
Activities of Daily Living Indexing by Hierarchical

HMM for Dementia Diagnostics

Svebor Karaman, Jenny Benois-Pineau, Jean-François Dartigues, Yann
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351 Cours de la Libération 33405 Talence cedex, France

karaman@labri.fr, jenny.benois@labri.fr
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Abstract

This paper presents a method for indexing human ac-

tivities in videos captured from a wearable camera being

worn by patients, for studies of progression of the demen-

tia diseases. Our method aims to produce indexes to faci-

litate the navigation throughout the individual video recor-

dings, which could help doctors search for early signs of

the disease in the activities of daily living. The recorded vi-

deos have strong motion and sharp lighting changes, indu-

cing noise for the analysis. The proposed approach is based

on a two steps analysis. First, we propose a new approach

to segment this type of video, based on apparent motion.

Each segment is characterized by two original motion des-

criptors, as well as color, and audio descriptors. Second,

a Hidden-Markov Model formulation is used to merge the

multimodal audio and video features, and classify the test

segments. Experiments show the good properties of the ap-

proach on real data.

1. Introduction

Our society is aging, with a longer lifetime expectancy

come new challenges, one of them is to help the elderly keep

their autonomy as long as possible. The aging diseases re-

sult in a loss of autonomy. Dementia diseases of the elderly

have a strong impact on activities of daily living (ADL).

Medical studies [5] have shown that early signs of diseases

such as Alzheimer can be identified up to ten years before

the actual diagnostics. Therefore the analysis of possible

lack of autonomy in the ADL is essential to establish the

diagnostics as soon as possible and give all the help the pa-

tient and his relatives may need to deal with the disease. Un-

til now, the medical diagnostics are most of the time based

on an interview of the patient and the relatives. The answers

to a survey about how well the patient executes ADL allow

an evaluation of the patient’s situation. The main issue with

this methodology is the lack of objectivity of the patient and

his entourage.

The best way to determine the autonomy of one patient is

to analyze his ability to execute the ADL in his own en-

vironment. However, it can be complicated for a doctor to

come and watch the patient doing these ADL, as this would

be a very time consuming task. It can be interesting to re-

cord the patient doing ADL with a camera. This is the idea

of the project IMMED 1 (Indexing Multimedia Data from

wearable sensors for Diagnostics and treatment of Demen-

1. http://immed.labri.fr/
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tia) : to use a wearable camera to record the ADL [9] with

a view as close as possible to the patient’s view. Wearable

cameras have been used in the SenseCam project [6] for an

automatic creation of a visual diary. In the WearCam pro-

ject [8] a camera is strapped on the head of young children,

the collected data are then analyzed in order to diagnose au-

tism. In our context, the video brings an objective view of

what the patient is doing and may permit the doctor to give

a better evaluation of the patient’s situation. The doctor can-

not visit all patients and wait while they are doing the ADL.

Therefore, the videos will be recorded while the patients

are visited by a medical assistant. The medical assistant will

then upload the video to a server, and the automatic analysis

will be fulfilled to index the ADL. The doctor will use these

indexes for an easier navigation through the video and will

then use the activities as a source of information to refine

the diagnosis.

In our previous works [9] and actual demonstrations [10]

we have already largely described the acquisition set-up and

the general framework of the project. In this paper we focus

on the core of indexing method we propose, the motion ba-

sed segmentation and the HMM. HMMs have been success-

fully applied to audio analysis [13] and in molecular biology

[15]. The application of HMMs to videos can be whether at

a low level, for cut detection [3], or at a higher level ai-

ming to reveal the structure according to a previously defi-

ned grammar, such as the events of a tennis match [7]. In the

HMM both are important : the adequate description space

(observations) on one hand, the state set and the connecti-

vity expressed by a state transition matrix on the other.

