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Emiliano Lorini
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Chapitre 1

Résumé de la thèse en français

1.1 Introduction

Dans le domaine des jeux vidéos par exemple, surtout des jeux de rôles, les per-
sonnages virtuels perçoivent un environnement, en tirent des connaissances puis
e�ectuent des actions selon leur besoin. De même en robotique, un robot percoit
son environnement à l'aide de capteurs/caméras, établit une base de connaissances
et e�ectuent des mouvements etc. La description des comportements de ces agents
virtuels et de leurs raisonnements peut s'e�ectuer à l'aide d'un langage logique.

Dans cette thèse, on se propose de modéliser les trois aspects �voir�, �savoir�
et �faire� et leurs interactions à l'aide de la logique modale. Dans une première
partie, on modélise des agents dans un espace géométrique puis on dé�nit une
relation épistémique qui tient compte des positions et du regard des agents. Dans
une seconde partie, on revisite la logique des actions �STIT� (see-to-it-that ou �faire
en sorte que�) qui permet de faire la di�érence entre les principes �de re� et �de
dicto�, contrairement à d'autres logiques modales des actions. Dans une troisième
partie, on s'intéresse à modéliser quelques aspects de la théorie des jeux dans une
variante de la logique �STIT� ainsi que des émotions contre-factuelles comme le
regret.

Tout au long de cette thèse, on s'e�orcera de s'intéresser aux aspects logiques
comme les complétudes des axiomatisations et les complexités des problèmes de
satis�abilité d'une formule logique.

L'intégration des trois concepts �voir�, �savoir� et �faire� dans une et une seule
logique est évoquée en conclusion et reste une question ouverte.

Dans cette thèse, on se base sur la logique modale épistémique dont la syntaxe
est dé�nie de la manière suivante :

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Kaϕ
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où p est une proposition atomique et a ∈ AGT.
La construction Kaϕ se lit �l'agent a sait que ϕ est vraie�. La sémantique, elle,

est dé�nie en terme de modèle de Kripke, c'est à dire de structureM = (W,R, V )
où :

• W est un ensemble non vide de mondes possibles ;

• R attribue à chaque agent a une relation épistémique Ra qui est une relation
d'équivalence sur W ;

• V est une valuation qui spéci�e dans chaque monde quelles propositions sont
vraies.

On peut voir une telle structure comme un graphe où W est l'ensemble des
sommets du graphe, R regroupe les di�érents arcs étiquettés et V les étiquettes
des sommets. On dé�nit ensuite la condition de vérité M, w |= ϕ par induction
structurelle sur ϕ de façon usuelle. En particulier pour l'opérateur épistémique,
cela donne :

• M, w |= Kaϕ si, et seulement si pour tout v ∈ Ra(w),M, v |= ϕ.

La donnée (M, w) s'appelle un modèle pointé. On dira qu'une formule ϕ est
satis�able si, et seulement si il existe un modèle pointéM, w tel queM, w |= ϕ.
On dira que ϕ est valide si, et seulement si pour tout modèle pointé M, w on a
M, w |= ϕ.

Les modèles pointés interviennent dans deux problèmes de décision :

• Le model-checking : en entrée on donne un modèle pointéM, w et une for-
mule ϕ et en sortie �oui� si, et seulement si on aM, w |= ϕ ;

• Le problème de satis�abilité : en entrée on donne une formule ϕ et en sortie
�oui� si, et seulement si la formule ϕ est satis�able (autrement dit, il existe
un modèle pointéM, w tel queM, w |= ϕ).

De manière assez naturelle, le model-checking est dans P. Concernant le pro-
blème de satis�abilité en logique épistémique, Y. Moses et J. Y. Halpern [JYH96]
ont démontré qu'il est respectivement NP-complet s'il y a un seul agent dans le
système et PSPACE-complete s'il y a deux agents.

Dans cette thèse, on trouvera une réécriture plus concise de l'algorithme pro-
posé dans le papier de Y. Moses et J. Y. Halpern qui décide le problème de satis-
�abilité en logique épistémique : il s'agit d'un algorithme alternant qui travaille en
temps polynomial (Figure 2.4).
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1.2 Vers une nouvelle logique modale de l'espace

Notre but est de créer une logique modale épistémique à partir de ce que les agents
savent sans communication. Autrement dit, il s'agit de construire une logique qui
parle de ce que les agents savent à partir de ce qu'ils voient. Leurs perceptions
dépendent de la géométrie de l'environnement des agents. Dans l'état de l'art, il
existe déjà une multitude de logiques de l'espace. Citons :

• La théorie des réels du premier ordre (étudiée par Tarski) utilisée en ma-
thématiques dont les symboles sont les nombres, le +, le ×, l'égalité, la
comparaison des nombres <, les connecteurs booléens, les quanti�cateurs
universels et existentiels. Cette logique permet de parler de la géométrie via
un système de coordonnées qui bien souvent utilise les nombres réels.

• P. Balbiani et V. Goranko [BG02] ont inventé une logique modale basée sur
des opérateurs modaux comme �toutes les droites qui passent par le point
courant véri�ent...�, �tous les points de la droite courante véri�ent...� etc.

• La logique modale S4 o�re une interprétation topologique de la construction
�ϕ : ϕ est vraie dans tout un voisinage autour du point courant.

• RCC-8 est une théorie du premier ordre fournissant des prédicats comme
�deux régions se touchent à la frontière�, �la première région est incluse dans
la seconde� etc.

Toutes ces logiques sont loin de nos besoins : dans toutes ces logiques, la syntaxe
parle de l'espace (le langage contient des opérateurs qui parlent de l'espace et/ou
des variables qui parlent de régions ou de coordonnées) et la sémantique est dé�-
nie en termes géométriques. On souhaite construire une logique épistémique sans
opérateurs modaux de l'espace dans la syntaxe et où la géométrie n'intervient que
dans la sémantique. En d'autres termes, nous voulons une logique épistémique où
la sémantique d'une formule est donnée uniquement à partir de la localisation des
agents dans l'espace. Nous avons donc décidé de créer notre propre approche.

1.3 Connaissance dans Lineland

Nous créons ici une logique épistémique comme la logique épistémique tradition-
nelle sauf que les mondes possibles sont ici des mondes géométriques où les agents
occupent une position dans l'espace. Ici, on se place dans un cadre simple où
l'espace est une ligne. On dé�nit donc un monde de Lineland w = (<, ~dir) par
la donnée d'un ordre total strict sur les agents et une fonction ~dir : AGT →
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{Left, Right} qui dit pour chaque agent a si l'agent regarde à gauche ( ~dir(a) =

Left) ou s'il regarde à droite ( ~dir(a) = Right).
Ensuite, nous dé�nissons des relations épistémiques Ra pour chaque agent a

sur l'ensemble de ces mondes de Lineland. On dé�nit wRau si, et seulement si
l'agent a voit exactement la même chose dans le monde w et le monde v.

La syntaxe de la logique qu'on considère ici ressemble beaucoup à la logique
épistémique classique sauf qu'il n'y a pas de propositions atomiques qui sont rem-
placées par des constantes qui parlent de la perception des agents :

ϕ ::= aB b | ⊥ | ¬ϕ | ϕ ∨ ϕ | Kaϕ

où a, b sont des agents. La construction aB b se lit �l'agent a voit l'agent b� et
la construction Kaϕ se lit �l'agent a sait que la formule ϕ est vraie�.

La sémantique est alors naturelle : w |= a B b se dé�nit directement avec les
localisations des agents a et b qui sont données par < et ~dir(a) et w |= Kaϕ se
dé�nit de façon usuelle avec la relation Ra. On obtient une unique structure de
Kripke spéci�que où les mondes sont exactement les mondes de Lineland et les
relations sont dé�nies ci-dessus.

Les résultats techniques concernent le model-checking et le problème de satis-
�abilité qui sont tous les deux PSPACE-complet. On donne un algorithme alter-
nant pour le model-checking à la �gure 4.5 qui utilise un temps polynomial pour
s'exécuter et on prouve la PSPACE-di�culté via une réduction au problème de
satis�abilité d'une formule booléenne quanti�ée. Il n'est pas étonnant ici que le
model-checking soit PSPACE-di�cile et non pas dans P car l'entrée du problème
n'est pas la donnée d'une structure de Kripke et d'une formule mais d'un seul
monde de Lineland (ordre total < et fonction ~dir) et d'une formule.

On donne également une axiomatisation complète de cette théorie épistémique
dans le cas où les agents sont disposés sur une ligne.

On aborde également l'implémentation d'un model-checker même si cette im-
plémentation n'est pour l'heure pas e�cace (au sens pratique).

1.4 Connaissance dans Flatland

Nous abordons ici la même approche mais dans le plan. Les agents ont chacun une
position dans le plan. Désormais un monde de Flatland est dé�ni par un couple
〈pos, ~dir〉 où :

• pos : AGT→ R2 ;

• ~dir : AGT→ U .
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où U désigne le cercle unité.
On associe une position à chaque agent mais aussi une direction vers laquelle

l'agent regarde. On conviendra qu'un agent perçoit un demi-plan ouvert dans la
direction vers laquelle il regarde.

De la même manière, on dé�nit des relations épistémiques sur ces mondes là :
on dira que wRau si, et seulement si l'agent a voit la même chose dans w et u.
Et de la même manière nous avons dé�ni une et une seule structure de Kripke
spéci�que.

Le language est toujours le même à savoir :

ϕ ::= aB b | ⊥ | ¬ϕ | ϕ ∨ ϕ | Kaϕ

où a, b sont des agents.
Le traitement du model-checking et du problème de satis�abilité d'une formule

ϕ sont plus compliqués dans le cadre d'un plan que dans le cadre de la ligne.
Nous n'avons pas réussi à trouver une structure de données concise permettant de
représenter simplement et qualitativement un monde dans le plan. C'est pourquoi
nous n'avons pas de résultat précis concernant la complexité théorique de ces deux
problèmes. Nous savons seulement qu'ils sont décidables via une traduction dans
la théorie des réels de Tarski.

Nous proposons deux ébauches. On étend le langage avec des annonces pu-
bliques mais cela ne pose aucun problème concernant la décidabilité. On propose
aussi une sémantique plus faible où l'on ne tient plus compte des positions exactes
des agents dans le plan mais uniquement de ce que les agents voient. Dans ce cadre,
le model-checking et le problème de satis�abilité sont dans PSPACE. Néanmoins,
une implémentation e�cace semble pour l'instant un problème di�cile.

1.5 Vers la logique STIT

Notre but à présent est d'avoir un langage qui parle de ce que les agents font. Il
y a dans la littérature plusieurs formalismes logiques qui semblent correspondre à
notre attente même si ce n'est pas le cas :

• La logique PDL est une logique des actions (vues comme des programmes).
C'est une logique modale qui o�re des constructions modales comme [π]ϕ
signi�ant �après l'exécution du programme π, il y a toujours ϕ qui est vraie.
Le défaut principal de cette logique pour nous est de ne pas parler d'agents !

• La famille des logiques de coalitions (logique de coalition de Marc Pauly,
Alternating-Time Logic etc.) sont des logiques de l'action qui o�rent des
constructions modales de la forme 〈〈J〉〉ϕ qui signi�e �le groupe d'agents J
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peut faire en sorte que ϕ soit vrai�. Avec cette famille de logiques, on peut
exprimer ce que les agents peuvent faire mais pas du tout ce que les agents
font réellement. En particulier voici deux défauts :

� On ne peut pas mélanger l'une de ces logiques avec la logique épisté-
mique pour exprimer facilement la di�érence entre de re (je peux faire
une action pour que ϕ soit vraie et je sais laquelle) et de dicto (je sais
que je peux faire une action pour que ϕ soit vraie mais je ne sais pas
laquelle).

� Il est di�cile de représenter des émotions contre-factuelles comme le
regret à l'aide de ces logiques étant donné que de telles émotions dé-
pendent des actions qu'on entreprend et non pas juste des actions qu'on
peut entreprendre.

La famille des logiques STIT développé par Belnap etc. correspond à notre
attente. Dans cette thèse, j'ai étudié la logique STIT suivante :

ϕ ::= ⊥ | p | (ϕ ∨ ϕ) | ¬ϕ | [J ]ϕ | Xϕ

où [J ]ϕ signi�e �le groupe d'agents J fait en sorte que ϕ soit vraie� où Xϕ se
lit �ϕ est vraie à l'instant suivant�.

Un modèle de la sémantique donné par Belnap de cette logique est une structure
temporelle branchée (un arbre). Les n÷uds de l'arbre sont appelés moments. Une
histoire est une branche (un ensemble maximal linéairement ordonné de moments).
On dira que deux histoires h1 et h2 se divisent au moment m si le moment m est
le moment le plus dans le futur qui est commun aux deux histoires h1 et h2. On
ajoute à chaque moment m d'une structure, une fonction de choix C qui pour
chaque coalition J , partitionne l'ensemble des histoires passant par m en classes
d'équivalence. Chaque classe d'équivalence représente un choix de la coalition J .

Bien sûr chaque fonction de choix C doit satisfaire des conditions techniques
a�n de bien modéliser la notion de choix :

• La propriété d'additivité : les histoires que peuvent choisir ensemble une
coalition J est l'intersection des histoires que peut choisir chaque agent a ∈
J ;

• Pas de choix entre des histoires non divisées : il est impossible à un certain
momentm pour une coalition de choisir entre deux histoires qui ne se divisent
pas en m. En d'autres termes, si deux histoires ne se divisent pas, elles
correspondent toutes les deux aux même choix des agents ;
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• Indépendance des agents : chaque agent a du système peut décider son propre
choix et l'action jointe de la grande coalition AGT composée des actions
choisis par chaque agent existe toujours.

Dans le but de simplicité et aussi a�n de pouvoir combiner cette logique, on
donne dans cette thèse une sémantique équivalente en termes de modèles de Kripke.

1.6 Problème de satis�abilité et axiomatisation de

fragments de STIT

Nous commençons par prouver que la logique STIT atemporelle est indécidable si
le nombre d'agents est supérieur ou égal à 3 via une réduction à la logique modale
produit S5n. On prouve également que cette logique n'est pas axiomatisable avec
un nombre �ni de schémas d'axiomes et les seules règles de modus ponens et
nécessitation.

C'est pourquoi nous nous intéressons à des fragments où l'on restreint les coa-
litions autorisées J dans le langage quand on écrit un opérateur [J ].

Par exemple P. Balbiani et al. avaient déjà montré que, si on ne s'autorise que
des coalitions individuelles, c'est à dire des opérateurs [{a}] où a est un agent,
alors le problème de satis�abilité est NEXPTIME-complet et que ce fragment est
axiomatisable. Dans cette thèse, on étend ce résultat à un fragment atemporel plus
grand : on commence par remarquer que si on autorise les opérateurs [{a}] ainsi
que l'opérateur pour la grande coalition [AGT] alors le problème de satis�abilité
reste décidable et NEXPTIME-complet. Mieux, en fait, si on autorise toutes les
coalitions présentes dans le treillis de la �gure 7.3 alors le problème de satis�abilité
reste NEXPTIME-complet et la logique demeure axiomatisable. Ces résultats de
décidabilité sont montrés à l'aide d'une �ltration que l'on adapte un peu pour
que les propriétés des modèles restent respectés. En fait, on donne également les
propriétés du modèle �ni pour plusieurs classes de modèles avec des bornes sur la
taille de ces modèles. Par ailleurs, on montre que le problème de satis�abilité de la
logique où les coalitions sont imbriquées les unes dans les autres J1 ⊆ J2 ⊆ J3... est
NP-complet si le nombre de coalitions est �xé et PSPACE-complet si le nombre
de coalitions n'est pas connu à l'avance.

