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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ESTIMATION IN A COMPETING RISKS PROPORTIONAL

HAZARDS MODEL UNDER LENGTH-BIASED SAMPLING

WITH CENSORING

JEAN-YVES DAUXOIS, AGATHE GUILLOUX, AND SYED N.U.A. KIRMANI

ABSTRACT. What population does the sample represent? The answer to
this question is of crucial importance when estimating a survivor func-
tion in duration studies. As is well-known, in a stationary population,
survival data obtained from a cross-sectional sample taken from the pop-
ulation at time t0 represents not the target density f(t) but its length-
biased version proportional to tf(t), for t > 0. The problem of estimat-
ing survivor function from such length-biased samples becomes more
complex, and interesting, in presence of competing risks and censoring.
This paper lays out a sampling scheme related to a mixed Poisson pro-
cess and develops nonparametric estimators of the survivor function of
the target population assuming that the two independent competing risks
have proportional hazards. Two cases are considered: with and without
independent consoring before length biased sampling. In each case, the
weak convergence of the process generated by the proposed estimator is
proved. A well-known study of the duration in power for political lead-
ers is used to illustrate our results. Finally, a simulation study is carried
out in order to assess the finite sample behaviour of our estimators.

1. INTRODUCTION

The central problem in the analysis of duration data is the efficient esti-
mation of the distribution of the time Z between two specified events under
different sampling scenarios. The two events whose gap time is of interest
will be called the initiating and terminating events. The two events may
be HIV infection and death, successive hospitalizations due to a disease or
entry and exit from the workforce. Frequently, the distribution of Z must
be estimated from a cross-sectional sample at time t0 consisting of subjects
who have experienced the initiating event, but not the terminating event,
prior to t0. In the context of epidemiology and survival analysis, cross-
sectional studies are concerned with prevalent rather than incident cases. As
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it is well-known, such data suffer from length-bias in the sense that Zb, the
time gap between initiating and terminating events for a cross-sectionally
selected subject, is stochastically larger than Z with dP (Zb < t) propor-
tional to tdP (Z < t). This phenomenon, to be referred to as length-biased
sampling (LBS), was noted by McFadden (1962) for lengths of intervals
in a stationary point process, by Blumenthal (1967) in industrial life test-
ing and by Cox (1969) for estimating the distribution of fiber lengths in a
fabric. Zelen & Feinleib (1969) recognized LBS in screening for chronic
diseases while Simon (1980) noted its relevance in etiologic studies. The
source of LBS is the simple fact that, when drawing observations from a set
of subjects in a particular state, the probability of being included in the sam-
ple is proportional to the sojourn time in that state. This, therefore, leads
to disproportionate representation of longer durations. Vardi (1982) was
the first to consider nonparametric estimation in the presence of LBS. He
derived and studied the unconditional nonparametric maximum likelihood
estimate (NPMLE) of the distribution function of Z on the basis of two in-
dependent samples, one a sample from Z and the other a sample from its
length-biased version Zb. We refer to Vardi (1982), Vardi (1985), Vardi
(1989), Gill et al. (1988) and Vardi & Zhang (1992) for further theoretical
developments. More recently, Asgharian et al. (2002) obtained the uncon-
ditional NPMLE of the survivor function of Z and its asymptotic properties
when the data are purely length-biased with a special case of right censor-
ing.

Length-biased data can be considered as a special case of left-truncation
if the occurrence time of the initiating event is uniformly distributed. Here,
truncation refers to the fact that a subject can not be observed at t0 if it has
experienced the terminating event before t0. There is an extensive literature
on nonparametric estimation under left truncation. We refer to Turnbull
(1976), Woodroofe (1985), Wang et al. (1986), Tsai et al. (1987), Wang
(1991) and Wang et al. (1993).

The motivation for the present paper comes from the conjunction of LBS,
competing risks (CR) and Proportional Hazards (PH). Suppose that the ter-
minating event can occur in either of two competing ways A and B, e.g.
A may be death due to a specific disease, say cancer, and B death from
a natural cause. Let X (resp. Y ) be the latent, or potential survival time
associated with risk A (resp. B) and let us assume that X and Y have
proportional hazards. Suppose that the terminal event can also be due to
independent right censoring. Then the time gap between initiating and ter-
minating events is of length T = (X ∧ Y ) ∧ C where C is the censoring
time and x ∧ y denotes the minimum of x and y. However, under LBS, the
random variable (r.v.) T is not observable. To be precise, we shall consider
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the following situation. The observed sample consists of n independent in-
dividuals, cross-sectionally selected at t0, who were exposed to risk A at
known time points σi ≤ t0, i = 1, ..., n. These individuals are followed
up to death, from cause A or B, or censoring time. For the ith member
of the length-biased sample, the r.v. Xb

i (resp. Y b
i and Cb

i ) will denote the
potential survival time of the ith subject when facing risk A (resp. B and
censoring). The sample data thus consists of the n pairs (T b

i , δ
b
i ) where

T b
i = Xb

i ∧ Y b
i ∧ Cb

i , and δb
i indicates the mode of termination (death due

to A, death due to B or censoring). Our main objective is to estimate the
survivor function ḠX(t) = pr(X > t) based on such a sample.

The setup described above, namely, the LBS-CR-PH data with indepen-
dent censoring preceding LBS is the first framework to be considered. We
will refer to it as “Case 1: Independent censoring before LBS”.

In a number of practical situations, two risks A and B, which have pro-
portional hazards, compete unhindered by the risk of censoring. An esti-
mator of ḠX(·), based on a LBS, can be introduced and its large sample
properties studied. However, without any additional serious mathemati-
cal complications, it is possible to introduce a more general estimator of
ḠX(·) and study its large sample behavior even if we allow the possibility
of independent random censoring after the cross-sectional sample has been
selected. Such post-LBS censoring may or may not be justified in specific
practical situations. An excellent discussion, with examples, of various cen-
soring issues in biased-sampling situations is given by Tsai (2009). We will
allow the post-LBS censoring scenario in our “Case 2: No censoring before
LBS”. In this case, the observable random variables are Ti = Zb

i ∧Ci where
Zb

i is the LBS observation of Zi = Xi ∧ Yi and δi which gives the type
of the observed terminal event. Case 2 encompasses the “no possibility of
censoring” scenario and we easily obtain the estimator and its large sample
properties for the without censoring case from our results for Case 2.

