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Optimal control techniques for thermo-acoustic tomography

Mäıtine Bergounioux∗, Xavier Bonnefond†and Pierre Maréchal‡

May 21, 2011

Abstract

Thermo-acoustic and photo-acoustic tomography are imaging techniques that combine high
electromagnetic absorption contrast between two media with ultrasound high resolution. Both
techniques lead to an ill-posed inverse problem. One currently has a choice between three main
types of reconstruction procedures namely the filtered backprojection formulae, eigenfunction
expansion methods and time reversal method. In this paper we propose to investigate this
inverse problem with an alternative control formulation : in our model the function to be
recovered is the control function while the (acoustic) pressure is the state function which
satisfies a wave equation. We stress that our objective is to give modelling hints, and not to
provide new results. Otherwise expressed, the originality of this paper lies essentially in the
way the problem is stated.

Keywords : Tomography, Image Processing, Control Theory

1 Introduction

Thermo-acoustic and photo-acoustic tomography are imaging techniques that combine high elec-
tromagnetic absorption contrast between two media with ultrasound high resolution. These hybrid
systems use an electromagnetic pulse as an input and record ultrasound waves as an output. The
electromagnetic energy is distributed at a given time as uniformly as possible through the object.
The induced increase of temperature depends on the local absorption properties (for example,
cancerous tissues absorb more energy than healthy ones). This opens the way to the detection of
heterogeneities viameasurements of the pressure field. Heterogeneities behave like internal acoustic
sources, and the signals recorded by pressure detectors outside the medium under study provide
information on their distribution. One speaks of thermo-acoustic tomography (TAT) when the
heating is realized by means of microwaves, and of photo-acoustic tomography (PAT) when optical
heating is used. While in TAT waves of radio frequency range are used to trigger the ultrasound
signal, in the PAT the frequency lies in the visual or near infra-red ranges. In brief, TAT and PAT
are two hybrid techniques using electromagnetic waves as an excitation (input) and acoustic waves
as an observation (output). For the mathematical purpose there is no distinction between these
methods. Both techniques lead to an ill-posed inverse problem of the same form which, under
simplifying assumptions, entails inversion (in the wide sense) of the spherical Radon transform.

More precisely, the main problem can be formulated as follows [19, 20, 21]: given the sound
speed c(x) and measured data yobs on S ⊂ R

n (n = 2, 3), find the initial value uo(x) of the pressure
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Figure 1: Realization of a tomograph with integrating transducers, from Patch and Scherzer [29]

y(x, t) where y is the solution to the problem


































∂2y

∂t2
(t, x)− c2(x)∆y(t, x) = 0, (t, x) ∈ [0, T ]× R

n,

y(0, x) = uo(x), x ∈ R
n,

∂y

∂t
(0, x) = 0, x ∈ R

n,

y(t, x) = yobs(t, x), x ∈ S, t ∈ [0, T ].

(1)

We shall briefly justify this model in the sequel. The initial value uo is the TAT (or PAT) image.
This problem is highly ill-posed. In most reconstruction methods in TAT, additional assumptions
are performed such as, for example, conditions on the support of the function to be recovered
and/or the observation surface, or a constant sound speed. A nice overview of the state of art has
been done in [21]. We summarize the introduction (for more details one can refer to the whole
paper). One currently has a choice between three main types of reconstruction procedures for
closed observation surfaces, namely the filtered backprojection formulae, eigenfunction expansion
methods and time reversal methods.

The filtered backprojection approach is the most popular [13, 15, 16, 19, 22]. However, it is not
clear that backprojection-type formulae could be written for any closed observation surface S. In
[16], inversion formulae are provided assuming odd dimensions and constant sound speed. Indeed,
in this case the Huygens’ principle holds : for any initial source with a compact support, the wave
leaves any bounded domain in a finite time. This is no longer true if the spatial dimension is
even and/or the sound speed is not constant. All known formulae of filtered backprojection type
assume constant sound speed and thus are not available for acoustically inhomogeneous media. In
addition, the only closed bounded surface S for which such formulae are known is a sphere.

Expansion series are useful in the case where the Huyghens principle is valid. This approach
was extended to the constant speed and arbitrary closed observation surface and modified by the
usage of the eigenfunctions of the Laplacian with Dirichlet conditions on S [8]. It theoretically
works for any closed surface and for variable sound speeds [32].

The time reversal method [20, 21] can be used for approximating the initial pressure when the
sound speed inside the object is variable. It works for arbitrary geometry of the closed observation
surface S. The sound speed can be variable. Ammari et al. [3, 4, 5, 6] have performed sharp
analysis of these problems both from the modelling and numerical poins of view.
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In this paper we propose to investigate this inverse problem with an alternative formulation.
We propose a control approach: in our model the function to be recovered is the control function
while the pressure is the state function which satisfies a wave equation. We stress that our objective
is to give modelling hints, and not to provide new results. Otherwise expressed, the originality of
this paper lies essentially in the way the problem is stated.

