logic EDL is defined by the multi-modal logic K for all the modal operators Bj , [a] and
[a−], plus the axioms schemes Conv1, Conv2, NF, NL and ED below:

Conv1 ⊢EDL ϕ→ [a]〈a
−〉ϕ

Conv2 ⊢EDL ϕ→ [a
−]〈a〉ϕ

NF ⊢EDL Bj
∧

a∈E

[a]ϕ→
∧

a∈E

[a]Bjϕ

NL ⊢EDL 〈a〉B̂j〈b
−〉⊤ → ([a]Bjϕ→ Bj [b]ϕ)

ED ⊢EDL 〈a〉Bjϕ→ [a]Bjϕ

2
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Conv1 and Conv2 are the standard conversion axioms of tense logic and converse PDL.
NF, NL and ED respectively axiomatize no-forgetting, no-learning and epistemic determin-
ism.

We write Γ ⊢EDL ϕ when ϕ is provable from the set of formulas Γ in this axiomatics.

One can then show that EDL is strongly complete:

Proposition 6.2.6 For every set of LEDL-formulas Γ and LEDL-formula ϕ,

Γ |=EDL ϕ iff Γ ⊢EDL ϕ.

PROOF. The proof follows from Sahlqvist’s theorem [Sahlqvist, 1975]: all our axioms NF, NL,
ED are of the required form, and match the respective constraints nf, nl, ed. QED

6.3 From BMS to EDL

In this section we show that BMS can be embedded into EDL. We do that by building a
particular EDL-theory that encodes syntactically the structure of a given BMS event model
A.

Definition 6.3.1 (Theory of an event model)

LetG be a finite set of agents, E a finite set of events and A = (E,R, Pre) be an event model.
The theory of A, written Γ(A), is made up of the following non-logical axioms:

(1) p→ [a]p and ¬p→ [a]¬p, for every a ∈ E and p ∈ Φ;

(2) 〈a〉⊤ ↔ Pre(a), for every a ∈ E;

(3) [a]Bj
(

(〈a−1 〉⊤ ∨ . . . ∨ 〈a
−
n 〉⊤) ∧ ([b

−
1 ] ⊥ ∧ . . . ∧ [b

−
n ] ⊥)

)

,

where a1, . . . , an is the list of all b such that b ∈ Rj(a), and b1, . . . , bn is the list of all b
such that b /∈ Rj(a);

(4) B̂jPre(b)→ [a]B̂j〈b
−〉⊤, for every (a, b) such that b ∈ Rj(a).

2

Axiom 1 encodes the fact that events do not change propositional facts of the world
where they are performed (see definition of V ′(p) in Definition 3.2.3). Axiom 2 encodes the
fact that an event a can occur in a world iff this world satisfies the precondition of event a
(see the definition of W ′ in Definition 3.2.3). Axiom 3 encodes the Kripke structure of the
event model. Axiom 4 encodes the definition of R′j (see Definition 3.2.3).

Example 6.3.2 Consider thatG = {A,B} andΦ = {p}. In Figure 6.2 we recall the event mod-
els A1 and A2 corresponding respectively to the public announcement of ϕ and the private
announcement of ϕ to A, where ϕ ∈ L. Here, Pre(a) = ϕ in both models and Pre(b) = ⊤.
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Public announcement of ϕ : Private announcement of ϕ to A:

a : ϕ

A,B

a : ϕ

A

B

b : ⊤

A,B

Figure 6.2: Event models for public announcement and private announcement

Applying Definition 6.3.1, we get

Γ(A1) = {p → [a]p and ¬p → [a]¬p , 〈a〉⊤ ↔ ϕ , [a]BA(〈a
−〉⊤) , [a]BB(〈a

−〉⊤) , B̂Aϕ →
[a]B̂A〈a

−〉⊤} , B̂Bϕ→ [a]B̂B〈a
−〉⊤}

and

Γ(A2) = {p → [a]p and ¬p → [a]¬p , p → [b]p and ¬p → [b]¬p , 〈a〉⊤ ↔ ϕ , 〈b〉⊤ ↔ ⊤ ,
[a]BA(〈a

−〉⊤∧ [b−] ⊥) , [a]BB(〈b
−〉⊤∧ [a−] ⊥) , [b]BA(〈b

−〉⊤∧ [a−] ⊥) , [b]BB(〈b
−〉⊤∧ [a−] ⊥)

, B̂Aϕ→ [a]B̂A〈a
−〉⊤ , B̂A⊤ → [b]B̂A〈b

−〉⊤ , B̂B⊤ → [a]B̂B〈b
−〉⊤ , B̂B⊤ → [b]B̂B〈b

−〉⊤} 2

It turns out that the axiom of determinism is a logical consequence of Γ(A) in EDL . This
is comforting because the axiom of determinism is indeed valid in BMS .

Proposition 6.3.3 Let A be an event model. For every LA-formula ϕ we have Γ(A) |=EDL 〈a〉ϕ →
[a]ϕ.