As far as we know, these problems have not been considered in the litera-
ture so far. Huang & Wang (1995) did consider the LBS-CR set up but they
were concerned with estimation of crude hazard functions and occurrence
probabilities rather than estimation of ḠX(·). Dauxois & Guilloux (2008)
have considered the problem of the nonparametric inference of the Cumu-
lative Incidence Functions under competing risks and selection-biased sam-
pling. But no proportional hazards assumption was made in their work.

The outline of this paper is as follows. The two cases described above
are considered respectively in Section 2 and 3. Estimators of ˆ̄GX(·) are
obtained in each case and their large sample behaviors are studied. In Sec-
tion 4, we apply our methodology to the data set introduced by Bienen &
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M’Lan (1991), whereas in Section 5 we study the behaviour of our esti-
mator through Monte Carlo simulation of its mean integrated squared error
(MISE). An appendix details the proofs of technical lemmas used in Sec-
tions 2 and 3.

2. CASE 1: INDEPENDENT CENSORING BEFORE LENGTH BIASED

SAMPLING

The objective of this section is to develop a framework for study of
length-biased sampling (LBS) in the setup of competing risks (CR). From
now on and for convenience, the initiating and terminating events of interest
will be called birth and death, respectively.

2.1. Initial population. We shall consider a population of individuals (to
be called initial population) who are subject to two competing causes, A
and B, of death. The CR model will be described in terms of latent survival
times X and Y where X (resp. Y ) is a positive random variable (r.v.) rep-
resenting the age at death in the hypothetical situation in which A (resp. B)
is the only possible cause of death. Frequently, there is a primary cause of
interest. For example, the target interest of study may be death due to breast
cancer. In such cases, we shall take A as the primary risk of interest and all
other causes will be lumped together as B. The individual lifetime will be
denoted by Z = X ∧ Y .

In the present paper, we are concerned with the important special case
in which the risks A and B have proportional hazards. Thus, it will be
assumed in this paper that there exists β > 0 such that for all t > 0:

ΛY (t) = βΛX(t)

where ΛX(·) and ΛY (·) are the cumulative hazard functions of X and Y ,
respectively. Equivalently, denoting by ḠX(·) and ḠY (·) the survival func-
tions of X and Y , we will assume in the following that

ḠY (t) = (ḠX(t))β(1)

for all t > 0. This model, often called “Koziol-Green” model, has been
widely studied in classical survival analysis literature, see e.g. Chen &
Lin (1987), Csörgő (1988), Gather & Pawlitschko (1998) and Kirmani &
Dauxois (2004).

The constant β gives the odds on death due to cause B, i.e.:

pr(Y ≤ X)

pr(X ≤ Y )
= β,
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while the theoretical proportion α of deaths from cause A among all deaths
is given by:

α = pr (X ≤ Y ) =
1

β + 1
.(2)

We will assume that the lifetime Z may suffer from independent random-
right censoring. Let C denote the censoring time and H̄(·) its survival func-
tion. Then, T = Z ∧ C denotes the age at terminating event (death from
cause A, from cause B or censoring) and δ indicates the mode of termina-
tion:

δ =






0 if C < Z
1 if T = Z = X
2 if T = Z = Y

.

It has to be noted that under this independent censoring mechanism, the
proportion of deaths from cause A among all termination causes (A, B or
censoring) is still equal to α, that is:

α =
pr (X ≤ Y,X ≤ C)

pr (X ∧ Y ≤ C)
.(3)

2.2. Length-biased population. Let {i ∈ I} denotes the initial population
described in the previous subsection. Let Xi and Yi be the latent survival
times (corresponding to risks A and B, respectively) and Ci be the latent
censoring time for individual i. The age of individual i at terminal event is
Ti = Zi ∧ Ci = Xi ∧ Yi ∧ Ci and δi indicates the mode of termination.

Now, let σi be the calendar time of birth of the individual. A convenient
graphical representation of the lifespan of an individual born at calendar
time σi and experiencing a terminal event at age ti is given by the well-
known Lexis diagram (see Fig. 1). This diagram consists of line segments
in a rectangular coordinate system with calendar time as abscissa and the
age as ordinate such that the life (or time from birth to censoring) is rep-
resented by the line segment joining the points (σi, 0) and (σi + ti, ti).
The Lexis diagram and associated point processes described in Brillinger
(1986), Keiding (1990), and Lund (2000) provide useful settings for ana-
lyzing lifetimes. It is particularly important in describing sampling patterns
for selection of individuals in a study. It also helps in visualizing follow-up
patterns and truncation of lifetimes.

A random sample cross-sectionally selected at calendar time t0 is not
really a random sample from the initial population I but, in fact, from the
population J = {i ∈ I : (σi, xi, yi, ci) ∈ E} where E = {(σ, x, y, c) : σ ≤
t0, σ + x ≥ t0, σ + y ≥ t0, σ + c ≥ t0}. Individuals with age at terminal
event Ti = Zi ∧ Ci = Xi ∧ Yi ∧ Ci shorter than t0 − σi are excluded from



6 DAUXOIS, GUILLOUX, AND KIRMANI

Age

Timet
0

FIGURE 1. A Lexis diagram representation of lifespans

the population J . That is, the time Ti is left truncated by the time t0 − σi.
Individuals with birthtimes σi ≥ t0 are also excluded from the sample.

Thus, the observable r.v. is not Ti but T b
i , a r.v. whose probability dis-

tribution is the same as the conditional distribution of Ti = Zi ∧ Ci given
{(σi, Xi, Yi, Ci) ∈ E}. The mode of termination associated with T b

i will
be denoted δb

i . We shall refer to T b
i as the length-biased version of Ti and

{j ∈ J} as the length-biased population.
The following proposition provides a key fact: it gives the probability

distribution of (T b, δb) defined above. It will be seen that, under the as-
sumptions made, the distribution of (T b, δb) will be independent of σ. Thus,
the pairs (T b

1 , δ
b
1), . . . , (T

b
n, δ

b
n) of the n individuals in the sample selected at

t0 will be independent copies of (T b, δb).