There are many ways to define the state equation and the cost functional (observation) in the
optimal control or controllability approach. We state a few open problems for future investigation,
which cover various fields such as controllability theory, optimal control both from the theoretical
and numerical viewpoints, the relationship between Fourier analysis and the control approach
(Fourier aliasing effects and numerical approximations for the wave equation), shape optimization
and so on.

The paper is organized as follows: in the next section, we present the physical problem and the
model, together with the integral formulation (involving the spherical Radon transform). In Section
3, we present the inverse problem and usual variational techniques to address the ill-posedness. We
propose an optimal control approach in section 4, present approximated and regularized models and
derive general optimality conditions. In Section 5, we present simple numerical tests to compare
the proposed approach to some classical methods.

2 The direct TAT model

A precise description of the physical model of TAT (or PAT) can be found in [30]. We outline
here a simplified model. Let us denote by v(x, t) the fluid velocity at position x and time t, and
make the following physical assumptions:

1. v(x, t) is small;

2. the fluid is non viscous and non turbulent;

3. there is no external force.

We also assume that the density ρ = ρ(x, τ) and pressure p = p(x, τ) undergo small variations:

ρ = ρ0 + δρ with |δρ| << ρ0 and p = p0 + δp with |δp| << p0.

This allows for linearizing the mass conservation and momentum conservation equations, which
then read

∂ρ

∂τ
= −ρ0∇ · v and ρ0

∂v

∂τ
= −∇p,

respectively. In the latter equations and from now on, ρ and p stand for the variations δρ and δp.
Combining these equations yields

∂2ρ

∂t2
−∆p = 0. (2)

In order to link ρ and p with the absorbed electromagnetic radiation, one makes use of the thermal
expansion equation, whose linearized form reads

∂ρ

∂t
=

1

c2
∂p

∂t
−
β

cp
r. (3)

Here, β, cp and c denote respectively the thermal expansion coefficient, the specific heat capacity
and the (adiabatic) speed of sound, while r = r(x, t) denotes the absorbed electromagnetic power.
From (2) and (3), we easily obtain

(

1

c2
∂2

∂t2
−∆

)

p =
β

cp

∂r

∂t
. (4)
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Now, the absorbed electromagnetic power r(x, t) is related to the absorption coefficient ψ = ψ(x)
by the equation r(x, τ) = I(x, τ)ψ(x), in which I(x, τ) is the radiation intensity. Finally, due to
the high magnitude of the speed of light, one can assume that I(x, t) takes the separated form
I(x) = J(x)j(t). Equation (4) then reads

(

∂2

∂t2
− c2∆

)

p =
βc2Jψ

cp

∂j

∂t
.

The function f(x) :=
βc2(x)J(x)ψ(x)

cp
is referred to as the energy deposition function. Finally, we

can assume that the pressure increment, together with its time derivative, is zero at the initial
time (right before illumination). We are then led to consider the following system:

(TAT )



























∂2

∂t2
(x, t)− c2(x)∆p(x, t) = f(x)

∂j

∂t
(t),

p(x, 0) = 0,

∂p

∂t
(x, 0) = 0.

To simplify the problem, it is usually assumed that the sound speed c is constant (normalized to
1). An alternative formulation of the above linear direct problem is an integral formulation. Recall
that the direct problem consists in determining p(x, t) for all (x, t) ∈ R

3 ×R+ from the knowledge
of f and j. It is well known (see e.g. [19]) that the solution is given by

p(x, t) =

(

dj

dt
⊛
(

tRf
)

)

(x, t). (5)

Here, the convolution operation ⊛ is defined by

(

g ⊛ h
)

(x, t) =

∫ t

0

g(t− s)h(x, s) ds

and the operator R, referred to as the spherical Radon transform, is defined by

(Rf)(x, t) :=
1

4π

∫

S2

f(x+ tω) dω.

In TAT, one is rather confronted to the inverse problem:

Recover the energy deposition function f(x) from measurements of p(x, t) for x over a
surface S outside the illuminated fluid.

We now show that additional approximations give rise to an integral formulation of the latter
inverse problem, under the assumption that the intensity profile j(t) is nearly a Dirac centered at
the origin. Assuming that j has support in [0, T ] (see Figure 2 (left)), one may write, for every
smooth function h(x, t),

d

dt

(

j ⊛ h
)

(x, t) =

(

dj

dt
⊛ h

)

(x, t).