On remarque en�n que la logique temporelle avec l'opérateur X peut se plonger
dans la logique atemporelle d'où on déduit également les complexités pour les
problèmes de satis�abilité. Le problème de satis�abilité d'une formule du STIT

individuel avec un seul agent et l'opérateur temporel X est PSPACE-complet et
le problème de satis�abilité d'une formule du STIT individuel avec au moins deux
agents et l'opérateur temporel X est NEXPTIME-complet.
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1.7 Un fragment STIT faible

On a étudié des fragments dans lesquels on a restreint les coalitions que l'on peut
écrire dans une formule. À présent, on étudie un fragment où l'on interdit l'imbri-
cation des opérateurs modaux, mais en autorisant toutes les coalitions possibles.
Le fragment syntaxique est le suivant :

χ ::= ⊥ | p | χ ∧ χ | ¬χ (formules propositionnelles)
ψ ::= [J ]χ | ψ ∧ ψ (formules STIT)
ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | 〈∅〉ψ (formules du langage))
Par exemple, la formule [{1}][{1, 2}]p n'est pas autorisée dans le langage.
On démontre un résultat de propriété du petit modèle à l'aide d'un argument

de type �sélection de points� : en fait, toute formule satis�able est satis�able dans
un modèle de taille polynomiale. De fait, on obtient que le problème de satis�a-
bilité d'une formule de ce fragment est NP-complet. On donne aussi un résultat
d'axiomatisation : toutes les validités du fragment syntaxique sont démontrables.

1.8 Logique modale pour des jeux épistémiques

À présent, on donne un formalisme logique pour pouvoir raisonner à propos des
jeux épistémiques. Il s'agit d'une logique modale et d'une sémantique en termes de
modèles de Kripke, ainsi que d'une axiomatisation. On donne aussi des résultats
de complexité.

Le langage de cette logique fournit plusieurs opérateurs modaux :

• Un opérateur d'action qui permet des constructions du type �la coalition C
exécute l'action jointe δC� ;

• �ϕ : �dans tous les états possibles du jeu, ϕ est vraie� ;

• Kiϕ : �l'agent i sait que ϕ est vraie� ;

• ϕ est vraie dans les mondes qui sont meilleurs non strictement pour l'agent
i que le monde courant.

On se place dans un premier temps dans le cadre d'information complète. Le
problème de satis�abilité est NP-complet. On montre aussi comment exprimer les
notions de meilleures réponses, d'équilibres de Nash et de rationalité à l'aide de ce
langage logique. On retrouve des théorèmes connus de la théorie des jeux. On dé-
�nit aussi la notion de stratégie strictement dominée et l'algorithme d'élimination
des stratégies strictement dominées (IDSDS).

On fournit également une représentation plus concise de cet algorithme en
ajoutant la notion d'une variante d'annonces publiques au langage.
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On continue notre étude avec les jeux à information incomplète qu'on est aussi
capable de représenter dans notre logique en a�aiblissant notre logique à infor-
mation complète : on relâche la contrainte qui liait � et Ki. Dans ce cadre plus
général, le problème de satis�abilité est PSPACE-complet à moins qu'il n'y ait
qu'un seul agent et qu'une seule action auquel cas il est NP-complet.

1.9 Emotions contre-factuelles

La logique STIT permet aisément de représenter la notion de responsabilité �le
groupe d'agents J aurait pu éviter que χ soit vraie�. Formellement, cela s'écrit de
la façon suivante :

CHPJχ
def
= χ ∧ ¬[AGT \ J ]χ.

c'est à dire χ est vraie et il est faux que les autres agents font en sorte que χ
soit vraie (i.e. les autres permettent ¬χ).

Pour représenter une émotion contre-factuelle on a besoin d'un opérateur épis-
témique. On étend donc le langage de STIT avec un opérateur épistémique.

Bien sûr, comme la logique STIT est indécidable, il est souhaitable d'utiliser
un fragment syntaxique de cette logique si on veut l'utiliser en pratique dans
un système qui représente des émotions contre-factuelles. On s'intéresse donc au
langage suivant :

χ ::= ⊥ | p | χ ∧ χ | ¬χ (formules propositionnelles)
ψ ::= [J ]χ | ψ ∧ ψ (formules STIT)
ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | 〈∅〉ψ | Kiϕ (formules du langage)
Avec ce fragment (qui est une extension du fragment STIT vu précédemment),

le problème de satis�abilité d'une formule est PSPACE-complet. De plus, on donne
une axiomatique : toute validité de ce fragment est démontrable.

À présent introduisons des atomes spéciaux goodi pour tout agent i ∈ AGT.
Ces atomes spéciaux désignent les mondes qui sont bons pour un agent.

On dira que χ est bon pour l'agent i si, et seulement si χ est vrai dans tous les
mondes bons. Formellement :

GOODiχ
def
= [∅](goodi → χ).

On dira que χ est désirable pour l'agent i si, et seulement si i sait que χ est
quelque chose de bon pour lui :

DESiχ
def
= KiGOODiχ.

On peut ensuite dé�nir dans notre langage quatre émotions contre-factuelles
que sont le regret, la réjouissance, la déception, l'allégresse :

REGRETiχ
def
= DESi¬χ ∧KiCHPiχ.
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REJOICEiχ
def
= DESiχ ∧KiCHPiχ.

DISAPPOINTMENTiχ
def
= DESi¬χ ∧KiCHPAGT\{i}χ.

ELATIONiχ
def
= DESiχ ∧KiCHPAGT\{i}χ.

Ces quatre émotions sont dé�nies à partir de deux variables :

• selon que l'on désire χ ;

• selon que la responsabilité de χ vienne de i ou des autres agents.

1.10 Conclusion

Dans cette thèse, on a proposé de multiples formalismes en logique modale pour
parler de la perception des agents dans un monde à une dimension ou deux di-
mensions. On a étudié une logique des actions, STIT, ainsi que les fragments. On a
également décrit une logique modale permettant de modéliser certains concepts de
la théorie des jeux. On a développé une logique permettant de décrire des émotions
contre-factuelles.

Les perspectives sont à présent nombreuses :

• Inclure du dynamisme comme des opérations de mise à jour etc. : changement
d'émotions, changement de connaissances sur l'état physique du monde.

• Etudier des variantes concernant la perception : d'autres géométries, d'autres
types de perceptions, etc.

• Construire un cadre logique permettant de décrire toute la chaîne de repré-
sentation des connaissances d'un agent : représentation du monde physique
et des actions des autres agents. On pourrait introduire des axiomes d'inter-
actions entre perception et connaissance qu'une action est réalisée comme :

aB b→ ([{b}]ϕ→ Ka[{b}]ϕ)

c'est à dire si un agent a voit un agent b et que b réalise une action telle que
ϕ est vraie alors l'agent a sait que l'agent b réalise cette action.

• Trouver une façon d'implémenter e�cacement les procédures de décision
pour les logiques présentes dans cette thèse. Pour l'instant, raisonner direc-
tement avec la théorie des réels pour faire du raisonnement épistémique sur
le monde est ine�cace. Par exemple, le fragment STIT faible est NP-complet
mais nous n'avons pas de bonne procédure de décision, procédure de déci-
sion qui aiderait grandement à la réalisation d'un système qui sait raisonner
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sur les émotions contrefactuelles. L'implémentation de ces procédures de dé-
cisions pourraient être utilisée pour créer un jeu vidéo où les personnages
virtuels sont dotés de raisonnement et de représentation des connaissances
en terme d'état du monde virtuel et des actions des autres agents.



24 1.10 Conclusion



Chapter 2

Introduction

This thesis deals with knowledge reasoning using epistemic modal logic. Epis-
temic modal logic was already been studied in the domain of Arti�cial Intelligence
[JYH96]. The contribution of this thesis is to investigate knowledge reasoning
about two complementary issues: knowledge about the perception of what agents
see in the world (Part I) and knowledge about actions and also about emotions
(Parts II and III).

2.1 Our aim: reasoning about knowledge

In this section, we �rst present two examples in order to give an intuition about
reasoning about knowledge, agents, actions, perceptions, etc. We then explain
what is automated reasoning. Finally, we give some applications to illustrate how
reasoning about knowledge can be useful in the real life.

2.1.1 Two examples

2.1.1.1 Muddy children

Let us begin with the famous example of the Muddy children [GO06], [Pla07],
[FHMV95]. Let us consider three children Fahima, Marwa and Nadine settled as
in the Figure 2.1. In particular, we suppose that their foreheads are dirty. Each of
them do not know whether she is dirty or not but knows that the other are dirty.

Suppose that the following sentences are true for Fahima:

• Fahima does not know that she is dirty.

• Fahima knows that Marwa is dirty.
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Figure 2.1: Muddy children with 3 children: Fahima, Marwa and Nadine.

• Fahima knows that Nadine is dirty.

• Fahima knows that Marwa knows that Nadine is dirty.

• Fahima knows that Marwa knows whether Fahima is dirty or not.

• Fahima knows that Nadine knows that Marwa is dirty.

• Fahima knows that Nadine knows whether Fahima is dirty or not.

• Fahima does not know if Marwa knows that Nadine knows that there is at
least one of the children which is dirty, etc.

Now the father of Fahima, Marwa and Nadine comes and says: �at least one
of you is dirty.� We suppose that each child trusts the father and that each child
knows that the others trust the father and so on. In fact, each of them learn this
fact and thus Fahima knows the following sentence:

• Fahima knows that everyone knows that everyone knows that at least one of
the children is dirty.

The father asks every child if she knows whether she is dirty or not. Every
child answers the truth: actually they do not know. Thus, Fahima makes this
reasoning:

• Suppose I am dirty. Marwa sees and knows that Nadine is dirty. Marwa
would also know that I am dirty. Hence Marwa would know that two children
are dirty. The same for Nadine: she would know that two children are dirty.
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• Suppose I am clean. Marwa cannot imagine she is clean. Otherwise Nadine
would have answered �I am dirty�. In the same way, Nadine cannot imagine
she is clean. Otherwise Marwa would have answered �I am dirty�.

• Conclusion: Nadine and Marwa do the same reasoning. Everybody knows
that there are at least two dirty children.

Then the father asks again to every child if she knows whether she is dirty or
not. Every child answers the truth: actually they do not know. Thus, Fahima
makes this reasoning:

• Suppose I am clean. In this case, Marwa would see that only Nadine is dirty.
Furthermore, as Marwa actually knows that two of the children are dirty
Marwa would have answered �I am dirty�. But this was not the case.

• Conclusion: I know that I am dirty.

This example partly relies on what agents see. If Fahima did not see Marwa
and if she did not know that Marwa sees her etc. she would not have been able
to deduce that she was dirty. In Part I we propose a knowledge representation for
problems dealing with perception.

2.1.1.2 Prisoner's dilemma

Let us consider two boys: Bilal and Pablo. Every day their father give them 5e
for pocket-money. Bilal and Pablo are usually wise but today, they are not: they
have eaten together all the ice cream from the fridge! The father is not aware that
all the ice cream has been eaten. Bilal and Pablo have two choices: admit the fault
to the father or say nothing. But the two boys know how the father can react:

• if they both admit the fault, Bilal will have only 2e for pocket-money and
Pablo will have only 2e for pocket-money;

• if they both say nothing, Bilal and Pablo will both have 5e as usual;

• if Bilal admit the fault and Pablo say nothing, Bilal will have 3e but Pablo
will have nothing because he is not honest;

• if Pablo admit the fault and Bilal say nothing, Pablo will have 3e but Bilal
will have nothing because he is not honest.

The best choice (Nash equilibrium) is that they both admit the fault. Indeed,
if Bilal admit the fault, he can win 2e or 3e. But if Bilal say nothing, he may have
no money from the father. This example partly relies on the knowledge about the
actions and preferences of Bilal and Pablo. In Part II and III we will give di�erent
representations for problems dealing with actions and preferences.
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2.1.1.3 Towards automated reasoning

We want a computer to be able to reason about knowledge (Fahima knows that
her forehead is dirty), action (Bilal say nothing, Pablo admit the fault, etc.), pref-
erences (Bilal prefer to win 2e than nothing), emotions (Bilal regrets to have said
nothing). We want also the computer to reason about mix of the previous ingre-
dients: for instance, we want to design algorithms able to automatically reason
about sentences like �Bilal knows that Pablo prefer that Fahima feel regret�. In
this sense, this thesis is part of the �eld of arti�cial intelligence.

In order to make a computer reason/compute, we need data structures to
represent knowledge, action, preferences, emotions. In this sense, this thesis also
deals about knowledge representation. Throughout this thesis, the most important
data structures are Kripke structures that give a semantics to . Modal logic is
suitable for many reasons:

• Modal logic is close to natural language. For instance, the fact �Fahima
knows that Marwa's forehead is dirty� is represented by the formula
KFahimadirtyMarwa. The symbol KFahima is called a modal operator and
its meaning is �Fahima knows that�. The symbol dirtyMarwa is called an
atomic proposition and represents the atomic fact �the forehead of Marwa is
dirty�. Thus the representation in terms of formulas is easy;

• Like the classical propositional logic, modal logics' satis�ability problems
and model-checkings (see De�nition 3 and 4) are often decidable: generally
speaking, it means that we can use modal logics practically with a computer
for automated reasoning.

• Modal logic is expressive. For instance, we can nest modal operators, that
is to say we are able to reason about complex formulas like

KFahima¬KNadinedirtyMarwa

(�Fahima knows that Nadine does not know that Marwa is dirty�). In par-
ticular, this kind of complex formulas cannot be easily expressed in classical
propositional logic.

Generally speaking, the more a logic is expressive, the more it is di�cult to
reason with:

• classical proposition logic is �very� decidable (see Theorem 3) but not really
expressive;

• Modal logics are often �quite� decidable (see Theorem 5 and �quite� expres-
sive and suitable for arti�cial intelligence aspects;
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• the �rst order logic is undecidable [Chu36], [Tur37] but �very� expressive,
although not very suitable for arti�cial intelligence aspects (far from natural
speaking)

2.1.2 Possible applications

2.1.2.1 Toy for kids

An Australian company [Ada09] is developing a teddy bear that can interact with
young kids and propose activities. Modal logic may help this project to have a
clean knowledge representation for the toy for preferences of the kid, knowledge of
the environment of the kid. For instance:

• the teddy bear may know that the kid prefers listen to classical music than
to jazz; (knowledge and preferences);

• the teddy bear may know that if the kid knows that there is a cat in the room
and that the cat is looking at the teddy bear, the kid will cry. (knowledge,
perception, action)

• the teddy bear may understand the notion of regret of an action of the kid
and then sing a happy song to the kid in order to calm her.

2.1.2.2 Video Games

In the domain of video games, there are some speci�c kinds of games where the
player are evolving in a virtual world (for instance the Middle-earth [TSBH95]).
Such a game is often called role playing game. In the virtual world of such a
role playing game, there are inhabitants, for instance weapon sellers, innkeepers,
kings, dwarfs, warriors, etc. Those characters are arti�cial and are designed by
the computer. In particular, the computer controls the behaviors of those di�erent
agents and the behavior of an agent is closely related to her knowledge about the
world as well as agents actions, preferences, emotions etc. For instance:

• Dwarfs hates when elves wear hats (preferences);

• Dwarfs prefer to have axes than swords;

• The dwarf Bilal knows that the elf Pablo has sold his weapon (knowledge
and action);

• The elf Pablo regrets to have sold his weapon but the dwarf Bilal does not
know it (knowledge, action and emotion).
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Thus, modal logics seem to provide a clean framework to represent knowledge
of an arti�cial inhabitant of the virtual world of a role playing game and then to
deduce a rational behavior of such an agent.

2.1.2.3 Modeling the world

Another more application of logician is to understand and to explain the world.
As the physician Niels Bohr has modeled the atom with a planetary-model atom,
modal logicians may model knowledge reasoning etc. with Kripke modal logic
de�ned below.

2.2 Epistemic modal logic

Epistemic modal logic is a modal logic [BDRV02], [Che80], [HC72], [GO06], [Hin62]
concerned by the notion of knowledge. Its name comes from the Greek word
επιστηµη or �episteme� meaning knowledge.

