
Augmenting the scope of interactions with implicit and

explicit graphical structures

Raphaël Hoarau, Stéphane Conversy

To cite this version:

Raphaël Hoarau, Stéphane Conversy. Augmenting the scope of interactions with implicit and
explicit graphical structures. CHI 2012, ACM annual conference on Human Factors in Com-
puting Systems, May 2012, Austin, United States. ACM, 2012, <10.1145/2207676.2208337>.
<inria-00607937>

HAL Id: inria-00607937

https://hal.inria.fr/inria-00607937

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50540789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00607937

Augmenting the scope of interactions
with implicit and explicit graphical structures

Raphaël Hoarau
Université de Toulouse- ENAC – IRIT

Toulouse, France
Raphael.hoarau@enac.fr

Stéphane Conversy
Université de Toulouse- ENAC – IRIT

Toulouse, France
stephane.conversy@enac.fr

ABSTRACT
When using interactive graphical tools, users often have to
manage a structure, i.e. the arrangement of and relations
between the parts or elements of the content. However, the
interaction with structures may be complex, and not well
integrated with the interaction with the content. Based on
contextual inquiries and past works, we have identified a
number of concepts and requirements about the interaction
with structure. We have explored two interactive tools: a
new kind of property sheet that relies on the implicit struc-
ture of graphics; and a property delegation graph to enable
users to provide an explicit graphical structure. The interac-
tions with the tools augment the scope of interactions to
multiple objects.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
H.5.2. User Interfaces: Interaction Styles.
General terms: Design, Human Factors
Keywords: Graphical Interaction Design, Instrumental
interaction, Exploratory Design.

INTRODUCTION
When using computerized tools such as real-time editors,
presentation software, GUI builders, etc. users create and
manipulate graphical objects on the screen. They can edit
them individually, e.g. change their color or their stroke
width. Users can also consider and interact with sets of
objects as opposed to individual objects. To do so, they
may be required to structure the scene, by relying on con-
cepts such as groups, styles, or masters. According to the
Oxford dictionary, a structure is “the arrangement of and
relations between the parts or elements of something com-
plex”. Using a structure may have multiple assets, such as
helping users conceptualize the scene they are creating
(“the background of the slide includes this drawing and this

text”, “this set of slides is a subpart of the presentation”
etc.), and think better about the problem at hand. Here, we
are interested in structures as means to interact with the
content: since structuring involves sets of objects, the ac-
tions done on an element of the structure may have an ef-
fect on several objects at once.
In current interactive systems, the use and the management
of structures may be complex. Users have to create and
maintain them. Depending on the kind of structure, some
operations may be impossible or cumbersome to do, which
prevents users to explore the design space. Furthermore,
systems that provide structuring do not leverage off the
structures fully to provide users with new ways of interact-
ing with the content.
Interactions with structure and multiple objects through a
structure have not been studied extensively in the past. Of
course, there exists works that implicitly tackle the prob-
lem, but few concepts or properties explicitly target it. For
example, what are the interactions that enable users to de-
fine sets of objects? What are the available means to aug-
ment the scope of interaction i.e. apply an interaction to
several targets? What are the concepts that may guide the
design of interactions?
The work presented in this paper aims at improving the
management of structures as means to augment the scope
of interactions. Based on contextual inquires and related
work, we present a number of requirements pertaining to
the interactions with structures. We then present a set of
interactive tools that partly fulfill those requirements. In
particular, we present two new visualizations of properties
and values. Together with modeless, example-based inter-
action and selection, they enable designers to make an op-
portunistic use of implicit (i.e. unplanned) sets of objects,
and to structure the content explicitly.

WORK SCENARIOS
We have based our work on concrete and realistic case
studies. We have conducted five contextual inquiries with
“designers”, the design activity being taken in its broadest
sense: graphics edition (Illustrator and OmniGraffle),
courses schedule (iCal), geographical map of a site (Auto-
CAD), lecture presentation (PowerPoint). In order to intro-
duce the problem and concretize it, we present two of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10... $10.00.	

five case studies with work scenarios, which illustrate in-
teractions on several objects with or without a structure.
Some of the steps are annotated with words in italic to
characterize them. We detail the annotations later in this
section.