If j ≈ δ, then
dj

dt
⊛ h ≈

dh

dt
, so that

(

dj

dt
⊛
(

tRf
)

)

(x, t) ≈
d

dt
(tRf). Consequently, Equation (5)

can be approximated by

p(x, t) =
d

dt
(tRf). (6)

We see that, after integrating and dividing by t, measurements of p(x, t) on S ×R+ give access to
approximate values of (Rf)(x, t) on the same domain.
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Figure 2: Physical principle of Thermo-acoustic Tomography: intensity time profile of the EM
pulse (left) and scheme showing the pressure wave generation and propagation (right).

However, this integral formulation is purely linear and cannot be genelarized to non-linear
models. From the numerical point of view, the integral formulation leads to the so-called filtered
back-projection method.

3 Variational techniques for the inverse problem

The integral formulation of the problem leads to a linear inverse problem of standard form, that
is:

Recover f from an approximate knowledge g of Rf , where R is a compact linear
operator (modelling the data acquisition process) from a norm space into another.

In TAT, R is the spherical Radon transform. As already mentionned, there are several methods
to solve the inverse problem using exact or approximate formulas to estimate the inverse of R.

A classical approach to solve (ill posed) inverse problems is the least-square formulation using
a regularization process (a penalization term for example) to get the well posedness. The general
formulation stands

min ‖L(g)−A(f)‖+ αH(f) ,

where g is the data and f the function to recover. We describe A, L operators thereafter and H
is a regularizing operator. The functional framework has to be made precise as well. In the sequel
we focus on two approaches:

• The first one is the regularization by mollification which is inspired by the integral formulation
: here A = R (the spherical Radon transform) and the operator L is a linear operator that
provides a preprocessing transformation for the data g.

We call regularization by mollification a set of reconstruction methodologies deriving from
the idea that the original ill-posed problem of reconstructing the unknown object f should
be replaced by that of recovering a smooth version of it. In this approach, the target object
is no longer f but φ ∗ f , where φ is a convolution kernel and ∗ denotes the convolution
operation.

This idea has been developed in two different ways, independently. One of them, which
bears the name of approximate inverse, was introduced by Louis and Maaß [26, 27, 28]. In
the context of TAT, it was developed by Altmeier, Schuster and Scherzer [19]. The other
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way goes back to Lannes et al. [23], who introduced a particular variational regularization
in the context of deconvolution and aperture synthesis. This approach was further analyzed
and developed more recently by Alibaud et al. [1] and Bonnefond et al. [11] (see also [2]).

• The second approach is an optimal control approach that derives from the PDE formulation.
It seems to be more general than the previous techniques since the PDE can be non linear
what the integral formulation does not allow. In this case, L is the identity operator and A
associates the solution f := A(g) to equation (1) (with g instead of u0) to the data g. The
regularizing term H(f) comes from a priori knowledge of the solution f .

We first briefly present the regularization by mollification

3.1 Approximate inverses

Given a continuous and nonnegative function φ with
∫

φ = 1, one defines the family

φβ(x, y) :=
1

βn
φ

(

x− y

β

)

, β > 0,

called an approximation of unity. The mollified version of f , denoted fβ , can expressed as the
scalar product of f by φβ(·, y):

fβ(y) :=

∫

f(x)φβ(x, y) dx = 〈f, φβ(·, y)〉 .

Now, it is well-known that, in several senses,

∫

f(x)φβ(x, ·) dx → f as β ↓ 0.

Assuming that φβ ∈ ranR∗, let ψβ be defined by

ψβ(·, y) = (R∗)−1φβ(·, y). (7)

Then, one has:
fβ(y) = 〈f, φβ(·, y)〉 = 〈f,R∗ψβ(·, y)〉 = 〈Rf, ψβ(·, y)〉 .

We see that if one can compute explicitly ψβ , fβ is readily obtained from the data g = Rf by
taking the scalar product with the so-called reconstruction kernel ψβ . In the case where R∗ is not
invertible, one may replace (R∗)−1 in equation (7) by the pseudo-inverse of R∗ (which corresponds
to the least-square solution of the equation R∗ψ(·, y) = φβ(·, y)). Clearly, the difficulty in this
method lies in general in equation (7) which is an ill-posed problem as well. However, as mentioned
above this nice duality trick has been successfully applied in the context of TAT by Haltmeier et
al. in [19].

3.2 Regularization by mollification

We assume here that the original object f0 has support in a bounded domain Ω0 in R
d, and that

the mollified object φ ∗ f0 has most of its support in Ω ⊃ Ω0. Notice that, if φ is chosen to have
compact support, the definition of Ω is straightforward.