Theorem 1. Suppose that:

(i) the birth process η =
∑

i∈I εσi
, where εσi

denotes the random measure

concentrated on σi, is a mixed Poisson process with random intensity ϕ;

(ii) conditionally on the process η, the vectors (Xi, Yi, Ci), for i ∈ I , are

independent and identically distributed with common probability density

function (p.d.f.) gX(·)gY (·)h(·) with respect to the Lebesgue measure on

R
3
+ (where gX(·), gY (·) and h(·) are respectively the p.d.f of X , Y and C);

(iii) E(X) <∞ and E(Y ) <∞ and E(C) <∞.
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Then, the distribution of the pair (T b, δb) is specified by the following

expression of its three sub-distribution functions:

F b
0 (t) = pr

(
T b ≤ t, δb = 0

)
= E(T )−1

∫ t

0
ch(c)ḠX(c)ḠY (c)dc

F b
1 (t) = pr

(
T b ≤ t, δb = 1

)
= E(T )−1

∫ t

0
xgX(x)ḠY (x)H̄(x)dx

F b
2 (t) = pr

(
T b ≤ t, δb = 2

)
= E(T )−1

∫ t

0
ygY (y)ḠX(y)H̄(y)dy

for t > 0.

Proof of Theorem 1.
Although the above result is merely the competing risks statements of the
well-known length-biased density Lund (2000); van Es et al. (2000), we
offer the following derivation. First note that η is a point process on R such
that, for each Borel set S in R, the r.v. η(S) gives the number of births
encountered in S. We assume that η(S) < ∞ almost surely. For each
individual i, the birth time σi is marked by the pair of latent survival times
(Xi, Yi, Ci). We now define the Lexis point process

µ =
∑

i∈I

ε(σi,Xi,Yi,Ci)

on (R×R
3
+,BR ⊗BR

3
+
), where BR (resp. BR

3
+

) denotes the Borel σ-algebra
on R (resp. R

3
+). This has the advantage of showing that µ|ϕ, the process µ

conditional on the intensity ϕ of the mixed Poisson process, is Poisson with
intensity

(σ, x, y, c) 7→ λ|ϕ(σ, x, y, c) = ϕgX(x)gY (y)h(c)

and with mean-measure Λ|ϕ(·) defined, for each Borel set S on R×R
3
+, by

Λ|ϕ(S) =

∫

S

λ|ϕ(σ, x, y, c)dσdxdydc.

We refer to Kingman (1993) for the marking theorem exploited here. Fur-
ther, let µE|ϕ(·) = µ|ϕ(· ∩ E) be the restriction of the Poisson process µ|ϕ

to the measurable set E = {(σ, x, y, c) : σ ≤ t0, σ + x ≥ t0, σ + y ≥
t0, σ + c ≥ t0}. Then, by the well-known restriction theorem for Poisson
processes Kingman (1993), the process µE|ϕ is Poisson on R × R

3
+ with

mean-measure ΛE|ϕ(·) defined, for all Borel set S in R × R
3
+, by

ΛE|ϕ(S) = Λ|ϕ(S ∩ E) =

∫

S∩E

λ|ϕ(σ, x, y, c)dσdxdydc.

Our mode of sampling is equivalent to selecting a random subsetE∗ ⊂ E
such that µ|ϕ(E∗∩E) = n is the sample size. By the order statistics property
of Poisson processes, see e.g. Crump (1975), given µ|ϕ(E) = N , the points
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of the Poisson process µ|ϕ(·∩E) look exactly like µ|ϕ(E) independent r.v.’s,
with common probability measure

prE|ϕ(·) =
Λ|ϕ(· ∩ E)

Λ|ϕ(E)

on Borel subsets of R×R
3
+. Hayakawa (2000) showed that the order statis-

tics property characterizes a mixed Poisson process within the general class
of point processes. This indicates that assumption (i) can not be weakened.

Let Xb and Y b denote the latent survival times (corresponding to risks A
and B respectively) and Cb the censoring time for an individual in J where,
as defined earlier, J = {i ∈ I : (σi, Xi, Yi, Ci) ∈ E}. Let x0, y0 and c0 be
positive reals and S = {(σ, x, y, c) : x ≤ x0, y ≤ y0, c ≤ c0}. It follows
from the above discussion that, conditionally on µ|ϕ(E) = N :

pr|ϕ(Xb ≤ x0, Y
b ≤ y0, C

b ≤ c0) =
Λ|ϕ(S ∩ E)

Λ|ϕ(E)

=

∫
S∩E

ϕgX(x)gY (y)h(c)dσdxdydc∫
E
ϕgX(x)gY (y)h(c)dσdxdydc

=

∫ x0

0

∫ y0

0

∫ c0

0

∫ t0

t0−(x∧y∧c)
gX(x)gY (y)h(c)dσdxdydc

∫ t0

−∞
ḠX(t0 − σ)ḠY (t0 − σ)H̄(t0 − σ)dσ

=

∫ x0

0

∫ y0

0

∫ c0

0
(x ∧ y ∧ c)gX(x)gY (y)h(c)dxdydc

E(T )
.

Since the last expression does not involve ϕ, integrating w.r. its distribution,
we get

pr(Xb ≤ x0, Y
b ≤ y0, C

b ≤ c0)

=

∫ x0

0

∫ y0

0

∫ c0

0
(x ∧ y ∧ c)gX(x)gY (y)h(c)dxdydc

E(T )
.

The proposition then follows by differentiation and integration on the proper
sets.✷

It has to be noted that the distribution function of the r.v. T b is the length-
biased version of the distribution function of T . Indeed, from Theorem 1,
we get for all t ≥ 0:

pr
(
T b ≤ t

)
= F b(t) = F b

0 (t) + F b
1 (t) + F b

2 (t) =
1

E(T )

∫ t

0

udF (u),

where F (·) is the distribution function of the r.v. T . Consequently, by the
knwon inversion formula of Cox (1969), the distribution function F (·) is
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expressible as:

F (t) = E(T )

∫ t

0

1

u
dF b(u) =

∫ t

0
1
u
dF b(u)∫∞

0
1
u
dF b(u)

.(4)

In the present paper we are concerned with the special case where the
risks A and B have proportional hazards (see (1)). Under this assumption,
the sub-distribution functions of (T b, δb) given in Theorem 1 have simplify
as follows:

F b
0 (t) = E(T )−1

∫ t

0
ch(c)Ḡβ+1

X (c)dc

F b
1 (t) = E(T )−1

∫ t

0
xgX(x)Ḡβ

X(x)H̄(x)dx

F b
2 (t) = E(T )−1

∫ t

0
yβgX(y)Ḡβ

X(y)H̄(y)dy

,(5)

for all t > 0.