2.2.1 Syntax

In this section we present the language of epistemic logic [JYH96]. The syntax is
the raw symbols. Let us consider a countable in�nite set ATM of atomic propo-
sitions and a �nite non-empty set AGT of agents. The language is de�ned by the
following rule:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ

where p ranges over ATM and a ranges over ATM .
The intuitive meaning of Kaϕ is �agent a knows that ϕ is true�. Ka is called a

modal operator . As usual > =def ¬⊥, (ϕ∧ψ) =def ¬(¬ϕ∨¬ψ), K̂aϕ =def ¬Ka¬ϕ,
ϕ → ψ =def (¬ϕ ∨ ψ) and (ϕ ↔ ψ) =def ((ϕ → ψ) ∧ (ψ ↔ ϕ)). We follow the
standard rules for omission of parentheses.

Example 1 The formula sun ∧ ¬Kasun means �the sun is shining but the agent
a does not know that the sun is shining�.

Now there are formulas that seem to be always false: ⊥, Kasun ∧ ¬sun, etc.
There are formulas that seem to be always true: ¬⊥, Ksun ∨ ¬Ksun, etc. There
are formulas that can be true: sun ∧ ¬Kasun, etc. In order to formally classify
formulas that seem to be always false, formulas that can be true and formulas
that seem to be always true, we de�ne in the next section the semantics of the
epistemic logic.
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w: sun u: ¬sun

a

a

a a

Figure 2.2: A model with possible worlds

2.2.2 Semantics

As we have seen, it seems that some formula are always true, some of them are
surely false and some of them are sometimes true and sometimes false. In fact,
the truth of a formula depends on a context: to say whether a formula is true or
not we need a model.

Models are here made up of possible worlds. This kind of semantics have
been introduced by Kripke in [Kri63]. The reader can �nd more informations in
[Che80], [BDRV02] and [HC72]. The idea is that we model a real life situation
by considering di�erent worlds. One world is reported to be the real world . Then
we introduce relations Ra for each agent a modeling the knowledge. Given two
worlds w and v, wRav means that agent a cannot distinguish world w from world
v: they are both possible worlds for agent a. Finally we obtain a graph: vertices
are worlds and edges is given by the relation Ra.

Example 2 The Figure 2.2 shows a Kripke model for the formula sun∧¬Kasun.
The world (or node) w stands for the real world. As agent a does not know that
the sun is shining, she can imagine a world u where the sun is not shining. Such
a world she can imagine is called a possible world.

In what follows, we formally de�ne the model:

De�nition 1 (model)
A model is a tupleM = (W,R, V ) where:

• W is a non-empty set of worlds

• R : AGT→ W ×W is an equivalence relation;

• V : ATM → 2W .
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A model M is sometimes called a Kripke structure, a Kripke model and so
on. Given a modelM = (W,R, V ), the couple (W,R) is called a frame [BDRV02]
[GKWZ03]. V is called valuation. The notion of frame is important in order to
prove completness of an axiomatics [Sah75]. Elements of W are sometimes called
nodes, states, possible worlds, possible states and so on. For all agents a, Ra is
an equivalence relation. Indeed the relation �are indistinguishable from agent a�
is supposed to be an equivalence relation.

In order to de�ne how to evaluate modal formulas over a Kripke model, we
give the following truth conditions:

De�nition 2 (truth conditions)
We de�neM, w |= ϕ by induction on ϕ:

• M, w |= p i� w ∈ V (p);

• M, w 6|= ⊥;

• M, w |= ϕ ∨ ψ i�M, w |= ϕ orM, w |= ψ;

• M, w |= Kaϕ i� for all u ∈ W , wRau impliesM, u |= ϕ.

The formula Kaϕ is true in w i� ϕ holds in all possible worlds for agent a. The
more possible worlds an agent have the more she is ignorant. On the contrary,
when a agent a knows everything, then the set of all possible worlds Ra(w) is {w}:
she only the real world as possible world. The operation of learning consists in
deleting worlds in the model, for instance public announcements (see [Pla07] and
Chapter 4, 5, 9).

We have supposed the relation Ra to be an equivalence relation. That is why
those formulas are true in all worlds in all models:

• Ka(ϕ→ ψ)→ (Kaϕ ∧Kaψ) (K);

• Kaϕ→ ϕ (T);

• Kaϕ→ KaKaϕ (positive introspection) (4);

• ¬Kaϕ→ Ka¬Kaϕ (negative introspection) (5)

This logic is called S5n where n is the number of agents in AGT. Traditionally
S5 is the logic with only one operator associated with one equivalence relation and
S5n is called the fusion of S5, S5, . . . and S5 (n times).

Remark 1 Some authors think that requiring the relation to be an equivalence
relation is too strong:
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• Hintinkka rejects the the negative introspection (5) �unless you happen to be
as sagacious as Socrates�. [Hin62] He models epistemic reasoning with the
logic S4 (see Subsubsection 3.2.2.2).

• Stalnaker [Sta06] studies the combination of the logic of belief KD45 (axiom
5 for beliefs does not yield to a contradiction), the logic of knowledge S4 plus
the interactions Baϕ → KaBaϕ (positive introspection of beliefs), ¬Baϕ →
Ka¬Baϕ, Kaϕ → Baϕ (knowledge implies belief), Baϕ → BaKaϕ (strong
belief) where Ba means �agent a believes that�. In this system, he claims that
we can prove Baϕ↔ K̂aKaϕ and that the operator Ka veri�es the principles
of the logic S4.2.

• Williamson rejects the positive introspection (4) in [Wil02].

We decide in this thesis to focus on the system S5 for the sake of simplicity.

Now we can consider two classical decision problems linked to the De�nition
of truth conditions.

2.2.3 Two decision problems

A decision problem [Pap03] asks a question about a mathematic object (the input)
that requires either a �yes� or a �no� answer (the output). In this subsection, we
consider two classical decision problems: the model-checking and the satis�ability
problem.

2.2.3.1 Model-checking

De�nition 3 (model-checking)
The model-checking is the problem traditionally de�ned as follows:

• Input: a �nite Kripke structure M = (W,R, V ), a point w ∈ W and a
formula ϕ;

• Output: Yes i�M, w |= ϕ.

In the model-checking, the input is made up of a graph M (a �nite Kripke
structure), a world w and a formula ϕ. The corresponding question about the
input M, w, ϕ is to know whether M, w |= ϕ or not. Model-checking has been
widely studied in the litterature [BBF+01] especially for temporal logics and their
applications. Note that in Chapter 4 and 5, we will study speci�c kinds of model-
checking where the input is a bit di�erent. More speci�cally we do not give a
Kripke structure as an input but another compact data structure representation
of it.
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2.2.3.2 Satis�ability problem

A formula ϕ is said to be satis�able i� there exists a modeM = (W,R, V ) and a
world w ∈ W such thatM, w |= ϕ.

De�nition 4 (satis�ability problem)
The satis�ability problem is traditionally de�ned as follows:

• Input: a formula ϕ;

• Output: Yes i� the formula ϕ is satis�able.

In the satis�ability problem, the input is a formula ϕ and the corresponding
question about the input ϕ is to know whether ϕ is satis�able or not.

In the same way a formula is said to be valid i� ¬ϕ is not satis�able. We can
also be interested to the validity problem but we prefer to deal with the satis�ability
problem. This choice is subjective: some people of LiLAC Team are focusing on
satis�ability problems, model constructions and tableau methods etc. and are
developing a satis�ability problems' solver for modal logic [Sai10]. Furthermore,
the satis�ability problem is the �dual� of the validity problem in the sense that a
formula ϕ is valid i� ¬ϕ is not satis�able. In fact, the main concern of this thesis
is to study satis�ability problems in di�erent contexts: epistemic modal logic with
an original semantics dealing with geometry (part I), logics dealing with agents'
actions (part II) and logics mixing knowledge and actions (part III). The word
�satis�ability� is one of the most used word in this thesis!

2.3 Complexity classes

In this Section, we are interested in the notion of algorithm for solving decision
problems and of complexity classes. Algorithms are e�ective, constructive, me-
chanical methods designed to solve decision problems. Running an algorithm re-
quires time and space (memory) in order to compute the ouput of the decision
problem.

The Church-Turing thesis [Tur37], [Chu36] states that the computation of an
algorithm can be carried out a Turing machine. Usually, the following de�nitions
are given in terms of Turing machine and the interested reader can �nd more on
this in [Pap03], [CKS81]. Here for the sake of clarity, we decided to give some
intuitions about the de�nition of determinism, non-determinism, alternation, P,
NP etc. in terms of algorithms.
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2.3.1 Algorithms

In this subsection, we present the notion of deterministic, non-deterministic and
alternating algorithms. An algorithm is made up of a�ectations x := v, conditional
if , for loops etc. An algorithm takes an input i and may succeed, fail or never halt.
For a thorough introduction to the subject of algorithms see [Knu73], [AHU83] or
[CLR92]. The notion of algorithm is informal and closer to the reality (programs
in Java, Scheme etc.)

An algorithm is said to be deterministic i� there is no choice during the execu-
tion of the algorithm. If the machine is in a given state, then there is only one next
state. We say that a deterministic algorithm decides a decision problem P i� for
all input i the algorithm succeeds on the input i if the output of i in the problem
P is �yes� and the algorithm fails on the input i if the output of i in the problem
P is �no�. We also say that P is decidable. Otherwise the problem is undecidable.
Typically, algorithms written in Java, Scheme etc. are deterministic.

An algorithm is said to be non-deterministic i� there are existential choices
during the execution of the algorithm. Sometimes, the algorithm can choose a value
for a variable and can guess a whole Kripke structure. At some existential choice
of a value in a �xed �nite set VALUES for a variable x, the algorithm succeeds
i� there is a value v ∈ VALUES such that the execution with x = v will succeed.
The algorithm succeeds i� there exists a successful execution. A non-deterministic
algorithm decides a decision problem P i� for all input i the algorithm succeeds
on the input i i� the output of i in the problem P is �yes�. Note the asymmetry
in the way of treating the �yes� and the �no� instances [Pap03][Section 2.7].

An algorithm is said to be alternating i� there are existential and universal
choices and negating state during the execution of the algorithm. At some exis-
tential choice of a value in a �xed �nite set VALUES for a variable x, the algorithm
succeeds i� there is a value v ∈ VALUES such that the execution with x = v will
succeed. At some universal choice of a value in a �xed �nite set VALUES for
a variable x, the algorithm succeeds i� for all value v ∈ VALUES the execution
with x = v will succeed. At some negating state, the algorithm succeeds i� what
remains to execute fails. An alternating algorithm decides a decision problem P
i� for all input i the algorithm succeeds on the input i i� the output of i in the
problem P is �yes�.

Of course, all deterministic algorithms are non-deterministic and
all non-deterministic algorithms are alternating. Several examples of algorithms
are given in this thesis.
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2.3.2 Complexity with time

We give direct de�nition of complexity class P, NP, AP, EXPTIME, NEXPTIME.
For more details, see [Pap03].

A problem is in P i� there exists a deterministic algorithm running in polyno-
mial time that can solve it. More precisely, there exists a polynomial P such that
for any input i of size |i| the algorithm runs in less than P (|i|) steps.

A problem is in NP i� there exists a non-deterministic algorithm running in
polynomial time that can solve it. More precisely, there exists a polynomial P
such that for any input i of size |i| all executions (due to existential choices) of the
algorithm terminate in less than P (|i|) steps.

A problem is in AP i� there exists a non-deterministic algorithm running in
polynomial time that can solve it. More precisely, there exists a polynomial P
such that for any input i of size |i| all executions (due to existential and universal
choices) of the algorithm terminate in less than P (|i|) steps.

A problem is in EXPTIME i� there exists a deterministic algorithm running
in exponential time that can solve it. In other words, there exists a polynomial P
such that for any input i of size |i| the algorithm runs in less than 2P (|i|) steps.

A problem is in NEXPTIME i� there exists a non-deterministic algorithm
running in exponential time that can solve it.

2.3.3 Complexity with space

A problem is in PSPACE i� there exists a deterministic algorithm requiring a
polynomial amount of memory that solves it. More precisely, the algorithm decides
the problem and there exists a polynomial P such that for any input i of size |i|
the execution of the algorithms requires less that P (|i|) bits of memory.

A problem is in NPSPACE i� there exists a non-deterministic algorithm requir-
ing a polynomial amount of memory that decides it. More precisely, there exists a
polynomial P such that for any input i of size |i| the algorithm requires less than
P (|i|) bits of memory. Even more precisely, there exists a polynomial P such that
for any input i of size |i|, every execution (due to existential choices) requires less
than P (|i|) bits of memory. Notice that the de�nition of NPSPACE does not even
require that the algorithm halts on all computations.

Actually, the two both notions are the same:

Theorem 1 (Savitch's Theorem)[Pap03], [Sav70] PSPACE = NSPACE.

The Savitch's Theorem says that for every problem such that there exists a
non-deterministic algorithm using a polynomial amount of memory that can solve
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it, there exists a deterministic algorithm using a polynomial amount1 of memory
that can solve it.

Actually, we have that [CKS81]:

Theorem 2 PSPACE = NSPACE = AP.

Note that the notion APSPACE also exists and we let the reader imagine the
de�nition.

2.3.4 Hardness

Informally, a problem is NP-hard i� it encodes in itself the di�culty of all NP
problems. More formally, a problem P is NP-hard i� for all problems Q in NP,
there exists a translation tr:

• for all input i of Q, Q says �yes� to i i� P says �yes� to tr(i);

• tr can be computed in polynomial time that is to say there exists an algorithm
running in polynomial time with the following speci�cation:

� Input: i;

� Output: tr(i).

A problem is said to be NP-complete i� it is both NP-hard and in NP. Humans
wonder whether �P = NP� or �P 6= NP� [Coo06] and there is a possibility to
get rich (1000000$!) if you get the good answer. In particular, if we prove that
one satis�ability problem that are NP-complete presented in this thesis (as the
satis�ability problem in Lineland without epistemic operators presented in Chapter
4 or the fragment of STIT presented in Chapter 8) is in P, we get rich.

More seriously, knowing whether P = NP or P 6= NP has a tremendous con-
sequences in real life. Suppose that P = NP. On the one hand, cryptographers
would have to hurry up because their decision problems are often NP-complete
hence in P so that their cryptosystems would be easily broken. On the other hand
this may be a good news concerning many decision problems of logistics that are
NP-complete thus in P. Unfortunately many computer scientists believes that P
6= NP.

1may be a bit more!
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2.4 Two standard problems

In order to prove that a problem belongs to a certain class of complexity, we can
clearly exhibit an algorithm that can solve it. On the other hand, for proving
hardness we need standard problems.

Theorem 3 [Coo71] The satis�ability problem of the classical propositional logic
(SAT) is NP-complete.

Theorem 4 [SM73] The satis�ability problem of the quanti�er propositional logic
(QSAT), that is to say, the logic whose language is de�ned by:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | ∀pϕ

where p ranges over a countable in�nite set ATM of atomic propositions is
PSPACE-complete.

These two standard problems shall be used to prove hardness of the satis�ability
problems in Lineland (Chapter 4) and Flatland (Chapter 5). The SAT problem
will be also useful to prove hardness for the fragment of STIT in Chapter 8. The
latter is also useful to prove complexity result for the satis�ability problem of the
epistemic logic when the number of agents is greater that 2.

The Figure 2.3 sums up the relationship between the di�erent complexity
classes.

2.5 Reasoning in S5n

According to [JYH96], if the number of agents is equal to 1, the satis�ability
problem is NP-complete. If the number of agents is greater that 2, the satis�ability
problem is PSPACE-complete. Although it has been already proven in [JYH96],
we are going to prove again that it is in PSPACE for many reasons. The �rst
reason is to have a compact version of the algorithm (an alternating one) that can
solve the satis�ability problem. The second reason is because we will adapt this
algorithm in Chapter 10 for an extension of the epistemic logic.

Theorem 5 The satis�ability problem of the epistemic logic is in PSPACE.

Proof.

