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Abstract

Let L be a reversible Markovian generator on a finite set V. Relations between the spectral decomposition
of L and subpartitions of the state space V into a given number of components which are optimal with respect
to min-max or max-min Dirichlet connectivity criteria are investigated. Links are made with higher order
Cheeger inequalities and with a generical characterization of subpartitions given by the nodal domains of an
eigenfunction. These considerations are applied to generators whose positive rates are supported by the edges
of a discrete cycle ZN , to obtain a full description of their spectra and of the shapes of their eigenfunctions,
as well as an interpretation of the spectrum through a double covering construction. Also, we prove that for
these generators, higher Cheeger inequalities hold, with a universal constant factor 48.

Keywords: Reversible Markovian generator, spectral decomposition, Cheeger’s inequality, principal
Dirichlet eigenvalues, Dirichlet connectivity spectra, nodal domains of eigenfunctions, optimal partitions of
state space, Markov processes on discrete cycles, exit times.
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1 Introduction and results

Classical Cheeger inequalities for finite reversible Markov processes make a link between the spectral gap
and the connectivity constants, which are obtained by minimizing isoperimetric-type quotients over decom-
positions of the state space into two disjoint parts. The purpose of this article is to obtain such inequalities
between the whole spectrum and decompositions of the state space into several parts, when the underlying
graph is a cycle. For this we keep on developing the general approach suggested in [12], where the case of trees
is treated, and is based on an intermediate Dirichlet connectivity spectrum in a corresponding continuous
model which is defined through taking into account the first Dirichlet eigenvalues associated to the elements
of the decompositions. We also investigate the relations between this intermediate spectrum and the nodal
domains of the eigenfunctions of the finite reversible Markov process under consideration. Nevertheless, to
deduce the shape of these eigenfunctions when the underlying graph is a cycle, new intermediate quantities
will have to be considered.

While we were writing this article, we learned that the Dirichlet connectivity spectrum had already been
studied in the continuous context of Laplace-Beltrami operators on Euclidian or Riemannian subdomains with
Dirichlet boundary conditions (e.g. see [8] by Helffer, Hoffmann-Ostenhof and Terracini and the references
therein), however, it seems that the motivations in their context are far from ours, since the regularity
and the geometry of the boundaries of the elements of the minimal decompositions are important in their
study, while our main motivation is Conjecture 3 described in the sequel, that can also easily be extended
to the continuous state space situation1. In what follows, we present a thorough study of the minimizing
decompositions for the different introduced spectra and we also study their relationships to nodal domains of
the corresponding eigenfunctions. Up to our knowledge, the results on the spectral decomposition of Markov
generators on cycles are new and they can be extended to diffusion generators on the cycle which can be
written in divergence form (this corresponds to the reversibility assumption).

In the rest of this section we first go through some preliminary definitions and background and then we
present an overview of what appears in the next forthcoming sections of this article.

1.1 Preliminary definitions and background

In what follows N and R are the sets of natural and real numbers, respectively, and for a, b ∈ N, we define
Ja, bK B {a, a+ 1, . . . , b} and JbK B J1, bK.

Let V be a finite set of cardinal N ∈ N, and consider a Markovian generator L B (L(x, y))x,y∈V, i.e a
matrix whose entries are non-negative outside the diagonal and whose row sums are all equal to zero, with
|L| B max

x∈V
|L(x, x)|. Also, we assume that there exists a positive (nowherezero) probability measure µ on V

such that L is reversible with respect to µ, i.e

∀ x 6= y ∈ V, φ({x, y}) B µ(x)L(x, y) = µ(y)L(y, x). (1)

This assumption implies that L is diagonalizable in R. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues with
multiplicities of −L. The motivation for the study of higher order Cheeger inequalities is to compare these
eigenvalues with connectivity related quantities such as isoperimetric numbers (e.g. see [6] and references
therein).

As another consequence of reversibility of L, we have

∀ x 6= y ∈ V, L(x, y) > 0 ⇔ L(y, x) > 0

that leads us to endow V with an undirected and loopless graph structure2 whose edge set is

E B {{x, y} : L(x, y) > 0}.

Hereafter, this graph is denoted by G B (V,E). Let D1(V) be the set of all non-empty subsets A ⊂ V and
for k ∈ J2, NK, consider Dk(V) the set of k-tuples A B (A1, . . . ,Ak) of disjoint elements from D1(V), called
k-subpartitions. To any A ∈ D1(V), we associate its connectivity defined by

ι(A) B
φ(∂A)

µ(A)

1The finite graph context seems more convenient to approach this problem and if Conjecture 3 is true in its present form,
then via usual approximation procedures, it will also be satisfied in a general Markov process framework encompassing diffusion
generators.

2Note that this graph structure is not a random walk graph but is just a graph that contains the information of positive entries
of L. Moreover, note that φ as a measure on the set E also defines a flow on this graph.
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where φ is considered as a positive measure defined on E as in Equation (1), and

∂A B {{x, y} ∈ E : x ∈ A and y 6∈ A}.

Hence, φ(∂A) should be interpreted as a measure of the discrete boundary of A. Now, for any k ∈ JNK, we
introduce the kth-order isoperimetric constant as

Ik B min
(A1,...,Ak)∈Dk(V)

max
j∈JkK

ι(Aj).

The family (Ik)k∈JNK is sometimes called the isoperimetric spectrum of L. One may naturally ask about the
relationship between these numbers and the usual spectrum (λk)k∈JNK, and in particular one may ask about
the correctness of the following higher order Cheeger inequalities.

Conjecture 1 For any k ∈ N, there exists a universal constant χ(k) > 0 such that for any finite reversible
generator L as above, we have

∀ k ∈ JNK, χ(k)
I2k
|L|
≤ λk ≤ 2Ik. (2)

�

The interested reader is referred to [6, 12] for some motivations and background in this regard. It is easy
to verify the upper bound λk ≤ 2Ik using the variational formulation of eigenvalues for all k ∈ JNK. Also,
the case k = 2 is well-known and corresponds to the traditional discrete Cheeger inequality with χ(2) = 1/2
(see Lawler and Sokal [11]).3 It is furthermore easy to verify that the bound I2N/|L| ≤ λN is always true.
Indeed, up to a change of indices, DN (V) is just the family of singleton subsets. But for any x ∈ V, we have
ι({x}) = |L(x, x)| and it follows that IN = |L|. On the other hand, we have λN = maxf 6=0(−µ[fL[f]])/µ[f2],
and consequently, by considering indicator functions of points, we have λN ≥ |L|. Moreover, it can be seen
that Conjecture 1 is true with the constant χ(k) ≡ 1/2 independent of k ∈ N, if the graph G is acyclic (see
the results of Section 2 along with [12] that provide a complete proof. Also, see [6] for a proof in the generic
case).

In [12], the spectrum (Λk)k∈JNK is introduced, which in some sense is midway between (λk)k∈JNK and
(Ik)k∈JNK. To recall its definition, we first associate a continuous graph G to the discrete graph G for
which V B V and each edge {x, y} ∈ E is replaced by a “solid” segment [x, y] of length 1 and we define
G B ∪{x,y}∈E[x, y] in which the boundary points of these edge-segments corresponding to a given vertex
x ∈ V are all identified with a unique point still designated by x. Clearly the edge set of G is defined as
E B {[x, y] : {x, y} ∈ E}. Also, we refer to any general element of G as a point, while the elements of V = V
are referred to as vertices. In this setup, the neighborhood of a point a ∈ G is defined as

N(a) B {x ∈ V : ∃ {x, y} ∈ E, a ∈ [x, y]}.

As a general remark on the notations, we use Roman letters (e.g. V,E, f) to refer to objects in the
continuous model where Sans-serif letters (e.g. V,E, f) are used to refer to discrete objects. In this setup, by
abuse of notation, we use the same notations for all operators that appear in both continuous and discrete
models, where the operand will clarify the exact definition of these concepts (e.g. E(f) (defined below) stands
for the energy of a (discrete) function f that is defined on the set of vertices V while E(f) refers to the energy
of a function defined on the continuous graph G). Also, if g is a function defined on the continuous model,
then g which is defined on the vertex set V of the discrete model stands for the restriction g|V.

For any {x, y} ∈ E, the segment [x, y] ∈ E is endowed with the measure νx,y B φ({x, y})dx,y, where dx,y
is the natural Lebesgue measure on [x, y]. We define d B

∑
{x,y}∈E dx,y and ν B

∑
{x,y}∈E νx,y, which are

non-negative measures whose total mass are |E| and 1/2
∑
x∈V µ(x) |L(x, x)|, respectively. The measure ν

enables us to define a Dirichlet form E on the space F (G) of absolutely continuous real functions defined on
G (i.e. that are absolutely continuous on all edge-segments) via

∀ f ∈ F (G), E(f) B

∫
(f ′)2 dν ∈ R+ t {+∞}

where f ′ stands for the weak derivative of f . Analogously, we may define a discrete Dirichlet form on the
space F (V) of real functions defined on V as

∀ f ∈ F (V), E(f) B
∑
{x,y}∈E

|f(x)− f(y)|2 φ({x, y}) ∈ R+.

3It should be noted that recently the bound has been improved to χ(2) = 1 (see [14]).
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The probability measure µ is naturally extended to G via the formula µ =
∑
x∈V µ(x)δx (where we use the

same notation for both discrete and continuous models), and for a function f ∈ F (G) we define

µ[f ] = µ[f] B
∑
x∈V

f(x)µ(x).

Following our notations, let D1(G) (or D1 for short) be the set of subsets A ⊂ G which are open, connected
and whose intersection with V is non-empty. For such a subset A ∈ D1(G), let ∂A denote the boundary of
A (in the usual topological sense) and also let F0(A) be the subspace of F (G) consisting of functions that
vanish on the complementary set G\A. Also, for a subset A ∈ D1(V), F0(A) can be defined analogously.
Now, we are ready to introduce the (continuous and discrete) principal Dirichlet eigenvalue, λ1(A) and λ1(A),
as follows.

∀ A ∈ D1(G), λ1(A) B inf
f∈F0(A) :µ[f2] 6=0

E(f)

µ[f2]
, (3)

∀ A ∈ D1(V), λ1(A) B inf
f∈F0(A) :µ[f2] 6=0

E(f)

µ[f2]
.

These quantities should be interpreted as a measurement of the easiness to get out of A or A for the underlying
process (see [12] for a precise description in which one has to introduce instantaneous points to deal with the
difference between G and G). Also, if A ∈ D1, then fA ∈ F0(A) stands for the unique minimizing positive
function in (3) satisfying µ[f2A] = 1 (its positivity and uniqueness come from the connected assumption for
A and Perron-Frobenius theorem, see [12] for the details).