2.3. Statistical Inference. Our aim is to estimate the survivor function
ḠX(·) = pr(X > ·) of the cause of primary interest on the basis of a
length-biased sample obtained from the initial population described ear-
lier (competing risks with proportional hazards and independent censoring).
Adhering to the notations of the previous section, the observable r.v.’s are
T b and δb rather than T and δ. Recall that the probability distribution of
(T b, δb) is the conditional distribution of (T, δ) given {(σ,X, Y, C) ∈ E}.

Under the assumption that X and Y are independent with proportional
hazards, the unconditional distribution of Z = X ∧ Y has p.d.f.

gZ(z) = (1 + β)gX(z)(ḠX(z))β , z > 0,

and distribution function ḠZ(·) = Ḡβ+1
X (·). Moreover, from Theorem 1 one

can see that the sub-distribution function F b
12(·) defined, for all t ≥ 0, by:

F b
12(t) = pr

(
T b ≤ t, δb 6= 0

)
= F b

1 (t) + F b
2 (t),

may be rewritten as:

F b
12(t) =

∫ t

0
zgZ(z)H̄(z)dz

E(T )
, for all t ≥ 0.(6)

That is, the sub-distribution function F b
12(·) is a weighted version of the

distribution of Z, with weight function t 7→ tH̄(t). It has to be noted that it
is not a length-biased version since it is not proportional to

∫ t

0
zgZ(z)dz, for

all t ≥ 0. Consequently, the well-known inversion formula of Cox (1969)
does not apply here. We will instead follow the approach of de Uña-Álvarez
(2004).

By taking the derivative in Equation (6), we get for all t > 0:

E(T )
1

t
dF b

12(t) = gZ(t)H̄(t)dt.
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Equivalently,

E(T )
1

tḠZ(t)H̄(t)
dF b

12(t) =
gZ(t)

ḠZ(t)
dt.

Note that the independence between Z and C gives us F̄ (·) = 1 − F (·) =
ḠZ(·)H̄(·). Hence, integrating the last equality and using Equation (4) we
obtain, for all t > 0:

∫ t

0

1

z
∫∞

z
1
u
dF b(u)

dF b
12(z) =

∫ t

0

gZ(z)

ḠZ(z)
dz = ΛZ(t),(7)

where ΛZ(·) = − log(ḠZ(·)) is the cumulative hazard function of Z.
Moreover, as X and Y have proportional hazards, we have: ΛZ(·) =

ΛX(·) + ΛY (·) = (1 + β)ΛX(·). Finally, using the product integral notion
Andersen et al. (1993) we get:

ḠX(t) =πs∈[0,t] (1 − dΛX(s)) =πs∈[0,t] (1 − d (αΛZ(s))) ,

for all t ≥ 0.
Hence, a natural estimator of ḠX(·) is the plug-in estimator

̂̄GX(t) = πs∈[0,t]

(
1 − d

(
α̂Λ̂Z(s)

))
(8)

= πs∈[0,t]

(
1 − α̂

s
∫∞

s
1
u
dF̂ b(u)

dF̂ b
12(s)

)
, for all t > 0,

where F̂ b
12(·), F̂ b(·) and α̂ are estimators of respectively F b

12(·), F b(·) and
α that we will introduce now. Note that the estimator Λ̂Z(·) is obtained by
plug-in in equation (7).

Recall that each individual in the sample, selected in the manner of Sec-
tion 2.2, is followed until death or censoring. Then the observed data con-
sists of n independent pairs (T b

i , δ
b
i ) where T b

i = Zb
i ∧ Cb

i and

δb
i =






0 if Cb
i < Zb

i

1 if T b
i = Zb

i = Xb
i

2 if T b
i = Zb

i = Y b
i

.

The sub-distribution functionsF b
0 (·), F b

1 (·) andF b
2 (·) associated with (T b, δb)

and defined in Theorem 1 can be estimated from the available sample by

F̂ b
k(t) =

1

n

n∑

i=1

I({T b
i ≤ t, δb

i = k}),(9)

for all t ≥ 0 and k = 0, 1, 2.
As the distribution function F b(·) of the r.v. T b is equal to F b

1 (·)+F b
2 (·)+

F b
3 (·), one can estimate it by

F̂ b(·) = F̂ b
0 (·) + F̂ b

1 (·) + F̂ b
2 (·).(10)
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Also,

F̂ b
12(·) = F̂ b

1 (·) + F̂ b
2 (·)

gives us an estimator of F b
12(·).

To estimate α = 1/(1 + β), we first note that

α =
pr (X ≤ Y,X ≤ C)

pr (X ∧ Y ≤ C)
=

pr
(
Xb ≤ Y b, Xb ≤ Cb

)

pr (Xb ∧ Y b ≤ Cb)
,

where the first equality is given by Equation (3) and the second is a straight-
forward consequence of Thereom 1. By the definition of the sub-distribution
functions F b

k(·), for k = 0, 1, 2, the second equality is equivalent to α =
F b

1 (+∞)/F b
12(+∞). As a consequence α may be estimated by

α̂ =
F̂ b

1 (+∞)

F̂ b
12(+∞)

.(11)

Estimators given in (9), (10) and (11) complete the definition of the estima-
tor ˆ̄GX(·) of ḠX(·) given in (8).

2.4. Large sample behaviour. Our aim in this section is to obtain the weak
convergence of the process

√
n( ˆ̄GX(·) − ḠX(·)), as n tends to +∞. One

can see from the above section that our estimator ˆ̄GX(·) is a function of the
estimators F̂ b

k(·), for k = 0, 1, 2. Since asymptotic results are available for
the estimators of sub-distribution functions, the expected weak convergence
result can be obtained by using the functional delta-method van der Vaart &
Wellner (1996). But, it has to be noted that one needs a weak convergence
on the whole line [0,+∞] of the empirical processes associated with F̂ b

k(·),
for k = 0, 1, 2. Such a result is available in Dauxois & Guilloux (2008).
Their Theorem 1 is written with two competing risks (for ease of notation)
and in presence of independent random right censoring. After an easy adap-
tation of Dauxois & Guilloux (2008), considering the case with 3 compet-
ing risks and without censoring, we get the following weak convergence in
D

3[0,+∞], where D[0,+∞] is the space of càdlàg (right-continuous with
left-hand limits) functions. As n→ +∞, one has

√
n




F̂ b

0 (·) − F b
0 (·)