In this proof, we extend the notationM, w |= ϕ to sets of formulas: if Σ is a
set of formulas, thenM, w |= Σ stands for �for all formulas ϕ ∈ Σ,M, w |= ϕ�.
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decidable problems

EXPTIME

AP = PSPACE = NPSPACE

NP

P

NEXPTIME

• SAT

• QSAT

Figure 2.3: Complexity classes

Figure 2.4 shows an algorithm that can solve the satis�ability problem of S52

of a set of formulas Σ, that is to say the algorithm is supposed to succeed i� the
set of formulas Σ is satis�able. We give here an alternating procedure sat(. . . , 1).
In the same way we can de�ne the procedure sat(. . . , 2) by exchanging 1 and 2.
For all Σ, the call sat(Σ, 1) terminates because at each sub-call there is at least
one modal operator that disappears. It runs in polynomial time. We leave to the
reader to check that if n = 1, the algorithm is non-deterministic so that it proves
that the satis�ability problem of S5 is in NP. For all formulas ϕ, we de�ne the set

CL(ϕ) = SF (ϕ) ∪ {¬ψ | ψ ∈ SF (ϕ)}.

CL(ϕ) contains all the sub-formulas of ϕ and their negations. Let l(Σ) be the
number of operators in the formula of Σ that has the maximal number of operators.
We prove by induction on l(Σ) that i� all formulas of Σ begins with Ki or K̂i,
then we have sat(Σ, i) succeeds i� Σ is satis�able.

For all epistemic formulas we have equivalence between ϕ is satis�able and K̂1ϕ
is satis�able. In order to check the satis�ability of a single formula ϕ, we simply
call the procedure sat({K̂1ϕ}, 1).

Basic case
If l(Σ) = 1, then for sure there is no recursive call. The correctness of the

algorithm is proven like the inductive case.
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function sat(Σ, 1)
n := the number of operator K1 and K̂1 appearing in Σ
(∃) choose β a set of at most n subsets of CL(Σ) such that there exists
S ∈ β such that Σ ⊆ S.
Check K1ψ, K2ψ, K̂1ψ and Boolean coherence:

• for all S ∈ β, ψ ∈ S xor ¬ψ ∈ S.

• for all S, S ′ ∈ β, K1ψ ∈ S i� K1ψ ∈ S ′;

• for all S, S ′ ∈ β, K̂1ψ ∈ S i� K̂1ψ ∈ S ′;

• for all S ∈ β, K1ψ ∈ S implies ψ ∈ S;

• for all S ∈ β, K2ψ ∈ S implies ψ ∈ S;

• for all S ∈ β, K̂1ψ ∈ S i� there exists S ′ ∈ β such that ψ ∈ S ′;

• ψ1 ∧ ψ2 ∈ S i� (ψ1 ∈ S and ψ2 ∈ S);

• ψ1 ∨ ψ2 ∈ S i� (ψ1 ∈ S or ψ2 ∈ S);

(∀) choose S ′ ∈ β
if there exists a formula of the form K̂2ψ in S ′,

call sat({K2θ ∈ S ′} ∪ {K̂2θ ∈ S ′}, 2)

Figure 2.4: Algorithm that can solve the satis�ability problem of S5n of a �nite
set of formulas Σ

Inductive case Let us consider a given set of formulas Σ such that all formulas
of Σ begins with K1 or K̂1.

(⇒) We prove that sat(Σ, 1) succeeds implies that Σ is satis�able.

If sat(Σ, 1) succeeds, we are to construct a �tree-like� modelM = (W,R, V )
such that there exists w ∈ W such that M, w |= Σ. sat(Σ, 1) succeeds
means that every call (possibility zero!) sat({K2θ ∈ S ′}∪{K̂2θ ∈ S ′}, 2) has
succeeded. We have l({K2θ ∈ S ′} ∪ {K̂2θ ∈ S ′}) < l(Σ). So by induction
for all S ′ ∈ β there exist a model MS′ = (W S′ , RS′

1 , R
S′
2 , V

S′) and a world
wS
′ ∈ W S′ such thatMS′ , wS

′ |= {K2θ ∈ S ′} ∪ {K̂2θ ∈ S ′}.
The modelM is obtained with the points S ′ of β and by gluing the pointed
modelsMS′ , wS

′
to S ′ for all S ′. Broadly speaking, concerning the relations,

β is a 1-equivalence class inM. S ′ is in the 2-equivalence class of wS
′
inher-

ited fromMS′ . For other points of one modelMS′ , relations are inherited
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Figure 2.5: The modelM

directly those inMS′ . Concerning the valuation, for all points coming from
a modelMS′ , the valuation is inherited. For a point S ′ ∈ β, a proposition
is true in S ′ i� it belongs to S ′. Now let us explain the construction of
M = (W,R, V ) in more details:

� W is the union of β and all the worlds of allMS′ where S ′ ranges β;

� β is a 1-equivalence class. For all S ′ ∈ β, the 2-equivalence class of S ′
is the union of {S ′} and the 2-equivalence class of wS

′
in MS′ . The

1-equivalence class of a point in a model MS′ is the same in M and
MS′ . The 2-equivalence class of a point not in the 2-equivalence class
of a wS

′
in a modelMS′ is the same inM andMS′ .

� V is de�ned in the following way. For all propositions appearing in ϕ,
for all worlds S ′ ∈ β, we have p ∈ V (S ′) i� p ∈ S. Other propositions
are false over β. For worlds from a modelMS′ , the valuation is inherited
from the valuation ofMS′ .

The �nal result is a pointed model (M, S) satisfying for Σ. To prove it,
we prove by induction on ψ that (∆) for all ψ ∈ CL(ϕ), for all S ′ ∈ β,
M, S ′ |= ψ i� ψ ∈ S ′.

(Propositions) It follows the De�nition of V .
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(Boolean cases) Left to the reader.

(K1ψ) The coherence test makes that true.

(K2ψ) Let S ′ ∈ β be such that K2ψ ∈ S ′.

Lemma 1 For all sub-formulas ε of K2ψ, we have for all v ∈ W S′,
M, v |= ε i�MS′ , v |= ε.

Proof.

Let us begin to prove the Lemma 1 by induction on ε.

(Propositions) ok.
(Boolean cases) ok.

(K1θ) M, v |= K1θ i� for all v′ ∈ R1(v), M, v′ |= θ. By induction, it is
equivalent to for all v′ ∈ RS′

1 (v),MS′ , v′ |= θ. So it is equivalent to
MS′ , v |= K1θ.

(K2θ) M, v |= K2θ i� for all v′ ∈ R2(v), M, v′ |= θ. It implies for all
v′ ∈ RS′

2 (v),M, v′ |= θ. By induction it implies for all v′ ∈ RS′
2 (v),

MS′ , v′ |= θ, that is to sayMS′ , v |= K2θ.
Reciprocally, suppose thatMS′ , v |= K2θ. We have v′ ∈ RMS′

2 (v),
MS′ , v′ |= θ. By induction (Lemma 1) it implies for all v′ ∈ R2(v)\
{S ′}, M, v′ |= θ. Moreover if S ′ ∈ R2(v) we also have to prove
thatM, S ′ |= θ. In this case, as K2θ is a sub-formula of ε, we have
either K2θ ∈ S ′ or K2θ 6∈ S ′. K2θ 6∈ S ′ leads to MS′ , v |= ¬K2θ,
hence contradiction. So K2θ ∈ S ′. It implies θ ∈ S ′. By induction
(∆) it meansM, S ′ |= θ.

�

Now let us prove the equivalenceM, S ′ |= K2ψ i� K2ψ ∈ S ′.
⇐ Let S ′ ∈ β be such that K2ψ ∈ S ′. Let us prove thatM, S ′ |= K2ψ.
As K2ψ ∈ S ′ we have that ψ ∈ S ′ by test of coherence. So by induction
(∆) we haveM, S ′ |= ψ. Furthermore we haveMS′ , wS

′ |= K2ψ, that
is to say for all v ∈ RM

S′

2 (wS
′
), MS′ , v |= ψ. By Lemma 1, for all

v ∈ RMS′

2 (wS
′
) M, v |= ψ. Finally,M, S ′ |= K2ψ.

⇒ Let S ′ ∈ β be such that K2ψ 6∈ S ′, hence K̂2¬ψ ∈ S ′. We have
MS′ , wS

′ |= K̂2¬ψ. Thus there exists v ∈ R2(wS
′
) such thatMS′ , v |=

¬ψ By Lemma 1 it is equivalent to M, v |= ¬ψ. As S ′R2w
S′ and

wS
′
R2v, we have S ′R2v. HenceM, S ′ |= K̂2¬ψ.

(⇐) Σ is satis�able implies that sat(Σ, 1) succeeds.

Suppose that Σ is satis�able in a pointed modelM, w whereM = (W,R, V ).
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Consider the set of sub-formulas of Σ of the form K̂1ψ true in w. For each
such a sub-formula K̂1ψ we consider the corresponding world in uψ ∈ R1(w)
such thatM, uψ |= ψ.

Now we consider the execution of sat(ϕ, 1) such that β contains the set
of sub-formulas true in w and the set of sub-formulas true in wψ for all ψ
corresponding to a sub-formula K̂1ψ.

AsM is a model and because we have created a set in β corresponding to
uψ for all sub-formulas K̂1ψ β is coherent.

Now let S ′ be a set in β such there exists K̂2ψ ∈ S ′. S ′ corresponds either to
w or a world uψ in the modelM. In any case, S ′ corresponds to a world inM
which satis�es all formulas of S ′. That is why we can �nd a world in R2(u)
satisfying the formula {K2θ ∈ S ′} ∪ {K̂2θ ∈ S ′}. We have l({K2θ ∈ S ′} ∪
{K̂2θ ∈ S ′}) < l(Σ). By induction, the call sat({K2θ ∈ S ′} ∪ {K̂2θ ∈ S ′}, 2)
succeeds. So sat(ϕ, 1) succeeds.

�

2.6 The product logic S5n

In this part, we are going to present the product logic S5n. The reader is referred
to [GKWZ03] for more details.

2.6.1 Syntax of S5n

The language of S5n logic is built from a countably in�nite set of atomic proposi-
tions ATM and modal symbols {1, ..., n}. The language LS5n of S5n is therefore
de�ned by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �iϕ

where p ranges over ATM and i ranges over {1, ..., n}.

2.6.2 Semantics of S5n

A Kripke model for the product logic S5n is a Cartesian product . More precisely:

De�nition 5 (S5n-model)
A S5n-model is a tuple (X,R, V ) where:

• X = X1 × · · · ×Xn;
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• R is a mapping associating to every i ∈ {1, ..., n} the equivalence relation Ri

de�ned by Ri = {〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈ X2 | for all j 6= i, xj = yj};

• V : ATM → 2X .

The logic S5n and S5n are di�erent. The logic S5n is the fusion of S5, S5 ...
and S5 (n times) and there are no interaction between the modal operators. On
the contrary, in S5n, models are cartesian product and in that sense there are
interactions between the di�erent modalities: for instance the formula �i�jϕ ↔
�j�iϕ is valid for all i, j, ϕ.

2.6.3 Axiomatics for S5n

De�nition 6 (�nitely axiomatizable)
[GKWZ03, Chapter 1] A logic L is �nitely axiomatizable if there is a �nite set Ax
of formula schemes such that ϕ ∈ L i� there is a sequence (ϕ1, . . . , ϕk) of ϕ such
that for 1 ≤ i ≤ k, one of the following holds:

• either ϕi is a tautology of classical proposition logic or an instance of an
axiom in Ax;

• either ϕi is obtained by necessitation from ϕj where j < i;

• or ϕi is obtained by modus ponens from ϕj and ϕk where j, k < i;

• ϕk = ϕ.

Theorem 6 [GKWZ03, th. 8.2] If n ≥ 3 then S5n is not �nitely axiomatizable.

Nevertheless S5n is axiomatizable if we weaken the de�nition of what an ax-
iomatization is:

Theorem 7 [Ven98] S5n is axiomatized by the following axiom schemas2:

• some axiom system of classical propositional logic;

• S5(�i);

• �i�jϕ↔ �j�iϕ.

and the following rules:

2We prefer give here a simpler axiomatics.
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• Modus Ponens rule:
` ϕ ` ϕ→ ψ

` ψ

• Necessitation rule:
` ϕ
` �iϕ

• Rectangle Rule:

` (p ∧ τ(¬ϕ ∧ p))→ ϕ

` ϕ
where p does not occur in ϕ

where τ(χ) = �1 . . .�n[(
∧
i∈{1,...,n} ♦1 . . .♦i−1♦i+1 . . .♦nχ)→ χ].

Remark 2 The rectangle rule is called unorthodox rule because the syntactic
derivation requires an added constraint. Here: �where p does not occur in ϕ�.

2.6.4 Satis�ability problem for a S5n-formula is undecidable

Theorem 8 [GKWZ03, th. 8.6] If n ≥ 3, the problem of satis�ability of a formula
of S5n is undecidable.

2.7 Contribution of this thesis

The contribution of this thesis is to give �avors to the standard epistemic modal
logic introduced in Section 2.2 in two ways: �rst we will study the knowledge
about what agents see, broadly speaking about perception of an agent in Part I.
As the perception of an agent strongly deals with geometry, this part will �rst
begin with a state of art about geometry and modal logic (Chapter 3). In this
chapter we will see that it is di�cult to give a meaning about a perception of an
agent from what has already been studied in this area simply because there is no
agent in those formalisms. We then propose a new version about epistemic modal
logic and perception in a Lineland (Chapter 4), that is to say we suppose that
the geometry is a line. We propose an algorithm for the model-checking and the
satis�ability problem of the Lineland version of this epistemic modal logic. We
also give a complete axiomatization. Of course, considering the world as a line
is daring. That is why we propose another version of the epistemic modal logic
where the version is Flatland [Abb84] (Chapter 5), that is to say, the world is a
plane. We prove that the logic is decidable although we do not know the exact
complexity. Finding an interesting axiomatization of the Flatland version of this
logic is an open question. We also propose a weak version of Flatland epistemic
logic.
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In the Part II, we focus on the notion of action via the modal logic STIT (�see
to it that�). This part begins with a state of art of existing logic of agency. In
particular we see that the drawback of classical modal logic of agency like Coalition
Logic CL [Pau02], Alternating-Time Logic ATL [AHK99] are not expressive enough
to capture the notion of execution of actions. Indeed, they only capture the notion
of capabilities of agents. In CL, ATL and so on, we can say that a group of agents
has a strategy to ensure that a property ϕ is true but we cannot express that a
group of agents actually performs a strategy to ensure a property ϕ. This kind of
sentences can indeed be expressed in the logic STIT. In Chapter 6, we introduce
the state of art about the logic STIT and we study the satis�ability problem and
the axiomatizability of the group version of STIT. In order to have better results
of decidability of the group version of STIT, we be interested in a weak fragment
of group STIT in Chapter 8. Somehow, the Part II is a continuation of the thesis
of [Tro07] containing the satis�ability problem of the individual version of STIT.

In the Part III, we are interested in applications of STIT: epistemic games in
Chapter 9 and counterfactual emotions in Chapter 10. In this part, we give a
�STIT-�avor� to the standard epistemic modal logic. In Chapter 9, we see how
to represent an epistemic game via Kripke semantics and how to express Nash
equilibrium and the algorithm of Iterated Deletion of Strictly Dominated Strategies
in the language. In Chapter 10, we extend the standard epistemic modal logic with
the fragment of STIT of Chapter 8. We then see how to represent counterfactual
emotions in the language. More precisely, we see how to capture the notion of
regret, rejoice, disappointment and elation. We also provide complexity results
about the satis�ability problem both in Chapter 9 and 10.

PartI︷ ︸︸ ︷
Seeing, knowing,

PartII︷ ︸︸ ︷
doing︸ ︷︷ ︸

PartIII



Part I

Seeing, knowing





Chapter 3

Towards new �spatial� modal logics

In multi-agents applications, agents need to reason about what they see or not, and
about what they know that other agents see or not. One may think of multi-players
games for example, where the aim is to formalize that some agent, just by seeing
where are her partners, knows that no enemy could sneak upon her from behind
without being seen by the partners. We point out modal logics are often decidable
(see Subsubsection 2.1.1.3) and that is why we would like the formalization to be
in modal logic.