Now, in order to get a better understanding of the minimizers of (3), first, we define L̃ : V × G → R as
an extension of L, in the following way.

• For every (x, y) ∈ V × V we have L̃(x, y) = L(x, y).

• For any {x, y} ∈ E and any z ∈ G\V on the edge segment [x, y], we define L̃(x, z) B L(x, y)/d([x, z]),
where d is the natural measure on G introduced earlier (in the whole paper, d will only be used to

measure distances inside edge segments). For any other x′ ∈ V \{x, y}, we let L̃(x′, z) B 0.

Moreover, define φ̃(x, z) B µ(x)L̃(x, z) as an extension of φ to V ×G. For any A ∈ D1, let A B A ∩ V and

construct the linear operator L̂A = (L̂A(x, y))x,y∈A defined on F0(A) as,

∀ x, y ∈ A L̂A(x, y) B


L(x, y) x 6= y

−
∑

x 6=z∈A∪∂A

L̃(x, z) x = y.

For a function f ∈ F (G), a subset A ⊆ G is said to be a nodal domain of f if it is a connected component
of G \ {x ∈ V : f(x) = 0}. Also, by a nodal domain4 of a function f ∈ F (V), we mean a nodal domain of
the function f , the affine extension of f on edge segments of G.

Now, let fA be the restriction to A of the unique minimizing non-negative function fA in (3) that satisfies
µ[f2A] = 1. We recall the following result from [12].

Lemma 2 For any A ∈ D1, fA is the unique positive function defined on A B A ∩ V satisfying µ[f2A] = 1

and L̂A[fA] = −λ1(A)fA. Also, we have

λ1(A) = min
f∈F0(A)\{0}

−µ[fL̂A[f]]

µ[f2]

for which fA is a minimizing function whose affine extension is exactly the minimizer of (3), fA. In addition,
if A is a nodal domain of an eigenfunction g 6= 0 associated to an eigenvalue λ of −L, then λ1(A) = λ and
g is proportional to fA on A.

Now, for any k ∈ JNK, consider Dk(G) (or Dk for short) as the set of k-tuples A B (A1, . . . , Ak) of disjoint
elements from D1(G) (such k-tuples will be called k-subpartitions). The intermediate quantities mentioned
before are defined, for any k ∈ JNK, by

Λk B inf
(A1,...,Ak)∈Dk(G)

(
max
j∈JkK

λ1(Aj)

)
. (4)

4This is defined by abuse of language in this article and is different from the standard definition of the discrete nodal domain
(e.g. see [2]).
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Hereafter, we refer to the family (Λk)k∈JNK as the Dirichlet connectivity spectrum of L. Again, via the
variational formulation of the eigenvalues, it is not difficult to see that the bounds λk ≤ Λk are always true,
for all k ∈ JNK. But the following was left as a conjecture (see [12]),

Conjecture 3 [12] For any k ∈ N, there exists a universal constant χ̃(k) > 0 such that for any finite
generator L as above, we have

∀ k ∈ JNK, χ̃(k)Λk ≤ λk. (5)

�

Clearly by Perron-Frobenius theorem and Lemma 2, we have Λ2 ≤ λ2 and consequently Λ2 = λ2. Also,
by considering the N -subpartition corresponding to bisection of all edges, we have ΛN ≤ 2 |L| ≤ 2λN .
Furthermore, one of the main results of [12] states that if the graph G is a tree, then we have

∀ k ∈ JNK, Λk = λk. (6)

Remark 4 In [12], the definition of the continuous graph, say Ĝ, associated to G = (V,E) is slightly
different. There, the segment [x, y] ∈ E has length 1/φ({x, y}) and is endowed with the corresponding

Lebesgue measure and these conventions lead as above to a Dirichlet form Ê on the space F (Ĝ) of absolutely

continuous functions on Ĝ. But let ψ : G → Ĝ be the bijective mapping which, for any edge {x, y} ∈ E,

transforms affinely the segment [x, y] ⊂ G into the corresponding segment [x, y] ⊂ Ĝ. The composition
mapping

f ∈ F (Ĝ) 7→ f ◦ ψ ∈ F (G)

is then an isomorphism of vector spaces and we have

∀ f ∈ F (Ĝ), Ê(f) = E(f ◦ ψ).

This relation can be used to translate the results obtained in [12] for Ĝ into corresponding ones for G.
�

1.2 Organization of forthcoming sections

Here we introduce the sequence of results that we are going to prove in this article, which will appear in the
next five sections each devoted to one of the main propositions described below.

It was mentioned in [12], without much hint of a proof, that Conjecture 3 implies Conjecture 1. Our first
task will be to provide all the overlooked arguments in Section 2, where we show that to prove Conjecture 1,
it is sufficient to prove Conjecture 3 for irreducible generators L (i.e. generators L whose associated graph G
is connected). More precisely,

Proposition 5 Given an integer k ∈ JNK and a generator L, if Inequality (5) is true for L and k, then
Inequality (2) is true for L and k with χ(k) = χ̃(k)/2.

In particular, we recover that Conjecture 1 is true with the constant χ(k) ≡ 1/2 independent of k ∈ N, if we
restrict its assertion to the class of generators whose associated graph is acyclic.

The fact underlying the equality (Λk)k∈JNK = (λk)k∈JNK for generators whose associated graph is a tree,
is that a minimizing subpartition A ∈ Dk in (4) corresponds (at least generically) to the nodal domains of
an eigenfunction associated to λk. For a better understanding of Conjecture 3, it seems important to be able
to verify whether a subpartition A ∈ Dk(G) corresponds to the nodal domains of an eigenfunction. To get a
result in this direction, we need to introduce some notions.

A k-subpartition A = (A1, . . . , Ak) ∈ Dk is said to be handy if for any pair of distinct indices i, j in JkK
we have ∂Ai∩∂Aj ∩V3 = ∅, where V3 is the set of vertices of G whose degree are at least 3. An eigenfunction
of a generator L is said to be handy if the collection of its nodal domains constitutes a handy subpartition.
Also, the generator L itself is said to be handy if any eigenvalue λ of multiplicity m admits m independent
handy eigenfunctions. It is instructive to note that if none of the eigenfunctions of a generator L vanishes
on V then L is clearly a handy generator (in particular the former property also implies that all eigenvalues
have multiplicity one, since in an eigenspace of dimension 2 it is always possible to construct a function that
vanishes on x, for any given x ∈ V ).
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The residual set A0 of a given subpartition A = (A1, . . . , Ak) ∈ Dk, with k ∈ JNK, is defined as the
complementary set of the union of the closures of Ai’s, for i ∈ JkK. The subpartition A is said to be a
k-partition if its residual set A0 is empty and for any x ∈ ∂A (when A is a subpartition, by convention its
boundary is the union of the boundaries of its components), there exist i 6= j ∈ JkK such that x ∈ ∂Ai ∩ ∂Aj .
We use Pk(G) (or Pk for short) to refer to the set of all such k-partitions.

The subpartition A = (A1, . . . , Ak) ∈ Dk is said to be uniform if for any i 6= j ∈ JkK we have, λ1(Ai) =
λ1(Aj), where this common value is denoted by λ1(A) (this is also the value of λ1(A1 tA2 t · · · tAk) if one
directly uses the definition as expressed in (3)).

A pair of positive real numbers (r1, r2) is said to be rectifying for a point a ∈ G with respect to (A1, A2) ∈
D2 if a ∈ ∂A1 ∩ ∂A2, N(a) ∩A1 = {a−} and N(a) ∩A2 = {a+} such that

r1fA1
(a−) φ̃A1

(a−, a) = r2fA2
(a+) φ̃A2

(a+, a), (7)

where fA is defined as the minimizer of (3)5.
We say that the pair (r1, r2) is rectifying for (A1, A2) if it is rectifying for all points of the set ∂A1 ∩ ∂A2.

Also, a subpartition A ∈ Dk, with k ∈ JNK, is said to be rectifiable, if there exists a family (ri)i∈JkK such that
for any i 6= j ∈ JkK, (ri, rj) is rectifying for (Ai, Aj).

Finally, to a subpartition A = (A1, . . . , Ak) ∈ Dk, we associate the graph GA whose vertex set is
{A1, . . . , Ak} and whose edge set consists of the {Ai, Aj}, with i 6= j ∈ JkK, such that ∂Ai ∩ ∂Aj 6= ∅.
Then A is said to be bipartite if GA is a bipartite graph.

With all these definitions, we will show that,

Proposition 6 Given k ∈ JNK, and a handy partition A ∈ Pk, then this partition corresponds to the
nodal domains of a handy eigenfunction of −L if and only if it is uniform, rectifiable and bipartite. This
eigenfunction is then associated to the eigenvalue λ1(A).

Among the previous conditions, the rectifiability may seem to be the more difficult to check. That is why the
Dirichlet connectivity spectrum (Λk)k∈JNK is interesting, since its corresponding minimizing subpartitions
provide rectifiable subpartitions. But there are other ways to find rectifiable subpartitions and one of them
which will be fruitful for the study of Markov processes on cycles is the following. For k ∈ JNK define,

Λk B sup
(A1,...,Ak)∈Pk

(
min
j∈JkK

λ1(Aj)

)
There is no general comparison between Λk and Λk. But some relations can be deduced in special cases (see
Proposition 17). Hereafter, we assume that G is connected, and we will prove that,

Proposition 7 For k ∈ JNK, let A ∈ Dk be either a minimizing subpartition for Λk or a maximizing
partition for Λk. If A is handy, then A is a uniform and rectifiable partition in Pk.

But there are some important differences between the optimizing subpartitions and partitions for Λk and Λk,
respectively. It has been shown in [12] that a minimizer A ∈ Dk for Λk always exists and that it is possible
to choose one which is uniform. However, the situation is not so nice for Λk, since it may happen that there
is no maximizing partition at all. In particular it is known that (see [12]) if a minimizing subpartition for
Λk is a handy subpartition then it is actually a uniform partition in Pk, and consequently, we only have
to prove the rectifiability condition in the above proposition. Also, by Proposition 6, such a partition has
all the required properties to correspond to the nodal domains of a handy eigenfunction of L, except being
bipartite. In the continuous framework of Laplace-Beltrami operators in dimension 2, Helffer, Hoffmann-
Ostenhof and Terracini [8] made a similar observation concerning the bipartiteness condition, under regularity
and geometric requirements (in particular the nodal lines must intersect with equal angles).

In this article we focus on the case of handy subpartitions, and in order to be able to generalize our results
to an arbitrary kernel we have to make sure that handy kernels are generic. More precisely, let the positive
probability µ and the connected graph G = (V,E) be fixed. We denote by L(µ,G) the open and convex set of
generators which are reversible with respect to µ and whose associated graph is G. We say that a property
is generically true if it is satisfied for generators belonging to a dense subset of L(µ,G) (which is endowed
with its natural pointwise topology). For instance we believe in the following assertions.