We also assume that R maps L2(Ω) into some infinite dimensional separable Hilbert space G,
and that R is compact and injective.

The convolution kernel is regarded as a member of the family

φβ(x) :=
1

βd
φ

(

x

β

)

, with φ ∈ L1(Rd) and

∫

Rd

φ(x) dx = 1. (8)
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The latter family is an approximation of unity, and the choice of β determines the target resolution.
Clearly, in this approach, the relevant regularization parameter is β.

Let Cβ denote the convolution by φβ . We now aim at approximating the new target object
Cβf = φβ ∗ f0, which is performed by solving the following optimization problem:

(Pβ)

∣

∣

∣

∣

∣

∣

Minimize
1

2
‖Φβg −Rf‖2G +

α

2
‖(I − Cβ)f‖

2
L2

s.t. f ∈ L2(Ω),

in which I denotes the identity and Φβ : G→ G is itself a solution to:

(Qβ)

∣

∣

∣

∣

∣

∣

Minimize
1

2
‖RCβ −XR⌊E‖

2
L(E,G)

s.t. X ∈ L(G), X = 0 on (ranR⌊E)
⊥.

Here, E is a subspace of L2(Rd), L(E,G) denotes as usual the space of continuous linear mappings
from E to G and L(G) := L(G,G).

The choice of the functional to be minimized in (Pβ) can be explained as follows. Any object f
is the sum of its low frequency component Cβf and of its high frequency component (I − Cβ)f
The functional to be minimized acts of each component as independently as possible: the fit term
introduces constraints on the low frequency component while the regularization term deals with
the high frequency component. The complementarity of the filters φ̂β et 1− φ̂β allows for a smooth
transition between the experimental and regularization constraints.

We emphasize that, unlike most regularization techniques, the fit term requests adequacy to
the regularized data Φβg. The rationale for this is that, in some sense, Φβg is optimally consistent
with the new target object. Ideally, Φβ should be such that

ΦβR = RCβ , (9)

which may not be feasible. Therefore, Φβ is chosen to minimize the discrepancy in Equation (9).

4 A control formulation

In this section, the pressure p will be denoted y, in order to fit the traditional notation in optimal
control.

4.1 The state equation

We have seen in the previous section that the equation that describes the behavior of the system
is (in R

n with n = 3):



















∂2y

∂t2
(t, x)− c2(x)∆y(t, x) = uo(x)

∂j

∂t
(t), (t, x) ∈ [0, T ]× R

n,

y(0, x) = 0, x ∈ R
n,

∂y

∂t
(0, x) = 0, x ∈ R

n.

(10)

where j is the electromagnetic pulse intensity profile and c the sound speed.

More generally we set u(t, x) := uo(x)
∂j

∂t
(t). The function to be recovered u is regarded as a

control function while the pressure y is regarded as the state function. Therefore Equation (10) is
the so-called state equation.
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Remark 1 By using Duhamel’s principle [13], one may rewrite this state equation as



















∂2y

∂t2
(t, x) − c2(x)∆y(t, x) = 0 in [0, T ]× R

n,

y(0, x) = uo(x), in R
n,

∂y

∂t
(0, x) = 0 in R

n.

(11)

So, in this context, the control function can be a distributed one or an initial one. However, this
equivalence is only valid in the linear case and we focus on the distributed case.

Recall that, if V is a norm space endowed with ‖ · ‖V , then for every p ∈ [1,∞]

Lp(0, T ;V ) := {y : [0, T ]× R
n → R | y(t, ·) ∈ V a.e. t ∈ (0, T )

and

∫ T

0

‖y(t, ·)‖pV dt < +∞}.

and

C(0, T ;V ) := {y : [0, T ]× R
n → R | ∀t ∈ (0, T ) y(t, ·) ∈ V

and t 7→ ‖y(t, ·)‖V is continuous }.

The original problem domain is Rn. This is consistent with the fact that one usually uses classical
Fourier analysis (Radon transform, spherical means,...) since the uncertainty principle do not allow
compact supports both in the time and frequency domains. The control viewpoint requires the
definition of boundary conditions (to infinity if the domain is Rn) to use duality methods and Green
formulae. By contrast, the advantage of this approach is that we may choose an open bounded
subset B as the domain and use finite differences or finite elements to compute the solution. A
challenging application is to set a model which allows for using both spectral (Fourier) analysis
and finite difference methods.

We recall a regularity and existence abstract result which gives indication about the functional
framework to be used (with appropriate regularity assumptions on c and c ≥ c0 > 0 ):

Theorem 4.1 ([25] Vol. 1 p 286) If u ∈ L2([0, T ] × R
n), then (10) has a unique solution in

{ y ∈ L2(0, T,H1(Rn)) , yt ∈ L2([0, T ]× R
n) . Moreover

y ∈ C(0, T ;H1(Rn)) and yt ∈ C(0, T ;L2(Rn)) ,

and the solution y continuously depends on u.