F̂ b
1 (·) − F b

1 (·)
F̂ b

2 (·) − F b
2 (·)



 D−→




Z0(·)
Z1(·)
Z2(·)



 ,(12)
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where (Z0(·), Z1(·), Z2(·))′ is a trivariate mean-zero gaussian process with
covariance function

〈Zk(s), Zk(t)〉 =
∑

l 6=k

∫ s∧t

0

(F b
k(s) − F b

k(u))(F b
k(t) − F b

k(u))
dF b

l (u)

(F̄ b(u))2

+

∫ s∧t

0

(F b
k(s) − F b

k(u) − F̄ b(u))(F b
k(t) − F b

k(u) − F̄ b(u))
dF b

k(u)

(F̄ b(u))2

and, for k 6= l

〈Zk(s), Zl(t)〉 =

∫ s∧t

0

(F b
k(s) − F b

k(u))(F b
l (t) − F b

l (u))
dF b

j (u)

(F̄ b(u))2

+

∫ s∧t

0

(F b
l (t) − F b

l (u))(F b
k(s) − F b

k(u) − F̄ b(u))
dF b

k(u)

(F̄ b(u))2

+

∫ s∧t

0

(F b
k(s) − F b

k(u))(F b
l (t) − F b

l (u) − F̄ b(u))
dF b

l (u)

(F̄ b(u))2
,

where j is different from k and l.
As the first step in the derivation of the large sample behaviour of the

process
√
n( ˆ̄GX(·)−ḠX(·)), we introduce the following preliminary result,

whose proof is given in the Appendix.

Lemma 1. As n goes to +∞, we have the following weak convergence in

D[0,∞] × R:

√
n

(
Λ̂Z(·) − ΛZ(·)

α̂− α

)
D−→
(
L(·)
U

)
,(13)

where

L(·) =

∫ ·

0

1

z
∫ +∞

z
1
u
dF b(u)

dZ12(z) −
∫ ·

0

z
∫ +∞

z
1
u
dZ(u)

(
z
∫ +∞

z
1
u
dF b(u)

)2dF
b
12(z),

Z(·) = Z0(·) + Z1(·) + Z2(·),
Z12(·) = Z1(·) + Z2(·)
and

U =
1

pr(δb 6= 0)
[(1 − α)Z1(+∞) − αZ2(+∞)].

We are now in a position to give the main result of this section.

Theorem 2. The following weak convergence holds in the Skorohod space

D[0,∞]:
√
n( ˆ̄GX(·) − ḠX(·)) D−→ ξ(·) = −ḠX(·) (UΛZ(·) + αL(·)) ,

as n tends to +∞.
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Proof of Theorem 2.
In view of equation (8), we have for all t

√
n
(

ˆ̄GX(t) − ḠX(t)
)

=
√
n
(
Ψt(Λ̂Z(·), α̂) − Ψt(ΛZ(·), α)

)
,

where Ψ· is a map from DBV [0,∞] × R to D[0,∞) defined by

Ψ·(f(·), r) =πt∈[0,·](1 − d (rf(t))),

where DBV [0,∞] is the space of càdlàg functions of bounded variations on
[0,∞]. Using for example the Chain rule Lemma 3.9.3 of van der Vaart
& Wellner (1996) and the Hadamard differentiability of the product in-
tegral Andersen et al. (1993), one can see that the map Ψ· is Hadamard-
differentiable with differentialDΨ(f(·),r) at (f(·), r) in DBV [0,∞]×R given,
for all (h(·), u) ∈ D[0,∞] × R, by

DΨ(f(·),r)(h(·), u) = −πt∈[0,·](1 − d (rf(t))) (uf(·) + rh(·)) .
An application of the functional delta method (see Theorem 3.9.4. of van der
Vaart & Wellner (1996)) on the weak convergence of Lemma 3 gives us

√
n( ˆ̄GX(·) − ḠX(·)) D−→ DΨ(ΛZ(·),α)(L(·), U),

as n tends to +∞. From the above expression of the differential, one obtains
the limiting process ξ(·) of Theorem 2.✷

3. CASE 2: NO CENSORING BEFORE LENGTH-BIASED SAMPLING

3.1. New Framework. We now consider the case of no censoring before
length-biased sampling but assume, as before, that the risks A and B have
proportional hazards. It can be easily shown that Z = X ∧ Y has pdf

gZ(z) = (1 + β)gX(z)(ḠX(z))β , z > 0.

Our goal is again to estimate ḠX(t) = pr(X > t) on the basis of ob-
servations on Zb, the length length-biased version of Z, and the associ-
ated cause of death. An easy adaptation of Theorem 1 (the set E is now
E = {(σ, x, y) : σ ≤ t0, σ + x ≥ t0, σ + y ≥ t0} since there is no cen-
soring at this stage) shows that the length biased observation Zb of Z has
probability density function

gZb(z) =
z

E(Z)
(gX(z)ḠY (z) + gY (z)ḠX(z)),

for z > 0. Now, thanks to the proportional hazard property assumed on the
r.v. X and Y , this p.d.f. reduces to

gZb(z) =
1

EZ
(1 + β)zgX(z)(ḠX(z))β , z > 0
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and finally one can write

gZb(z) =
1

E(Z)
zgZ(z), z > 0.(14)

Thus, the p.d.f. of Zb appears as the length-biased version of the pdf of Z.
The corresponding survivor function of Zb will be denoted by ḠZb(·).

It has to be noted that the constant β gives also the odds of death due to
cause B after length-biased sampling, i.e.

pr(Y b ≤ Xb)

pr(Xb ≤ Y b)
= β.

It can also be shown that the random variables I({Xb ≤ Y b}) and Zb =
Xb∧Y b are independent. However, as in Section 2, the initial independence
between X and Y has been lost under the selection process, i.e. the r.v. Xb

and Y b are not independent.
Now, as we will see, assuming independent right censoring on the length-

biased observationZb doesn’t substantially complicate the following deriva-
tion of the estimator of ḠX(·) and its large sample behaviour study. The
situation without any censoring, the one of preliminary interest, will be ob-
tained as a simple particular case of our results under right censoring. This
will be detailed at this end of this section.

Each individual in the sample, selected according to the above procedure,
is followed until death or censoring. The observed data then consists of n
independent pairs (Ti, δi) where Ti = Zb

i ∧ Ci and

δi =






0 if Ci < Zb
i

1 if Ti = Zb
i = Xb

i

2 if Ti = Zb
i = Y b

i

.