Conjecture 8 If G is connected, and k ∈ JN − 1K, the following statements are generically true6.

5The concept of rectifiability can be generalized to the case where card(N(a) ∩A1) > 1 or card(N(a) ∩A2) > 1. However, this
will not be of any use in the sequel, since we will be dealing with just handy subpartitions.

6Actually, in both parts (a) and (b), we believe that generically all boundary points are in G\V .
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a) Any minimizing subpartition A ∈ Dk for Λk is handy.

b) There exists a maximizing partition A ∈Pk for Λk which is handy.

c) Any generator L ∈ L(µ,G) is handy.

�

The results of [12] and Proposition 17 imply that this conjecture is true if G is a tree. Note that the case
k = N is not relevant, because, although, any partition in PN is necessarily handy, we will see in Section 5
that ΛN = +∞ if G is a cycle, and consequently, there is no maximizing partition A ∈ PN for ΛN in
this case. If the above conjecture was to be true more generally, it would show that generically, only the
bipartiteness condition is restrictive for a minimizing subpartition of Λk or for a maximizing partition of Λk
to correspond to the nodal domains of a handy eigenvector of L.

Let us now come to the case of Markov processes on cycles. For them the graph G is isomorphic to
the graph ZN endowed with its usual nearest neighbor structure. In this situation, every subpartition is
handy and an interlacing property occurs, i.e. for k ∈ JN − 1K, we have Λk ≤ Λk < Λk+1 ≤ Λk+1 (see
Proposition 17). These features lead to the following properties for the spectral decomposition of L.

Proposition 9 When G is a cycle, we have,

∀ k ∈ JNK, λk =


0 = Λ1 = Λ1 , if k = 1

Λk , if k is even

Λk−1 , if k 6= 1 is odd

Moreover, for k ∈ JNK, k even, the eigenfunctions associated to λk and to λk+1 (if k + 1 ≤ N) have exactly
k nodal domains, so the equality λk = λk+1 is only possible for k even and it is equivalent to the equality
Λk = Λk. In particular the multiplicities of the eigenvalues are less than or equal to 2.

As a consequence, the shape of eigenfunctions associated to generators on cycles can be easily described.
But more important for us, is the following result which proves Conjecture 3 when the graph G is a cycle,
and consequently, one may deduce that all cycles admit a higher order Cheeger inequality for all of their
eigenvalues with a universal constant 48.

Proposition 10 Assume that G is a cycle, then we have

∀ k ∈ JNK, Λk ≤
{
λk , if k = 1 or k is even
24 λk , if k ≥ 3 is odd

Remark 11 While this paper was submitted for publication, we discovered from an article of Fernandes
and Fosseca [7] that the last assertion of Proposition 9 holds more generally for Hermitian matrices whose
associated graph is a cycle. About the same time, we learned that variants of the notions of handiness and
uniformity of partitions were also introduced (under the names of proper partitions and equipartitions) in a
preprint by Band, Berkolaiko, Raz, and Smilansky [1], in order to study nodal deficiencies of quantum graphs.
Despite the operators under study are not the same, they provided a criterion for partitions corresponding to
nodal domains of eigenfunctions which shares some similarities with the one presented here, but it is rather
based on the critical points of the mapping

Pk 3 A = (A1, . . . , Ak) 7→ max
i∈JkK

λ1(Ai)

(see also Remark 21 below). In both articles the proofs are different.
�

2 On higher order Cheeger inequalities

Our main goal in this section is to prove the fact that to prove Conjecture 1, it is enough to prove Conjecture 3
for irreducible generators. For this, first we prove Proposition 5. The approach is based on a Cheeger-type
lower bound on the principal Dirichlet eigenvalue, namely a relation between the latter and a Dirichlet
isoperimetric constant, which seems interesting in itself.

More precisely for A ⊆ V, we define the isoperimetric constant inside A as

I(A) B min
B⊂A :B 6=∅

ι(B). (8)
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The next result gives a “Dirichlet analogue” to the discrete “Neumann-oriented” Cheeger bound

I22
2 |L|

≤ λ2.

Proposition 12 For any A ⊆ V, we have

I2(A)

2 |L|
≤ λ1(A).

To prove this proposition, let us introduce an L1-analogue Ẽ of the L2-Dirichlet form E as

∀ f ∈ F (V), Ẽ(f) B
∑
{x,y}∈E

|f(x)− f(y)| φ({x, y})

and recall the following lemma from [6].

Lemma 13 [6, Lemma 4] For every 0 6= f ∈ F (V) we have(
Ẽ(f2)

µ[f2]

)2

≤ 2 |L| E(f)

µ[f2]
. (9)

Also, one may prove the co-area formula for I(A) as follows,

I(A) = min
f∈F(A)

f≥0,f 6=0

Ẽ(f)

µ(f)
. (10)

(e.g. it follows from [6, Lemma 5].) Now Proposition 12 follows immediately from Inequalities (9) and (10).
Also, Proposition 5 follows immediately from the following corollary.

Corollary 14 For any reversible generator L given as in the introduction, we have

∀ k ∈ JNK,
I2k

2 |L|
≤ Λk.

Proof

For any C ⊆ V, define

C B
⋃

{x,y}∈E
x∈C

[x, y) ⊆ G.

According to Proposition 12, for any A ∈ D1(G), we can find a non-empty set B ⊂ A B V ∩A such that

ι2(B)

2 |L|
≤ λ1(A) = λ1(A) ≤ λ1(A).

The last inequality follows from the facts that A ⊆ A and λ1 is decreasing with respect to the set inclusion [12,
Lemma 3]. It follows that for any k ∈ JNK and anyA = (A1, . . . , Ak) ∈ Dk(G), we can find B = (B1, . . . ,Bk) ∈
Dk(G) such that

(maxi∈JkK ι(Bi))
2

2 |L|
≤ max

i∈JkK
λ1(Ai).

The announced bound follows at once.
�

In the rest of this section we focus on the case of reducible Markov generators and we show that as far
as Conjectures 1 and 3 are concerned, one may confine oneself to the case of irreducible kernels whose base
graphs are connected. Also, considering the reducibility condition, we will prove some relations between the
parameters Λk and Λk in the special cases of trees, forests and cycles. We start with the following basic
lemma.
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Lemma 15 Let (ai)i∈JnK and (bi)i∈JmK be two non-decreasing families of numbers with a1 = b1 = 0. Denote
by (ci)i∈Jn+mK the non-decreasing ordering (with multiplicities) of the set {ai : i ∈ JnK} ∪ {bi : i ∈ JmK} and
define for all k ∈ J2, n+mK,

ck B min
l∈JnK∩Jk−m,k−1K

max(al, bk−l), ck B max
l∈JnK∩Jk−m,k−1K

min(al, bk−l).

with the convention c1 = c1 = 0. Then,

∀ k ∈ Jn+mK ck ≤ ck = ck.

Proof

The equality c1 = c1 = min(a1, b1) = 0 is a direct consequence of our choice of c1. Fix k ∈ J2, n + mK and
without loss of generality assume that ck = aj with j ∈ JnK∩ Jk−m, k− 1K the smallest such index possible.
Then,

ck ≥ max({a1, . . . , aj} ∪ {b1, . . . , bk−j}),
and consequently, ck ≥ ck.

On the other hand, note that bk−j+1 ≥ ck, since otherwise, we would have max(aj−1, bk−j+1) ≤ ck that
contradicts our choice of j. Hence,

ck ≤ min{aj+1, . . . , an} = aj+1 and ck ≤ min{bk−j+1, . . . , bm} = bk−j+1

which shows that ck ≤ ck, and we have ck = ck.
For the other inequality, let ã(t) and b̃(t) be the natural piecewise affine extensions of (ai)i∈JnK and

(bi)i∈JmK as functions defined on real intervals [1, n] and [1,m], respectively. Then, for a fixed k ∈ J2, n+mK
we have the following two cases.

• If there exists a point u ∈ [max(1, k −m),min(n, k − 1)] such that z B ã(u) = b̃(k − u) then clearly we
have ck ≤ z ≤ ck.

• Otherwise, on the interval [max(1, k−m),min(n, k− 1)] we either have ã(t) ≤ b̃(t) or b̃(t) ≤ ã(t) which
shows that ck ≤ ck.

�

It should be noted that for all k ∈ Jn + mK, we have ck ≤ min(an, bm), and consequently, all the elements
of the set {ak : k ∈ JnK} ∪ {bk : k ∈ JmK} which are larger than min(an, bm) will not appear in the family
(ck)k∈Jn+mK.

Proposition 16 Conjecture 3 is true if it is true for finite irreducible Markov generators.

Proof

For i = 1, 2, let L(i) be Markov generators on finite sets V(i), reversible with respect to some positive

probability measures µ(i). We denote by (λ
(i)
k )k∈JN(i)K and (Λ

(i)
k )k∈JN(i)K the corresponding usual and Dirichlet

connectivity spectra, respectively. Consider V B V(1) t V(2) and let L be the generator that acts on V (i) as
L(i), for i = 1, 2. For a ∈ (0, 1), let µ = aµ(1) + (1 − a)µ(2), and note that L is reversible with respect to
µ. Also, define N B N (1) + N (2) and let (λk)k∈JNK and (Λk)k∈JNK be the usual and Dirichlet connectivity
spectra of L, respectively.

Without loss of generality assume that for a non-increasing sequence (χ̃(k))k∈N, we have

∀ i ∈ {1, 2} ∀ k ∈ JN (i)K, χ̃(k)Λ
(i)
k ≤ λ

(i)
k .

Since V (1) and V (2) are not linked by L, the spectrum of L is just the union of the spectra of L(1) and L(2).
It follows from Lemma 15 that

∀ k ∈ JNK, λk = min
l∈JN(1)K∩Jk−N(2),k−1K

max(λ
(1)
l , λ

(2)
k−l). (11)

For k ∈ J2, NK and l ∈ JN (1)K ∩ Jk − N (2), k − 1K, let A(1) ∈ D
(1)
l be a minimizer for Λ

(1)
l and also let

A(2) ∈ D
(2)
k−l be a minimizer for Λ

(2)
k−l. Construct A ∈ Dk as the disjoint union of A(1) and A(2). It follows

that

Λk ≤ max(Λ
(1)
l ,Λ

(2)
k−l),
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and taking the minimum over l ∈ JN (1)K ∩ Jk −N (2), k − 1K, we get

Λk ≤ min
l∈JN(1)K∩Jk−N(2),k−1K

max(Λ
(1)
l ,Λ

(2)
k−l). (12)

This along with (11) and our assumptions show that

∀ k ∈ JNK, χ̃(k)Λk ≤ λk.