Software keyboard
The first scenario describes the creation of the graphical
part of a software keyboard, such as the ones available on
tablets. The user is a designer that employs a graphics edi-
tor (here Illustrator). The user begins by creating a fist key.
She draws a round rectangle, applies a gradient to the rec-
tangle, and adds a surrounding rectangle (stroke only). She
selects the two rectangles with a selection rectangle (desig-
nation), and groups them with a group command in a menu
(structuring). She then adds a soft shadow effect on the
group. She overlays a label with a text ‘A’ on the group of
rectangles, and centers the label and the group by invoking
a center command on a toolbox. She then forms another
group with the label and the groups of two rectangles, and
names it “key”, in the tree view of the graphical scene pro-
vided by Illustrator (structuring).
This first key serves as a model to create other keys: the
user duplicates the key, and applies a horizontal translation
to the copy. She proceeds with this action several times in
order to form a row of keys (Figure 1). She then modifies
the text of each key one by one, until she gets an
‘AZERTYU’ keyboard.

Figure 1: The user creates a key, and duplicates it.

Figure 2: The text of the ʻIʼ key is not centered.

However, when she changes the letter ‘A’ for the letter ‘I’,
she realizes that the ‘I’ text is not centered with the rectan-
gles (Figure 2). The first object was specified incorrectly: if
the three objects (label, background rectangle, stroked rec-
tangle) are correctly aligned, the text of the label is not cen-
tered. With the first letters (AZERTYU), the problem was
not existent since the widths of the texts are similar. The
user could realize the problem only when tackling a thinner
letter (‘I’).
Each label being into a heterogeneous group (containing
other object types than label), the system does not provide a
text center command that can be applied to a selection of
objects. She has to click multiple times on an object to
reach the label and apply the ‘text centered’ command.
Therefore, she estimates that it is more efficient to start
over: she deletes all copies, un-groups the first key, centers

the text, groups the objects again, copies et moves the cop-
ies, and modifies each letter one by one.
This scenario illustrates several tasks that the user should
accomplish.
Sets management The user relied on the ability of the sys-
tem to allow sets creation, modification, and management.
For example she created a single group with two rectangles,
then another group with the previous one and the label. She
could also name them, both because it is a way to concep-
tualize information, and to be able to reference it in a
toolkit that displays SVG graphics. Operations on groups
include destruction (on the canvas view), and reparenting
of the hierarchy (on the tree view).
Designation The user designated properties, actions, and
objects. For example, she changed the “alignment” prop-
erty of the label to “centered”.
Scope of actions Some actions allow the user to act on mul-
tiple objects at once. For example, the user grouped objects
because she wanted to consider them as a single entity that
keeps relative position between subparts, but also because
she wanted to apply a single translation on three objects at
once. Conversely, she was not able to apply the command
‘set alignment’ to several objects at once.

ATC strips drawing
In this scenario, the user is a visualization designer that
aims at designing several enhancements of paper-strips
design for Air Traffic Control. A paper strip is a tool that
helps controllers verify that flights are not in conflict, i.e.
their planed time of passage over beacons are not the same.
He wants to design and illustrate a new digital representa-
tion with colored gradients that would show the current
position of the flight between two beacons. Figure 4 shows
the final result.

Figure 3: A paper strip.

Figure 4: Two versions of a strip board.

The user starts with the drawing of a simplified strip, by
imitating an actual one (see Figure 3). The strip is com-
posed of lines, rectangles, and labels with textual informa-

tion. He duplicates the first strip multiple times, and stacks
the copies in order to form a strip board (Figure 4, left). He
then modifies the labels to reflect information about other
flights. While thinking about his design, he elaborates a
new one, based on the first version: right aligned beacons
(Figure 4, right), instead of left aligned beacons (explora-
tory design). Compared to the first version, the new design
would enable controllers to rank easily the flights by their
order of airspace exit (the righter the sooner). Thus, he du-
plicates the previous board, and modifies each strip to right
align beacons.
While trying to show the value of using gradients, he real-
izes that the design should involve two flights in conflict.
To do so, he has to make the time of passage over certain
beacons match. He first proceeds on the second version on
the board. However, he wants stakeholders to be able to
compare the two designs. In order to limit the differences
between the two versions, he has to change the first board
accordingly. He begins by searching the elements that must
be changed (searching).. When he finds one, he executes
the actions required to apply the modification.
Besides the tasks already evoked in the first scenario, the
second scenario illustrates two new activities.
Seeking/designation The user needs to retrieve objects,
based on explicit or fuzzy requirements. In the scenario, he
has to search objects whose content (here a text) is similar
to other ones. The search action requires scanning visually
the graphical objects in the board and seeking candidate
objects, at the risk of forgetting some of them. As the num-
ber of objects increase, it is more and more difficult to seek
object with visual scanning. In the previous scenario, each
modification becomes more costly, not only because of the
number of actions to repeat, but also because of the re-
quired search effort.
Exploratory Design The user explores parts of possible so-
lutions, and modifies existing parts of solutions. In doing
so, he pursues an exploratory design activity. By combin-
ing action, visualization of intermediate results, and think-
ing, exploratory design generates a co-discovery of the
problem and the solution. This phenomenon is important
for activities in which the expected result is not known in
advance: graphics edition activities, but also during slides
design, or class hierarchy design [7][23].