In the sequel, we shall avoid using the whole space Rn. Therefore, we consider that infinity means
far enough and that the problem domain can be an open ball B ⊂ R

n with large radius. Indeed
the pressure y quickly vanishes and we may consider that it is equal to 0 on the boundary ∂B of
the ball. The ball B contains Ω as well as the sensors location ωε (we shall justify the notation
later on). If we impose Dirichlet conditions on the boundary, we get:



























∂2y

∂t2
(t, x) − c2(x)∆y(t, x) = u(t, x), in ]0, T [×B := Q,

y(0, x) = 0, in B
∂y

∂t
(0, x) = 0 in B

y = 0 on S

(12)

where S :=]0, T [×∂B is the lateral boundary of Q.
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Remark 2 We may of course consider Neumann boundary conditions or mixed conditions: this
requires additional investigation on the physics. We may also consider R

n as the domain using
appropriate decay properties at infinity instead of the ball: the techniques are quite similar.

We have a generic classical result (see [14] p. 632 for example) which can be sharpened of
course. To simplify the presentation, we now assume from now that the sound speed c is equal to
1.

Theorem 4.2 Assume that u ∈ L2(0, T ;H−1(B)). Then, Equation (12) has a unique solution
y[u] ∈ L2(0, T ;H1

o(B)) ∩ C0([0, T ];L2(B)).

In the sequel we denote
W := L2(0, T ;H1

o(B)).

Open problem 1 We have set u(t, x) := uo(x)
∂j

∂t
(t) where j is a smooth approximation of the

Dirac measure. This gives the natural regularity of the control function. However, an interesting
challenge is to perform the following analysis using less smooth control functions.

4.2 The control problem

Following Scherzer [19] we assume that u has a compact support contained in [0, T ]×Ω, where Ω is
a bounded open subset of Rn containing the support of the object to be recovered. The pressure y
is measured (observed) on Σ = [0, T ] × Γ where Γ ⊂ ∂Ω is contained (most of time strictly) in
∂Ω. The inverse problem which consists in recovering u from measurements of y on Σ can be
formulated as the following minimization problem:

∣

∣

∣

∣

∣

∣

Minimize

∫

Σ

(y(u)− yd)
2 dt dγ

s.t. u ∈ U ,

where yd is the measured pressure and U is the admissible control function space. Many difficulties
then arise:

• The problem is known to be ill-posed: we cannot even ensure the existence of a solution.
One must add a regularization term for u. A standard way to perform the regularization
consists in adding to the functional a Tychonov term:

α

∫

Q

u2dxdt with α > 0,

or rather term inspired by the regularization by mollification method

α

∫

Q

(Bβu)
2dxdt

where α > 0,
Bβ(u) = u− φβ ∗x u, (13)

and φβ is defined as in subsection 3.2. Here ∗x denotes the spatial convolution (with respect
to x). More precisely

∫

Q

(Bβu)
2dxdt =

∫ T

0

∫

B

(u− φβ ∗x u)
2(x, t)dxdt .

Note that Bβ = I gives the classical Tychonov term.
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Open problem 2 A crucial point is to investigate the physical model and the qualitative
properties of the control in order to choose an appropriate regularization term: we may
choose the solution with minimal energy, but it may not be the best choice. We choose the
above regularization by mollification term for the moment. This choice has to be considered
precisely in the future.

Open problem 3 A natural question is that of describing the asymptotic behavior of the
solution as the regularization parameter α goes to 0 (this is well-known for Tychonov regu-
larization process for example) and perform sensitivity analysis with respect to β.

• In order to define the observation term in the cost functional, the trace of y[u] on Σ has
to belong to L2(Σ). This depends on the regularity of u. However, in the case of point
detectors, the observation term would take the form

N
∑

i=1

∫

[0,T ]

(y[u]− yd)
2(t, xi) dt =

N
∑

i=1

∫

[0,T ]×Rn

(y[u]− yd)
2(t, x) dt dδxi

(x),

in which dδxi
denotes the Dirac measure at xi. Notice that one may relax the above functional

and write instead
N
∑

i=1

∫

[0,T ]×Rn

(y[u]− yd)
2(t, x) dt dµi(x),

in which dµi is a relaxed version of dδxi
, e.g. a gaussian measure centered at xi. Clearly, the

width of each µi should be less than, say, one half of the expected wavelength of the pressure
wave, so that the requested fit is physically acceptable.

Open problem 4 Study the asymptotic behavior of the solution as the fit measures µi ap-
proach the Dirac measures δxi

.