On the other hand, if there are more than two irreducible components, then by an iteration of the above
argument we come to the same conclusion.

�

It is instructive to note that similarly one may show that Conjecture 1 is also true if it is proved for finite
irreducible Markov generators.

In what follows we consider some basic inequalities that hold for the Dirichlet connectivity parameters
introduced in the special cases of trees, forests and cycles.

Proposition 17 Let L be reversible generator on the graph G. We have,

a) If G is a cycle, then 0 = Λ1 = Λ1, ΛN < ΛN = +∞ and for any k ∈ J2, N − 1K,

Λk−1 < Λk ≤ Λk < Λk+1,

b) If G is a tree, then for all k ∈ JNK we have λk = Λk = Λk,

c) If G is a forest, then for all k ∈ JNK we have λk = Λk ≥ Λk.

Proof

Let G be a graph for which either there exists a minimizing uniform partition for Λk or there exists a
maximizing uniform partition for Λk. Then,

Λk = max
i∈JkK

λ1(Ai)

= min
i∈JkK

λ1(Ai)

≤ Λk.

For part (a), clearly 0 = Λ1 = Λ1. Fix k ∈ J2, N −1K and note that by Proposition 7 handy minimizers of
Λk are uniform partitions. Since any subpartition of a cycle is handy, the inequality Λk ≤ Λk always holds
for generators on cycles.

Also, given uniform partitions A = (A1, . . . , Ak) ∈Pk and B = (B1, . . . , Bk+1) ∈Pk+1, by applying the
pigeonhole principle to the boundary points, there exists i ∈ JkK and j ∈ Jk + 1K such that Bj is strictly
included in Ai. Let us recall Lemma 3 of [12] stating that if A,B ∈ D1 with B strictly included in A, then
λ1(A) < λ1(B). Therefore, by uniformity we get λ1(A) < λ1(B). Applying this with a minimizer for Λk+1

and a maximizer for Λk (its existence will be proved in Lemma 22 at the beginning of Section 5), we get
Λk < Λk+1.

To prove ΛN = +∞, consider the sequence of N -partitions (A(n))n∈N, where for any n ∈ N, ∂A(n) consists
of the points (i+ (2 + n)−1)i∈ZN

. Then it is easy to verify that limn→+∞ λ1(A(n)) = +∞.

For part (b), the equality λk = Λk has already been proved in [12]. On the other hand, assume that there
exists a handy minimizer A = (A1, . . . , Ak) ∈ Dk for Λk. By Proposition 7, A is a uniform partition and
consequently, we have Λk ≤ Λk by the argument presented in part (a).

To prove the reverse inequality, let B = (B1, . . . , Bk), be a given k-partition. Due to the fact that the
underlying graph is a tree, GB is also a tree and it follows that |∂B| ≤ k − 1. By the pigeonhole principle,
there exists a component Ai, i ∈ JkK, of the above minimizer A, that contains no point of ∂B. This means
that there exists j ∈ JkK such that Ai ⊂ Bj , and we get

min
l∈JkK

λ1(Bl) ≤ λ1(Bj)

≤ λ1(Ai)

= λ1(A) = Λk
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since A is uniform. Thus, considering the supremum over B ∈Pk, it follows that Λk ≤ Λk, and consequently
equality (b), holds if there exists a handy minimizer for Λk.

But by Proposition 22 of [12], minimizers of Λk are generically handy for the tree G. Also, by a similar
argument as one presented in Theorem 25 of [12] one may prove that Λk and Λk as real functions on the
set L(µ,G) are continuous (i.e. with respect to the entries of the Markov generator). These two facts proves
that equality (b) holds for all generators on trees.

For part (c), it is not difficult to see that a true equality always holds in (12), and in a similar way, we
get

Λk = max
l∈JN(1)K∩Jk−N(2),k−1K

min(Λ
(1)

l ,Λ
(2)

k−l).

Hence, for any forest by Lemma 15 and part (b) we have

∀ k ∈ JNK, Λk ≤ Λk = λk.

�

Remark 18 In what follows we discuss cases for which the inequalities of Proposition 17 are strict. To
see this, using the situation and notations of the proof of Proposition 16 for a graph with two connected

components, we have Λk ≤ min{Λ(1)

N(1) ,Λ
(2)

N(2)}, but by Lemma 15,

{Λk : k ∈ JNK} = {Λ(1)
k : k ∈ JN (1)K} ∪ {Λ(2)

k : k ∈ JN (2)K}.

This shows that even the inequality max(Λk,Λk) ≤ min(Λk+1,Λk+1) can not be true in general. For instance,
assume that one of the components is an empty graph with just one vertex and also let the other component
be a tree, and note that for all k ∈ JNK we have Λk = 0 while the parameter Λk is nonzero for k ≥ 3.
Moreover, the same example shows that the inequality Λk ≤ Λk can be strict for forests.

On the other hand, it is instructive to mention that if Conjecture 8 is true then by the first paragraph of
the previous proof and the continuity of functions Λk and Λk on L(µ,G), one may deduce that the inequality
Λk ≤ Λk is true for all irreducible generators.

Moreover, we would like to mention that the functions Λk and Λk are not necessarily continuous on the
whole set of generators on a set V. To see this, consider the situation where N (1) = 1 and the graph of L(2) is
a tree. Let V (1) = {x} and choose some vertex y in V (2). For ε ≥ 0, let L(ε) be deduced from L by imposing
that L(ε)(x, y) = L(ε)(y, x) = ε and by leaving the other entries unchanged (except L(ε)(x, x) = L(x, x)− ε
and L(ε)(y, y) = L(y, y) − ε). Classical perturbation results (see for instance the book of Kato [10]) imply
that the usual spectrum (λk(ε))k∈JNK is continuous at ε = 0. Note that for ε > 0, the graph associated to

L(ε) is a tree and we have (Λk(ε))k∈JNK = (Λk(ε))k∈JNK = (λk(ε))k∈JNK. But due to the above considerations,

Λk = 0 for all k ∈ JNK. Thus, (Λk(ε))k∈JNK is not continuous at ε = 0, for k ≥ 3.
�

3 Characterization of handy spectral nodal domains

In this section we provide a proof of Proposition 6, as well as a criterium for the rectifiability of a given
subpartition that will be useful to deduce Proposition 7.

Let g 6= 0 be an eigenfunction associated to an eigenvalue λ of −L, and let g be its affine extension to G
with nodal domains A1, . . . , Ak. Assume that A B (A1, . . . , Ak) is a handy partition in Pk. We show that
it is uniform, rectifiable and bipartite.

First, note that Lemma 2 implies that for all i ∈ JkK, λ1(Ai) = λ, and consequently, A is uniform.
To prove rectifiability and bipartiteness, for i ∈ JkK, define σi ∈ {−1,+1} and choose ri > 0 such that
g = σirifAi

on Ai. Let {Ai, Aj} be an edge in the graph GA defined before Proposition 6 and let a be a
point in ∂Ai ∩ ∂Aj . By definition of the nodal domains, we have g(a) = 0 and σiσj = −1. It also follows
that the couple (ri, rj) is rectifying for a with respect to (Ai, Aj) and since this is independent of the chosen
a ∈ ∂Ai∩∂Aj , (ri, rj) is rectifying for (Ai, Aj), and consequently, A is rectifiable by the family (ri)i∈JkK. It is
also bipartite, because the edges of GA are only between the two independent sets {Ai : i ∈ JkK with σi = 1}
and {Ai : i ∈ JkK with σi = −1}. This completes the proof of the direct implication in Proposition 6.

For the converse fix k ∈ JNK and assume that A B (A1, . . . , Ak) ∈ Pk is a handy, uniform, rectifiable
and bipartite partition, and let (ri)i∈JkK be the corresponding rectifying family. Also, let (σi)i∈JkK be a
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{−1, 1}-valued family, such that the graph GA is bipartite between the two parts {Ai : i ∈ JkK with σi = 1}
and {Ai : i ∈ JkK with σi = −1}. We verify that g B

∑
i∈JkK σirifAi

is an eigenvector of L associated to the

eigenvalue −λ1(A). This will complete the proof of Proposition 6, since by bipartition, it is clear that up to
a permutation of indices, A corresponds to the nodal domains of g.

Indeed, Lemma 2 implies that for any i ∈ JkK, by uniformity, on Ai B Ai ∩ V we have,

L̂Ai
[g] = σiriL̂Ai

[fAi
]

= −λ1(A)σirifAi

= −λ1(A)g.

Let a ∈ ∂Ai∩∂Aj and first, assume that a 6∈ V , which implies that [a−, a+] is the unique edge in E containing
a, where a− ∈ Ai and a+ ∈ Aj . Then, rectifiability and bipartiteness imply that

L̃(a−, a)g(a−) = L(a−, a+)(g(a−)− g(a+)).

This shows that L̂Ai
[g] coincides with L[g] on Ai. On the other hand, assume that a ∈ V , and note that by

handiness [a−, a] and [a+, a] are the unique edges in E included in the closure of Ai and Aj , respectively.
Thus, by rectifiability, bipartiteness and the fact that g(a) = 0, we have

L[g](a) = L(a, a−)g(a−) + L(a, a+)g(a+) = 0 = −λ1(A)g(a).

Now, since A ∈Pk, we conclude that L[g] = −λ1(A)g, as announced. This completes the proof of Proposi-
tion 6.

In the rest of this section we are going to present a convenient criterium for the rectifiability of a given
subpartition A B (A1, . . . , Ak) ∈ Dk, for some k ∈ JNK. A finite family of points from the continuous graph
G, (aj)j∈JlK, with l ∈ JkK, is said to be a necklace (with respect to A), if there exists a family (nj)j∈JlK of
distinct indices from JkK such that for all j ∈ JlK, aj ∈ (∂Anj

∩ ∂Anj+1
) (with the convention Anl+1

B An1
).

The necklace (aj)j∈JlK is said to be rectifiable, if we can find a family (rj)j∈JlK such that for all j ∈ JlK,
(rj , rj+1) is rectifying for aj with respect to (Anj , Anj+1) (with the convention rl+1 B r1). The subpartition
A itself is said to be necklace-rectifiable, if all its necklaces are rectifiable. Of course if A is rectifiable, then
it is clearly necklace-rectifiable. The following lemma shows that the converse is also true.

Lemma 19 A subpartition A ∈ Dk is rectifiable if and only if it is necklace-rectifiable.

Proof

Fix k ∈ JNK and let A B (A1, . . . , Ak) ∈ Dk be a necklace-rectifiable subpartition. We verify that this
subpartition is also rectifiable. Let i 6= j ∈ JkK be such that {Ai, Aj} is an edge of GA and fix x ∈ ∂Ai ∩∂Aj .
Let (ri, rj) be a rectifying pair for x with respect to (Ai, Aj) and consider x′ which is another point in
∂Ai ∩ ∂Aj . Then (x, x′) is a necklace for A (associated to the cycle Ai → Aj → Ai of GA) and the fact that
it is rectifiable is equivalent to the statement that (ri, rj) is also rectifying for x′ with respect to (Ai, Aj),
because all rectifying pairs are proportional. It follows that (ri, rj) is rectifying for (Ai, Aj).