Here, the r.v. C1, . . . , Cn are independent copies of a random variable C
which is assumed to be independent ofZb and with survivor function H̄C(·).
For later use, let S(·) = ḠZb(·)H̄C(·) denotes the survivor function of T =
Zb ∧ C.

3.2. Statistical inference. From Equation (14) we know that the p.d.f. of
Zb is the length-biased version of the one of Z. Consequently, by the well-
known inversion formula of Cox (1969), the distribution function GZ(·) =
pr(Z ≤ ·) is expressible, for t ≥ 0, as

GZ(t) =

∫ t

0
1
z
dḠZb(z)

∫ +∞

0
1
z
dḠZb(z)

.

On the other hand we can write

ḠX(·) =
(
ḠZ(·)

)α
,
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where α = 1/(1 + β). Hence, a natural estimator of ḠX(·) is the plug-in
estimator

˜̄GX(t) =
(
1 − ĜZ(t)

)α̃

, for all t > 0,(15)

where

ĜZ(t) =

∫ t

0
1
z
d ˆ̄GZb(z)

∫ +∞

0
1
z
d ˆ̄GZb(z)

, t > 0,(16)

and ˆ̄GZb(·) and α̂ are estimators to be introduced below.
Let

Nj(t) =
n∑

i=1

I({Ti ≤ t, δi = j}), for j = 1, 2,

for t ≥ 0, be the counting process associated with the jth cause of death
and let

Y (t) =
n∑

i=1

I({Ti ≥ t}),

for t ≥ 0, be the at-risk process. Moreover let J(·) and N(·) be two pro-
cesses defined respectively by J(t) = I({Y (t) > 0}) and

N(t) =
n∑

i=1

I({Ti ≤ t, δi 6= 0}) = N1(t) +N2(t),

for all t ≥ 0.
The survivor function ḠZb(·) can be estimated by the Kaplan-Meier esti-

mator (cf e.g. Andersen et al. (1993))

̂̄GZb(t) =
∏

i:T(i)≤t

(
1 − ∆N(T(i))

Y (T(i))

)
,(17)

where T(1) ≤ · · · ≤ T(n) are the ordered statistics and ∆N(u) = N(u) −
N(u−), for all u ≥ 0. The estimator ĜZ(·) given in (16) is now completly
defined.

In order to introduce our estimator of α, let

G1(t) = pr(Xb ≤ t,Xb ≤ Y b) = pr(Zb ≤ t,Xb ≤ Y b).

be the cumulative incidence function associated to cause A. Then,

α = pr
(
Xb ≤ Y b

)
= G1(+∞).

Estimating G1(·) by the Aalen-Johansen estimator Andersen et al. (1993)

Ĝ1(t) =

∫ t

0

ˆ̄GZb(x−)
dN1(x)

Y (x)
,
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an estimator of α is given by

α̃ = Ĝ1(+∞).(18)

Thus, the estimator ˜̄GX(·) given in (15) is completly defined thanks to
(16), (17) and (18).

3.3. Large sample behaviour. In order to get the weak convergence of
the process

√
n( ˜̄GX(·) − ḠX(·)) stated in the next theorem, the following

assumption is needed:

Assumption A :

∫ +∞

0

dGZb(x)

H̄C(x−)
< +∞.

Theorem 3. If assumption A is fulfilled, the following weak convergence

holds in the Skorohod space D[0,∞]:

√
n( ˜̄GX(·) − ḠX(·)) D−→ ξ(·) = αḠZ(·)L̃(·) + ŨḠZ(·) ln(ḠZ(·)),

as n goes to ∞, where L̃(·) is a mean zero gaussian process defined by

L̃(·) = GZb(·)
∫ +∞

0
1
x
dZ̃(x)

∫ +∞

0
1
x
dḠZb(x)

−
∫ ·

0
1
x
dZ̃(x)

∫ +∞

0
1
x
dḠZb(x)

,

Z̃(·) is a mean zero gaussian process defined on [0,+∞] with covariance

function given by

< Z̃(s), Z̃(t) >= ḠZb(s)ḠZb(t)

∫ s∧t

0

dGZb(x)

ḠZb(x)S(x−)

and Ũ is a mean-zero normally distributed r.v. with variance given by

v(Ũ) =

∫ +∞

0

(G1(+∞) −G1(x))
2 dḠZb(x)

ḠZb(x)S(x)
+

∫ +∞

0

Ḡ2
Zb(x)

dḠZb(x)

Ḡ1(x)S(x)

− 2

∫ +∞

0

(G1(+∞) −G1(x))ḠZb(x)
dḠZb(x)

Ḡ1(x)S(x)
.

The proof of the above theorem requires the following key result proved
in appendix.

Lemma 2. Under Assumption A, the following weak convergence holds in

D[0,∞] × R

√
n

(
ĜZ(·) −GZ(·)

α̃− α

)
D−→
(
L̃(·)
Ũ

)
,(19)

as n goes to ∞.
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Proof of Theorem 2.
In view of equation (15), we have

√
n
(

˜̄GX(t) − ḠX(t)
)

=
√
n
(
Φt(ĜZ(·), α̃) − Φt(GZ(·), α)

)
.

where Φ(·, ·) is a map from D[0,∞]×R to [0,∞) defined by Φt(f(·), r) =
(1 − f(t))r. A two-terms Taylor expansion of the map (x, y) 7→ h(x, y) =
(1 − x)y assures that Φ(·, ·) is Hadamard-differentiable with differential
DΦ(f(·),r) at (f(·), r) defined, for all (h(·), u) in D[0,∞] × R, by

DΦ(f(·),r)(h(·), u) = u(1 − f(t))r ln(1 − f(t)) − r(1 − f(t))r−1h(t).

The functional delta method in its version of Theorem 3.9.4. of van der
Vaart & Wellner (1996) applies and gives the result of Theorem 2.✷

We now come back to the “without censoring” case which was of original
interest. In this case, the observations are given byZb and δb where the latter
is now defined by

δ =

{
1 if Zb = Xb

2 if Zb = Y b .

As an estimator of ḠX(·) one can still use

˜̄GX(t) =
(
1 − ĜZ(t)

)α̃

, for all t > 0,

where

ĜZ(t) =

∫ t

0
1
z
d ˆ̄GZb(z)

∫ +∞

0
1
z
d ˆ̄GZb(z)

, t > 0.