In order to formalize what a agent see, we need geometrical concepts. In other
words, we are interested in spatial logics. But when we read the literature about
temporal logics and spatial logics we may wonder why modal logics have been
more famous in temporal logics than in spatial logics. In this chapter we try to
answer to this question. In order to do this, we propose here a very modest state
of art about temporal reasoning (Section 3.1) and then a modest state of art in
formalization of geometrical concepts in logic (Section 3.2). Then we propose our
crucial idea for providing a new modal logic for spatial reasoning (Section 3.3).
Finally we compare our idea to existing works (Section 3.4).

3.1 Temporal logics

In Subsection 2.3.1, we saw two kinds of algorithms: those without choices (de-
terministic algorithms) and those with choices (non-deterministic ones and alter-
nating ones). In the same manner, we can model the time in two ways. One can
think of the time as linear or as branching.
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3.1.1 Linear temporal logic

Linear temporal logic (LTL) [Pnu77] is a modal logic that expresses temporal con-
cepts and considers the time as resolved (linear) and discret. The language of
Linear temporal logic provides several modal constructions:

• Xϕ means that ϕ holds in the �next� state;

• Fϕ means that ϕ holds eventually (in the future);

• Gϕ means that ϕ is always true;

• ϕUψ means that ϕ holds until ψ is true.

The reader may be interested of other versions of �Linear temporal logic� (even
if they are not called so in the literature) where there are only F and G operators
[GKWZ03]. In what follows we give an overview for some of these logics:

• a modal logic where the discreteness is no more enforced: S4.3 is the modal
logic of all models where the relation is a total order. It is also the logic
where the domain is the set of real numbers R or the set of rational numbers
Q and the relation is ≤;

• a modal logic where the discreteness is enforced: S4.3 ⊕ G(G(p → Gp) →
p)→ (FGp→ Gp). Models (W,R, V ) are such that W is the set of natural
numbers and the relation R is ≤;

• a modal logic where the discreteness is no more enforced and the relation is
strict: K4.3 is the modal logic of all models where the relation is a strict
total order. It is NOT the logic of the class of models (W,R, V ) where W is
the set of real numbers or the set of rational numbers and the relation R is
<;

• a modal logic where the discreteness is no more enforced but continuity is
enforced: K4.3⊕F>⊕GGp→ p. Models (W,R, V ) are such that W is the
set of real numbers (or the set of rational numbers) and the relation R is <;

• a modal logic where the discreteness is enforced: K4.3 ⊕ F> ⊕ G(Gp →
p)→ (FGp→ Gp). Models (W,R, V ) are such that W is the set of natural
numbers and the relation R is <.

All those logics are di�erent, that is to say they have di�erent sets of satis�able
formulas. For all those logics, the satis�ability problem is NP-complete [Seg70],
[Gol82], [ON80], [SC85].
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3.1.2 Adding branching

Linear temporal logic can easily be extended to provide reasoning about branching
time by adding two new modal operators:

• Eϕ: there is a branch in which ϕ holds;

• Aϕ: the formula ϕ holds in all branchs.

This logic is called CTL∗ (for �Computational Tree Logic Star�) [EH86]. It em-
beds Linear Temporal Logic and it also embeds Computational Tree Logic (CTL)
[CE82] [EH85] which a syntactic fragment where operators of branching and time
are fused. Surprisingly CTL does not embed LTL.

3.1.3 Conclusion

LTL and CTL are modal logics expressive enough to capture di�erent qualitative
notions used especially in computer science:

• safety means that the system will never be in a �bad� state. For instance
AG¬crash means that the system will never crash;

• liveness means that the system will eventually be in a good state whatever
the branch. For instance AF terminate may mean that the program will
eventually terminate in all branchs;

• fairness means that a property will holds in�nitely often. For instance
AGAF refresh may mean that the program will in�nitely often refresh the
screen.

Those notions are suitable to verify if a system matches with its speci�cation.
Furthermore you can note that LTL, CTL and CTL

∗ have good complexity results
both for model-checking and for the satis�ability problem.

3.2 Spatial reasoning

There are mainly two approaches to represent geometry: euclidean geometry and
topology. Broadly speaking this section is an overview of the Chapters 4, 5, 6, 7
and 9 of the book [APHvB07].

3.2.1 Euclidean geometry

Euclidean geometry is the domain of geometry where we study the relations be-
tween points and lines in terms of orthogonality and parallelism.
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3.2.1.1 Real number theory

A very powerful way to describe geometric facts consists in using coordinates of
points. For instance to say that the point C is in the line (AB) you can write the
property

∃λ, ((xC − xA) = λ× (xB − xA)) ∧ ((yC − yA) = λ× (yB − yA))

where λ is a variable and xA, xB, xC , yA, yB, yC are variables denoting the co-
ordinates of the points A, B and C.

The lines (AB) and (AC) are orthogonal is represented by

(xB − xA)× (xC − xA) + (yB − yA)× (yC − yA) = 0.

Of course, this logic is quantitative and not only qualitative. For instance we
can express that the distance between the points A and B is equal to 3 by

(xA − xB)2 + (yA − yB)2 = 32.

In this subsection we deal with the �rst order theory of real numbers. This
theory was initially studied in [Tar51].

Here are other examples of formulas in this logic:

• ∀x, x > 0→ ∃y, x = y × y;

• ∀x, ∀y, x < y → ∃z, x < z ∧ z < y.

Those formulas are interpreted over real numbers.

Syntax Let us introduce the syntax of the �rst order theory of real numbers.
Let VAR = {x, y, . . .} be a countable set of variables.

De�nition 7 (expression)
An expression is de�ned by the following BNF:

E ::= x | 0 | 1 | E + E | E × E
where x ∈ VAR. We note EXPR the set of all expressions.

De�nition 8 (language)
The language LR is de�ned by the following rule:

ϕ ::= E = E | E > E | > | ϕ ∨ ϕ | ¬ϕ | ∀xϕ
where x ∈ VAR and E ∈ EXPR.
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Semantics Now we can give the semantics of those formulas. Broadly speaking,
variables are interpreted as real numbers. Each symbol's ('+', '×', etc.) interpre-
tation is natural. Nevertheless, we prefer to give it in details.

De�nition 9 (interpretation)
An interpretation I is a map from V to R.

De�nition 10 (interpretation of expressions)
Given an interpretation I : VAR → R, we extend I to a map Iexpr : EXPR → R
as follows:

• Iexpr(0) = 0;

• Iexpr(1) = 1;

• Iexpr(x) = I(x) for all x ∈ VAR;

• Iexpr(E + E ′) = Iexpr(E) + Iexpr(E ′);

• Iexpr(E × E ′) = Iexpr(E)× Iexpr(E ′).

De�nition 11 (interpretation of formulas)
Give an interpretation I and a formula ϕ ∈ LR, we de�ne I |= ϕ by induction:

• I 6|= ⊥;

• I |= ϕ1 ∨ ϕ2 i� I |= ϕ1 or I |= ϕ2;

• I |= ¬ϕ i� I 6|= ϕ;

• I |= e = e′ i� Iexpr(e) = Iexpr(e′);

• I |= e > e′ i� Iexpr(e) > Iexpr(e′);

• I |= ∀x, ϕ i� for all v ∈ R, I[x := v] |= ϕ.

where I[x := v] : VAR→ R is de�ned as follows:

• I[x := v](y) = I(y) for all y ∈ VAR \ {x};

• I[x := v](x) = v.
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Decidability

Proposition 1 [Wei93] [Tar51], [Eng83] The problem:

• input: ϕ ∈ LR;

• output: yes if ϕ is satis�able (i.e. there exists I such that I |= ϕ); no
otherwise

is decidable and in EXPSPACE.

An easy-to-understand algorithm is provided in [Eng83]. This algorithm relies
basically on the idea of quanti�er eliminations . Technical procedures are very
close to the Theorem of Sturm ([Eng83], [Stu]). Given a polynomial P (X), this
theorem makes a bridge between:

• the number of distinct roots of P in the interval ]a, b[. (Notice that the
simple existence of such a root is expressed by a quanti�er formula ∃x, a <
x ∧ x < b ∧ P (x) = 0);

• w(a)−w(b) where w(a) is the number of changes of sign in P (a), P1(a), . . . , Pr(a)
and w(b) is the number of changes of sign in P (b), P1(b), . . . , Pr(b), where
P1, . . . , Pr are polynomials we can algorithmically compute from P . (That
is to say we have deleted the quanti�cation �∃x�)

The reader can also �nd an online version of the presentation of the algorithm pre-
sented like a game-book: http://www.irit.fr/~Francois.Schwarzentruber/

realqelim/index.html.

The existential fragment We just point out a result in [Can88] and [Ren88].

Theorem 9 The problem:

• input: a formula of the form ∃x1,∃x2, . . . ,∃xnϕ(x1, . . . , xn) where x1, . . . xn
are variables and ϕ(x1, . . . , xn) is a boolean formulas where atomic predicates
are of the form E1 = E2 or E1 > E2 where E1 and E2 are expressions over
the variables x1, . . . xn;

• output: yes i� the formula is true.

is in PSPACE.

Implementations The theory of real numbers is successful in term of imple-
mentation. You can �nd a solver for it in http://redlog.dolzmann.de/.

http://www.irit.fr/~Francois.Schwarzentruber/realqelim/index.html
http://www.irit.fr/~Francois.Schwarzentruber/realqelim/index.html
http://redlog.dolzmann.de/
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3.2.1.2 Modal logic for euclidean spaces

Instead of using on the entire real number theory to model euclidean spaces, one
may focus on a fragment of it: a modal logic [BG02]. The domain of a model
is a set of points and lines of an euclidean space. The model is made up of four
relations ∈, 3, ‖, ⊥ de�ned as follows:

• x ∈ ∆ standing for �the point x belongs the line ∆�;

• ∆ 3 x standing for �the line ∆ contains the point x�;

• ∆ ‖ ∆′ standing for �the line ∆ is parallel to the line ∆′�;

• ∆⊥∆′ standing for �the line ∆ is orthogonal to the line ∆′�.

The syntax is pure modal logic. One distinguishs formulas for points and
for lines and may have di�erent modalities corresponding the relations described
above. Here is an example of a formula that we can express in this logic:

A ∧ 〈∈〉(∆ ∧ [3]q) ∧ [∈]¬q

meaning �we consider a point in which A is true and this point belongs to a
line on which ∆ is true and q is true in all points of ∆. Furthermore, ¬q is true in
all lines passing by the point A.�

Unfortunately the axiomatics is rather complicated: it requires an unortho-
dox rule (see Remark 2). The complexity of the satis�ability problem is high
(NEXPTIME-complete) even if there is only [∈] and [||] in the language [BG02].

3.2.2 Topology

3.2.2.1 The mathematical notion of topology

One may have a pedagogical introduction in Topology and formal de�nitions in
[GC97]. Topology has many applications. In mathematical analysis, it allows to
de�ne the notions of continuity of a function, limit of a function and therefore the
notion of derivability and so on. It also allows to classify geometrical spaces: it
does not care about distances between two points but it considers the general shape
of the space. In topology, we describe a space given how the neighborhood of a
point looks like. For me, topology should be called �the science of neighborhoods�.

Formally:

De�nition 12 (topological space)
Let E be a set. Let τ be a set of subsets of E. (E, τ) is called a topological space
if:
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Figure 3.1: Three isomorphic topological spaces

• ∅, E ∈ τ ;

• for all set of indexes I, (Ai)i∈I ∈ τ I ,
⋃
i∈I Ai ∈ τ ;

• for all �nite set of indexes I, (Ai)i∈I ∈ τ I ,
⋂
i∈I Ai ∈ τ .

An element of τ is called an open set of E. Intuitively, given an open set A ∈ τ ,
for each point x ∈ A, A must include a whole neighborhood of x. The set τ is often
implicit and/or omitted and in that case we say that E is a topological space.

Example 3 Let R be the set of all real numbers. The classical �topological space�
(R, τ) is made as follows: τ contains all the sets U that are unions of intervals of
the form ]a, b[ where a < b.

With these settings, A = [0, 1[ is not an open set. Indeed, 0 ∈ A and for A to
be an open it must contain a set of the form ]− ε, ε[ for ε > 0 and this is not the
case.

We say that f : E → F is continuous i� for all opens O of F , the preimage
f−1(O) is open.

As usual with �algebraic� structures we can introduce isomorphisms: f : E →
F is an isomorphism i� f is bijective, f is continuous and f−1 is continuous.
Two topological spaces E and F are isomorphic if and only if there exists an
isomorphism from E to F . We are not going to give the formal de�nition of an
isomorphism. Isomorphisms help us to classify the di�erent topological spaces.

The Figure 3.1 shows three drawings of three isomorphic topological spaces.
The Figure 3.2 shows you some topological spaces.

Isomorphisms has been wisely studied in the litterature. For instance here is a
consequence of [L.E12] saying that the notion of topology captures the notion of
dimension:
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Figure 3.2: Some topological spaces

Theorem 10 If Rn and Rm are isomorphic then n = m.

In Chapter 4 and 5 we will de�ne two di�erent logics called Lineland (for R)
and Flatland (for R2). The two logics are di�erent so the modal language we will
introduce is expressive enough to capture the di�erence between one-dimensional
and two-dimensional spaces.

3.2.2.2 Modal logic S4

This subsubsection is a summary of [vBB07]. Tarski [Tar38], [MT44] introduces
a semantics in modal logic for topological spaces considered now as classical. Let
ATM be a countable set of atomic propositions. Let us consider the standard
modal language L given by the following rule:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | �ϕ

where p ∈ ATM .
Formulas are evaluated in a point of the space. The formula p means that the

property represented by the atomic proposition p is true in the current point. The
formula �ϕ means that ϕ is true all around the current point. More precisely,
there exists a neighborhood U containing the current point such that ϕ is true in
all points of U .

More formally a model, called topo-model for this logic is a tupleM = (E, τ, V )
where:

• (E, τ) is a topological space;
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Figure 3.3: A topo-modelM

• V is a valuation that is to say a map from E to 2ATM .

De�nition 13 (truth conditions)
Truth of modal formulas is de�ned inductively as follows:

• M, x |= p i� p ∈ V (x);

• M, x |= �ϕ i� there exists U ∈ τ such that x ∈ U and for all y ∈ U ,
M, y |= ϕ.

Example 4 Let us consider the topo-model depicted by the Figure 3.3. The topo-
logical space is R2 and its usual topology. For all x ∈ R2, we have water ∈ V (x)
i� in x we have water.

We haveM, w |= �water,M, u |= ¬�water ∧ ♦water andM, v |= �¬water.

We have the following results of axiomatization:

Theorem 11 Let ϕ be a formula in the language L. We have equivalence between:

• ϕ is provable in the system S4;

• ϕ is valid in a Kripke structure such that the relation is re�exive and tran-
sitive (Salqvist theorem, [BDRV02]);

• ϕ is valid over the class of topo-models [MT44];
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• ϕ is valid over the class of topo-models M = (E, τ, V ) where (E, τ) is the
Euclidian space Rn, for any strictly positive integer n [MT44];

• ϕ is valid over the class of topo-models M = (E, τ, V ) where (E, τ) is the
Cantor space [Min98].

The proof of those results can be found in the reference written in the theorem
or also in [vBB07]. One can notice that the expressivity of the language L is
quite poor. In particular, it does not make the di�erence between the di�erence
topological spaces R, R2, R3, etc.

Theorem 12 [BDRV02] The satis�ability problem of S4, that is to say, the fol-
lowing problem:

• input: a given formula ϕ in the language L;

• output: yes i� there exists a topo-model M = (E, τ, V ) and a point x ∈ E
such thatM, x |= ϕ.

is PSPACE-complete.

Recent works have increased the expressivity of S4 by the universal modality
[∀] (in all worlds) or the modality [ 6=] (in all di�erent worlds).

3.2.2.3 Qualitative relations: RCC− 8

RCC− 8 [RCC92] is a �rst order logic for spatial reasoning. Variables x, y, etc.
are interpreted by region of a topological space. The logic is also made up of eight
binary predicates in order to compare regions. We note RELRCC−8 the set of those
eight binary predicates. For instance if x and y are variables interpreting sets of
points X and Y in a topological space, the predicate EC ∈ RELRCC−8 (externally
connected) such that the meaning of EC(x, y) is that X◦∩Y ◦ = ∅ and X ∩Y 6= ∅,
that is to say X and Y are connected on their boundaries. The Figure 3.4 shows
the interpretation of the eight relations of RELRCC−8.