Assume temporarily that GA is connected. We define a family (ri)i∈JkK in the following way. We arbitrarily
choose r1 = 1. Then, for i ∈ J2, kK, let (nj)j∈JlK be a path going from 1 to i, i.e. n1 = 1, nl = i, all its elements
are distinct and for all j ∈ Jl − 1K, {Anj

, Anj+1
} is an edge of GA. Recursively, on j ∈ J2, lK, we define rnj

uniquely by imposing that (rnj−1 , rnj ) is rectifying for (Anj−1 , Anj ) (this can be done, according to the first
part of this proof). We end up with a definition for rj and it is not difficult to check that the value obtained
is not dependent on the choice of the path going from 1 to j, due to the fact that A is necklace-rectifying
(consider all the cycles induced by the concatenation of two paths going from 1 to j, the second one in reverse
order). Let us verify that for any edge {Ai, Aj} of GA, (ri, rj) is rectifying for (Ai, Aj). Indeed, this is a
consequence of the above construction and of the fact that there exists a path (nm)m∈JlK starting from 1 and
satisfying either nl−1 = i, nl = j or nl−1 = j, nl = i.

Note that if GA is not connected, it is sufficient to proceed as before separately on each of its connected
components.

�

Now, we quantify the rectifiability of a necklace. Hence, let (aj)j∈JlK, with l ∈ JkK, be a given necklace with
respect to A ∈ Dk. Up to a change of indices, we assume that aj ∈ ∂Aj ∩ ∂Aj+1 for j ∈ JlK. We associate to
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this necklace the quantity

C B
∏
j∈JlK

fAj (a−j ) φ̃(a−j , aj)

fAj+1
(a+j ) φ̃(a+j , aj)

,

where the meaning of the expressions φ̃ and fAj
is recalled from the paragraph preceding Lemma 2 and

a−j , a
+
j are defined to be the unique vertices in Aj ∩ N(aj) and Aj+1 ∩ N(aj), respectively (the indices are

taken modulo l). Then we have

Lemma 20 The necklace (aj)j∈JlK is rectifiable if and only if C = 1.

Proof

Assume that rj > 0 is given, for some j ∈ Jl − 1K. The requirement that (rj , rj+1) is rectifying for aj with
respect to (Aj , Aj+1) uniquely determines rj+1. Indeed by definition it amounts to the equality

rjfAj (a−j ) φ̃(a−j , aj) = rj+1fAj+1(a+j ) φ̃(a+j , aj).

Starting from r1, we construct iteratively r1, . . . , rl. The only obstruction for (rj)j∈JlK to be rectifying for
the necklace (aj)j∈JlK is that (rl, r1) must be rectifying for al with respect to (Al, A1). Let r > 0 be such
that (rl, r) is rectifying for al with respect to (Al, A1), according to the above computation we have r = Cr1.
Hence, the equality r = r1 is equivalent to C = 1.

�

4 Rectifiability of optimizers for Λk and Λk

Our goal here is to prove Proposition 7, which indicates two ways to produce rectifiable subpartitions.

We begin with the case of a minimizing handy subpartition A = (A1, . . . , Ak) ∈ Dk for Λk, for some
k ∈ JNK. Since G is assumed to be connected, by results of [12] and the hypothesis we know that A is a
uniform k-partition. Indeed, the argument behind this fact is simple, because if A is not uniform, then it
is possible (due to the fact that all boundary vertices have degree two) to enlarge infinitesimally such Ai’s
such that λ1(Ai) = maxj∈JkK λ1(Aj) and to move the other ones appropriately to produce a better partition,
which contradicts the minimality of A (see [12]). The same idea can be applied to prove that any handy
maximizer partition A ∈Pk for Λk is uniform.

Therefore, it remains to prove the rectifiability of handy optimizers. We will use Lemmas 19 and 20 to
prove that any handy minimizer for Λk is rectifiable. The same arguments can prove the assertion for handy
maximizers of Λk.

Thus, let (aj)j∈JlK, with l ∈ JkK be a necklace. We adopt again the notations of the previous section, in
particular that the necklace induces the cycle A1 → A2 → · · · → Al → A1 in GA and aj ∈ ∂Aj ∩ ∂Aj+1, for
j ∈ JlK. We want to show that

C = 1. (13)

The basic idea of the proof is to perturb infinitesimally the positions of the boundary points (aj)j∈JlK and to
take advantage of the minimizing property ofA. For this let (tj)j∈JlK be a family of positive real numbers and a

small enough number ε > 0. For j ∈ JlK, we consider aj(ε) ∈ [aj , a
+
j ] such that d([aj(ε), a

+
j ]) = d([aj , a

+
j ])−εtj .

Hence, for ε small enough, one may define the subpartition A(ε) = (A
(ε)
1 , . . . , A

(ε)
k ) ∈ Dk which is similar to

A, except the boundary points (aj)j∈JlK have been moved to the points (aj(ε))j∈JlK (in particular we have

A
(ε)
j = Aj , for j ∈ Jl + 1, kK).

Now, we want to evaluate the infinitesimal influence of this perturbation on the principal Dirichlet
eigenvalues. For this, fix the arbitrary family of positive real numbers (rj)j∈JlK and define the function

f
(ε)
j ∈ F0(A

(ε)
j ) for each j ∈ JlK, such that it concides with fAj

on the vertices in Aj ∩ V , f
(ε)
j (aj) B rjε,

vanishes outside of A
(ε)
j and is affinely extended on A

(ε)
j . Then, for all j ∈ JlK we have (indices are taken
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modulo l)

E(f
(ε)
j ) = E(fAj ) + f2Aj

(a+j−1)

(
εtj−1

d([a+j−1, aj−1])− εtj−1

)
φ̃(a+j−1, aj−1)

+
(
fAj

(a−j )− rjε
)2
φ̃(a−j , aj) + (rjε)

2

(
d([a+j , aj ])

εtj

)
φ̃(a+j , aj)−

(
fAj

(a−j )
)2
φ̃(a−j , aj).

Thus

∂

∂ε

(
E(f

(ε)
j )
)∣∣∣∣
ε=0

= tj−1f
2
Aj

(a+j−1)
φ̃(a+j−1, aj−1)

d([a+j−1, aj−1])

−2rjfAj
(a−j ) φ̃(a−j , aj) +

r2j
tj

φ̃(a+j , aj)d([a+j , aj ]).

Now, for the arbitrary family of positive real numbers (sj)j∈JlK let

tj B sj d([a+j , aj ]) φ̃(a+j , aj), rj B sj fAj (a−j ) φ̃(a−j , aj).

Hence,

∂

∂ε

(
E(f

(ε)
j )
)∣∣∣∣
ε=0

= sj−1 f
2
Aj

(a+j−1) φ̃2(a+j−1, aj−1)− sj f2Aj
(a−j ) φ̃2(a−j , aj).

If C 6= 1, we can assume that C > 1 (otherwise consider the reverse necklace (al+1−j)j∈JlK). Take s1 B 1 and
define iteratively for j ∈ J2, lK,

sj B sj−1

(
fAj (a+j−1)φ̃(a+j−1, aj−1)

fAj
(a−j )φ̃(a−j , aj)

)2

C
2
l .

These are compatible modulo l, since

sl+1 = s1
∏
j∈JlK

(
fAj+1

(a+j )φ̃(a+j , aj)

fAj
(a−j )φ̃(a−j , aj)

)2

C2 = s1,

and consequently we end up with

∀ j ∈ JlK,
∂

∂ε

(
E(f

(ε)
j )

µ[(f
(ε)
j )2]

)∣∣∣∣∣
ε=0

=
∂

∂ε

(
E(f

(ε)
j )
)∣∣∣∣
ε=0

1

µ[f2Aj
]
< 0.

Thus, for ε > 0 small enough, we get

max
j∈Jl+1K

λ1(A
(ε)
j ) < max

j∈Jl+1K
λ1(Aj).

Since λ1(A
(ε)
j ) = λ1(Aj) for j ∈ Jl + 1, kK, it follows that the subpartition A(ε) is a minimizer for Λk (in

particular to avoid an immediate contradiction, we must have l + 1 ≤ k). But, note that this minimizing
subpartition is still handy, and by Proposition 7 of [12], it must be uniform. This is not the case and we
conclude that indeed C = 1.

Thus we have shown that if the handy subpartitionA is minimizing for Λk, then its necklaces are rectifiable
according to Lemma 20. Now, Lemma 19 implies that A is rectifiable. This ends the proof of Proposition 7.

Remark 21 If Conjecture 8 is true, it appears that generically, for any k ∈ JNK, there is two ways of
generating a handy, uniform and rectifiable k-partition. One is by looking for a minimizer of the mapping

Pk 3 A = (A1, . . . , Ak) 7→ max
i∈JkK

λ1(Ai)

14



and the other one is by looking for a maximizer of the mapping

Pk 3 A = (A1, . . . , Ak) 7→ min
i∈JkK

λ1(Ai).

It would had been more satisfying if we could have played with only one mapping. More precisely, endow
Pk with a differential structure (which is the gluing of several differential manifolds with boundaries, whose
dimensions can be computed from the acceptable infinitesimal increasing and decreasing simultaneous moves
of the boundaries of the elements of the partition at hand). We are wondering if there exists a “natural”
mapping from Pk to R whose critical points are (generically) handy, uniform and rectifiable partitions. The
first candidates which come in mind are the mappings

Lp,k : Pk 3 A = (A1, . . . , Ak) 7→ 1

k

∑
i∈JkK

λp1(Ai)

where k ∈ JNK and p ∈ [1,+∞). A careful look at the above arguments shows that if a partition A is handy
and is also a critical point for one of the above mappings Lp,k (even with p ∈ R \ {0}), then A is uniform
and rectifiable (the proof of Proposition 7 of [12] is also valid for such critical partitions).

In the case of the usual 2-dimensional Laplacian on some rectangles or on the equilateral triangle, Helffer
and Hoffmann-Ostenhof [9] have shown that the minimizers of the mapping L1,k (respectively for k = 3 and
k = 2) are not uniform. This is not really contradictory with the above assertions, because the symmetries
of their examples suggest that they are typically not working with what we would call a generical situation.

Despite its obvious interest, the investigation of the properties of the mappings Lp,k are outside the scope
of the present paper.

�

5 Spectral decomposition of cycles

As announced before, in this section we restrict our attention to reversible generators whose underlying graph
is a cycle. Our main goal is to prove Proposition 9.