RELATED WORK
Past works have tackled the problems of managing struc-
tures, and interacting with multiple objects, either explicitly
or implicitly. We have studied the existing systems along
three axes: interactions for structuring the content provided
by interactive systems, design and evaluation of interac-
tions for structuring, and structuring in programming, since
many concepts from this domain are relevant.

Structuring for users
Groups In order to act on several objects at once, traditional
graphical editors allows acting on a selection of objects
previously defined by the user, or on groups. The only op-

erations available for a group is ‘ungroup’, which removes
the group entity and selects all objects that were part of the
groups (no modification, addition, or subtraction). Selec-
tion can be seen as a temporary group, with ‘add’ and ’re-
move’ operations e.g. by holding the shift key and selecting
several elements, or holding the ctrl key and clicking on
individual elements. Translation, scale and rotation can be
applied on a group: all elements inside the group are trans-
formed accordingly. Conversely, some operations like ‘set
color’ cannot be applied to groups, supposedly because
some elements inside the group do not “understand” this
operation. This forces the user to un-group groups, and to
apply the command on each objects. In this case, the inter-
action with the structure is not well integrated with the in-
teraction with the content.
Hierarchy and groups of groups Groups can be part of a
surrounding group, turning them into hierarchies. Support
for management of such hierarchies range from no support
at all, navigation in the parents hierarchy (clicking several
times on an object enables cycling through parents in the
Squeak version of Morphic [16]), to tree views in struc-
tured graphics editors such as Inkscape or Illustrator. A tree
view enables user to re-parent elements with a drag and
drop. However, there is no support for other operations,
such as applying a color to a node in order to change all
children.
Masters and DAG A Master is an element used as a
“model” for other elements. For example, PowerPoint en-
ables users to define the appearance in a master slide that
other slides would inherit. Sketchpad introduced masters as
shareable objects that could be used in multiple locations in
the scene [21]. Changing a property of the master would
modify all objects that depend on this master. This was a
way to reduce the number of actions required from the user
when something must be changed. Somewhat related to
Masters, constraints can also be defined with a link be-
tween cells in a spreadsheet [18]. Masters can be consid-
ered as a way to structure contents with a Directed Acyclic
Graph.
Properties Presto is a document management system that
enables users to tag documents with properties, e.g.
year=2011 [6]. Properties provide a uniform mechanism
for managing, coding, searching, retrieving and interacting
with documents. For example, users can define directories
(i.e. a set) of documents using properties: either by exten-
sion (by putting elements into the directory), or by inten-
sion (with a query such as size >500k). Conversely to
purely hierarchical structures, properties enable objects to
be part of several overlapping sets.
Graphical search Graphical Search & Replace [11] allows
users to search for elements based on their graphical prop-
erties (designation). The resulting selection allows the user
to change at once a particular property for all found objects
(multiple scopes).
User-defined macros and Programming by example User-
defined macros allow for automation of repetitive tasks.

Programming by example allows non-experts to automate
the creation of macros [14]. The user proceeds with an ex-
ample of the task to repeat, and an algorithm abstracts the
actions, so as to enable application on other objects. Pro-
gramming by example relies on a correct interpretation of
user actions by the machine. By contrast, our work aims at
providing an instrumentation that does not rely on the intel-
ligence (often not sufficient or incorrect) of the system.
Structuring with exploratory design Some structuring tech-
niques have been design to support exploratory design. The
list of reversible actions is an important mechanism
[22][12]. Side Views displays previews of interactive
commands [24]. Parallel Paths is a model of interactions to
support alternative exploration [25]. It lies on an arbores-
cence of creations, instead of a linear process, and on the
simultaneous views of parallel results (comparison). Acting
on a node “before” a split of the creation path enables users
to manipulate the subsequent designs at once (scope).