PROOF. Let A = (E,R, Pre) be a given event model, and let M be an EDL-model such that
M |= ψ for every ψ ∈ Γ(A). Assume w0Rav0 and w0Rau0 with v0 6= u0. We are going to
show that u0 and v0 are bisimilar.

Ze is defined to be an epistemic bisimulation between models M1 and M2 if Ze is a
bisimulation between the restriction of these models to epistemic accessibility relations. Let
Ze := {(w,w) : w ∈ W} ∪ {(v0, u0)}. We are going to show that Ze is an epistemic bisimula-
tion. To do so, we need to prove

1. u0 ∈ V (p) iff v0 ∈ V (p) for all p ∈ Φ;

2. if v0Rjv
′ then u0Rjv

′;

3. if u0Rju
′ then v0Rju

′.

(1) is guaranteed by Definition 6.3.1 (1). (2) and (3) are guaranteed by epistemic determinism:
ed makes that Rj(u) = Rj(v).
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Now from Ze, we are going to build up a bisimulation. We proceed as follows.
Z0 = Ze;

Zn+1 = {(un+1, vn+1) | unRaun+1 and vnRavn+1 for some a ∈ E and unZ
nvn};

Z =
⋃

n∈N Z
n.

We are going to show that Z is a bisimulation.

1. We first show that Z is an epistemic bisimulation.

We prove by induction on n that every Zn is an epistemic bisimulation.

We have already proved that Z0 is an epistemic bisimulation. Assume it is true for Zn

and un+1Z
n+1vn+1. Then there are un, vn such that unZ

nvn, unRaun+1 and vnRavn+1.

(a) un ∈ V (p) iff vn ∈ V (p) because Zn is an epistemic bisimulation. So un+1 ∈ V (p)
iff vn+1 ∈ V (p) by Definition 6.3.1 (1).

(b) Assume u′n+1 ∈ Rj(un+1). Then by nf, there are u′n and b such that u′n ∈ Rj(un)
and u′n+1 ∈ Rb(u

′
n).

Then there is v′n ∈W such that v′n ∈ Rj(vn) and v′nZ
nu′n by induction hypothesis.

But M,u′n |= Pre(b) and besides for all ϕ ∈ LC , M,v′n |= ϕ iff M,u′n |= ϕ because
Zn is an epistemic bisimulation by induction hypothesis. So M,v′n |= Pre(b).

Then there is v′n+1 such that v′n+1 ∈ Rb(v
′
n) by Definition 6.3.1 (2). So v′n+1 ∈

Rj ◦ Rb(vn).

Besides M,un |= B̂jPre(b), so M,vn |= B̂jPre(b) by induction hypothesis and
because B̂jPre(b) ∈ L

C . So M,vn |= [a]B̂j〈b
−〉⊤ by Definition 6.3.1 (4).

But M,vn |= 〈a〉⊤, so M,vn |= 〈a〉B̂j〈b
−〉⊤. So (Ra ◦ Rj ◦ R

−1
b )(vn) 6= ∅. So

(Rj ◦ Rb)(vn) ⊆ (Ra ◦ Rj)(vn) by nl. So there is v′′n+1 ∈ Ra(vn) such that v′n+1 ∈
Rj(v

′′
n+1). Then by ed, v′n+1 ∈ Rj(vn+1).

Besides u′nZ
nv′n and u′n+1 ∈ Rb(u

′
n), v

′
n+1 ∈ Rb(v

′
n).

So by definition of Zn+1, u′n+1Z
n+1v′n+1.

So there is v′n+1 such that v′n+1 ∈ Rj(vn+1) and u′n+1Z
n+1v′n+1

(c) The case v′n+1 ∈ Rj(vn+1) is similar.

So for all n ∈ N, Zn is an epistemic bisimulation. Henceforth Z is also a bisimulation.

2. Now we are going to show that Z is a full bisimulation. Assume uZv for some u, v ∈
W . Then uZnv for some n ∈ N.

(a) If u′ ∈ Ra(u) then M,u |= Pre(a) by Definition 6.3.1 (2). So M,v |= Pre(a)
because Z is an epistemic bisimulation and Pre(a) ∈ LC .

So there is v′ such that vRav
′. But then u′Zn+1v′ by construction of Zn. So u′Zv′.

(b) Similarly we prove that if v′ ∈ Ra(v) then there is u′ such that u′ ∈ Ra(u) and
u′Zv′.

QED
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Thanks to this lemma, we can now prove that for every formula ϕ of the language LA,
|=BMS ϕ if and only if Γ(A) |=EDL ϕ. We first prove two Propositions.

Proposition 6.3.4 Let A be an event model, and let ψ be a formula from LA. If 6|=BMS ψ then
Γ(A) 6|=EDL ψ.

PROOF. We have to prove that if there is an epistemic model Ms and a w in M s such that
M s, w |= ψ then M s can be turned into an EDL-model M such that M |= Γ(A), with a w′ in
M such that M,w′ |= ψ.