• Even if the cost functional makes sense, using duality methods and integrating by parts is
not possible since Γ is not a closed surface (roughly speaking, there is no inside and outside).

To overcome the last difficulty we regard Γ as the “limit” of a family of open subsets ωε : lim
ε→0

ωε = Γ.

This convergence must be clarified of course (using tools from shape optimization, as Γ-convergence
for example). A simple way to perform this approximation is to set

ωε =
⋃

x∈Γ

B(x, ε),

where B(x, ε) is the open ball of radius ε centered at x (see Figure 3).
In the case where there is a finite number of sensors located at xi, 1 ≤ i ≤ N, xi ∈ Γ one may

choose

ωε =
N
⋃

i=1

B(xi, ε) . (14)

So, we replace a boundary observation by a distributed observation. We set Ωε = Ω ∪ ωε and
Γε = ∂ωε.

Open problem 5 • More generally Ωε is defined as a perturbation of Ω: there are many
questions related to the asymptotic behavior of the ε-solution as ε → 0. One may use tools
as the Γ-convergence for example.

• Another interesting question is to look for an optimal ωε with respect to a criterion given by
the experimental setup for example.

10



Figure 3: Observation surface relaxation

Finally, the regularized optimal control problem reads:

(Pε)











min Jε(y, u) :=
1

2

∫

[0,T ]×ωε

(y − yd)
2(t, x) dt dx +

α

2

∫

[0,T ]×Ω

(Bβu)
2(t, x) dt dx

y = y[u] solution to (10), u ∈ U

where α > 0, yd ∈ L2(Q) and U is defined for example as

U := {u ∈ L2(]0, T [×B) | u(t, x) = 0 a.e. (t, x) ∈]0, T [×(B\Ω) } .

Remark 3 On can choose

U := {u ∈ L2(]0, T [×B) |u(t, x) = uo(x)
∂j

∂t
(t) a.e. (t, x) ∈]0, T [×Ω, supp(uo) ⊂ Ω } .

In the case where the control is an initial one the regularization term could be

α

2

∫

B

(Bβuo)
2(x) dx

(

=
α

2

∫

Ω

(Bβuo)
2(x) dx

)

.

Theorem 4.3 For every ε > 0 problem (Pε) has a unique solution (yε, uε)

Proof.- The proof is standard. �

Open problem 6 One has to precisely study the asymptotic behavior of (yε, uε) with respect to ε
and if possible give error estimates.

4.3 Optimality conditions

Once the optimal control problem has been formulated it is easy to use the classical machinery
(see [24]) introducing the adjoint state pε :



































∂2pε
∂t2

−∆pε =

{

yε − yd in [0, T ]× ωε

0 elsewhere

pε(T, x) = 0 in B,
∂pε
∂t

(T, x) = 0, in B,

pε = 0, on S

11



We get the following optimality system

Theorem 4.4 For every ε > 0 a necessary and sufficient condition for (yε, uε) ∈W ×U to be the
solution to (Pε) is



































∂2y

∂t2
−∆y = u, in Q,

y(0, x) = 0, in B,
∂y

∂t
(0, x) = 0, in B,

y = 0, on S

(15a)



































∂2pε
∂t2

−∆pε =

{

yε − yd in [0, T ]× ωε

0 elsewhere

pε(T, x) = 0 in B,
∂pε
∂t

(T, x) = 0, in B,

pε = 0, on S

(15b)

∀u ∈ U ,

∫

Q

(pε + αB∗
βBβuε)(u− uε) dt dx ≥ 0 , (15c)

where B∗
β denotes the adjoint operator of Bβ . Note that we have embedded the TAT model in a

more general class of problems where the control function is no longer “decoupled”. In the (TAT)
case where u(t, x) = f0(x)f(t) we may use the very specific structure of the control function. A
similar source identification problem has already been studied for example in [33] in a different
framework, where the measured data was the normal derivative.

4.4 The controllability point of view

Another way to consider the problem, which seems to be the most natural one is a controllability
approach. Roughly speaking, we look for a control function u with support in ]0, T [×Ω such that
y[u] is given on the set Σ =]0, T [×Γ. It is clear that the solution is not unique if there is some.
However the existence is not obvious both is the cases of exact and approximate controllability.
There is a huge literature on controllability/observability theory and we cannot mention all the
papers. However, Bardos, Lebeau and Rauch have shown in a famous paper [9] that for the
observation or control of solutions of second-order hyperbolic equation a necessary and sufficient
condition for controllability is that the region of control meet every ray of geometric optics that
has, at worst, transverse reflection at the boundary. More precisely, for multidimensional problems,
the region of control must meet each ray in a non diffractive point. This condition is not ensured in
our case since the observability (stabilization) region ωε is not necessarily connected to the control
region Ω.