Structuring for designers
Interaction designers have already identified the need for
many modifications with a low number of actions. For ex-
ample, the ergonomic criteria “brevity”, and more precisely
the sub-criteria “minimal actions”, describes the needs to
limit the number of steps of an interaction [3].
Cognitive dimensions In the cognitive dimensions of nota-
tion [7], the problem described in the software keyboard
scenario is identified as “viscosity”. It exhibits when the
structure of the information contains a lot of dependences
between parts, which implies that a small change leads to
numerous adjustments from the user. Viscosity is a hurdle
to modification and exploratory design [8]. Since it may be
costly to apply the changes, the user refrains from explor-
ing alternatives.
In order to reduce viscosity, a solution consists in creating
an “abstraction”, a “power command” that would act on
several objects [8]. An abstraction is a class of entities, or a
grouping of elements that users will handle as a single unit.
This will not only reduce viscosity, but also make the nota-
tion closer to the conceptual model. Styles in a word proc-
essing application are an example of abstraction.
Abstraction can be costly. First, abstractions must be learnt.
For example, a novice user will not be able to use the
“style” abstraction if he does know that it exists, or how to
use it. Their creation and modification requires time and
effort. The investment in abstraction management (think-
ing, building, modifying) should be balanced with invest-
ment in repeating a small sequence of actions to solve a
small problem. Besides, abstractions can represent a hurdle
to exploratory design, if they are required before any other
simple actions. For example, the use of classes in object-
oriented languages forces users to think about abstract de-
scriptions, before instancing and experimenting them (also
known as premature commitment). Finally, abstraction may
introduce hidden dependencies: some parts of the scene
may depend on others in an invisible way, which makes it
hard for the user to predict the effect of a change.

Instrumental interaction and design principles Direct [22]
and instrumental [4] interactions techniques are efficient at
interacting with a single object: they lower the number of
actions required from the user compared to other tech-
niques, such as command lines, conversational dialogue, or
modal interactions. Design principles related to instrumen-
tal interaction, such as reification (turning an object into a
thing), polymorphism (applying the same change to differ-
ent class of objects) and reuse (of past selection and inter-
actions result), cope partly with actions on multiple objects
[4]. Reification of concepts into instruments allows for ac-
tions on instruments that in turn will act on other objects.
Reifying concepts into first-class manipulable objects ex-
tends the possibilities of actions. The degrees of temporal
and spatial indirection, compatibility and integration enable
users to predict the effectiveness of a given instrument.
Reification can be considered like enabling direct manipu-
lation of an abstraction (of Cognitive Dimension). Poly-
morphism enables designers to augment the scope of ac-
tions with heterogeneous groups. The number of actions to
perform is reduced with polymorphism, since this avoids
repeating for each type of objects a change with similar
results. Similarly, reuse reduces the number of actions re-
quired to manage objects sets (creation, modification).
Cost of interaction techniques A particular technique is not
absolutely better than another, but may be better with re-
spect to the task to accomplish: copy, modification, or
problem solving (equivalent to exploratory design) [15].
CIS is a model that helps describe an interaction technique,
analyze it, and predict is efficiency in the context of use
[2]. An interface is defined as a set of manipulable objects
of two types: work objects (e.g. graphical shapes), and tool
objects (e.g. a menu item). There are two types of action:
selection, which identifies a subset of the interaction space
(moving an object, such as a cursor onto a tool) and valida-
tion, such as a mouse click, that confirms the selection ac-
tion.
CIS defines four properties for interaction techniques. Or-
der and parallelism characterize the scheduling of actions.
Persistence indicates whether the technique modifies attrib-
utes of tool objects, which has an effect on subsequent in-
teractions. Fusion is the ability of a technique to modify
several work objects by defining multiple manipulations at
once (similar to scope). Development corresponds to the
ability offered to the user to create copies of tools object
with different attribute values.

Structuring for programmers
The problems raised so far can also occur during develop-
ment activities. For example, refactoring tools in IDEs is an
answer to the need for multiple scopes of action: if the user
changes say the name of a method of a class, the system
will apply this change on each reference of the method,
possibly in other classes or files. Styles and models can be
implemented in a style language (e.g. CSS), with a hierar-
chical structuring. Changing a parameter in an intermediate
node has an effect on its children. Tags in the Tk toolkit

allows the programmer to structure objects in overlapping
sets (an object can belong to multiple sets) [20]. Changes
can be applied to graphical shapes or to a tag, and thus to
the set of objects that hold this tag (scope). Tags can be
defined by extension (with designated objects) or by inten-
sion (with a predicate e.g. all blue objects) [1].
Prototype-based languages offer an alternative to class-
based languages for object-oriented programming [13][19].
They offer a flexible creation model that allows sharing of
properties and behaviors. Such mechanisms allow users to
structure a hierarchy of prototypes and to act on several
clones by manipulating a prototype in the delegation hier-
archy. Morphic [16], the graphical interface of Self [26],
reifies prototypes and clones into graphic objects (called
Morphs), and allows for their construction and edition with
direct manipulation. Tools have been designed to help
structure a prototype hierarchy. For example, Guru is an
algorithm that automatically creates a well-organized graph
of prototypes, by factorizing shared properties into new
prototypes [17].
REQUIREMENTS
In this section, we synthesize the requirements for the ma-
nipulation of objects through structures. The synthesis is
derived from the contextual inquiries we ran, and our
analysis of the related work.