The syntax of the language of RCC− 8 is de�ned by the following rule:

ϕ ::= R(x, y) | ¬ϕ | ϕ ∧ ϕ | ¬ϕ | ∀xϕ

where x ranges over a set of variables and R over the set RELRCC−8 of the
eight relations of RCC− 8.

Generally speaking, the satis�ability problem in RCC− 8 of a given �rst order
formula is undecidable, more precisely not recursively enumerable. [LW06]

Nevertheless, it has been proved (with CSPSAT's formalism) that the following
satis�ability problem:
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Figure 3.4: The eight RCC− 8-relations

• Input: a formula of the form ϕ = ∃x1,∃x2, . . .∃xn,
∧
i,j∈{1,...n}

∨
R∈C(i,j) R(xi, xj)

where n is a positive integer, C(i, j) a subset of RELRCC−8;

• Output: Yes i� the formula ϕ is consistent.

is NP-complete. [RN99].

3.3 Towards an epistemic spatial modal logic

Our approach is to create a modal logic where the syntax is the traditional epis-
temic modal logic whereas the semantics is spatial. In this section, we show why
our approach is interesting.

3.3.1 Applications for spatial and epistemic reasoning

In robotics, agents are located in the world and may perceive the world with
cameras. Those perception may infer some knowledge about the world. Hence we
need a formal approach to model this knowledge.

In video games, for instance in platform games, arti�cial agents have arti�cial
behavior. For instance an enemy e may attack the hero h if e knows that h is not
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looking at e. This behavior is directly related to perception and knowledge.

3.3.2 In English: time is modal; spatial is not

In English, time is expressed easily with a conjugation or with the modal auxiliary
�will� so that it is easy to translate some simple English sentences in temporal
modal logic.

Example 5
It is cloudy. cloudy
It will rain. F rain
The weather was sunny. P sunny where P is a past modal operator.

We can also express in temporal modal logic some other subtleties like �could�,
�must�, �would�, �might� that can have a counterfactual meaning.

Example 6
It must rain tomorrow. AXrain
It might be sunny tomorrow. EXsunny.

On the contrary, spatial information generally needs adverb of place, etc. This
linguistic argument supports that spatial reasoning is not adapted to be modeled
in modal logic. If our aim is to have a spatial modal logic, it is preferable to build
a modal logic using epistemic modalities and push the spatial reasoning aspect
into the semantics.

3.3.3 Expressivity of temporal logic VS spatial logic

When we read the literature about temporal logics and spatial logics we may
wonder why modal logics have been more famous in temporal logics than in spatial
logics. We have seen in Section 3.1 that Linear Temporal Logic (LTL) [Pnu77]
and Computational Tree Logic (CTL) [CE82] [EH85] are expressive enough for
industrial needs: we can express safety (the system will never be in a �bad� state),
liveness (the system will be in good state) and fairness (the property will holds
in�nitely often). Moreover the complexity of the satis�ability problem and the
model-checking are often quite reasonable.

On the contrary we have also seen in Section 3.2 that spatial reasoning is not
so successful because its high expressivity requires also high complexity for solving
the satis�ability problem.

In our approach, the satis�ability problem is in many cases in PSPACE.
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3.4 Comparisons between our approach and the

literature

3.4.1 Classical epistemic logic VS Lineland/Flatland

In the classical epistemic modal logic S5n, wRav stands for w and v are indis-
tinguishable for the agent a. The epistemic logic S5n has been combined with
temporal modal operator [HV88]. In such temporal epistemic modal logic, the
properties of total recall (no forgetting) and no learning are modeled as a con-
straint of the epistemic relation and the temporal relation. Kripke worlds are
abstract: they are valuations.

On the contrary, in our approach, we would like to describe a situation directly
by the graphical and natural representation of the system (position and direction
of agents) and not with a Kripke structure. In fact, we also have one �canonical�
Kripke structure made up of those graphical Kripke worlds that embed some ge-
ometrical informations: the position of agents and the direction where they look.
(see De�nition 14 and De�nition 27) In the same way, the epistemic relation of an
agent a is �built-in� and relies on geometry concepts: as depicted in Figure 3.5 two
Kripke worlds are indistinguishable for agent a i� agent a sees the same thing in
both worlds.

Other built-in logics in the literature There are other logics in the literature
where the semantics is built-in, that is to say where Kripke's worlds are not abstract
valuations and where the epistemic relations take into account the structure of
those Kripke's worlds.

In [FHMV95] (Chapter 3), the author consider global states (you can think of
them as possible worlds). A state is a tuple (se, s1, . . . , sn) where se is the state
of the environment and si is the state of agent i for all agent i. Global states
s = (se, s1, . . . , sn) and s′ = (s′e, s

′
1, . . . , s

′
n) are then said to be indistinguishable to

agent i if agent i has the same state in both s and s′, i.e., if si = s′i. In other worlds,
the epistemic relation is not arbitrary but directly built-in from the de�nition of
states.

In [Jag09], the author develops a logic for rule-based agents. It is not the
epistemic relation which is built-in but the belief change. A state s de�nes the
belief of the agent: agent believes ϕ i� ϕ ∈ V (s). Then the relation of belief change
works as follows: T is a transition relation on states and sTu means the agent in
state s can gain some belief and be in state t. This relation T is built-in with
respect to a set of rules. In particular the relation T must satisfy the following
statement: if a rule λ1 . . . λn → λ matches with the belief of the agent in state s
then there must exist a state u such that sTu and V (u) = V (s) ∪ {λ}.
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Figure 3.5: Two Kripke worlds that are undistisguishagle for agent a

In the same manner, in our approach, we provide a logic in which wRau, that
is to say, world u is possible for agent a in u, i� agent a sees the same thing both
in w and u.

3.4.2 Spatial logic VS Lineland/Flatland

In the same way, in the next two chapters, we develop epistemic modal logic based
on geometry. Our approach will be rather di�erent concerning the syntax. In
S4, RCC− 8, we have spatial operators like � = �in the neighborhood�, EC =
�are externally connected�, etc. whereas in the next two chapters the syntax relies
on the standard epistemic modal logic and will provide the classical knowledge
operator Kaϕ meaning �agent a knows that ϕ�. This is motivated because we
want to focus on epistemic reasoning.

Concerning the semantics, our approach is quite similar to the logic seen in
this chapter. Indeed, in Chapter 4 and 5, we have also decided to encode the
geometrical structure in the model.

Nevertheless, our approach is also di�erent. In logics seen in this chapter, the
domains in the semantics are geometrical entities:

• in S4 points x of a topo-model are points of the topological space;
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• in the geometry seen in Subsection 3.2.1.2, the domain is the union of points
and lines of the geometrical space;

• in RCC− 8, the domain is the set of regions of the space, etc.

Our approach rely on a Kripke model where a possible world is de�ned as the
values of positions for all agents of the system. The epistemic relation will be
de�ned directly from the possible worlds in term of what agents see.

3.4.3 Topological epistemic logic VS Lineland/Flatland

In the topological epistemic logic presented in [MP92], [PMS07] and [Hei06], the
authors provide an epistemic modal logic based on the accuracy of the observation.
Concerning the semantics, models are topo-modelsM = (E, τ, V ). The language
made up of two operators � (and its dual ♦) and K interpreted as follows, for all
x ∈ E, U ∈ τ such that x ∈ U :
• M, (x, U) |= �ϕ i�M, (x, V ) |= ϕ for all V ∈ τ such that x ∈ V ⊆ U ;

• M, (x, U) |= ♦ϕ i� there exists V ∈ τ such that x ∈ V ⊆ U andM, (x, V ) |=
ϕ;

• M, (x, U) |= Kϕ i�M, (y, U) |= ϕ for all y ∈ U .
In (x, U), x ∈ E represents the real world but the accuracy/precision of the

observation is such that the agent only knows that the real world is in U ∈ τ . The
reading of the modal operators are:

• M, (x, U) |= ♦ϕ: it is possible to have a better precision of the observation,
that is to say, to have V ⊆ U instead of U such that ϕ is true. In other
worlds, the agent can make an e�ort to improve her precision such that ϕ is
true.

• M, (x, U) |= Kϕ: the agent knows that ϕ is true, that is to say, according
to the current precision of the observation represented by U , ϕ is true in all
possible worlds y ∈ U .

There are crucial di�erences between their approach and ours:

• For them, the geometry is used to represent the state of knowledge. For us,
the geometry is devoted to give a position and a direction to agents. In this
sense, their logic is abstract like S5n.

• In their logic, there is only one agent.

Chapter 4 is devoted to the case where agents are points and are located on
the line. In Chapter 5, agents are located on the plane.



Chapter 4

Knowledge in Lineland

4.1 Introduction

As we have seen in the previous Chapter, while many authors in Arti�cial In-
telligence and Computer Science [FHMV95] developed epistemic logic and others
have studied qualitative spatial reasoning [RN07] [CH01], fewer works concern
their combination (but we can cite [PMS07] and [Hei06] which combine a spatial
modal operator dealing with topology and an epistemic modal operator). For sure,
one must then ask question about how knowledge is founded; in this Chapter, we
choose to investigate the case where factual knowledge is based on what agents see.
More precisely, we consider a framework where agents can see both other agents
and where they are looking at. We do not provide operators in the language to
deal with space but only an epistemic operator for each agent in the language.

Of course, our aim is to tackle concrete situations in the plane or in the space,
but in this chapter we will focus on one dimension: agents are disposed along a
line, looking right or left (see example of �g. 4.1). We will see that this simple case
is already hard from the computational point of view (both model checking and
satis�ability are PSPACE-complete). Interestingly, the obvious semantics induced
by such situations can be axiomatized as shown in Section 4.4, thus providing a
basis for a theory of knowledge about some qualitative geometry, which, we believe
is the necessary condition for tackling the problems of model checking and the
satis�ability problems in dimensions 2 and 3 and provide reasonable algorithms.

a1 a2 a3 a4

Figure 4.1: Example of a lineworld
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This chapter is organized as follows: we present an epistemic language LPK
and its perception fragment LP and their semantics in Section 4.2. Then we deal
with the model-checking and satis�ability in Section 4.3. Finally we propose an
axiomatization in Section 4.4. This chapter is an extension of [GS10] and [Sch09].

4.2 Lineland

4.2.1 Syntax

In this subsection, we introduce a language similar to the language of the standard
language of epistemic logic S5n (see Subsection 2.2.1). Let AGT be a countable
set of agents with typical members denoted a, b, . . . . In this paper, the language
LPK of our epistemic theory is de�ned by the following rule:

ϕ ::= aB b | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ

where a, b ∈ AGT. The formula a B b is read �agent a sees agent b� and
is called a perception literal. The formula Kaϕ is read �agent a knows that ϕ
is true�. As usual > =def ¬⊥, (ϕ ∧ ψ) =def ¬(¬ϕ ∨ ¬ψ), K̂aϕ =def ¬Ka¬ϕ,
(ϕ → ψ) =def (¬ϕ ∨ ψ) and (ϕ ↔ ψ) =def ((ϕ → ψ) ∧ (ψ → ϕ)). We follow the
standard rules for omission of parentheses.

We will also be interested by the perception fragment LP ( LPK without
epistemic operators:

ϕ ::= aB b | ⊥ | ¬ϕ | (ϕ ∨ ϕ)

where a, b ∈ AGT. Formulas in LP are called perception formulas.

4.2.2 Semantics

In this Subsection, we de�ne one Kripke structure based on worlds and epistemic
relations. Worlds are called here lineworlds. The geometry of Lineland is encoded
directly inside such a world. A lineworld is the description of the arrangement of
agents like in Figure 4.1. It is formally de�ned below in De�nition 14. Epistemic
relations between lineworlds rely on the perception of the agents (De�nition 17).

De�nition 14 (lineworld)

A lineworld w is a tuple 〈<, ~dir〉 where:

• < is a strict total order over AGT, that is to say:

� < is irre�exive: for all a ∈ AGT, a 6< a;
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� < is transitive: for all a, b, c ∈ AGT, if a < b and b < c then a < c;

� < is trichotomous : for all a, b ∈ AGT, we have a < b, b < a or a = b.

• ~dir : AGT→ {Left, Right}.

The set of all lineworlds is noted W . Let us remark that if AGT is �nite then
the cardinality of W is equal to card(AGT)! × 2card(AGT). Given a lineworld w =

〈<, ~dir〉, the relation < speci�es how agents are ordered in the lineworld w from
left to right. This relation is a total order because the shape of a world is a line.
It is strict in order to prevent two agents to be at the same place (this is just a
technical restriction). The mapping ~dir speci�es whether an agent is looking left
or right.

Example 7 The Figure 4.1 represents the lineworld 〈<, ~dir〉 de�ned by:

• a1 < a2 < a3 < a4;

• ~dir(a1) = ~dir(a2) = ~dir(a4) = Right; ~dir(a3) = Left.

From the relation < and the function ~dir, we can de�ne if an agent a sees
another agent b.

De�nition 15 (truth conditions)
We de�ne w |= ϕ by induction on ϕ:

• w |= aBb i� either ( ~dir(a) = Left and b < a) or ( ~dir(a) = Right and a < b);

• w 6|= ⊥;

• w |= ¬ϕ i� w 6|= ϕ;

• w |= ϕ ∨ ψ i� w |= ϕ or w |= ψ.

The semantics of w |= a B b is intuitive: agent a sees agent b i� either b is on
the left of a and a's direction is left or b is on the right of a and a's direction is
right.

Example 8 Let us reconsider the lineworld w depicted in Figure 4.1. We have
w |= a1 B a3 because ~dir(a1) = Right and a1 < a3. Note that agents are transpar-
ent: here agent a2 is transparent and agent a1 sees beyond agent a2.

Now we de�ne the notion of mirror image of a lineworld as depicted in Figure
4.2. It is useful for de�ning the epistemic relation.
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De�nition 16 (mirror image)

Let w = 〈<, ~dir〉, v = 〈<′, ~dir
′
〉 ∈ W . We write w ≈ v i� either w = v or w is the

mirror image of v, that is to say:

• for all a, b ∈ AGT, a < b i� b <′ a;

• and for all a ∈ AGT, ~dir(a) = Left i� ~dir
′
(a) = Right.

a1 a2 a3 a4

≈
a4 a3 a2 a1

Figure 4.2: A lineworld and its mirror image.

Let us note that ≈ is an equivalence relation on W such that each equivalence
class is made up of exactly two lineworlds. Given w ∈ W and a ∈ AGT, we note
V (a)w = {b ∈ AGT | w |= aB b}. It is the set of all agents that agent a sees in
the lineworld w. Now we de�ne the epistemic relation Ra between worlds.

De�nition 17 (epistemic relation)
Let a ∈ AGT. We de�ne the epistemic relation Ra on the set of worlds W . For
all w = 〈<w, ~dirw〉 ∈ W and v ∈ W , we have wRav i� there exists u = 〈<u, ~diru〉
such that:

• u ≈ v;

• V (a)w = V (a)u;

• for all b ∈ V (a)w, ~dirw(b) = ~diru(b);

• for all b, c ∈ V (a)w ∪ {a}, b <w c i� b <u c.

Two worlds w and v are epistemically indistinguishable (wRav) for agent a i�
agent a sees exactly the same things in both worlds. Note that Ra is an equivalence
relation on W . For all agents a and for all lineworlds w, Ra(w) denotes the set
of all lineworlds u such that wRau. From now, the truth condition for Kaψ is
standard: Kaψ is true i� ψ is true in all epistemically indistinguishable worlds for
agent a.

De�nition 18 (truth conditions)
We de�ne w |= Kaψ i� for all u ∈ Ra(w), u |= ψ.



4.2.3 Technical results 69

Figure 4.3: Kripke structure when AGT = {a, b}.

Example 9 Consider the lineworld w depicted in Figure 4.1. We have
w |= Ka1a1 B a3, w |= ¬Ka2a1 B a3 and w |= Ka2a3 B a1.