For this let L be a given generator, reversible with respect to a positive probability µ and whose underlying
graph G is a cycle, that in what follows is identified with the usual nearest neighbors graph structure of ZN .
The continuous graph G can be seen as the cycle of length N obtained by identifying the points 0 and N of
the segment [0, N ].

First step toward Proposition 9 is to check that a maximizer does exist for the quantity Λk, for all
k ∈ JN − 1K. Note that for the cycle ZN , by Proposition 17(a), we have ΛN = +∞. Also, note that the
equality ΛN = +∞ does not hold in general. For instance, ΛN is finite for generators whose graph is a tree
due to Proposition 17(b).

Lemma 22 For any k ∈ JN − 1K, there exists A = (A1, . . . , Ak) ∈Pk such that

Λk = min
i∈JkK

λ1(Ai).

Proof

First note that due to Proposition 17(a), Λk is finite for k ∈ JN−1K. Let (A(n))n∈N be a sequence of elements
of Pk which is maximizing for Λk, i.e.

lim
n→∞

min
i∈JkK

λ1(A
(n)
i ) = Λk.

Taking into account the compactness of the Hausdorff topology on the set of compact subsets of R/(NZ), we
can extract a subsequence of (∂A(n))n∈N (still denoted (∂A(n))n∈N for notational convenience) and a compact
subset B ⊂ G such that

lim
n→∞

∂A(n) = B.

Necessarily, we have l B card(B) ≤ k (and l ≥ k/2), and let A1, . . . , Al be the connected components of
G \ B. The family A B (A1, . . . , Al) is covering, in the sense that G is the union of the closures of the Ai,

15



but A may not be a partition of Pl, because some of its components may not intersect ZN . Indeed, consider
A′1, . . . , A

′
l′ the subsets Ai, with i ∈ JlK, which satisfy Ai ∩ ZN 6= ∅. Denoting A′ = (A′1, . . . , A

′
l′), we have

that A′ is an l′-subpartition and

min
i∈Jl′K

λ1(A′i) = Λk.

This is a consequence of the fact that the mapping

G2 3 (x, y) 7→ λ1((x, y)) ∈ R+ t {+∞}

is easily seen to be continuous (see for instance [12, Lemma 6]), where in the rhs (x, y) is the interval of G
obtained by going from x to y “anti-clockwise”. By convention if (x, y) ∩ ZN = ∅, we let λ1((x, y)) = +∞.
Note that l′ 6= 0. This comes from the assumption k ≤ N − 1, which implies that ZN 6⊂ B and thus there
exist i ∈ ZN and j ∈ Jl′K such that i ∈ A′j . If A′ 6∈Pl′ , let us show that we can find A′′ ∈Pl with

min
i∈JlK

λ1(A′′i ) ≥ min
i∈Jl′K

λ1(A′i). (14)

Indeed, if A′ 6∈ Pl′ , necessarily l′ < l and Ai, with i ∈ JlK, which have been removed from A to obtain A′
are of the form (x, x+ 1) with x ∈ ZN . For ε ∈ (0, 1) small enough, we have for all such x,

λ1((x, x+ 1 + ε)) ≥ min
i∈Jl′K

λ1(A′i),

because the lhs goes to infinity when ε goes to zero, this is a consequence of the above continuity property.
Still for such x, consider the set (x+ε, x+1+ε), if x 6∈ ∂A′ (remark that λ1((x+ε, x+1+ε)) > λ1((x, x+1+ε)))
and (x, x+ 1 + ε), if x ∈ ∂A′, and call these sets A′′l′+1, . . . , A

′′
l . Now, diminish a little the A′i, with i ∈ Jl′K,

so that they do not overlap with the above sets, to get the A′′i , for i ∈ Jl′K (one would have noticed that since
A′′i ⊂ A′i, we have λ1(A′′i ) ≥ λ1(A′i)). The l-partition A′′ B (A′′1 , . . . , A

′′
l ) satisfies (14). If A′ was to belong

to Pl′ , we have in fact A′ = A and l′ = l. In this case, just take A′′ B A.
Now, we will modify A′′ to obtain A′′′ ∈Pk such that

min
i∈JkK

λ1(A′′′i ) ≥ min
i∈JlK

λ1(A′′i ). (15)

It will follow that

min
i∈JkK

λ1(A′′′i ) ≥ Λk

and thus A′′′ will be the wanted maximizer.
If l = k, there is nothing to do, we just take A′′′ B A′′. Otherwise, namely if l < k, first consider the case
where ∂A′′ ∩ ZN 6= ∅ and choose x ∈ ∂A′′ ∩ ZN . We create a new component (x − ε, x + ε), with ε ∈ (0, 1)
small enough so that

λ1((x− ε, x+ ε)) > min
i∈JlK

λ1(A′′i ).

In the same time we diminish a little the A′′i which admit x as boundary point. We get a (l + 1)-partition
whose minimal principal Dirichlet eigenvalue is not less than mini∈JlK λ1(A′′i ). If l+ 1 < k and if this (l+ 1)-
partition still admits a boundary point in ZN , we start again the above procedure. Repeating such kind of
transformations, we end up with a m-partition Ã with

min
i∈JmK

λ1(Ãi) ≥ min
i∈JlK

λ1(A′′i ),

such that either m = k or ∂Ã ∩ ZN = ∅. In the first case, we just take A′′′ B Ã. Otherwise there exists
i ∈ JmK such that Ãi contains two consecutive points of ZN (because m < k ≤ N − 1). Then we cut Ãi at
the middle of the edge separating the consecutive points, to get two elements of D1, whose principal Dirichlet
eigenvalues are larger than λ1(Ãi). Replacing Ãi by these two subsets, we get a (m + 1)-partition whose

minimal principal Dirichlet eigenvalue is not less than mini∈JmK λ1(Ãi). By repeating this procedure, we end
up with a k-partition A′′′ satisfying (15).

�
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Remark 23 The existence of a maximizer for Λk, for k ∈ JN − 1K, is not true in general. Consider the
generator on J4K whose matrix is given by

−4 1 1 2
1 −1 0 0
1 0 −1 0
2 0 0 −2


A maximizer for Λ2 would be ([2, 1), [1, 3]∪[1, 4]) (also ([3, 1), [1, 2]∪[1, 4]) and the partition ([4, 1), [2, 1]∪[1, 3])
would provide a non-uniform maximizer), unfortunately the second component is not open, contrary to
our requirements. A maximizing sequence (A(n))n∈N can be constructed, by imposing that for all n ∈ N,
∂A(n) = {xn}, where (xn)n∈N is a sequence of points from (2, 1) (or from (3, 1)) converging to 1. Note that
([2, 1), [3, 1)) is a minimizing subpartition for Λ2 and we recover that Λ2 = Λ2 (=1 here) for trees, as it
was proved in Proposition 17. Heuristically speaking, this example is typically not “generical”, due to the
identity L(1, 2) = L(1, 3).

�

Next step is to prove that actually the parameters Λk, k ∈ JNK and Λk, k ∈ JN − 1K are eigenvalues of
−L when k is even.

Proposition 24 Let k ∈ JNK be an even integer. Then, Λk is an eigenvalue of −L and also if k 6= N , Λk
is also an eigenvalue of −L.

Proof

Due to the fact that the degree of the vertices of ZN is two, all subpartitions are handy. Thus, for k ∈ JNK,
Proposition 7 implies that a minimizer A for Λk as well as a maximizer B for Λk (provided k 6= N) are
necessarily uniform and rectifiable k-partitions. If furthermore k is even, it appears that A and B are also
bipartite. Then, Proposition 6 yields that Λk = λ1(A) and Λk = λ1(B) are eigenvalues of −L.

�

Proposition 24 shows that the spectrum of−L is given by Λ1 = 0, (Λk)k∈J2,NK,k even and (Λk)k∈J2,N−1K,k even,
if all these values are distinct. Indeed, if N is even, we get 1 +N/2 +N/2− 1 = N values, while if N is odd,
we obtain 1+(N−1)/2+(N−1)/2 values. So if for all k ∈ J2, N−1K, k even, Λk 6= Λk, by Proposition 17(a)
and 24 we deduce that the spectrum of −L is as described in Proposition 9. The general case will be an
immediate consequence of the following result.

Proposition 25 Let k ∈ J2, N − 1K, k even, be given and assume that Λk = Λk. Then the eigenvalue Λk of
−L has multiplicity 2 and the associated eigenvectors have exactly k nodal domains.

Proof

Let A = (A1, . . . , Ak) ∈Pk be a minimizer for Λk, with k as in the proposition. We adopt the convention that
A1 = (b1, b2), A2 = (b2, b3), . . . , Ak = (bk, b1), where the boundary points satisfy 0 ≤ b1 < b2 < · · · < bk < N
in G = R/(NZ) identified with [0, N). First, assume that one of Ai, with i ∈ JkK, contains two elements of
ZN . Up to a shift of indices, we can assume that 1, 2 ∈ A1. Let y1 ∈ (1, 2) be given and consider the mapping

F : (0, N) 3 s 7→ λ1((y1, y1 + s)) ∈ R+ t {+∞}

(where y+s has to be interpreted as a point of G = R/(NZ)). We have F (s) = +∞ for s ∈ (0, 2−y1], but on
the interval [2−y1, N), F is (strictly) decreasing. Since y1 ∈ A1, we have (y1, b2) ⊂ A1 and A2 ⊂ (y1, b3) and
these inclusions are strict. Thus there exists a unique point y2 ∈ A2 such that λ1(y1, y2) = λ1(A). Iterating
this procedure, we can find y3 ∈ A3 such that λ1(y2, y3) = λ1(A) etc. We end up constructing yk ∈ A1 such
that λ1(yk−1, yk) = λ1(A).
A priori there are three possibilities for this last point, either yk < y1, either yk = y1, or yk > y1. Let us
show that the assumption Λk = Λk implies that yk = y1.
First the case yk < y1 is always impossible. Indeed, if we denote Bi B (yi, yi+1) for i ∈ JkK, then B B
(B1, . . . , Bk) is a minimizing subpartition for Λk. According to Proposition 7, it should be a partition, but
it is not the case, so we end up with a contradiction which implies that yk ≥ y1.
Now, assume that yk > y1. It is then possible to transform the points yi, i ∈ JkK, into new points y′i, i ∈ JkK,
with y′k = y1 = y′1, in such a way that if B B (B1, . . . , Bk) is the partition for which ∂B = {y′i : i ∈ JkK}, we
get

∀ i ∈ JkK, λ1(Bi) > λ1((yi, yi+1))
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Indeed, in the covering R of G, this can be achieved by diminishing continuously the points yi, i ∈ J2, kK, in
a manner that the intervals beetween consecutive points have the same principal Dirichlet eigenvalue with
respect to the periodization of the generator. When the point starting from yk reach y1, we get the points
y′i, i ∈ JkK. We deduce that