R1: Managing sets of objects
Managing sets consists in searching (R1.1), and designat-
ing (R1.2) the objects that are part of a set. It is also neces-
sary to modify (R1.3) the sets (add, remove elements). Fi-
nally, users must be able to identify (R1.4) the objects that
belong to a particular set, or determine the sets a particular
object belongs to.

R2: Managing actions
Managing actions consists in specifying their nature (e.g.
by clicking on an ‘alignment” icon, or a menu) (R2.1),
specifying their parameters (“vertical” or “horizontal”)
(R2.2), perceiving their consequences (R2.3), and specify-
ing the scope (R.2.4). Perceiving the consequences with
appropriate feedback enables the user to realize the effects
of its action after it is triggered [22], and even before it is
triggered.

R3: Fostering exploratory design
In order to support exploratory design efficiently, it is im-
portant to provide the user with tools that enable her to try
(R3.1) and evaluate (R3.2) solutions during short-term ex-
ploration (R3.3), and compare (R3.4) different versions
during middle-term exploration (R3.5) [23]. When satisfied
with the results, the user must be able to extend the modifi-
cations to other objects. If the system does not support this
task efficiently, the user will have to repeat the same ac-
tions to propagate changes (viscosity). Finally, if structur-
ing is a solution to the viscosity problem, it is a hurdle to
exploration if required a priori. Therefore, structuring
should be made a posteriori (R3.6) i.e. when actions have
already been done.

INTERACTIVE TOOLS
We have explored a number of interaction techniques in
order to provide the user with structure-based interactions.
To design them, we have used traditional participatory de-
sign process with the users we interviewed. We have con-
ducted ideation and prototyping sessions to fix the problem
illustrated in the work scenarios, and to offer new ways of
interacting with multiple objects. In the following, we pre-
sent the tools and their usage that we designed.

Overview
To illustrate the interactive tools, we have designed a
graphical drawing application. There are four parts: the tool
palette on the left side, the workspace in the middle, the
sample panel on the top right corner, and a property sheet
on the bottom right corner (see Figure 5).
The workspace is the main view, where users can create a
new object, by clicking and resizing. Selection is performed
by clicking on an object or by drawing a rubber rectangle to
encompass several items at once, as done with usual graph-
ics editors. Selected items are highlighted with a shadow,
while other items are made translucent.

Figure 5: Overview of the application. The work-
space is at the center, the samples at the top right
and the property sheet at the bottom right.

The samples panel contains a set of values for shape
(square, oval, T for text), fill color (represented by a col-
ored square), stroke color (stroked-only colored square) and
stroke thickness (stroked-only circle). In order to modify a
property of an object in the main view, users can drag a
sample and drop it onto the object. Feedback is shown as
soon as the sample hovers over the object, in order for the
user to understand the action, and to assess the change be-
fore effectively applying it by releasing the mouse button.
This enables the user to cancel the action, by releasing the
button outside of any object (R3.1 try, R3.2 evaluate, R3.3
short term, R3.4 compare, R2.3 perceiving consequences).
Drag and dropping samples also applies to a selection with
multiple objects. The interactions described so far are not
new. Next section presents the property sheet with novel
interactions.

Figure 6: The userʼs selection contains objects with
varying shapes, fill colors, width, and height. A
classical property sheet (left) displays a blank fill for
those properties, whereas our property sheet (at
right) displays all different values.