But, in the absence of censoring, the Kaplan-Meier estimator ˆ̄GZb(·) is noth-
ing but the empirical survivor function defined by :

ˆ̄GZb(t) =
1

n

n∑

i=1

I(Zb
i > t).

The statistic Ĝ1(+∞) still gives us an estimate of α and, now, we have the
simplified expression:

α̃ =
N1(+∞)

n
,

which is the observed proportion of death due to cause A.
The following corollary derives the asymptotic behaviour of our estima-

tor in the “without censoring” case. It is easily obtained from Theorem 3
on noting that S(·) is now equal to ḠZb(·).



18 DAUXOIS, GUILLOUX, AND KIRMANI

Corollary 1. The following weak convergence holds in the Skorohod space

D[0,∞]:

√
n( ˜̄GX(·) − ḠX(·)) D−→ ξ(·) = αḠZ(·)L̃(·) + ŨḠZ(·) ln(ḠZ(·)),

as n goes to ∞, where L̃(·) is a mean zero gaussian process defined by

L̃(·) = GZb(·)
∫ +∞

0
1
x
dZ̃(x)

∫ +∞

0
1
x
dḠZb(x)

−
∫ ·

0
1
x
dZ̃(x)

∫ +∞

0
1
x
dḠZb(x)

,

Z̃(·) is a mean zero gaussian process defined on [0,+∞] with covariance

function given by

< Z̃(s), Z̃(t) >= ḠZb(max(s, t)) − ḠZb(s)ḠZb(t)

and Ũ is a real r.v. with distribution N(0, α(1 − α)).

4. ILLUSTRATIVE EXAMPLE

The statistical analysis of the proportional hazards competing risks model
developed here under the length-biased sampling scheme is of wide rang-
ing interest. Its applicability extends well beyond the epidemiologic studies
involving follow up of prevalent cases identified through a cross-sectional
study. Here, we present an application to a well-known problem in politi-
cal science. In those parts of the world where democratic institutions and
constitutional practices are firmly entrenched, change of government fre-
quently occurs through non-constitutional means (such as coups). In such
situations, it is of interest to be able to estimate and predict the duration for
which political and executive leaders hold power. The question is of more
than academic interest as the length of a leader’s stay in power may affect
economic and human right issues. Bienen & M’Lan (1991) is a pioneer-
ing study of the time of power for primary leaders of countries world-wide.
They provide, analyze, and interpret data on duration (in years) in power
for 2,256 leaders from 167 countries for a 100 years period terminating in
1987. However, we are interested only in a subset of the original data, con-
fined to countries outside of Europe, North America, and Australia; and
restricted to leaders who were in power in 1972. There were 99 such lead-
ers facing two competing risks: exit by constitutional means (risk A) and
non-constitutional means (risk B). We treat other termination modes as cen-
soring. Bienen and van de Walle’s data is rich in covariates. Allison (1995)
gives an analysis of covariates effects via Cox models for a subset consist-
ing of 472 spells of time in power beginning in 1960 or later. Although
our analysis is not concerned with covariates and, unlike Allison (1995),
we are estimating in the length-biased set up; we note from Allison (1995),
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that the two risks - constitutional and non-constitutional exits - have propor-
tional hazards. This proportionality is indicated by Fig. 2 which provides
the plots of log-log survivor functions for the two risks against time. Notice
that the log-log survivor functions of Fig. 2 have been estimated from the
initial sample (the sample with 472 spells used by Allison (1995)). Figure 3
shows the survivor function corresponding to risk B when estimated from
the initial and length-biased samples. Our estimator, although based on a
length-biased sample selected from the initial sample, performs quite well
as compared to the Kaplan-Meier estimator computed from the whole initial
sample. The length-biased sample is only about 20% of the initial sample
of 472 spells.

5. SIMULATION STUDY

We carried out Monte Carlo simulations to compare our estimator in Case
1 (independent censoring preceding length-biased sampling) with the true
survivor function when the two independent competing risks are Weibull
distributed. More precisely, we consider two scenarios:

• Scenario 1: ḠX(t) = exp(−t1.5) and ḠY (t) = exp(−0.6t1.5), for
all t > 0

• Scenario 2: ḠX(t) = exp(−0.6t1.5) and ḠY (t) = exp(−t1.5), for
all t > 0

In the first scenario, the lifetime of interest X is stochastically smaller than
Y , while in the second scenario the reverse is true.

We generated a population of nI individuals whose birth times follow a
homogeneous Poisson process with intensity λ = 1 on the interval (−10, 1).
For each individual in this initial population, a censoring time was simulated
according to an exponential distribution with parameter µ. The length-
biased sample consists of the individuals alive, but not censored, at time
t0 = 0.5. We chose the values of the parameters nI and µ in order to get
censoring levels of approximatively 5%, 10% or 30% and sample sizes of
n = 100 or n = 1000 for the length-biased data.

The simulation design described above was replicated 1000 times. Ta-
bles 1 and 2 give the resulting Monte Carlo estimates of the classical mean
integrated squared error (MISE) and a scaled mean integrated squared error
(SMISE). The MISE is defined as

MISE( ˆ̄GX) =

∫ ∞

0

E

[(
ˆ̄GX(t) − ḠX(t)

)2

I(t ≤ T b
(n−1))

]
dt,
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FIGURE 2. Estimates of the Log-log survivor functions for
cause 1 (dotted line) and cause 2 (dot-dashed line), using the
initial sample.

where T b
(n−1) is the (n− 1)-th ordered statistic in our sample, while SMISE

is defined as

SMISE( ˆ̄GX) =

∫ ∞

0

E

[
1

T b
(n−1)

(
ˆ̄GX(t) − ḠX(t)

)2

I(t ≤ T b
(n−1))

]
dt.

The number of grid points to approximate the integrals is set as 1000.
One can see in these tables that both the MISEs and SMISEs always

decrease with the number of observations. This illustrates the consistency
of our estimators.
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FIGURE 3. Estimates of the survivor function for cause
2: Kaplan-Meier estimator (hyphenated line) based on the
whole initial population and Case 1 estimator (solid line)
based on the 1972 cross-sectional sample from the initial
sample.

In Table 1 and 2, one can see that the MISE does not necessarily increase
when the proportion of censoring increases. This can be explained by the
fact that the interval [0, T b

(n−1)] on which the MISE is calcuted decreases
when the censoring increases, see e.g. Geffray & Guilloux (2011) for de-
tails. On the other hand, the SMISE, which is normalized with respect to
the length of the interval [0, T b

(n−1)] , has the expected behavior: it increases
as the censoring increases.