The contributions of this paper are in proposing adequate

HMM structure and also use of heterogeneous multimodal

descriptor space, which has never been done before, for the

best of our knowledge, in wearable video analysis. Hence,

in section 2 we will briefly describe the acquisition set-up

as it is today after several adjustments brought by medical

practitioners and information scientists. We also qualify the

very specific video acquired with this device. Section 3 des-

cribes the motion analysis and the motion based segmenta-

tion and section 4 presents the definition of the description

spaces. The structure of the HMM we designed is explained

in section 5. Experiments and results are shown in section 6

and conclusions and perspectives in section 7.

2. Video acquisition setup

2.1. The device

The video acquisition device should be easy to put on,

should stay in the same position even when the patient

moves strongly and bring as less discomfort as possible

to an aged patient. Regarding these constraints, a vest was

adapted to be the support of the camera. The camera is fixed

with hook-and-loops fasteners which allow the camera’s po-

sition to be adapted to the patient’s morphology.

2.2. Video characteristics

The videos obtained from wearable cameras are quite

different from the standard edited videos (having clean mo-

tion and cut into shots) which are usually subject to video

indexing methods. Here, the video is recorded as a long se-

quence where the motion is really strong since the camera

follows the ego-motion of the patient. This strong motion

may produce blur in frames, figure 1a. Moreover, the pa-

tient may face a light source, leading to sharp luminosity

changes, figure 1b and 1c. The camera has a wide angle

objective in order to capture a large part of the patient’s en-

vironment.

(a) Motion blur due to

strong motion.

(b) Low lighting while in

dark environment.

(c) High lighting while

facing a window.

FIGURE 1: Example of frames acquired with wearable ca-

mera.

3 Motion analysis for the design of descrip-
tion space

In contrast to the work in [6] where the description space

is based on a key-framing of the video, our goal is to use

motion of the patient as one of the features. This choice

corresponds to the need to distinguish between various ac-

tivities of a patient which are naturally static (e.g. reading)

and dynamic (e.g. hoovering).

3.1 Global motion estimation

Since the camera is worn by a person the global motion

observed in image plane can be called the ego-motion. We

model the ego motion by the first order complete affine mo-

del and estimate it with a robust weighted least squares by

the method we reported in [2]. The parameters of (1) are

computed from the motion vectors extracted from the com-

pressed video stream.

(

dxi

dyi

)

=

(

a1
a4

)

+

(

a2 a3
a5 a6

)(

xi

yi

)

(1)

Eq. 1 : Motion compensation vector, (xi, yi) being the co-

ordinates of a block center.



3.2 Motion-based segmentation

In order to establish a minimal unity of analysis which

may be considered as an equivalent to shots in our long se-

quence videos, we designed a motion based segmentation

of the video. The objective is to segment the video into dif-

ferent viewpoints that the patient provides by moving throu-

ghout his home.

3.2.1 Corner trajectories

To this aim, we compute the trajectories of each cor-

ner using the global motion estimation previously presen-

ted. For each frame the distance between the initial and the

current position of a corner is calculated. We denote by w

the image width and by s a threshold on the frame overlap

rate. A corner is considered as having reached an outbound

position when it has at least once had a distance greater than

s ∗ w from its initial position in the current segment. These

boundaries are represented by red and green (when the cor-

ner has reached an outbound position) circles in figure 2.

(a) Corner trajectories while the per-

son is static.

(b) Corner trajectories while the per-

son moves to the left.

FIGURE 2: Example of corners trajectories.

3.2.2 Segment definition

Each segment aims to represent a single “viewpoint”.

This notion of viewpoint is clearly linked to the threshold s,

which defines the minimal proportion of an image which

should be contained in all the frames of the segment. We

define the following rules : a segment should contain a mi-

nimum of 5 frames and a maximum of 1000 frames, the end

of the segment is the frame corresponding to the time when

at least 3 corners have reached at least once an outbound po-

sition. The key frame is then chosen as the temporal center

of the segment, see examples in figure 3.