Implicit structure: an enhanced property sheet
A property sheet (or property box) is a window containing
a vertical list of pairs of property type and value (e.g.
shape: rectangle, color: green, thickness: 3…). A property
sheet offers two services to the user: visualizing values
(with progressive disclosure [9]), and modifying them [9].
With classical property sheets, if multiple objects are se-
lected, only “shared values” (i.e. values shared by all ob-
jects) are shown and are modifiable (see Figure 6, left).
Users can change a shared value for a property type, and
the system reflects changes to all selected objects (power of
action). Other properties, those that are multi-valuated, still
appear, but with a blank fill. Those blank fills do not in-
form users with the values and cannot be modified.
Our version of the property sheet differs in that it shows all
values for a multi-valuated property (see Figure 6, right),
instead of displaying blank. This reveals an implicit struc-
ture of graphics, the sets of objects that share a graphical
property. Though not explicitly defined by the user, we
think that such sets may be useful, since users sometimes
think about objects with a graphical predicate (“all red ob-
jects”). We relied on the display of those values to design a
set of interactions that offer new services for exploratory
design and structure-based interaction: query and selection
of objects with graphic examples, selection refinement,
properties modification on multiple objects with precision,
and content correction. The representation of a shared value
in the property sheet actually refers to two concepts: the
value in itself, and the set of selected objects that exhibits
this property value. As a value per se, and similarly to the
interaction with the samples panel, users can drag the rep-
resentation (considered as a value) from the property sheet
onto (a selection of) objects in the main view to modify a
property. If the shared value is numerical, users can hover
over it and rotate the mouse wheel to increment or decre-
ment it (power and precision). Together with immediate
feedback, this enables both exploration and precise adjust-
ment of properties, thus reducing temporal offset [4] be-
tween action and reaction.

Figure 7: The userʼs cursor is over the blue shared
value of the fill property (fill: blue). Because they
donʼt have this shared value, the green rectangle,
the pink circle and the two yellow shapes are
dimmed

Figure 8: a) The user drags the “thickness: 6pt
stroke” sample over the “fill: yellow” shared value.
a) Immediate feedback turns the stroke thickness of
all yellow items to 6pt. b) The user has dropped the
sample, the modification is applied.

Since the representation of a shared value also reifies [5] a
set of objects, hovering over a shared value highlights the
concerned objects while blurring others (Figure 7). This
makes it easy to figure out which set is made of what, and
possibly detects outliers and correct them. In addition, users
can drag a sample (hence a value) from the sample panels
onto the representation of a shared value (considered as a
set of objects) in the property sheet to modify at once one
property of multiple objects (R2.4 scope) (Figure 8). Users
can also drag a representation from (value) and in (set) the
property sheet (Figure 9).
To select objects, users can directly click on them in the
workspace, or draw a selection rectangle. In order to refine
the selection, users can use three meta-instruments (i.e.
instrument that control instrument, here the selection): Re-
mover, Keeper and Extender. The interaction consists in a
drag and drop of the representation of the instrument onto a
shared value. Remover throws out of the selection all ob-
jects that have this shared value (Figure 10). Keeper keeps
the objects that have this shared value in the selection, and

throws away the others. Extender adds to the selection all
objects that are not selected but possess this shared value.
These interactions extend the set of example-based queries
introduced above (R1.3 modify sets).

Figure 9: The user drags the “width: 280” shared
value and drops it on the “shape: circle” shared
value. All circles in the selection now have a width
set to 280.

Figure 10: The user drags the Remove instrument
and drops it on the blue fill shared value. All blue
objects are removed from the selection.

Figure 11: The user draws a link between the Fill
property into an object to specify a dependency

Explicit structure: the property delegation graph
Besides the augmented property sheet, we have explored an
interactive tool that enables users to structure the content
explicitly. Users can specify that the property of an object
(the clone) depend on the property of another object (the
prototype). A prototype plays the role of the master in
Sketchpad: when users change a property of a prototype by
dropping a sample from the property sheet onto the proto-
type, all dependent clones are changed accordingly (R2.4
scope, R1.3 modify sets).

The interaction to specify a dependency is as follows
(Figure 11): by clicking on an object, users can toggle the
display of the properties around it. They can press on a
property, draw an elastic link, and drop it onto another ob-
ject. The clone object appearance reflects immediately the
appearance of the clone for that property. The interaction is
coherent with the interaction between a sample of the prop-
erty sheet and an object.

Figure 12: A prototype (left), and a clone (right)

As seen above, the management of any structure can be
cumbersome. To minimize this aspect, our system proposes
two ways of creating objects from others. Users can create
a new object from a previous one, either by copying it, or
by cloning it (R1.3 modify sets). Copying is the regular
copy operation: properties from the copy are independent
from the properties of the source. Cloning enables users to
get a clone, whose properties are entirely delegated to the
prototype (Figure 12). By creating a clone, users minimize
the number of actions required to specify a single differ-
ence with the prototype: if they have copied instead of
cloned, they would have to link all shared properties.
Choosing to clone or to copy may be premature at the mo-
ment of the creation of a new object from an existing one.
To solve this problem, users can decide to change them to a
copy or a clone after the creation of the object (R1.3 modify
sets, R3.6 a posteriori structuring). This is made possible
by tracing the history of objects, and how they were cre-
ated. Toggling between copy and clone only affects the
properties that were not set explicitly by the user (be it a
value or a delegation).