The proof iteratively applies the product construction to the initial M s as follows: we set
M0 =M s, and

Mn+1 =Mn ⊗EDL A = (W
n+1, Rn+1,Rn+1, V n+1),

where

• Wn+1 =Wn ∪ {(w, a) | w ∈Wn and M s, w |= Pre(a)};

• Rn+1j = Rnj ∪ {((w1, a1), (w2, a2)) | w1R
n
jw2 and a1Rja2};

• Rn+1a = Rna ∪ {(w, (w, a)) | w ∈W
n};

• V n+1(p) = V n(p) ∪ {(w, a) | w ∈Wn and w ∈ V n(p)}.

Note that we use ⊗EDL to distinguish our product construction here from the BMS product
that we write⊗BMS from now on to avoid confusion. Finally, we setM∞ = (W∞, R∞,R∞, V∞),
where W∞ =

⋃

nW
n, V∞(p) =

⋃

n V
n(p), R∞a =

⋃

nR
n
a , and R∞j =

⋃

nR
n
j .2 We are going

to prove that M∞, w |= ϕ. Then we will show that M∞ |= Γ(A). First we prove a lemma:

Lemma 6.3.5 Let k ≥ 0. (M s ⊗BMS A)
k, (w, a) - Mk+1, (w, a), where (M s ⊗BMS A)

k is
the result of the iteration process applied k times to the static model M s ⊗BMS A and the event
model A.

PROOF. We prove it by induction on k.

k = 0: (M s⊗BMSA)
0 =M s⊗BMSA and M1 =M s⊗EDLA. Then by definition of ⊗EDL,

we clearly have (M s ⊗BMS A)
0, (w, a) - M1, (w, a)

k + 1: (M s⊗BMSA)
k+1 = (M s⊗BMSA)

k⊗EDLA. Now (M s⊗BMSA)
k, (w, a) - Mk+1, (w, a)

by induction hypothesis. So (M s⊗BMSA)
k⊗EDLA, (w, a) - Mk+1⊗EDLA, (w, a)

because for any M,M ′ if M,w - M ′, w′ then M ⊗EDL A,w - M ′ ⊗EDL A,w
′.

Then (M s ⊗BMS A)
k+1, (w, a) - Mk+2, (w, a).

QED

Now we prove a second lemma:

Lemma 6.3.6 For all ϕ ∈ LA, M s, w |=BMS ϕ iff M∞, w |=EDL ϕ

2Note that is just as Yap’s construction [Yap, 2006].
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PROOF. For any formula ϕ we define the integer δ(ϕ) as the maximum number of nested
event operator occurrences as follows:

– δ(p) = 0

– δ(ϕ1 ∧ ϕ2) = max(δ(ϕ1), δ(ϕ2)))

– δ(¬ϕ) = δ(Biϕ) = δ(ϕ)

– δ([a]ϕ) = δ([a−]ϕ) = δ(ϕ) + 1

We set P(k): “For all ϕ ∈ LA such that δ(ϕ) = k, M s, w |=BMS ϕ iff Mk, w |=EDL ϕ”,
where M s is the static model and Mk is the iteration of the product construction.

We prove P(k) for all k by induction on k.

k = 0: Then ϕ is epistemic so it works by definition of ⊗EDL.

k + 1: We prove it by induction on ϕ.

– ϕ = [a]ϕ′.
M s, w |=BMS [a]ϕ

′

iff if M s, w |=BMS Pre(a) then M s ⊗BMS A, (w, a) |=BMS ϕ
′

iff if M s, w |=BMS Pre(a) then (M s ⊗BMS A)
k, (w, a) |= ϕ′ by Induction Hy-

pothesis because δ(ϕ′) ≤ k,
iff if M s, w |=BMS Pre(a) then Mk+1, (w, a) |=EDL ϕ

′ by Lemma 6.3.5
iff if Mk+1, w |=EDL Pre(a) then Mk+1, (w, a) |=EDL ϕ

′

iff Mk+1, w |=EDL [a]ϕ
′ by definition of ⊗EDL

iff Mk+1, w |=EDL ϕ.

– ϕ = ϕ1 ∧ ϕ2 works by Induction Hypothesis.

– ϕ = Bjϕ
′ works as well.

– ϕ = p is impossible because k + 1 ≥ 1.

QED

Then we can easily prove that for all ϕ such that δ(ϕ) = k, Mk, w |=EDL ϕ iffM∞, w |=EDL

ϕ. Then for all k, for all ϕ such that δ(ϕ) = k, M s, w |=BMS ϕ iff M∞, w |=EDL ϕ

i.e. for all ϕ ∈ LA,M
s, w |=BMS ϕ iff M∞, w |=EDL ϕ. In particular, because M s, w |=BMS

ψ, we have M∞, w |=EDL ψ.