The Figure 4.3 shows the Kripke structure when AGT = {a, b}. Nodes (rect-
angles) represent worlds, that is to say lineworlds where agents are settled in
Lineland. Edges represent relations Ra and Rb.

4.2.3 Technical results

Now we give a characterisation of < and ~dir in terms of truth conditions of per-
ception formulas. We leave as an exercise to the reader to verify the following
Proposition:

Proposition 2 Let w = 〈<, ~dir〉 ∈ W . Let a0 ∈ AGT. Suppose that ~dir(a0) =
Right. We have:

• For all b ∈ AGT, b < a0 i� b 6= a0 and w |= ¬a0 B b;

• For all c ∈ AGT, a0 < c i� w |= a0 B c;

• For all b, c ∈ AGT such that b 6= a0 and c 6= a0,

b < c i� (b 6= c) and
[either (1) w |= ¬a0 B b, w |= ¬a0 B c and w |= bB a0 ↔ bB c
or (2) w |= ¬a0 B b, w |= a0 B c
or (3) w |= a0 B b, w |= a0 B c and w |= bB a0 ↔ ¬bB c];
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• For all b ∈ AGT,

~dir(b) = Right if w |= a0 B b↔ ¬bB a0 or b = a0

= Left if w |= a0 B b↔ bB a0 and b 6= a0.

The previous Proposition ensures that the order < and the function ~dir are
completely described by the truth conditions of the perception formulas involved
in the Proposition. This leads to a characterization of ≈:

Theorem 13 For all w, u ∈ W , we have equivalence between:

1. w ≈ u;

2. For all ϕ ∈ LP we have w |= ϕ i� u |= ϕ;

3. For all ϕ ∈ LPK we have w |= ϕ i� u |= ϕ.

Proof.

(i) ⇒ (iii) By induction on ϕ.

(iii) ⇒ (ii) Follows direclty from the fact that LP ⊆ LPK .
(ii) ⇒ (i) Let us take a0 such that ~dirw(a0) = Right (if such a a0 does not

exist simply take the mirror image of w instead of w). Now, if ~diru(a0) = Left,
let v be the mirror image of u. Otherwise if ~diru(a0) = Right, let v be u.

Obviously, ~dirv(a0) = Right. By applying Proposition 2 and (ii) we obtain
v = w. Thus, w ≈ u. �

We shall say that a formula ϕ is satis�able i� there exists a lineworld w ∈ W
such that w |= ϕ. A formula ϕ is said to be valid i� for all lineworlds w ∈ W,w |= ϕ.

Let G ⊆ AGT such that G is �nite. We introduce the notion of G-describing
conjunction. Such a conjunction completely describes a situation concerning all
agents in G.

De�nition 19 (G-describing conjunction)
A G-describing conjunction is a maximal satis�able conjunction of litterals of the
form bB c or ¬bB c where b, c ∈ G.

Example 10 ¬aB a ∧ aB b ∧ ¬bB a ∧ ¬bB b is a {a, b}-describing conjunction.

First, we prove that we can entirely describe a lineword with the truths of
literals of the form a B b, that is to say, the truth of an epistemic formula only
depends on their truths.
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Lemma 2 Let ϕ be a formula of LPK. Let G = {b ∈ AGT | b occurs in ϕ}. Let
Φ be a G-describing conjunction. Let w,w′ ∈ W be such that w |= Φ and w′ |= Φ.
We have w |= ϕ i� w′ |= ϕ.

Proof.

By induction on ϕ. Only the modal case is non-trivial that is to say when ϕ
is of the form ϕ = K̂aψ. Let w,w′ ∈ W be such that w |= Φ and w′ |= Φ. Suppose
that w |= K̂aψ and let us prove that w′ |= K̂aψ. As w |= K̂aψ, there exists u = 〈<u

, ~diru〉 ∈ Ra(w) such that u |= ψ. Let ζ =
∧
a,b∈G|u|=aBb aB b∧

∧
a,b∈G|u6|=aBb ¬aB b.

ζ is a G-describing conjunction such that u |= ζ. Now we are going to prove that
there exists u′ ∈ Ra(w

′) such that u′ |= ζ.
Let V = {a} ∪ {b ∈ G | w′ |= aB b}. In other words, V contains the set of all

agents that a sees plus a herself. Assume without loss of generality that ~dirw(a) =
~dirw′(a) = ~diru(a) = Right. By applying Proposition 2 with a0 = a, we obtain
the following statements, referred below as (*):

• for all b ∈ V , ~dirw(b) = ~dirw′(b);

• for all b, c ∈ V , b <w c i� b <w′ c.

Now, we de�ne u′ = 〈<u′ , ~diru′〉 as follows. The relation <u′ is de�ned by:

• the restriction on V of <u′ is de�ned as the retriction on V of <w′ : for all
b, c ∈ V , b <u′ c i� b <w′ c;

• the restriction on AGT \ V of <u′ is de�ned as the retriction on AGT \ V of
<u: for all b, c ∈ AGT \ V , b <u′ c i� b <u c;

• every agent in AGT\V is on the left of every agent in V : for all b ∈ AGT\V
and for all c ∈ V , b <u′ c.

The relation <u′ is a total order: it is clearly irre�exive, transitive and trichoto-
mous. The function ~diru′ is de�ned by:

• for all b ∈ V , ~diru′(b) = ~dirw′(b);

• for all b ∈ AGT \ V , ~diru′(b) = ~diru(b).

In other words, all agents that agent a sees (in V ) have the same position both
in w′ and u′. All agents that agent a does not see (in AGT \ V ) have the same
position both in u and u′.

By De�nition of Ra we have u′Raw
′. Now let us prove that u′ |= ζ, that is to

say we have to prove that for all b, c ∈ G we have u |= bB c i� u′ |= bB c. As the
semantics of bB c only depends on the positions of b and c, we simply check that:
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1. for all b, c ∈ G, b <u c i� b <u′ c. Indeed:

• If b, c are both in G \ V , then the result follows by De�nition of <u′ .

• If b, c ∈ G ∩ V , b <u′ c i� b <w′ c i� b <w c (because of (*)) i� b <u c
(because uRaw)

• If b ∈ G \ V and c ∈ G ∩ V , then by De�nition of <u′ , we have always
b <u′ c. We also have b <w a, hence b <u a (by De�nition of Ra) and
a <w c. Therefore, a <u c. As <u is transitive, we have always b <u c.

• If b ∈ G ∩ V and c ∈ G \ V , then by De�nition of <u′ , we do not have
b <u′ c. And we do have c <u b so we do not have b <u c.

2. for all b ∈ G, ~diru(b) = ~diru′(b). Indeed:

• If b ∈ G \ V , then by De�nition of ~diru′ , we have ~diru(b) = ~diru′(b).

• If b ∈ G ∩ V , then we have ~diru′(b) = ~dirw′(b) = ~dirw(b)(∗) = ~diru(b)
(by De�nition of Ra).

Finally, we have proved that u′ |= ζ. As u′ |= ζ, we have by induction u′ |= ψ.
Hence w′ |= K̂aψ. �

4.2.4 Some valid formulas

As the relation Ra is an equivalence relation on W , all instances of axioms of S5
are valid. In particular Kaϕ→ ϕ, Kaϕ→ KaKaϕ and ¬Kaϕ→ Ka¬Kaϕ.

Interestingly, the formulas below are valid too:

• KabB c→ aB b;

• If b 6= c, aB b↔ KabB c ∨Ka¬bB c;

• Ka(bB c ∨ dB e)→ KabB c ∨KadB e;

• KabB a→ KaKb . . . KaKb(bB a ∧ aB b);

• KaKbcB d ∧KbKacB d→ KaKbKa . . . KbcB d.

4.3 Model checking and satis�ability

In this Section, we are interested in the model checking and the satis�ability prob-
lems.
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De�nition 20 (model checking in lineland)
We call model checking in lineland the following problem:

• Input: a formula ϕ, a lineworld w (where only agents occurring in ϕ are
taken into account);

• Output: Yes if we have w |= ϕ. No, otherwise.

De�nition 21 (satis�ability problem in lineland)
We call satis�ability problem in lineland the following problem:

• Input: a formula ϕ;

• Output: Yes if there exists a lineworld w ∈ W such that w |= ϕ. No,
otherwise.

4.3.1 Perception fragment

Remark 3 As for the standard propositional logic, the model checking problem of
a given formula from LP in a given lineworld is easily proved to be in P.

Let us now consider the satis�ability problem of a given formula from LP .

Theorem 14 The satis�ability problem of a formula in the perception fragment
LP is NP-complete. If we restrict the language to a �xed �nite number of agents
then it is in P.

Proof.

In order to show that the satis�ability problem of a given formula from LP is
NP-hard, we shall reduce SAT to it. Let p1, p2, . . . be a non-repeating enumeration
of a countable set of Boolean variables. Let a∞ ∈ AGT and a1, a2, . . . be a non-
repeating enumeration of AGT \ {a∞}. For all Boolean formulas ψ(p1, . . . pn), let
ψ′ = ψ(a1B a∞, . . . , anB a∞) be a corresponding formula in LP . We claim that ψ
is satis�able i� ψ′ is satis�able.
⇐ Suppose that ψ′ is satis�able. Thus, there exists a lineworld w such that

w |= ψ′. We simply extract the valuation ν from the lineworld w as follows:
ν(pi) = 1 i� w |= ai B a∞. The reader is asked to show by induction on ψ that
ν(ψ(p1, . . . , pn)) = 1 i� w |= ψ(a1 B a∞, . . . , an B a∞).
⇒ Suppose that ψ is satis�able. Hence, there exists a valuation ν such that

ν(ψ) = 1. We de�ne a lineworld w = 〈<, ~dir〉 from the valuation ν by:

• a1 < a2 < · · · < a∞;

• For all positive integers i, ~dir(ai) = Right i� ν(pi) = 1;
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procedure sat(ϕ(a1, . . . , an))
choose a strict total order < on {a1, . . . , an};
choose a mapping ~dir : {a1, . . . , an} → {Left, Right};
if (<, ~dir) |= ϕ then

accept
else

reject
endIf

endProcedure

Figure 4.4: Algorithm to decide satis�ability in LP .

• ~dir(a∞) = Right.

As the reader is asked to show by induction on ψ, w |= ψ(a1 B a∞, . . . , an B a∞)
i� ν(ψ(p1, . . . , pn)) = 1.

Moreover, the formula ψ′ can be computed in logarithmic space. Hence, SAT
is reducible in logarithmic space to the satis�ability problem in LP . Thus, the
satis�ability problem in LP is NP-hard. It is in NP since the procedure sat of
Figure 4.4 provides a non-deterministic decision procedure solving it in polynomial
time.

Of course, if we restrict the language to a �xed �nite number of agents, then
the procedure sat can be easily transformed into a deterministic procedure solving
the satis�ability problem in LP in polynomial time.
�

4.3.2 Perception and knowledge

Theorem 15 The model checking of a formula in the epistemic language LPK in
a given lineworld is in PSPACE.

Proof.

Since APTIME = PSPACE [CKS81], it su�ces to prove that the model check-
ing problem is in APTIME. The alternating procedures istrue and isfalse of the
Figure 4.5 take as input a lineworld w and a formula ϕ from LPK . The call
istrue(w,ϕ) stops with a reject i� w 6|= ϕ and the call isfalse(w,ϕ) stops with a
reject i� w |= ϕ.

Their executions depend primarily on ϕ. Each case is either existential or
universal. For exemple, for istrue, the case ϕ1∨ϕ2 is existential. It is an accepting
case i� for some i ∈ {1, 2}, the case ϕi is accepting for istrue. Thus it corresponds
to the fact that ϕ1 ∨ ϕ2 is true at w i� for some i ∈ {1, 2}, ϕi is true at w. As
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procedure istrue(w,ϕ)
match (ϕ)

>: accept ;
aB b:

if (a < b and ~dir(a) = Right)
or (b < a and ~dir(a) = Left)
then

accept
else

reject
endIf

ψ1 ∨ ψ2:
choose (∃)i ∈ {1, 2};
call istrue(w,ϕi);

¬ψ: call isfalse(w,ψ);
Kaψ:

choose (∀)u ∈ W ;
if u ∈ Ra(w) then

call istrue(u, ψ)
else

accept
endIf

endMatch
endProcedure

procedure isfalse(w,ϕ)
match (ϕ)

>: reject ;
aB b:

if (a < b and ~dir(a) = Right)
or (b < a and ~dir(a) = Left)
then

reject
else

accept
endIf

ψ1 ∨ ψ2:
choose (∀)i ∈ {1, 2};
call isfalse(w,ϕi);

¬ψ: call istrue(w,ψ);
Kaψ:

choose (∃)u ∈ W ;
if u ∈ Ra(w) then

call isfalse(u, ψ)
else

reject
endIf

endMatch
endProcedure

Figure 4.5: Algorithm for model checking.
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well, for isfalse, the case ϕ1 ∨ ϕ2 is universal. It is an accepting case i� for each
i ∈ {1, 2}, the case ϕi is accepting for isfalse. Thus it corresponds to the fact
that ϕ1 ∨ ϕ2 is false at w i� for each i ∈ {1, 2}, ϕi is false at w.

In the call istrue(w,ϕ) and the call isfalse(w,ϕ), the input w is a lineworld
where we only take into account agents occuring in ϕ. It is the same for the world
u ∈ W chosen in the cases Kaψ. Remark that this non-deterministic choice can
be done in linear time in the number of agents and that checking if u ∈ Ra(w) can
be done in quadratic time in the number of agents. Hence, this algorithm works
in polynomial time. �

Remark 4 Satis�ability problem in lineland is also in PSPACE. Indeed, in order
to check if a formula ϕ is satis�able, we non-deterministically choose a lineworld w
where we only take into account agents occuring in ϕ and then we call istrue(w,ϕ).

Theorem 16 The model checking of a formula in the epistemic language LPK in
a given lineworld is PSPACE-hard. The satis�ability problem of a formula in the
epistemic language LPK is also PSPACE-hard.

Proof.

The most fundamental complete decision problem for PSPACE is QSAT
[Pap03]: given Boolean quanti�ers Q1, . . . , Qn, pairwise distinct Boolean variables
p1, . . . , pn and a Boolean formula ψ(p1, . . . pn), determine whether Qnpn . . . Q1p1ψ
holds.

We shall reduce QSAT to the Lineland model checking problem. More pre-
cisely, given Boolean quanti�ers Q1, . . . , Qn, pairwise distinct Boolean variables
p1, . . . , pn and a Boolean formula ψ(p1, . . . , pn), we shall construct a �nite lineworld
wn = (<n, ~dirn) and a formula ϕn in LPK such that Qnpn . . . Q1p1ψ holds i�
wn |= ϕn. Suppose a1, b1, a2, b2, . . . is a non-repeating enumeration of AGT. Let
Qnpn . . . Q1p1ψ(p1, . . . , pn) be an instance of QSAT.

First, we associate to Qnpn . . . Q1p1ψ(p1, . . . pn) a �nite lineworld
wn = (<n, ~dirn) such that:

• an+1 <n a1, b1, . . . , an, bn;

• ~dirn(an+1) = Left.

Secondly, we associate to Qnpn . . . Q1p1ψ(p1, . . . pn) the formulas ϕ0, ϕ1, . . . , ϕn
in LPK as follows:

• ϕ0 = ψ(b1 B a1, . . . , bn B an);

• and for all positive integers i, if i ≤ n then if Qi = ∀ then ϕi = Kai+1
(putai →

ϕi−1) else ϕi = K̂ai+1
(putai ∧ ϕi−1)



4.3.2 Perception and knowledge 77

wn
an+1

a1, b1, a2, b2, . . . , an, bn

wn−1
an+1 bn an

a1, b1, a2, b2, . . . , an−1, bn−1

wn−2
an+1 bn an bn−1 an−1

a1, b1, a2, b2, . . . , an−2, bn−2

...

w0
an+1 bn an bn−1 an−1

. . .
b1 a1

Figure 4.6: wn will be step-by-step transformed into linewords of the form
wn−1, wn−2, . . . w0.

a1

Figure 4.7: Agent a1 alone.

where for all positive integers i, if i ≤ n then putai =
∧i−1
j=1 ¬ai B aj ∧

∧i−1
j=1 ¬ai B

bj ∧ ai B ai+1 ∧ ai B bi.
For all positive integers i, if i ≤ n then the guard Kai+1

(putai → . . . ) corre-
sponds to the Boolean quanti�er Qi = ∀ and the guard K̂ai+1

(putai ∧ . . . ) corre-
sponds to the Boolean quanti�er Qi = ∃. Successively interpretating these guards,
the reader may easily verify that wn will be step-by-step transformed into linewords
of the form wn−1, wn−2, . . . , w0 described in Figure 4.6.