22 DAUXOIS, GUILLOUX, AND KIRMANI

Censoring
5% 15% 30%

n
100 4·6 (3·2) 5·7 (3·84) 5·3 (4·4)
1000 1·0 (0·5) 1·0 (0·6) 1·2 (0·7)

TABLE 1. Simulation results under Scenario 1. Monte
Carlo estimates of MISE*103 and SMISE*103 (in parenthe-
ses) for Case 1 estimator

Censoring
5% 15% 30%

n
100 3·0 (2·1) 3·3 (2·6) 3·2 (2·7)
1000 0·9 (0·5) 0·9 (0·6) 0·8 (0·6)

TABLE 2. Simulation results under Scenario 2. Monte
Carlo estimates of MISE*103 and SMISE*103 (in parenthe-
ses) for Case 1 estimator
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APPENDIX 1: PROOF OF THE LEMMAS

Lemma 3. As n goes to +∞, we have the following weak convergence in

D[0,∞] × R:

√
n

(
Λ̂Z(·) − ΛZ(·)

α̂− α

)
D−→
(
L(·)
U

)
,
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where

L(·) =

∫ ·

0

1

z
∫ +∞

z
1
u
dF b(u)

dZ12(z) −
∫ ·

0

z
∫ +∞

z
1
u
dZ(u)

(
z
∫ +∞

z
1
u
dF b(u)

)2dF
b
12(z),

Z(·) = Z0(·) + Z1(·) + Z2(·),
Z12(·) = Z1(·) + Z2(·)
and

U =
1

pr(δb 6= 0)
[(1 − α)Z1(+∞) − αZ2(+∞)].

Proof of Lemma 1. From the expression of Λ̂Z(·), ΛZ(·), α̂ and α given in
Section 2.3, one can write:

√
n

(
Λ̂Z(·) − ΛZ(·)

α̂− α

)
=

√
n



ψ




F̂ b

0 (·)
F̂ b

1 (·)
F̂ b

2 (·)



− ψ




F b

0 (·)
F b

1 (·)
F b

2 (·)







 ,

where ψ is the function defined on D
3
BV [0,∞] to D[0,∞] × R by

ψ




f0(·)
f1(·)
f2(·)



 =

(∫ ·

0
1

z
R +∞

z

1
u

d(f0(u)+f1(u)+f2(u))
d(f1(z) + f2(z))

f1(+∞)
f1(+∞)+f2(+∞)

)
.

Let us denote by ψ1 and ψ2 respectively the first and second coordinate of
the function ψ. Rather straightforward arguments of differential calculus
give us that the differential Dψ1

(f0(·),f1(·),f2(·)) of ψ1 at (f0(·), f1(·), f2(·)) ∈
D

3
BV [0,∞] is, for all (g0(·), g1(·), g2(·)):

Dψ1
(f0(·),f1(·),f2(·))(g0(·), g1(·), g2(·))

=

∫ ·

0

1

z
∫ +∞

z
1
u
d(f0(u) + f1(u) + f2(u))

d(g1(z) + g2(z))

−
∫ ·

0

z
∫ +∞

z
1
u
d(g0(u) + g1(u) + g2(u))(

z
∫ +∞

z
1
u
d(f0(u) + f1(u) + f2(u))

)2d(f1(z) + f2(z)).

On the other hand, the differential of ψ2 is

Dψ2
(f0(·),f1(·),f2(·))(g0(·), g1(·), g2(·)) =

f2(+∞)

(f1(+∞) + f2(+∞))2
g1(+∞)

− f1(+∞)

(f1(+∞) + f2(+∞))2
g2(+∞).

We are thus in a position to apply the functional delta-method on the
weak convergence (12) of the sub-distribution empirical processes. This
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gives us the expected weak convergence of Lemma 1. The expression of
the limiting process is easily obtained if one note that we have:

F b(·) = F b
0 (·) + F b

1 (·) + F b
2 (·), F b

12(·) = F b
1 (·) + F b

2 (·),
F b

12(+∞) = pr(δb 6= 0)

and α = F b
1 (+∞)/F b

12(+∞). ✷

Lemma 4. Under assumption A, as n goes to ∞, the following weak con-

vergence holds in D[0,∞] × R

√
n

(
ĜZ(·) −GZ(·)

α̃− α

)
D−→
(
L̃(·)
Ũ

)
.

Proof of Lemma 2. From Theorem 3 of Dauxois & Guilloux (2008), we
have, under Assumption A,

√
n

(
ˆ̄GZb(·) − ḠZb(·)
Ĝ1(·) −G1(·)

)
D−→
(

Z̃(·)
Z̃1(·)

)

in D
2[0,∞], where Z̃(·) is defined in Theorem 3 and Z̃1 is a mean-zero

gaussian process defined on [0,∞] with covariance function given by

< Z̃1(s), Z̃1(t) >

=

∫ s∧t

0

(G1(t) −G1(u))
2 dGZb(u)

ḠZb(u)S(u−)
+

∫ s∧t

0

Ḡ2
Zb(u)

dGZb(u)

Ḡ1(u)S(u−)

−
∫ s∧t

0

(Gj(t) −Gj(u))ḠZb(u)
dGZb(u)

Ḡ1(u)S(u−)
.

It is easily seen that

√
n

(
ĜZ(·) −GZ(·)

α̃− α

)
=

√
n

(
Φ( ˆ̄GZb(·)) − Φ(ḠZb(·))
Ĝ1(∞) −G1(∞)

)
,

where Φ is a map from D[0,∞] to D[0,∞] defined by

Φ(f(·)) =

∫ ·

0
1
z
df(z)∫∞

0
1
z
df(z)

.

The map Φ is Hadamard-differentiable with differential DΦḠ
Zb (·) at ḠZb(·)

defined, for all h(·) in D[0,∞], by

DΦḠ
Zb (·)h(·) =

∫ ·

0
1
z
dh(z)

∫ +∞

0
1
z
dḠZb(z)

−GZb(·)
∫ +∞

0
1
z
dh(z)

∫ +∞

0
1
z
dḠZb(z)

.

The functional delta method in its version of Theorem 3.9.4. of van der
Vaart & Wellner (1996) ends the proof of this lemma.✷