Open problem 7 What could be a good choice of ωε or Γ to give some existence results for the
controllability problem:

Find u with compact support in Ω such that y[u] = yd on Γ or ωε ?

Which model would be appropriate for using controllability techniques for the wave equation (HUM
method, Carleman estimates) ?

12



5 Numerical experimentation

We now present some numerical simulations to compute a simple TAT model with a closed obser-
vation surface (a sphere) and a constant sound speed c ≡ 1. More precisely we want to recover the
source u0 which drives the following equation



















(

∂2y

∂t2
−∆y

)

(t, x) = 0, (t, x) ∈ [0, T ]× Ω,

y(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω,

y(0, x) = u0,
∂y

∂t
(0, x) = 0, x ∈ Ω

(16)

from measurements yobs on the boundary of Ω. Here Ω is the 0 -centered ball of radius 1. Thanks
to symmetry we reduce the problem to a 2D problem.

We investigate three methods

• The basic filtered back-projection method;

• The Time Reversal method;

• The resolution of system (15) with a conjugate-gradient method.

These methods have been tested using Shepp-logan phantom. To perform a rough comparison,
we do not use the recent improvement of these methods (see for example [19, 6, 7, 31]). In that
spirit we do not compare precisely the convergence speeds and the CPU run time, since we have
not used optimized codes and methods.

Note that we have chosen an experimental setting where the comparison of these techniques
was relevant (constant sound speed and closed observation surface).

5.1 The filtered back-projection

The filtered back-projection (FBP) method remains one of the most commonly used techniques to
invert integral operators such as the classical Radon transform or the spherical Radon transform R,
for it provides an exact inversion formula in some specific acquisition geometries. Concerning
the thermo-acoustic tomography, since these formulae allow the inversion of the spherical Radon
transform, they require the strongest approximation we have discussed: a constant speed of sound,
a perfect Dirac pulse and a complete data set (most of the time, a whole sphere).

The first known FBP formula was derived in [16] for odd dimensions. Later on, in [19], the
authors used the approximate inverse concept to regularize this formula. Here, we implement an
algorithm proposed by Finch in [15] for the two-dimensional case, which is based on the closed
formula:

f(x) =
1

2π

∫

S1

∫ 2

0

∂r(r∂rR2d)(ω, r) log
∣

∣r2 − |x− ω|2
∣

∣drds(ω),

for smooth functions f supported in the unit ball. The derivations are approximated with symmet-
ric finite differences and the numerical integrations are performed by means of linear interpolations
and of the trapezoidal rule. This algorithm is very efficient and quite stable when one deals with
a sufficiently large amount of detectors (Figures 5 and 7). Nevertheless, the implementation be-
comes unstable when the angular sampling of the detectors around the unit circle doesn’t allow
the trapezoidal rule to be accurate (Figure 8).

5.2 Time reversal

The idea of this method is the following (see [20]): thanks to the Huygens’ principle (in odd
dimension), the wave leaves the unit disc in a finite time, such that there exists a time T such that
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the pressure vanishes for any t ≥ T . Consequently, as the wave standard equation is reversible,
we may solve the backward problem starting from time T with boundary conditions equal to the
measured data to recover the initial condition. This method has been adapted to the case where
space dimension is even (see [31]) and in attenuating acoustic media [6, 7]. The backward problem
was computed with a classical finite differences scheme.

5.3 The control approach

There are many classical tools to make this algorithm converge (splitting, relaxation). The more
delicate part is the computation of ΠU since the support constraint is a pointwise constraint and
we perform a L2-projection. An alternative is to keep the constraint as a control constraint and
deal with the associate Lagrange multiplier. This will be addressed in future work.

Nevertheless, in a linear framework, Problem (Pε) reduces to:

(Pε)











min
1

2
‖Wu− yd‖

2
L2([0,T ]×ωε)

+
α

2
‖Bβu‖

2
L2([0,T ]×Ω)

u ∈ L2([0, T ]× Ω),

where the linear operatorW is defined byWu := y[u], so that the optimality condition (15c) reads:

(W ∗W + αB∗
βBβ)uε =W ∗yd. (17)

Here, Bβ is defined by (13) and the kernel φβ is a gaussian function with standard deviation β ≈
3.10−3. We have set α = 0.4. Finally, ωε is given by (14), where ε is set to a single pixel size.