Hence the estimated motion model serves for two goals :

i) estimated motion parameters are used for the computa-

tion of dynamic features in the global description space and

ii) the key frames extracted form motion-segmented “view

points” are the basis for extraction of spatial features. We

FIGURE 3: An example of key frame (center) with the be-

ginning (left) and ending (right) frames of the segment.

will now focus on the definition of these two subspaces and

the design of the global description space.

4. Design of the description space

The motion is one of the most important information in

the videos studied. It represents the movements of the per-

son and in a longer term history characterizes whether the

action being done is dynamic or rather static.

4.1. Dynamic descriptors

4.1.1 Instant motion

The ego-motion is estimated by the global motion analy-

sis presented in section 3. The parameters a1 and a4 are the

translation parameters. We limit our analysis to these para-

meters, as in the case of wearable cameras, they express the

dynamics of the behavior the best, and pure affine deforma-

tion without any translation is practically never observed. A

histogram of the energy of each translation parameter Htpe

is built according to Eq 2, defining a step sh and using a

log scale. This histogram characterizes the instant motion.

It is computed for each frame and then averaged over all the

frames of a segment.

Htpe[i]+ = 1 if

log(a2) < i× sh for i = 1
(i− 1)× sh ≤ log(a2) < i× sh for i = 2..Ne − 1

i× sh ≤ log(a2) for i = Ne

Eq. 2 : Translation parameter histogram, a is either a1 or a4.

We denote Htpe(x) the histogram of the log energy of

horizontal translation, and Htpe(y) the histogram of the

energy of vertical translation observed in image plane. The

number of bins is chosen the same Ne = 5, the threshold

sh is chosen in such a way that the last bin corresponds to

the translation of the image width or height respectively.

4.1.2 Motion history

Another element to distinguish static and dynamic activi-

ties is the motion history. On the contrary to the instant mo-

tion we design it to characterize long-term dynamic activi-



ties, such as walking ahead, vacuum cleaning, etc... The es-

timation of this is done by computing a “cut histogram” Hc.

We design it as a histogram of i = 1 − Nc bins. Each bin

H(i) contains the number of cuts (according to the motion

based segmentation presented in section 3) that happened in

the last 2i frames. The number of bins Nc is defined as 8 in

our experiments providing a history horizon of 256 frames,

which represent almost 9 seconds for our 30 fps videos.

4.2. Static descriptors

Static descriptors are computed on the extracted key

frames representing each segment. In this choice we seek

for the global descriptors which characterize the color

of frames still preserving some spatial information. The

MPEG-7 Colour Layout Descriptor (CLD) proved to be a

good compromise for both [12]. It is computed on each key

frame and the classical choice [14] of selecting 6 parameters

for the luminance and 3 for each chrominance was adopted.

4.3. Audio descriptors

The particularity of our contribution in the design of a

description space consists in the use of low-level audio des-

criptors. Indeed, in the home environment, with ambient

TV audio track, noise produced by different objects the pa-

tient is manipulating, his conversations with the persons, are

good indicators of activity and its location.

In order to characterize the audio environment, different sets

of features are extracted. Each set is characteristic of a parti-

cular sound : speech, music, noise and silence [11]. Energy

is used for silence detection. 4 Hz energy modulation and

entropy modulation give voicing information, being specific

to the presence of speech. The number of segments per se-

cond and the segment duration, resulting from a “Forward-

Backward” divergence algorithm [1], are used to find har-

monic sound, like music. Spectral coefficients are proposed

to detect noise : percussion and periodic sounds (examples :

footstep, flowing water, vacuum cleaner, etc.).

4.4. Description space

Hence for description of the content recorded with wea-

rable cameras we designed three descriptors subspaces :

the “dynamic” subspace has 18 dimensions, and contains

the descriptors D=(Htpe(x),Htpe(y),Hc) ; the “static” sub-

space contains l = 12 CLD coefficient C=(c1, ... ,cl) ; the

“audio” subspace contains k = 5 audio descriptors p=(p1,

... ,pk).