It remains to prove that M∞ |=EDL Γ(A). Conditions (1) and (2) of Definition 6.3.1 are
clearly fulfilled. As for condition (3), let w ∈ W∞, w′ is such that wRaw

′ iff w′ = (w, a).
Now (w, a)Rju iff u = (v, b) with wRjv and aRjb by definition of ⊗EDL. So for all u such
that (w, a)Rju, there are b and v such that aRjb and vRbu. This proves that M∞, w |=EDL

[a]Bj(〈a
−
1 〉⊤∨ . . .∨〈a

−
n 〉⊤)where a1, . . . , an is the list of all b such that aRjb. Finally, concern-

ing condition (4), assume M∞, w |=EDL B̂jPre(b) and wRa(w, a). Then there is v such that
wRjv and vRb(v, b). So by definition of ⊗EDL, because aRjb, we have (w, a)Rj(v, b). Hence
M∞, (w, a) |=EDL B̂j〈b

−〉⊤ and finally M∞, w |=EDL [a]B̂j〈b
−〉⊤. QED
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Proposition 6.3.7 Let A be an event model, and let ψ be a formula from LA. If |=BMS ψ then
Γ(A) |=EDL ψ.

PROOF. We take advantage of the complete axiomatization of BMS-validities given in [Baltag
et al., 1998; Baltag and Moss, 2004], and show that the BMS-axioms are EDL-valid, and that
the BMS-inference rules preserve EDL-validity. As the inference rules of BMS and EDL
are identical (i.e. modus ponens and necessitation) it is clear that the BMS-inference rules
preserve EDL-theoremhood. It is straightforward to show that every instance of the BMS-
axioms not involving dynamic operators is EDL-valid. So what remains is to prove that the
BMS schemas

R1 [a]p ↔ (Pre(a)→ p)
R2 [a]¬ϕ ↔ (Pre(a)→ ¬[a]ϕ)
R3 [a]Bjϕ ↔ (Pre(a)→ Bj [a1]ϕ ∧ . . . ∧Bj [an]ϕ)

where a1, . . . , an is the list of all b such that aRjb, are logical consequences of Γ(A) in EDL.

R1 Axiom R1 can be proved by the nonlogical axioms (1) p→ [a]p and (2) 〈a〉⊤ ↔ Pre(a)
of the theory Γ(A) in Definition 6.3.1.

R2 For the left-to-right direction of R2 we have
Γ(A) |=EDL ([a]¬ϕ ∧ Pre(a) ∧ [a]ϕ)→ ⊥

because of the nonlogical axiom (2) 〈a〉⊤ ↔ Pre(a) of Definition 6.3.1.

For the right-to-left direction, on the one hand we have Γ(A) |=EDL ¬Pre(a) → [a]⊥
again by the nonlogical axiom (2) of Definition 6.3.1, and on the other hand Γ(A) |=EDL

¬[a]ϕ→ [a]¬ϕ by Proposition 6.3.3.

R3 For the left-to-right direction of R3, let M be an EDL-model such that M |=EDL Γ(A)
and suppose

M,w |=EDL [a]Bjϕ ∧ Pre(a),
and suppose M,w |=EDL ¬Bj [b]ϕ for some b such that aRjb. So there must exist worlds
w′ and v′ such that wRjw

′, w′Rbv
′ and M,v′ |= ¬ϕ. Therefore M,w′ |= Pre(b) by non-

logical axiom 6.3.1 (2), and M,w |=EDL B̂jPre(b). As aRjb, our nonlogical axiom 6.3.1
(4) tells us that M,w |=EDL B̂jPre(b)→ [a]B̂j〈b

−〉⊤, and hence M,w |=EDL [a]B̂j〈b
−〉⊤.

As by hypothesisM,w |=EDL Pre(a), by nonlogical axiom 6.3.1 (2) (Ra◦Rj◦R
−1
b )(w) 6=

∅. By the constraint nl on EDL-models we have
(Rj ◦ Rb)(w) ⊆ (Ra ◦Rj)(w),

i.e. v′ ∈ (Ra ◦ Rj)(w). As we have supposed that M,w |=EDL [a]Bjϕ, we must have
M,v′ |=EDL ϕ, which is contradictory.

For the right-to-left direction of R3, we know that Γ(A) |=EDL ¬Pre(a) → [a]⊥ again
by the nonlogical axiom 6.3.1 (2), so it remains to prove that

Γ(A) |=EDL (Bj [a1]ϕ ∧ . . . ∧Bj [an]ϕ)→ [a]Bjϕ.(*)
where a1, . . . , an is the list of all b such that aRjb.

Suppose M,w |=EDL Bj [a1]ϕ∧ . . .∧Bj [an]ϕ, and suppose M,w |=EDL ¬[a]Bjϕ. The lat-
ter implies that there are worlds v and v′ such that wRavRjv

′ and M,v′ |=EDL ¬ϕ. By
the constraint nf, there is b ∈ E such that v′ ∈ Rj ◦ Rb(w).
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Now, by the nonlogical axiom 6.3.1 (3) we have
[a]Bj

(

(〈a−1 〉⊤ ∨ . . . ∨ 〈a
−
n 〉⊤) ∧ ([b

−
1 ] ⊥ ∧ . . . ∧ [b

−
n ] ⊥)

)

,
where a1, . . . , an is the list of all b such that b ∈ Rj(a) and

b1, . . . , bn is the list of all b such that b /∈ Rj(a).
Hence M,v′ |=EDL (〈a

−
1 〉⊤ ∨ . . . ∨ 〈a

−
n 〉⊤) ∧ ([b

−
1 ] ⊥ ∧ . . . ∧ [b

−
n ] ⊥). So b ∈ Rj(a). Then

M,w |=EDL Bj [b]ϕ by (*). So M,v′ |=EDL ¬ϕ, which is contradictory.