Figure 13: The fill property is dragged on a shared
value to specify that the fill property of a set of ob-
jects depends on the prototype (left).

When users find out that an object could be used as a proto-
type, one problem is to interact with similar objects in other
to make them depend on the new prototype. A viscous so-
lution would be to interact with each object and making it a
clone of the prototype. A more efficient solution consists in
selecting the objects that are be clones, and drop the prop-
erty of the prototypes onto an object of the selection (R1.3
modify sets, R3.6 a posteriori structuring). To increase ef-
ficiency and integration, we have leveraged off the property
sheet: the interaction consists in dropping the property onto
a shared value, or the name of the property (Figure 13).

DISCUSSION
Comparison with CIS
CIS proposes two dimensions of analysis related to our
problem: fusion and development. Fusion is related to the
modification of several objects at once, and development is
related to supporting the user in creating her own tools.
However, we think that those two dimensions are not suffi-
cient to express all concepts underlying actions on multiple
objects at once.

Comparison with the delegation programming model
The property delegation graph is an extension of the dele-
gation tree found in prototype-based languages [13]. In a
prototype tree, each node is linked to a prototype (a parent
in the tree). A child can delegate the value of a property to
its prototype. When drawing an object, the delegation algo-
rithm checks whether a property is specified for a particular
node. If not, the algorithm follows recursively the proto-
type branch, until the property is specified in an ancestor,
and uses the value of that property for drawing.
With a tree, objects cannot have multiple parents. For ex-
ample, the scene tree available in illustrator may be helpful
to conceptualize the scene, but is unable to help specify
cross-branches relationships. Conversely to a tree, a node in
our graph of properties can have multiple parents. This
enables users to be more specific about the parent that
holds a particular property. Hence, a node can delegate the
fill property to a prototype A, and the stroke-width property
to a prototype B.

Drawbacks of the current design
The prototypes we have explored are far from being per-
fect. Even if we have crafted the interactions carefully so as
to make them coherent and integrated as much as possible,
we had to make compromise.
More work needs to done with respect to scalability. For
example, the property sheet is not able to handle numerous
shared values. A solution would be to provide a progressive
disclosure of shared values, e.g. with scrollbars. The proto-
type/clone view also needs more work: if the links are nu-
merous, the scene may result in a mess of tangled links.
Again, progressive disclosure is a possible solution. We are
also exploring other representations and interactions from
the information visualization field.
Some interactions need to be complemented. For example,
the system does not check for cycle when the user tries to

link two properties. Together with forbidding, appropriate
feedback is necessary, such as displaying the links to show
the cycle when hovering over a property.
Furthermore, even if we designed them during participatory
sessions with actual users, we did not evaluate them. In
particular, we did not work on the discoverability of the
interface: for example, there may be some concerns about
the fact that users will not use shared values, either because
shared values do not afford dropping samples on them, or
because they are too complicated to understand.

CONCLUSION
In this paper, we have tackled the problem of the interac-
tion with structures, and the interaction with content
through structures. We have illustrated its importance in
scenarios based on contextual inquiries, and showed that it
underlies a number of past work. We have identified a set
of requirements for the management of structures of inter-
active graphics, and the use of structures to act on the con-
tent. Based on the requirements, we have explored a set of
interactions that provide partial solutions to the require-
ments: an enhanced property sheet, and a property-
delegation graph, together with coherent and well-
integrated interactions.
The examples we have shown involve drawing editors.
However, this work also applies to any editor that uses
graphics to display information, rather than creating them.
For example, managing a calendar can benefit from the
interaction we have designed: setting a particular duration
or location to a set of entries, setting a location known one
week after a set of meetings were scheduled, changing the
title of entries that occur every Monday etc.
Our design aimed at illustrating the requirements and pos-
sible solutions, but other designs are possible. Though we
think that structuring is important, we do not know yet how
users actually benefit from it. During the evaluation of CIS,
their authors witness that users were able to optimize their
use of an interaction technique, and to adapt it to the cur-
rent context [2]. We plan to design experiments that aim at
assessing the usefulness of structuring, and to what extent it
can support exploratory design.

ACKNOWLEDGMENTS
The authors would like to acknowledge colleagues.