We design the global description space in an “early fusion”

manner concatenating all descriptors in an observation vec-

tor o in Rn space with n = 35 dimensions when all des-

criptors are used. Thus designed the description space is in-

homogeneous. We also study the completeness and redun-

dancy of this space in a pure experimental way with regard

to the indexing of activities in Section 6.

5. Design of an HMM structure

If we consider our problem of recognition of daily ac-

tivities in the video in a simplistic manner, we can draw

an equivalence between an activity and a hidden state of

an HMM. The connectivity of the HMM then can be defi-

ned by the spatial constraints of patient’s environment. The

easiest way is to design a fully connected HMM and train

the inherent state-transition probabilities form the labeled

data. Unfortunately, the ADL we consider are very much

heterogeneous and often very complex. Hence we propose

a two-level HMM. The activities meaningful for medical

practitioners are encoded in the top-level HMM. It contains

the transitions between “semantic” activities. A bottom le-

vel HHM models an activity with m non-semantic states.

This parameter m is defined as 3, 5 or 7 in our experiments.

The overall structure of the HMM is presented in figure 4,

with 3 states at the bottom level. Dashed circled states are

non emitting states. The HMMs are built using the HTK

library 2.

q

q

q

ActActAct

EndStart
astart1 a1end

a11

a33

astart2

a2end

a3end

a21 a12

a23a32

astart3

a31a13

a22

1

2

3

i+1i
i−1

FIGURE 4: The HMM structure.

5.1. Top level HMM

In this work, the actions of interest are the ADLs “ma-

king coffee”, “making tea”, “washing the dishes”, “discus-

sing”, “reading” and another activity for all the rest which

is not relevant to the ADLs of interest named “NR”. The top

level HMM represents the relations between these actions.

2. HTK Web-Site : http://htk.eng.cam.ac.uk



In this work no constraints were specified over the transi-

tions between these activities since such restrictions did not

apply in our application, hence we design the top level as a

fully connected HMM.

5.2. Bottom level HMM

Most of the activities defined in the above section are

complex and could not easily be modeled by one state. For

each activity in the top level HMM a bottom level HMM

is defined. The bottom level HMM is composed of m non

semantic states. Each state models the observation vector o,

see section 4, by a Gaussian Mixture Model (GMM). The

GMM and the transitions matrix of all the bottom level

HMM are learned using the classical Baum Welsh algo-

rithm with labeled data corresponding to each activity.

6. Experiments

Today, no rich corpus of data from wearable video set-

tings has been publicly released. We can reference the da-

taset [4] for a very limited task of behavior in the kitchen,

where subjects are cooking different recipes. The only cor-

pus recorded for ADL is ours. This corpus of 28 hours of

videos contains heterogeneous activities, for this paper we

used only a part of it to ensure multiple occurrences of acti-

vities for the supervised learning. The dataset used for this

experiment comprises 6 videos shot in the same laboratory

environment, containing a total of 81435 frames which re-

present more than 45 minutes. In these videos 6 activities of

interest appear : “working on computer”, “reading”, “ma-

king tea”, “making coffee”, “washing the dishes”, “discus-

sing” and we added a reject class called “NR”. It represents

all the moments which do not contain any of the activities

of interest. The activities of interest are the ones present in

the survey the doctors were using until now. We use a cross

validation, the HMMs models of activities were learnt on

all but one video and tested on this excluded video. We will

first discuss the influence of the segmentation parameters

and the choice of the description space and finally analyze

our results on activities recognition.

6.1. Segmentation analysis

The influence of the segmentation threshold is not as si-

gnificant as we expected but figure 5 shows that the accu-

racy starts to decrease for threshold values higher than 0.3.

Indeed, the higher the threshold is, the probability of having

a segment containing different activities increases. The acti-

vity “making coffee” and “washing the dishes” may follow

each other in a short time. Moreover, the higher the thre-

shold is the less data are available for the HMM training.