QED

Putting these two results together we obtain the following key result:

Theorem 6.3.8 Let A be an event model. Let ϕ be a formula from LA. Then

|=BMS ϕ iff Γ(A) |=EDL ϕ

It follows that

⊢BMS ϕ iff Γ(A) ⊢EDL ϕ

This thus provides a new axiomatization of BMS-validities. This new axiomatization is just
made of Γ(A) together with the axiomatization of EDL .

Remark 6.3.9 In [Aucher and Herzig, 2007], the constraint of no-forgetting and condition (3)
of Definition 6.3.1 were replaced by the following ones

nf’ if v(Ra ◦Ri ◦ R
−1
b )v

′ then vRiv
′

(3)’ ⊢BMS [a]Biϕ ↔ (Pre(a)→ Bi[a1]ϕ ∧ . . . ∧Bi[an]ϕ)

where a1, . . . , an is the list of all b such that b ∈ Rj(a).

Neither do EDL models satisfy nf’, nor the other way round. Hence the version of EDL in
[Aucher and Herzig, 2007] cannot be compared with our present version. If we moreover
assume that event models are serial then we obtain the same results as here. Here we do
not need this last assumption and our condition (3) describes more accurately than (3)’ the
structure of event models. Our constraint nf is also a better generalization of the principle of
perfect-recall than nf’. 2

6.4 Conclusion and related work

We have presented an epistemic dynamic logic EDL whose semantics differs from the BMS
semantics. We have shown that BMS can be embedded into EDL. This result allows to con-
clude that EDL is an interesting alternative to Baltag et al.’s logic, that allows to talk about
agents’ perception of events just in the same way as BMS does. However, EDL is more ex-
pressive than BMS because it allows to talk about past events. Another of its advantages is
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that EDL allows for incomplete beliefs about the event taking place and can still draw infer-
ences from this incomplete description of the event, while in BMS the event model has to
specify everything. So in a sense EDL seems more versatile than BMS to describe events.

On the other hand, the power of event models is not completely exploited in the BMS
approach. Indeed, as we said in Chapter 3, the philosophy of the BMS approach is to rep-
resent events in the same way as situations are represented in epistemic logic by means of
epistemic models. But unlike an epistemic model, an event model does not have a genuine
valuation to describe possible events. An obvious extension of the BMS formalism would be
to add a valuation to event models in order to describe possible events more precisely. Then
we could define epistemic languages for event models completely identical to the various
epistemic languages we already defined for epistemic models, except that the propositional
letters of these languages would describe possible events instead of possible worlds. This
would allow to express things about events that are currently taking place, and not only to
express things before or after the occurrence of events as in EDL. This would also allow to
update/revise events by other events which is a phenomenon that often occurs in everyday
life.3 It is not possible to model such phenomena in EDL because the accessibility relations
for events are set once and for all.

Another approach studying information change over time is Epistemic Temporal Logic
ETL [Parikh and Ramanujam, 2003] (or equivalently interpreted systems [Fagin et al., 1995]).
In this approach, the notion of belief is still present but the notion of event is replaced by the
notion of time, and their models are tree-like models representing the possible evolutions of
a situation over time. So their models are somehow similar to our EDL models in the sense
that the specifications of time (instead of events) and beliefs are on the same formal level
(unlike the BMS formalism). The connection of ETL with the BMS formalism is made by van
Benthem, Pacuit and Liu in [van Benthem and Pacuit, 2006] and [van Benthem and Liu, 2004]

but more especially with Gerbrandy in [van Benthem et al., 2007]. In this last paper, they also
introduced converse events and independently proposed for their tree-like models perfect-
recall and no-miracle principles. Their perfect-recall principle corresponds to our constraint
nf’ in Remark 6.3.9, and their no-miracle principle is ¬CG¬〈a〉B̂j〈b

−〉⊤ → ([a]Bjϕ→ Bj [b]ϕ)
which is almost identical to our no-learning principle. Another approach is that of [van
Ditmarsch et al., 2007a] where the authors show how to translate a BMS formula satisfied in
an epistemic model into an ETL formula satisfied in an interpreted system. So their approach
is less general than ours because it only deals with the model checking problem. Still in