Since the self-adjoint operator W ∗W + αB∗
βBβ is positive definite, we chose to solve Equa-

tion (17) by means of the conjugate gradient algorithm. It is straightforward that W ∗Wuε is
nothing but the solution pε of Equation (15b) with yd replaced by 0. Moreover, W ∗yd is ob-
tained as the solution of Equation (15b) with yε − yd replaced by yd. The forward and backward
problems (15a) and (15b) are solved by means of a leapfrog discretization scheme on a staggered
grid.

In order to avoid handling large grids (due to the size of B), we use an appropriate PML
(Perfectly Matched Layer) technique (see [10]).

5.4 Numerical tests

Each method is tested on the Shepp-Logan phantom:

Figure 4: The Shepp-Logan phantom (256×256 pixels).

We investigate the cases where
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• data are not corrupted;

• a white gaussian noise (SNR=0.15) is added to the simulated data;

• the number of detectors is either 50 or 360 (with a uniform angular sampling on the whole
circle).

Figure 5: Noiseless data, 360 detectors. Left: filtered back-projection solution. Center: time
reversal solution. Right: control approach solution.

Figure 6: Noiseless data, 50 detectors. Left: filtered back-projection solution. Center: time reversal
solution. Right: control approach solution.
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Figure 7: Noisy data, 360 detectors. Left: filtered back-projection solution. Center: time reversal
solution. Right: control approach solution.

Figure 8: Noisy data, 50 detectors. Left: filtered back-projection solution. Center: time reversal
solution. Right: control approach solution.

Influence of the mollification

In order to show the relevance of the chosen regularization process, we present thereafter the
solutions obtained with the control approach for α = 0 and α = 0.4. If α = 0, the existence of a
solution of Problem (Pε) is not ensured. However, it has been possible to compute a minimizing
sequence. The solutions presented in Figure 9 are obtained with 20 iterations of a conjugate
gradient algorithm.
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Figure 9: Left (resp. Right): control approach solution without (resp. with) regularization –
noiseless data, 50 detectors.
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Figure 10: Convergence rates for α = 0 (continuous line) and α = 0.4 (dashed line)- The relative
error is computed as ‖uc − uorig‖2/‖uorig‖2 where uc is the computed solution and uorig the
(original) object to recover.
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6 Conclusion

We hope we have clearly presented many open questions about a challenging imaging process. We
can apply these remarks to photo-acoustic tomography (PAT) as well: the equations are the same
(wave equation related to acoustic part) but the frequency scale is different. There are many others
questions that arise as for example the optimal location of sensors (shape-optimization problem),
variable speed sound and/or non linear equations, filtering effect on u and so on.

The numerical tests we have presented are to be performed with more accuracy. Indeed, the
sensitivity to parameters (α, β) has to be deeply investigated. Moreover, it is known that for time
semi-discrete systems, due to high frequency spurious components, the exponential decay property
may be lost as the time step tends to zero (see Zuazua [34, 35]) so that numerical schemes are highly
unstable. In [17], Ervedoza and Zuazua use a decoupling argument of low and high frequencies, the
low frequency observability property for time semi-discrete approximations of conservative linear
systems and the dissipativity of the numerical viscosity on the high frequency components. All
these questions will be discussed in a future work.
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(2009).

[3] (MR2736968) H. Ammari, E. Bossy, V. Jugnon,& H. Kang, Mathematical modeling in
photoacoustic imaging of small absorbers. SIAM Rev. 52 (2010), no. 4, 677–695

[4] (MR2677808 ) H. Ammari, P. Garapon, L. Guadarrama Bustos & H. Kang Transient anomaly
imaging by the acoustic radiation force. J. Differential Equations 249 (2010), no. 7, 1579–1595

[5] H. Ammari, J. Garnier, V. Jugnon, & H. Kang, Direct reconstruction methods in ultrasound
imaging. Chapter in a Lecture Notes in Mathematics Volume, Springer-Verlag, 2011

[6] H. Ammari, E. Bretin, V. Jugnon, & A. Wahab, Photo-acoustic imaging for attenuating
acoustic media. Chapter in a Lecture Notes in Mathematics Volume, Springer-Verlag, 2011

[7] H. Ammari, E. Bretin, J. Garnier, & A. Wahab, Time reversal in attenuating acoustic media.
to appear in Contemporary Mathematics, 2011

[8] (MR2440996) M.A Anastasio, J.Zhang, D. Modgil and P.J La Rivière, Application of inverse
source concepts to photoacoustic tomography, Inverse Problems 23 (2007), no. 6, 21–35

[9] (MR1178650) C. Bardos, G. Lebeau and J. Rauch, Sharp Sufficient Conditions for the
Observation, Control, and Stabilization of Waves from the Boundary, SIAM J. Control Optim.
30 (1992), Issue 5, 1024–1065

[10] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J.
Comput. Phys., pp. 185-200, Oct. 1994.
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