Λk ≥ min
i∈JkK

λ1(Bi) > min
i∈JkK

λ1((yi, yi+1)) = λ1(A) = Λk

which is in contradiction with our main assumption.
Thus, as announced, yk = y1 and the partition B, defined by Bi B (yi, yi+1) for i ∈ JkK, is minimizing for
Λk. According to Proposition 6, there exists an eigenfunction f associated to the eigenvalue −Λk = −Λk of
L whose nodal domains are given by the elements of B. Similarly, there exists an eigenfunction g associated
to the eigenvalue −Λk whose nodal domains are given by the elements of A. Let us check that f and g are
not proportional. This comes from the choice of y1, which insures that g has the same sign on the vertices
1 and 2, while f has opposite sign on these points. Thus, the equality Λk = Λk implies that the dimension
of the eigenspace of −L associated with Λk is at least 2. It cannot be strictly larger than 2, or otherwise we
would end up with too much independent eigenfunctions. Indeed, here is the counting, taking into account
Proposition 17(a) to insure we are not counting twice the same eigenvalue. First, Λ1 = 0 is an eigenvalue of
multiplicity one and for any l ∈ J2, NK, l even, if Λl 6= Λl, we get two different eigenvalues of multiplicity 1
(except if N is even and l = N , then only ΛN is an eigenvalue, of multiplicity 1) and if Λl = Λl, we get one
eigenvalue of multiplicity 2. Whatever N is (odd or even), this produces N eigenvalues (with multiplicities).

It remains to check the assertion about the nodal domains of any arbitrary eigenfunction f associated to
Λk, when Λk = Λk with k even. Let l be the number of nodal domains of f and let B be the l-subpartition
consisting of these domains. First, we show that f cannot vanish on two consecutive vertices. Let x ∈ ZN be
such that f(x) = 0, then the equality 0 = Λkf(x) = −L[f ](x) implies that f(x − 1) and f(x + 1) must have
different signs and in particular none of them can vanish or both of them vanish. But in the latter case, the
relation 0 = Λkf(x+ 1) = −L[f ](x+ 1) would lead to f(x+ 2) = 0 and by iteration we would end up with
the contradiction f = 0. As a consequence B is a partition and l is even. Note also that B is uniform and
λ1(B) = Λk. Necessarily l = k, because otherwise, via the pigeonhole principle, we would end up with the
conclusion that one element of B is strictly included into one element of A (case l > k) or one element of A
is strictly included into one element of B (case l < k), facts in contradiction with λ1(B) = λ1(A). It appears
also that the construction given at the beginning of this proof gives all the eigenvectors associated to Λk, up
to a factor, by letting y1 wander inside [b1, b2).

�

Let us give some precisions about the sentence following Proposition 9. We have seen in [12] that the first
Dirichlet eigenvector fA ≥ 0 associated to a segment A (path), with absorption only at the ends of the
segment, has the following shape. Starting from zero at the lhs absorbing point, it increases until it reaches
the highest value of fA, maybe it stays at the same value at the next vertex, but after it decreases until
reaching zero at the rhs absorbing point. The construction considered in the above proof then enables to
see that any eigenvector f associated to Λk or Λk, with k ∈ J2, NK even, has the following shape. It is a
succession of increasing phases and decreasing phases and between each of them, f attains its local minima or
maxima in one vertex or two consecutive vertices. There are exactly k/2 increasing (respectively decreasing)
phases and during each of them, f cross zero (either at a true vertex of V or at a “virtual” point of G).

This behavior was well-known in the homogeneous case (namely for the generator L whose diagonal
entries are either 1/2 or 0, depending if they correspond to nearest neighbors or not, on the discrete cycle
ZN ), because then the eigenvectors are described as follows.
- the eigenvector 1 (always taking the value 1) is associated to the eigenvalue 0,
- the eigenspace associated to the eigenvalue 1 − cos(2πk/N), for k ∈ Jb(N − 1)/2cK, is generated by the
mappings ZN 3 x 7→ cos(2πkx/N) and ZN 3 x 7→ sin(2πkx/N),
- if N is even, ZN 3 x 7→ cos(πx) is also an eigenvector, associated to the eigenvalue −1.

Thus there is a universal qualitative behavior for the eigenvectors of generators whose associated graph
is a cycle, whether or not there are double eigenvalues (as in the homogeneous case).

6 Proof of Conjecture 3 for cycles

In this section we prove Proposition 10 which implies that Conjecture 3 and then Conjecture 1 (a generalized
Cheeger inequality) are valid with a universal constant for all k ≥ 1 and all generators on cycles.
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Fix k ∈ JNK odd (if k is even, there is nothing to prove, due to the equality Λk = λk of Proposition 9).
Let A = (A1, . . . , Ak) ∈ Pk be a minimizing partition for Λk which is uniform and rectifiable. For such a
partition, we adopt the same convention as before that A1 = (b1, b2), A2 = (b2, b3), . . . , Ak = (bk, b1), where
the boundary points satisfy 0 ≤ b1 < b2 < · · · < bk < N , with G = R/(NZ) identified with [0, N). It is also
convenient to use periodic notations: bk+1 = b1, A0 = Ak, Ak+1 = A1 etc. The main step will consist in
finding i ∈ JkK such that

λ1(Ai t {bi+1} tAi+1) ≥ (1/24) λ1(A) (16)

Indeed, assuming this is true and, to simplify the notations, that i = k, consider the partition A′ B
(A′1, . . . , A

′
k−1) ∈Pk−1 given by

∀ l ∈ Jk − 1K, A′l B

{
Ak t {b1} tA1 , if l = 1
Al , if l ∈ J2, k − 1K.

Taking into account Proposition 9, we get

(1/24) Λk = (1/24) λ1(A)

≤ λ1(A′1)

= min
l∈Jk−1K

λ1(A′l)

≤ Λk−1

= λk.

To find the index i ∈ JkK such that (16) is satisfied, we need some preliminaries. First, we recall the
following lemma from [4] about approximating the first Dirichlet eigenvalue of generators on paths (birth-
dead processes) with Dirichlet conditions at both ends of the path. For more on this and its relationships to
Poincaré and weighted Hardy inequalities see [3, 4].

Lemma 26 [4, Corollary 7.8] Let (L, µ) be a reversible generator on a path G = (V,E) with state space
V = {x0, . . . , xN+1} and edge set E = {{xi, xi+1} : 0 ≤ i ≤ N}. Also, let λ1 B λ1({x1, . . . , xN}), then we
have

κ−1/4 ≤ λ1 ≤ κ−1,

where

κ−1 B min
1≤n≤m≤N

 (n−1∑
i=0

1

φi

)−1
+

(
N∑
i=m

1

φi

)−1  m∑
j=n

µ(xj)

−1 ,
in which φi B φ({xi, xi+1}) = µ(xi) L(xi, xi+1), for 0 ≤ i ≤ N .

Let G be a continuous path and as in Section 1.1, define two measures µ and ρ on G as follows,

µ B
∑
x∈V

µ(x)δx, ρ B
∑
{x,y}∈E

ρx,y, (17)

where for each edge {x, y} ∈ E, ρx,y B dx,y/φ({x, y}), in which dx,y is the natural Lebesgue measure on [x, y].
Note that, one may think of ρ as a measure of resistance on the edges of G. Now, it is straightforward to
generalize Lemma 26 to the continuous model as follows.

Lemma 27 Let G be a continuous path endowed with the reversible generator (L, µ). Then, for every interval
A B (a, b) ⊂ G, we have

(1/4) κ−1(A) ≤ λ1(A) ≤ κ−1(A),

where

κ−1(A) B inf
a<x≤y<b

(
1

ρ((a, x))
+

1

ρ((y, b))

)
1

µ([x, y])
, (18)

where the measures µ, ρ are defined as in (17).
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Proof

Assume that the infimum in (18) occurs for the points x0, y0 ∈ G. To prove the lemma, it is enough to show
that {x0, y0} ⊆ V (G) and apply Lemmas 2 and 26. By contradiction and without loss of generality assume
that x0 ∈ G\V (G). Then choose x′0 next to x0 such that ρ(a, x′0) > ρ(a, x0) and (x0, x

′
0) contains no vertices

of V (G). Then µ([x′0, y0]) = µ([x0, y0]) and hence(
1

ρ((a, x′0))
+

1

ρ((y0, b))

)
1

µ([x′0, y0])
<

(
1

ρ((a, x0))
+

1

ρ((y0, b))

)
1

µ([x0, y0])
,

which is impossible.
�

Now, let us come back to the minimizing partition A = (A1, . . . , Ak) ∈Pk for Λk considered at the beginning
of this section. For all i ∈ JkK, we denote by ci the unique middle point of Ai, in the sense that ρ((bi, ci)) =
ρ((ci, bi+1)) = ρ(Ai)/2. Consider the k-partition B B (B1, . . . , Bk) such that

∀ i ∈ JkK, Bi B (ci, ci+1)

(with the convention bk+1 = b1). There exists at least one index i ∈ JkK such that λ1(Bi) ≥ Λk = λ1(A).
Indeed, otherwise we would get

max
i∈JkK

λ1(Bi) < Λk

which would be in contradiction with the definition of Λk. The next result shows that this index i is the one
we were looking for.

Proposition 28 The bound (16) is satisfied if i ∈ JkK is such that λ1(Bi) ≥ λ1(A).

Proof

Without loss of generality assume that i = k, define A′1 B Ak t{b1}tA1 and consider the same notations as
before A1 = (b1, b2), Ak = (bk, b1), Bk = (ck, c1). Let x0, y0 ∈ A′1 be two points that minimize (18) achieving
κ−1(A′1). Thus

κ−1(A′1) =

(
1

ρ((bk, x0))
+

1

ρ((y0, b2))

)
1

µ([x0, y0])
.

We prove the bound (16) through the following 3 cases.

Case 1. ρ((bk, x0)) ≥ (3/5) ρ(Ak) and ρ((y0, b2)) ≥ (3/5) ρ(A1).
Then ck < x0 < y0 < c1 and we compute that

ρ((ck, x0)) = ρ((bk, x0))− ρ(Ak)

2

≥ ρ((bk, x0))

6

Similarly ρ((y0, b2)) ≤ 6ρ((y0, c1)) and we deduce via Lemma 27 that

λ1(A′1) ≥ 1

4
κ−1(A′1) =

1

4

(
1

ρ((bk, x0))
+

1

ρ((y0, b2))

)
1

µ([x0, y0])

≥ 1

4

(
1

6 ρ((ck, x0))
+

1

6 ρ((y0, c1))

)
1

µ([x0, y0])
≥ 1

24
κ−1(Bk) ≥ 1

24
λ1(A).