3For example, assume that Bob wants to know whether the coin is heads or tails up and starts to open the box
to look at the coin, Ann suspecting nothing about it, and Bob knowing that. This can be modelled by a first event
model. However, while Bob opens the box to look at the coin Ann notices him but Bob does not notice that Ann
has noticed him and he still believes that she did not notice anything. This second event, temporally included in
the first event, can also be modelled by a second event model. However its preconditions deal with what is true
in the first event model and thus are expressed in the language of the first event model (the precondition for Ann
observing that Bob cheats is that Bob does cheat, which is expressible in the language of the first event model).
Then we could update the first event model by the second completely similarly to the way we already update
situations by events in the BMS formalism, except that the preconditions would be expressed in the language of
the first event model. This would yield a third event model in which Bob is cheating and Ann knows it but Bob
believes that Ann does not know it.
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the ETL paradigm but starting from the BMS formalism, Yap [Yap, 2006] and Sack [Sack,
2008; Sack, 2007] introduce a ‘yesterday’ temporal modal operator to the BMS language
expressing what was true before the last event; Sack gets a complete characterization. To
prove completeness Sack [Sack, 2007] also introduces a separate component expressing that
an event just occurred but this is not a converse modal operator like ours. However he does
introduce a converse modal operator for public announcement logic but does not provide a
completeness proof for it [Sack, 2008].

Another approach embedding the BMS formalism to a formalism that also deals with
events and beliefs on the same formal level is proposed by van Eijck et col. in [van Eijck, 2004;
van Benthem et al., 2006b]. They map the BMS formalism to (epistemic) propositional dy-
namic logic (refining a similar result for automata propositional dynamic logic [van Benthem
and Kooi, 2004]). However they do not resort to converse events and translate directly event
models into a transformation on PDL programs.



Chapter 7

Conclusion and further research

In this thesis, we have investigated several logical models of belief change and belief repre-
sentation by stressing the importance of choosing a modeling point of view. In that respect
we first identified the three possible modeling points of view, proceeding by successive di-
chotomies: the internal, perfect external and imperfect external approaches.

From Chapter 2 to 4, we focused on the internal approach. In Chapter 2 we provided an
internal version of epistemic logic by introducing the notions of multi-agent possible world
and internal model and proved a completeness result for this semantics. In Chapter 3 we
then added dynamics to our internal approach and proposed an internal version of dynamic
epistemic logic as viewed by BMS. We also studied in which case seriality of accessibility
relations is preserved during an update. In Chapter 4 we first showed that generalizing belief
revision theory to a multi-agent setting amounts to study private announcement. Then we
proposed a way to deal with belief revision when the private announcement is incoherent
with the agent’s beliefs by generalizing AGM belief revision theory to the multi-agent case.
Finally, we provided an example of a revision operation based on a degree of similarity
between multi-agent possible worlds and applied it to our ‘coin’ example.

However, it still remains to show that the internal logic Int is PSPACE-complete for
N = 2 and provide a complete axiomatization for the second notion of validity. But the main
open problem for the internal approach remains to find constructive revision mechanisms
for any kind of event, and not only for private announcement. This would enable artificial
agents to cope with any kind of unexpected event. Besides, this would also indirectly enable
us to update and revise external models by any kind of event, as we said in Section 4.5. In fact
the formal asymmetry between the formalisms that we proposed for the perfect external and
internal approach would be resolved if we could resort in the formalisms for the (perfect)
external approach to the revision mechanisms designed for the internal approach. Finally,
another line of research would be to define the internal version of other (external) logics
than epistemic logic such as probabilistic logic, possibilistic logic. . . in order to deal more
accurately with the representation of uncertainty and ignorance.

In Chapter 5 we followed the (perfect) external approach and introduced a rich formal-
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ism using probabilities and hyperreal numbers. This enabled us to model accurately epis-
temic states of human agents including what would surprise them, and also to model accu-
rately how human agents interpret events and revise their beliefs. We also reviewed different
approaches to the notion of knowledge and showed how some of them could be captured in
our formalism. So our formalism is general in the sense that it covers many aspects of belief
change and belief (and knowledge) representation.

Two issues related to our external approach deserve further research. First, our formal-
ism still suffers from the logical omniscience problem which is a real problem for the kind of
applications we have in mind (particularly in psychology). An improvement of our formal-
ism would be to address this issue. Second, the notion of surprising world needs conceptual
and theoretical foundation. As this touches the core of our ideas, we will address that matter
below, separately.

Finally, in Chapter 6, we also followed the (perfect) external approach and enriched the
dynamic epistemic language with a converse operator. We then proposed a logic EDL which
specifies more explicitly than BMS the interactions between events and beliefs by means of
axioms. Finally we showed that we can embed BMS into EDL by translating the structure of
an event model as a non-logical EDL-theory. A natural continuation of this work could be to
study the decidability of EDL or to add to the language a common belief operator.