This explains the fall to zero in some curves when there is

not enough data to train the HMM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Average accuracy for several description spaces as a function of threshold.

Avg. accuracy for HcAudio
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Avg. accuracy for HcCLDAudio
Avg. accuracy for HtpeAudio

Avg. accuracy for HtpeCLD
Avg. accuracy for HtpeCLDAudio

Avg. accuracy for HcHtpe
Avg. accuracy for HcHtpeCLD

Avg. accuracy for HcHtpeCLDAudio
Avg. accuracy for HcHtpeAudio

FIGURE 5: Description space choice and segmentation thre-

shold influence over accuracy.

6.2. Study of the description space

The description space is defined as one of the possible

combinations of the descriptors presented in section 4. Fi-

gure 5 presents the average accuracy for different combina-

tions of descriptors as a function of the segmentation thre-

shold parameter. The performances of the HtpeCLDAudio

(yellow) and HtpeAudio (pink) descriptor indicate the po-

sitive contribution of the audio descriptor.

The CLD descriptor seems to improve the results for low

segmentation thresholds, all the six best description space

configurations in figure 8, for threshold less than 0.1,

contains the CLD descriptor. This is rather normal since

larger the segment is, less the CLD of the key frame will

be meaningful regarding the content of the segment.

The full description space HcHtpeCLDAudio (gray da-

shed curve) performs really well for the 0.1 threshold. Being

more complex this description space also needs more trai-

ning data, therefore with higher thresholds the performance

falls.

6.3. Activity recognition

6.3.1 HMM analysis

In our experiments we have found that with a higher

threshold less data become available for the HMM training

which is a significant issue. Therefore, with less data avai-

lable only the configuration with 3-states still performs well,

see figure 6. The 7-states configuration falls to zero for thre-

shold higher than 0.5, and the 5-states configuration is quite

unstable for threshold values higher than 0.65.

6.3.2 Activities recognition

In order to evaluate the ADL recognition we have cho-

sen one of the average recognition results presented in fi-

gure 7. The “reading” and “discussing” activities are not
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FIGURE 7: Results of the analysis.

present and are not detected for this video. The main confu-

sions result in the activities “making coffee” and “washing

the dishes”. These activities are similar in terms of envi-

ronment as well as motion and audio characteristics. The

activity “working on computer” is hard to define with the

description space HcHtpeAudio presented, therefore some

misdetections appear.

7. Conclusions and perspectives

In this paper, we have presented a method for indexing

video sequences acquired from a wearable camera. We have

proposed an original approach to segment the video into

temporally consistent viewpoints, thanks to apparent mo-

tion analysis. This segmentation has been used to define

new motion descriptors. Motion, color and audio features

have been used as multimodal observation in a hierarchical

Hidden Markov Model, applied to the task of recognizing a

set of activities of interest.

The confusion amongst activities show that the global des-

criptors may be close for different activities. Since the per-

son does not interact with the same objects for different ac-

tivities, our future work will be to detect the objects of in-

terest and the eventual interaction of the person with them

to better characterize the ADLs. Despite the experimental

data set has not been very large yet, this research gave a

“proof of concept” and opens tremendous perspectives for

our future work.
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[11] J. Pinquier and R. André-Obrecht. Audio indexing : Primary

components retrieval - robust classification in audio docu-

ments. Multimedia Tools and Applications, 30(3) :313–330,

2006. 4
[12] G. Quenot, J. Benois-Pineau, B. Mansencal, E.Rossi, et al.

Rushes summarization by irim consortium : redundancy re-

moval and multi-feature fusion. VS’08 (Trec Video Summa-

rization), 2008. 4
[13] L. R. Rabiner. A tutorial on hidden markov models and se-

lected applications in speech recognition. Proceedings of the

IEEE, pages 257–286, 1989. 2
[14] T. Sikora, B. Manjunath, and P. Salembier. Introduction to

mpeg-7 : Multimedia content description interface. 2002. 4
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