Case 2. ρ((bk, x0)) < (3/5) ρ(Ak) and ρ((y0, b2)) < (3/5) ρ(A1).
Choose the points d1, d2 ∈ A′1 as the middle points of the intervals (ck, b1) and (b1, c1), respectively, i.e.

ρ((ck, d1)) = ρ((d1, b1)) = (1/4) ρ(Ak), ρ((b1, d2)) = ρ((d2, c1)) = (1/4) ρ(Ak).

Then, we have x0 < d1 < d2 < y0 and by Lemma 27 we have

λ1(A) ≤ κ−1(Ak) ≤
(

1

ρ((bk, x0))
+

1

ρ((d1, b1))

)
1

µ([x0, d1])
,

λ1(A) ≤ κ−1(Bk) ≤
(

1

ρ((ck, d1))
+

1

ρ((d2, c1))

)
1

µ([d1, d2])
,

λ1(A) ≤ κ−1(A1) ≤
(

1

ρ((b1, d2))
+

1

ρ((y0, b2))

)
1

µ([d2, y0])
.
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Hence,

µ([x0, d1]) λ1(A) ≤
(

1

ρ((bk, x0))
+

12

5 ρ((bk, x0))

)
,

µ([d1, d2]) λ1(A) ≤
(

12

5 ρ((bk, x0))
+

12

5 ρ((y0, b2))

)
,

µ([d2, y0]) λ1(A) ≤
(

12

5 ρ((y0, b2))
+

1

ρ((y0, b2))

)
,

and consequently,

µ([x0, y0]) λ1(A) ≤ 6

(
1

ρ((bk, x0))
+

1

ρ((y0, b2))

)
.

This along with Lemma 27 imply that

λ1(A) ≤ 6 κ−1(A′1) ≤ 24 λ1(A′1).

Case 3. ρ((bk, x0)) < (3/5) ρ(Ak) and ρ((y0, b2)) ≥ (3/5) ρ(A1).
Again, let d1 be the middle point of the interval (ck, b1) and similar to Case 2, we have

µ([x0, d1]) λ1(A) ≤
(

1

ρ((bk, x0))
+

1

ρ((d1, b1))

)
≤
(

1

ρ((bk, x0))
+

12

5 ρ((bk, x0))

)
,

µ([d1, y0]) λ1(A) ≤ µ([d1, y0]) λ1(Bk)

≤
(

1

ρ((ck, d1))
+

1

ρ((y0, c1))

)
≤
(

12

5 ρ((bk, x0))
+

6

ρ((y0, b2))

)
.

Thus,

µ([x0, y0]) λ1(A) ≤ 6

(
1

ρ((bk, x0))
+

1

ρ((y0, b2))

)
,

and the result follows.
�

7 Appendix: double coverings

In this appendix we present a spectral interpretation of parameters (Λk)k∈JNK and (Λk)k∈JNK via a double
covering construction that helps to lift partitions to bipartite partitions on a covering space. In this regard,
a generator L(2) on a set V(2) is said to be a double covering of L, if there exists a mapping π : V(2) → V
such that

• any x ∈ V admits two pre-images by π,

• for any x ∈ V(2), the restriction of π on N (2)(x) B {y ∈ V(2) : L(2)(x, y) > 0} is one-to-one from
N (2)(x) onto N(π(x)) B {y ∈ V : L(π(x), y) > 0},

• for any x, y ∈ V(2), either L(2)(x, y) = L(π(x), π(y)) or L(2)(x, y) = 0.

The first two conditions shows that the graph G(2) associated to L(2) is a double covering of G in the usual
graph theory sense and the third one (in conjunction with the second one) says that L(2) ◦ π = π ◦ L, where
π is seen as acting on functions f ∈ F (V) through π[f ] = f ◦ π. It should be noted that if L is reversible
with respect to the invariant measure µ, then L(2) is also reversible with respect to the invariant measure
µ(2) on V (2) defined as µ(2)(x) = µ(π(x)). In what follows we prove that

Proposition 29 Let A be a handy rectifiable and uniform partition. Then there exists a double covering
L(2) of L such that −λ1(A) is an eigenvalue of L(2).

Proof

For this fix k ∈ JNK and let A = (A1, . . . , Ak) ∈ Pk be a handy, rectifiable and uniform partition. Now, we
construct a double covering L(2) of the underlying generator L such that λ1(A) is an eigenvalue of L(2). We
define

V(2) B V × {−1,+1}
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and let π : V(2) → V and σ : V(2) → {−1,+1} be the associated canonical projections. Also, for each x ∈ V
define the index I(x) as follows.

∀ x ∈ V, I(x) B

{
i if x ∈ Ai,
min{i, j} if x ∈ ∂Ai ∩ ∂Aj .

Now, define the generator L(2) on V(2) as

∀ x, y ∈ V(2), L(2)(x, y) B

 L(π(x), π(y)) if I(π(x)) = I(π(y)) and σ(x) = σ(y),
L(π(x), π(y)) if I(π(x)) 6= I(π(y)) and σ(x) 6= σ(y),
0 otherwise.

(19)

It can be verified that L(2) as defined in (19) is actually a double covering of L. At the level of processes,

the intertwining relation L(2) ◦ π = π ◦ L implies that if (X
(2)
t )t≥0 is a Markov process whose generator is

L(2), then (π(X
(2)
t ))t≥0 is a Markov process admitting L as its generator. The above relation also implies

that the space of “even” functions (namely the functions on V(2) which can be written under the form f ◦ π,
where f is a function defined on V) is left stable by L(2) and that its restriction to this space can be put in
conjugacy with L. In particular, the spectrum of L is included in the spectrum of L(2).

Let G(2) be the continuous graph associated to the generator L(2) as in the introduction. The mapping
π : V(2) → V admits a natural extension from G(2) to G, still denoted by π. It is straightforward to see that
for any i ∈ JkK, π−1(Ai) ⊂ G(2) consists of two connected components, one, say B2i−1 is such that

B2i−1 ∩ V(2) ⊂ {x ∈ V(2) : σ(x) = −1}

and the other one, say B2i, satisfies

B2i ∩ V(2) ⊂ {x ∈ V(2) : σ(x) = +1}.

The sets Bi, for i ∈ J2kK, are clearly disjoint, open and connected, and by definition of L(2), B B (Bi)i∈J2kK

is a handy 2k-partition of G(2). In what follows, we prove that B is also bipartite, uniform and rectifiable,
and consequently, the proof follows from Proposition 6.

As it was remarked in the definition of B, for any i ∈ JkK, the restriction of the mapping σ to Bi ∩V(2) is
constant (with value (−1)i). This leads to define the mapping Σ on the vertex set V(GB) as Σ(Bi) = (−1)i

which shows that GB is bipartite, with two parts {B ∈ V(GB) : Σ(B) = −1} and {B ∈ V(GB) : Σ(B) = +1}.
Moreover, for i ∈ J2kK, the operator L̂

(2)
Bi

, defined on Bi ∩ V(2) (as defined preceding Lemma 2) is just the

operator L̂Abi/2c defined on Abi/2c ∩ V, if functions on Abi/2c ∩ V are identified with functions on Bi ∩ V(2)

via the operator π. We deduce that λ1(Bi) = λ1(Abi/2c) and that B is uniform with λ1(B) = λ1(A).

For rectifiability, let (ri)i∈JkK be a rectifying family for A and consider the family (r
(2)
i )i∈JkK given by

∀ i ∈ J2kK, r
(2)
i B rb(i+1)/2c.

Then it is easy to verify that Equality (7) naturally lifts to the covering spaceG(2) and consequently, (r
(2)
i )i∈JkK

is a rectifying family for B.
�

Remark 30 The above construction is valid for a general partition to give rise to a bipartite partition
relatively to a double covering of the initial generator.

�

If Conjecture 8 was true, we could conclude that generically, for any k ∈ JNK there exists a double covering
L(2) of L such that −Λk is an eigenvalue of L(2) (and there exists another double covering of L which admits
Λk as an eigenvalue). If these double coverings exist, they depend on the value of k ∈ JNK, as it is the case for
cycles. But in the following proposition, we will see that for the generator L on the cycle ZN , all parameters
(−Λk)k∈JNK and (−Λk)k∈J2,N−1K appear in the spectrum of a double covering of L.

Proposition 31 Let L be a generator on the cycle ZN . Let L(2) be the unique irreducible double covering

of L. Denote (Λ
(2)
k ) and (Λ

(2)

k ) its Dirichlet connectivity spectra. The ordinary spectrum of L(2) is given by

0 = Λ1 < Λ
(2)
2 ≤ Λ

(2)

2 < Λ2 ≤ Λ2 < Λ3 ≤ Λ3 < . . . < ΛN−1 ≤ ΛN−1 < ΛN .
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Moreover, we have

∀ k ∈ J2, NK,

{
Λ
(2)
2k = Λk

Λ
(2)

2k = Λk.

Proof

Let k ∈ JNK be an integer and A = (A1, . . . , Ak) ∈ Pk be a minimizing partition for Λk and consider the
double covering L(2) defined as in (19). Note that in general this construction strongly depends on the
partition A, however, in the case of a cycle, up to an isomorphism, the generator L(2) only depends on the
parity of k, i.e. if k is odd, L(2) is L(2), the periodic doubling of L on Z2N introduced in the statement of the
above proposition, and if k is even, L(2) just acts as L on two disconnected copies of V = ZN .

Now, for k ∈ J3, NK an odd integer Propositions 7 and 29 imply that −Λk is an eigenvalue of L(2). Also,
since the double covering for an odd k is independent of k, the spectrum of L(2) contains −Λk and −Λk
for every odd k ∈ J3, NK. Furthermore, since the spectrum of L is included in the spectrum of L(2), the
parameters −Λ1 = 0 and −Λk and −Λk for even k ∈ J2, NK (except −ΛN ) also appear in the spectrum
of L(2). On the other hand, the same arguments as those used in the proof of Proposition 25 give rise to
the fact that if −Λk = −Λk, this eigenvalue has multiplicity at least two for L(2). Hence, the spectrum of
L(2) contains (with multiplicity) both Dirichlet connectivity spectra (Λk)k∈JNK and (Λk)k∈J2,N−1K. Only two

eigenvalues are missing in this description, Λ
(2)
2 and Λ

(2)

2 , namely those admitting eigenfunctions with two
nodal domains. Therefore, the first statement follows from Proposition 17. Moreover, the last statement
follows from Proposition 9 applied to L(2).

�

Clearly to get a spectral interpretation of Λ
(2)
k and Λ

(2)

k with k odd, one should consider the irreducible
double covering of L(2) (i.e. the irreducible 4-covering of L) whose graph is Z4N .
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