Finally, let us have a closer look at the notion of surprising world that we introduced
in Chapter 5 to perform belief revision. The ontological status of these surprising worlds
is subject to debate. Indeed, we assumed that the agent is not aware of them. So are they
somewhere in her mind but below a certain ‘activation threshold’ for the agent to be aware
of them? In that case, there would be a problem if the overall number of possible worlds was
infinite, which is the case if there is an infinite number of propositional letters or if we are in
a multi-agent setting. Indeed, from a psychological point of view it is difficult to accept that
human agents can have infinite structures in their mind. Even if we assumed that the agent
only has a finite number of them in her mind we would still have to give reasons why some
are in her mind and some are not. In particular, we would need to motivate philosophically
why the possible world corresponding to the actual world has always to be in the agent’s
mind (in other words, why the actual world has to be a conceived world or a surprising
world). Indeed, the agent could have to revise by formulas which are true only in the actual
world and we would face a technical problem if this actual world was not in the model.
So, are the surprising worlds absent from the agent’s mind and created by the agent only
when she needs to revise her beliefs? But in order to create these new worlds, the agent
would need means to do so. This could be for example thanks to a distance (or equivalently
a degree of similarity) between (multi-agent) possible worlds like in Section 4.4. Indeed, this
distance can easily be present in the agent’s mind and orders implicitly all the (multi-agent)
possible worlds, even if all of them are not actually present in the agent’s mind. It seems that
the surprising worlds are just a way to bypass a deeper problem which consists in defining
a generic object present in the agent’s mind like a distance which would implicitly order
all the (multi-agent) possible worlds, like in the internal approach. The connection of the
external approach with the internal approach is even more salient when viewed from this
perspective. In our formalism this ordering of possible worlds is given from the start by
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the probability values of these surprising worlds. In a sense, one could even consider these
surprising worlds as a technical ‘trick’ (even if they indirectly also allow to model an aspect
of the notion of surprise). So it seems that the real issue, even for the external approach, is to
find constructive revision mechanisms for the internal approach in order to cope with any
kind of unexpected event (and not only for the case of private announcement as we did).



Abstract

Representing an epistemic situation involving several agents depends very
much on the modeling point of view one takes. For example, in a poker game
the representation of the game will be quite different whether the modeler is a
poker player playing in the game or the card dealer who knows perfectly what
the players’ cards are. One of the main contributions of this thesis is to system-
atically distinguish the different modeling points of view and their respective
formalisms. Classically, in epistemic logic, the modeler is somebody external to
the situation who has a perfect knowledge of it (like the card dealer). We call this
modeling approach the external approach. Another possibility is that the modeler
is an agent involved in the situation who interacts with the other agents (like the
poker player). We call this modeling approach the internal approach. In this thesis,
we focus on these two modeling approaches.

The internal approach has not been studied so far in the logical literature. So
we first propose an internal version of epistemic logic (that we axiomatize) and
we set some formal links between the internal and external approaches. Then we
add change to the picture and propose an internal version of the BMS dynamic
epistemic logic very much in the same spirit as we did for epistemic logic. Doing
so we also provide conditions under which seriality of models is preserved dur-
ing an update. This logical study of the internal approach and its link with the
external approach is another contribution of this thesis.

Then we show how this new internal approach allows for a straightforward
generalization of AGM belief revision theory to a multi-agent setting. We first ob-
serve, thanks to our internal version of dynamic epistemic logic, that generalizing
AGM belief revision theory to a multi-agent setting amounts to study private an-
nouncement. Then we generalize the theorems of AGM theory to the multi-agent
case. Afterwards we propose rationality postulates in the AGM style in order to
better specify formally that we study private announcement. Finally we provide
an example of revision operation satisfying one of these postulates. Generaliz-
ing AGM belief revision theory to a multi-agent setting is also one of the main
contributions of this thesis.

Afterwards, we turn our attention to the external approach for which we pro-
pose a rich and general formalism based on the BMS one. This rich formalism
uses probability to model degrees of belief, and infinitesimals to model degrees
of potential surprise. This allows to model accurately how human agents inter-
pret events and revise their beliefs. Formalizing these intricate logical dynamics
and providing an expressive framework to model accurately epistemic states of
agents is another contribution of this thesis. Finally we review various axioms
proposed to characterize the notion of knowledge and its interaction with the
notion of belief, and show how they can be captured in our rich formalism.

Eventually, we propose an alternative to the BMS formalism for the external
approach where events are simply represented as accessibility relations between
possible worlds, unlike the BMS formalism where they are represented as event
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models. This allows to define easily a converse event modal operator and to
specify more explicitly the interactions between events and beliefs by means of
constraints on the accessibility relations for beliefs and events. Our contribution
here is to propose such constraints and to show that the BMS formalism can be
embedded in ours by translating the structure of an event model as a non-logical
theory.
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Résumé

La modélisation d’une situation épistémique qui fait intervenir plusieurs a-
gents dépend beaucoup du point de vue que l’on adopte vis à vis de la situation.
Par exemple, dans un jeu de poker, la représentation du jeu sera bien différente
selon que le modélisateur est l’un des joueurs ou bien celui qui distribue les cartes
et qui sait parfaitement quelles sont les cartes que les joueurs possèdent. Une
contribution essentielle de cette thèse est de distinguer clairement ces différents
points de vue de modélisation et leurs formalismes respectifs. En logique épisté-
mique, le modélisateur est quelqu’un d’externe à la situation et qui en a une
connaissance parfaite (comme la personne qui distribue les cartes dans le jeu de
poker). Nous appelons cette approche l’approche externe. Une autre possibilité est
celle où le modélisateur est l’un des agents qui interagit avec les autres agents
(comme l’un des joueurs de poker). Nous appelons cette approche l’approche
interne. Dans cette thèse, nous nous focalisons sur ces deux approches.