REFERENCES
1. Appert, C., Beaudouin-Lafon, M. SwingStates: adding

state machines to the swing toolkit. In Proc. of UIST
‘06. ACM, 2006, pp. 319-322.

2. Appert, C, Beaudoin-Lafon, M, Mackay, W. E. Context
matters: Evaluating Interaction Techniques with the CIS
Model. In Proc. of HCI'04, p 279-295. Springer Verlag,
2004.

3. Bastien, J.M.C, Scapin, D.L. Critères Ergonomiques
pour l'Évaluation d'Interfaces Utilisateurs. Tech Re-port
156, May 1993.

4. Beaudouin-Lafon, M. Instrumental Interaction: An In-
teraction Model for Designing Post-WIMP User Inter-
faces. In Proc. CHI'00. (2000), ACM, 446-453.

5. Beaudouin-Lafon, M. and Mackay,AW. E. Reification,
polymorphism and reuse: three principles for designing
visual interfaces. In Proc. of AVI‘00. ACM, 2000, pp.
102-109.

6. Dourish, P., Edwards W.K., LaMarca, A. and Salis-
bury, M. 1999. Presto: an experimental architecture for
fluid interactive document spaces. ACM Trans. Com-
put.-Hum. Interact. 6, 2 (June 1999), 133-161.

7. Green, T.R.G., Cognitive dimensions of notations, in
People and computers v, 1989, Cambridge Uni-ersity
Press, 443-460.

8. Green, T.R.G, and Blackwell, A. Cognitive dimensions
of information artifacts: a tutorial. (Version 1.2 October
1998). 1998.

9. Johnson J.A., Roberts T.L., Verplank W., Smith D.C.,
Irby C.H., Beard M., and Mackey K. The Xerox Star: A
retrospective. IEEE Computer, 22(9):11–29, 1989.

10. Kurlander, D. Reducing Repetition in Graphical Edit-
ing. Proc. of HCI International ‘93. 1993.

11. Kurlander, D, Bier, E.A. Graphical Search and Re-
place. In Proc. of ACM SIGGRAPH '88, 113-120.

12. Kurlander, D., Feiner, S. A History-Based Macro By
Example System. In Proc. of UIST '92. ACM, 99-106.

13. Lieberman, H. 1986. Using prototypical objects to im-
plement shared behavior in object-oriented systems. In
Proc. of OOPLSA '86. ACM, 214-223.

14. Lieberman, H. Your Wish is my command: Pro-
gramming by example. Morgan Kaufmann, 2001.

15. Mackay W.E. Which interaction technique works
when?: floating palettes, marking menus and tool-
glasses support different task strategies. In Proc. of AVI
'02. ACM, 203-208.

16. Maloney, J.H. and Smith, R.B. 1995. Directness and
liveness in the morphic user interface construction envi-
ronment. In Proc. UIST '95. ACM, 21-28.

17. Moore, I. 1996. Automatic inheritance hierarchy re-
structuring and method refactoring. In Proc. of
OOPSLA '96. ACM, 235-250.

18. Myers, B. A. 1991. Graphical techniques in a spread-
sheet for specifying user interfaces. In Proc. of CHI '91,
ACM, 243-249.

19. Myers, B. A., Giuse, D. A. and Zanden, B V. 1992. De-
clarative programming in a prototype-instance system:
object-oriented programming without writing methods.
SIGPLAN Not. 27, 10 (October 1992), 184-200.

20. Ousterhout, J. K. (1994) Tcl and the Tk Toolkit.
Addison-Wesley.

21. Sutherland I.E. 1963. Sketchpad: a man-machine
graphical communication system. In Proc. of AFIPS '63.
ACM, 329-346.

22. Shneiderman, B. (1983). Direct manipulation: a step
beyond programming languages. IEEE Computer 16, 8,
57–69.

23. Terry, M. and Mynatt E.D. Recognizing creative needs
in user interface design. Proc. of Creativity & Cogni-
tion. ACM, pp. 38-44, 2002.

24. Terry, M. and Mynatt, E. D. Side views: persistent, on-
demand previews for open-ended tasks. In Proc. of
UIST 2002.ACM, 2002, pp. 71-80.

25. Terry M, Mynatt E.D, Nakakoji K, and Yamamoto Y.
2004. Variation in element and action: supporting si-
multaneous development of alternative solutions. In
Proc. of CHI '04. ACM, 711-718.

26. Ungar, D, Smith R, B. SELF: The Power of Simplicity.
In proc. of OOPSLA '87. ACM, 227-242.