L’approche interne n’a pas été étudiée en logique jusqu’à maintenant. Dans
un premier temps nous proposons une version interne de la logique épistémique
(que l’on axiomatise) et nous établissons des liens formels entre les approches ex-
ternes et internes. Ensuite nous introduisons du dynamisme à notre formalisme
et proposons une version interne de la logique épistémique dynamique de BMS
dans le même esprit que la version interne de la logique épistémique.

Ensuite nous montrons que cette nouvelle approche interne permet de généra-
liser de façon immédiate la théorie de révision des croyances au cas multi-agent.
On observe d’abord, grâce à notre version interne de la logique épistémique dy-
namique, que généraliser la théorie de révision des croyances d’AGM au cas
multi-agent revient à étudier les annonces privées. Ensuite on généralise les
théorèmes de la théorie d’AGM au cas multi-agent. Après cela, nous proposons
des postulats de rationalité dans le style d’AGM afin de mieux spécifier formelle-
ment que nous étudions les annonces privées. Finalement nous proposons un
exemple d’opération de révision qui satisfait un de ces postulats. Généraliser la
théorie de révision des croyances au cas multi-agent est aussi une des contribu-
tions principales de cette thèse.

Ensuite nous nous concentrons sur l’approche externe pour laquelle nous
proposons un formalisme riche et général basé sur celui de BMS. Ce riche for-
malisme utilise les probabilités pour modéliser les degrés de croyance, et les in-
finitésimaux pour modéliser les degrés de surprise potentielle. Cela permet de
modéliser précisément comment des agents humains interprètent les événements
et révisent leurs croyances. Formaliser ces mechanismes logiques complexes et
fournir un système expressif pour modéliser avec précision les états epistémiques
des agents est une autre contribution de cette thèse. Finalement nous passons en
revue différents axiomes proposés dans la littérature pour caractériser la notion
de connaissance et sa relation avec la notion de croyance, et montrons comment
ceux-ci peuvent être capturés dans notre riche formalisme.

Finalement, nous proposons une alternative au formalisme de BMS (pour
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l’approche externe) où les événements sont simplement représentés par des re-
lations d’accessibilité entre mondes possibles, à la différence du formalisme de
BMS où ils sont représentés par des modèles d’événements. Cela permet de
définir facilement un opérateur modal d’événement inverse et de spécifier plus
explicitement les intéractions entre croyances et événements à l’aide de contraintes
sur les relations d’accessibilité respectives. Notre contribution est ici de proposer
de telles contraintes et de montrer que le formalisme de BMS peut être plongé
dans le notre en traduisant la structure d’un modèle d’événement en une théorie
non-logique.
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Des Perspectives sur les Croyances et le Changement

GUILLAUME AUCHER

Dans cette thèse, nous proposons des modèles logiques pour la représentation des croy-
ances et leur changement dans un cadre multi-agent, en insistant sur l’importance de se
fixer un point de vue particulier pour la modélisation. A cet égard, nous distinguons deux
approches différentes: l’approche externe, où le modélisateur est quelqu’un d’externe à la
situation; l’approche interne, où le modélisateur est l’un des agents. Nous proposons une
version interne de la logique épistémique dynamique (avec des modèles d’événements), ce
qui nous permet de généraliser facilement la théorie de la révision des croyances d’AGM
au cas multi-agent. Ensuite, nous modélisons les dynamismes logiques complexes qui sous-
tendent notre interprétation des événements en introduisant des probabilités et des infinitési-
maux. Finalement, nous proposons un formalisme alternatif qui n’utilise pas de modèle
d’événement mais qui introduit à la place un opérateur d’événement inverse.
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Perspectives on Belief and Change

GUILLAUME AUCHER

In this thesis, we propose logical models for belief representation and belief change in
a multi-agent setting, stressing the importance of choosing a particular modeling point of
view. In that respect, we distinguish two approaches: the external approach, where the
modeler is somebody external to the situation; the internal approach, where the modeler is
one of the agents. We propose an internal version of dynamic epistemic logic (with event
models) which allows us to generalize easily AGM belief revision theory to the multi-agent
case. Afterwards, we model the complex logical dynamics underlying the interpretation of
events by adding probabilities and infinitesimals. Finally we propose an alternative without
using event models by introducing instead a converse event operator.

Keywords: Epistemic logic, Dynamic logic, Dynamic epistemic logic, Belief revision,
Knowledge representation, Multi-agent systems.

This thesis, presented and defended at Toulouse on the 9th of July 2008, was performed
under the supervision of Hans van Ditmarsch (New Zealand) and Andreas Herzig (France).
The author obtained the degree of Doctor of Philosophy in Computer science of the Univer-
sity of Otago and Docteur en Informatique de l’Université de Toulouse.
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