During the process leading to w0, putai means �the relative positions and the
directions of an+1, an, bn, an−1, bn−1, . . . ai, bi are �xed whereas the relative positions
and the directions of ai−1, bi−1, . . . a1, b1 are still to be chosen�. Obviously, the
lineworld wn and the formula ϕn in LPK can be computed in logarithmic space.
We claim that Qnpn . . . Q1p1ψ(p1, . . . , pn) holds i� wn |= ϕn. To prove this claim,
we proceed by induction on the nonnegative integer n.

Basis Suppose n = 0. Hence ψ is equivalent either to ⊥ or >. Moreover, wn
is the �nite lineworld described in Figure 4.7.

Finally ϕn is nothing but ψ. As the reader is asked to show, ϕn holds i�
wn |= ϕn.

Hypothesis
Let n be a nonnegative integer such that for all Boolean quanti�ers Q1, . . . Qn,

for all pairwise distinct Boolean variables p1, . . . pn and for all Boolean formulas
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w⊥n
an+2 bn+1 an+1

a1, b1, a2, b2, . . . , an, bn

w>n
an+2 bn+1 an+1

a1, b1, a2, b2, . . . , an, bn

Figure 4.8: The worlds w⊥n and w>n .

ψ(p1, . . . , pn), Qnpn . . . Q1p1ψ(p1, . . . pn) holds i� the corresponding lineworld wn
and the corresponding formula ϕn in LPK are such that wn |= ϕn.

Step Let Q1, Q2, . . . Qn, Qn+1 be Boolean quanti�ers p1, p2, . . . pn, pn+1 be pair-
wise distinct Boolean variables and ψ(p1, p2, . . . , pn, pn+1) be a Boolean formula.
Let wn+1 be the corresponding lineworld and ϕn+1 be the corresponding formula
in LPK . We consider two cases: Qn+1 = ∀ and Qn+1 = ∃. The case Qn+1 = ∃ is
similar to the case Qn+1 = ∀. For this reason we only give the proof for Qn+1 = ∀.

In the case Qn+1 = ∀, Qn+1pn+1Qnpn . . . Q1p1ψ(p1, . . . pn, pn+1) holds i� both
Qnpn . . . Q1p1ψ(p1, . . . pn,⊥) and Qnpn . . . Q1p1ψ(p1, . . . pn,>) holds. Let w⊥n and
w>n be the lineworlds described in Figure 4.8.

Let ϕ⊥n and ϕ>n be the formulas in LPK corresponding respectively to Qnpn . . .
Q1p1ψ(p1, . . . pn,⊥) and Qnpn . . . Q1p1ψ(p1, . . . pn,>). By induction hypothetis,
Qnpn . . . Q1p1ψ(p1, . . . pn,⊥) holds i� w⊥n |= ϕ⊥n and Qnpn . . . Q1p1ψ(p1, . . . pn,>)
holds i� w>n |= ϕ>n . Hence Qn+1pn+1Qnpn . . . Q1p1ψ(p1, . . . pn, pn+1) holds i� w⊥n |=
ϕ⊥n and w>n |= ϕ>n . Now, obviously, wn+1 |= ϕn+1 i� w⊥n |= ϕ⊥n and w>n |= ϕ>n .
Finally, Qn+1pn+1Qnpn . . . Q1p1ψ(p1, . . . pn, pn+1) holds i� wn+1 |= ϕn+1.

This terminates the proof that the Lineland model checking problem is PSPACE-
hard. To demonstrate that the satis�ability problem in Lineland is PSPACE-hard
too, it su�ces to prove that the Lineland model checking problem is reducible
to the satis�ability problem in Lineland. Let w be a �nite lineworld and ϕ be a
formula in LPK . We de�ne G = {b ∈ AGT | b occurs in ϕ}. Let Φ be the formula∧
a,b∈G,w|=aBb aB b∧

∧
a,b∈G,w 6|=aBb ¬aB b. This formula Φ is a G-maximal conjunc-

tion. We have w |= ϕ i� the formula ϕ∧Φ is satis�able. Indeed, from left to right
it follows directly from the fact that w |= Φ. Reciprocally, if ϕ ∧ Φ is satis�able,
there exists a world u such that u |= ϕ ∧ Φ. But then, as w |= Φ, the Lemma 2
gives that w |= ϕ.
�
Finally:

Corollary 1 The model checking and the satis�ability problems in the epistemic
language LPK are PSPACE-complete.
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The PSPACE-hardness of the model checking problem in the language LPK is
related to the fact that one lineworld implicitly de�nes an exponential number of
possible lineworlds.

4.4 Axiomatization

4.4.1 Perception fragment

The following axiomatics describes the geometry of Lineland that agents perceive.

De�nition 22 (theory P)
We de�ne P as the smallest set of formulas of LP closed by modus ponens and
containing all Boolean tautologies and also the following formulas as proper ax-
ioms:

(Ax1) ¬aB a;

(Ax2) aB b, c ∧ (cB a↔ cB b)→ (¬bB a↔ bB c);

(Ax3) ¬aB b ∧ ¬aB c ∧ (cB a↔ ¬cB b)→ (bB c↔ bB a);

(Ax4) ¬aB b ∧ aB c→ (bB a↔ bB c);

(Ax5) ¬aBb∧¬aBc∧¬aBd∧ (bBa↔ bBc)∧ (cBa↔ cBd)→ (bBa↔ bBd);

(Ax6) aB b∧aBc∧aBd∧ (bBa↔ ¬bBc)∧ (cBa↔ ¬cBd)→ (bBa↔ ¬bBd)

for all a, b, c, d ∈ AGT.

The axiom Ax1 means that an agent never sees herself. There are no mirrors
in Lineland and the axiom Ax2 means that if b is between a and c, then b sees
either a or c. The axioms Ax3 and Ax4 are true because agents are transparent.
The axioms Ax5 and Ax6 means that the ordering on the line is transitive.

Theorem 17 The axiomatics is sound: each formula of P is valid.

Proof.

[sketch] The soundness is only veri�cation. We only give here the proof that
Ax6 aB b∧ aB c∧ aB d∧ (bB a↔ ¬bB c)∧ (cB a↔ ¬cB d)→ (bB a↔ ¬bB d)
is valid.

Let w ∈ W be such that (*) w |= aBb∧aBc∧aBd∧(bBa↔ ¬bBc)∧(cBa↔
¬cBd). Suppose that without loss of generality agent a is looking right. As a sees

b, c, and d, the world w looks like a . . . .

Now we consider two cases on the truth of bB a in w:
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• bBa is true in w: (*) implies w |= ¬bBc: w looks like
a

. . .
b

. . .
c

. . . .

Now we consider two cases on the truth of cB a:

� cBa is true in w. Therefore, w |= ¬cBd: w =
a

. . .
b

. . .
c

. . .
d

. . . .

� ¬cB a and cB d: w =
a

. . .
b

. . .
c

. . .
d

. . . .

• ¬bB a and bB c: w =
a

. . .
b

. . .
c

. . . .

Case on cB a:

� cB a is true and ¬cB d: w =
a

. . .
b

. . .
c

. . .
d

. . . .

� ¬cB a and cB d: w =
a

. . .
b

. . .
c

. . .
d

. . . .

In all framed images, we can check that w |= (bB a↔ ¬bB d). �
As usual, a set Γ of formulas is P-consistent i� there is no �nite subset

{ϕ1, . . . , ϕn} ⊆ Γ such that ϕ1 ∧ · · · ∧ ϕn → ⊥ ∈ P . Such a P-consistent set
Γ is called maximal i� there is no P-consistent set Γ′ such that Γ ( Γ′. We sup-
pose the reader to be familiar with the Lindenbaum's lemma and properties of
maximal consistent set. For details, see [BDRV02].

Now, we de�ne the canonical lineworld of a maximal consistent set. Given a
maximal consistent set Γ and an agent a0, the lineworld w

a0
Γ denotes a lineworld

where a0's direction is right and where all formulas in Γ are true. Note that the
following De�nition looks like the condition of Proposition 2.

De�nition 23 (canonical model)
Let a0 ∈ AGT. Let Γ be a maximal P-consistent set. We de�ne the lineworld
wa0

Γ = 〈<, ~dir〉, called canonical lineworld of Γ, by:

• For all b ∈ AGT, b < a0 i� b 6= a0 and ¬a0 B b ∈ Γ;

• For all c ∈ AGT, a0 < c i� a0 B c ∈ Γ;

• For all b, c ∈ AGT such that b 6= a0 and c 6= a0,
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b < c i� (b 6= c) and
[either (1) ¬a0 B b,¬a0 B c ∈ Γ and bB a0 ↔ bB c ∈ Γ
or (2) ¬a0 B b, a0 B c ∈ Γ
or (3) a0 B b, a0 B c ∈ Γ and bB a0 ↔ ¬bB c ∈ Γ];

• For all b ∈ AGT,

~dir(b) = Right if a0 B b↔ ¬bB a0 ∈ Γ or b = a0;
= Left if a0 B b↔ bB a0 ∈ Γ and b 6= a0.

Now we just have to check that the canonical lineworld is a lineworld in the
sense of De�nition 14: < is a total order and ~dir is well-de�ned. This will be
ensured by the proper axioms of the theory P .

Proposition 3 For all a0 ∈ AGT, for all Γ maximal P-consistent set, wa0
Γ ∈ W .

Proof.

Given wa0
Γ = 〈<, ~dir〉, we check that < is a strict total order.

< is strict. By De�nition, it is obvious.

< is trichotomous. Let b, c ∈ AGT be such that b 6= c. Let us consider the simple case: b = a0

or c = a0. Without loss of generality, suppose b = a0. If a0 B c ∈ Γ then
a0 < c. If ¬a0 B c ∈ Γ then c < a0.

Now we are treating the general case where b 6= a0, c 6= a0 and b 6= c. Let us
prove it by contradiction. Suppose we have b 6< c and c 6< b.

Now let us consider the four di�erent following cases (depending on whether
a0 B b ∈ Γ or not and whether a0 B c ∈ Γ or not):

� First case: a0 B b,¬a0 B c ∈ Γ. The condition (2) in the De�nition of
c < b (see De�nition 23) is true. So we have c < b hence contradiction.

� Second case: ¬a0 B b, a0 B c ∈ Γ. In the same way, the condition (2) in
the De�nition of b < c is true. So we have b < c hence contradiction.

� Third case: a0 B b, a0 B c ∈ Γ.
As b 6< c and c 6< b, the condition (3) of the de�nition of b < c and
the condition (3) of the de�nition of c < b are false. So we have:
b B a0 ↔ b B c ∈ Γ (*) and c B a0 ↔ c B b ∈ Γ. As a0 B b ∧ a0 B c ∧
(c B a0 ↔ c B b) → (¬b B a0 ↔ b B c) ∈ Γ (Ax2), modus ponens gives
(¬bB a0 ↔ bB c) ∈ Γ. This contradicts (*).
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� Fourth case: ¬a0B b,¬a0B c ∈ Γ. As b 6< c and c 6< b, the condition (1)
of the de�nition of b < c and the condition (1) of the de�nition of c < b
are false. So we have: bB a0 ↔ ¬bB c ∈ Γ (*) and cB a0 ↔ ¬cB b ∈ Γ
¬a0 B b ∧ ¬a0 B c ∧ (c B a0 ↔ ¬c B b) → (b B c ↔ b B a0) ∈ Γ (Ax3).
So (bB c↔ bB a0) ∈ Γ. This contradicts (*).

< is transitive. Suppose that b < c and c < d and let us prove that b < d. The proofs when
b = a0 or c = a0 are left to the reader. We only consider here the complex
case when b 6= a0 and c 6= a0. By De�nition 23, b < c implies that:

� either (1) ¬a0 B b,¬a0 B c ∈ Γ and bB a0 ↔ bB c ∈ Γ;

� or (2) ¬a0 B b, a0 B c ∈ Γ;

� or (3) a0 B b, a0 B c ∈ Γ and bB a0 ↔ ¬bB c ∈ Γ.

In the same way, c < d implies that:

� either (1') ¬a0 B c,¬a0 B d ∈ Γ and cB a0 ↔ cB d ∈ Γ;

� or (2') ¬a0 B c, a0 B d ∈ Γ;

� or (3') a0 B c, a0 B d ∈ Γ and cB a0 ↔ ¬cB d ∈ Γ.

Hence, we have to consider the following 9 cases.

� (1) (1')We have ¬a0Bb,¬a0Bc,¬a0Bd ∈ Γ. We have bBa0 ↔ bBc and
cBa0 ↔ cBd. It su�ces to prove that bBa0 ↔ bBd ∈ Γ. This follows
from the axiom of transitivity (Ax5) ¬a0Bb∧¬a0Bc∧¬a0Bd∧(bBa0 ↔
bB c) ∧ (cB a0 ↔ cB d)→ (bB a0 ↔ bB d) ∈ Γ.

� (1) (2') It gives directly (2) for b < d.

� (1) (3') We have ¬a0 B b,¬a0 B c, a0 B c, a0 B b ∈ Γ and this is simply
impossible because Γ is consistent.

� (2) (1') We have a0 B c,¬a0 B c ∈ Γ and this is impossible.

� (2) (2') We have a0 B c,¬a0 B c ∈ Γ and this is impossible.

� (2) (3') We have ¬a0 B b, a0 B c, a0 B d and cB a0 ↔ ¬cB d. Sure, we
have ¬a0 B b and a0 B d. So we have the point (2) of the De�nition of
b < d.

� (3) (1') a0 B c,¬a0 B c ∈ Γ and this is impossible.

� (3) (2') a0 B c,¬a0 B c ∈ Γ and this is impossible.

� (3) (3) This case looks like the case (1) (1) except that we use here
axiom (Ax6).
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If all the possible cases, we have b < d.

�
Now we prove that the formulas true in wa0

Γ are exactly the formulas in Γ.

Lemma 3 (truth lemma) For all a0 ∈ AGT, for all Γ maximal P-consistent
set, for all ϕ ∈ LP , ϕ ∈ Γ i� wa0

Γ |= ϕ.

Proof.

By induction on ϕ.

a0 B c We prove that a0 B c ∈ Γ i� wΓ |= a0 B c.

⇒ If a0 B c ∈ Γ, then by de�nition of <, we have a0 < c. Moreover
~dir(a0) = Right. Hence wΓ |= a0 B c.

⇐ Reciprocally, if wΓ |= a0 B c, it implies a0 < c because a0 is looking
right. Hence, by de�nition of <, a0 B c ∈ Γ.

bB a0 We prove that bB a0 ∈ Γ i� wΓ |= bB a0.

⇒ Suppose that bB a0 ∈ Γ.

∗ First case : a0 B b ∈ Γ.
By de�nition of <, we have a0 < b. By de�nition of ~dir(b), as
a0 B b ↔ bB a0 ∈ Γ, we have ~dir(b) = Left. Hence, by De�nition
of the truth condition we have wΓ |= bB a0.
∗ Second case : ¬a0 B b ∈ Γ. This case is similar. By de�nition of
<, we have b < a0. By de�nition of ~dir(b), ~dir(b) = Right. So
wΓ |= bB a0.

⇐ And reciprocally, suppose that wΓ |= bB a0.

∗ Case b < a0: we must have ~dir(b) = Right. So by De�nition of ~dir,
we have a0 B b ↔ ¬b B a0 ∈ Γ. By De�nition of b < a0, we have
¬a0 B b ∈ Γ. Hence bB a0 ∈ Γ.
∗ Case a0 < b: Similar to the previous case.

bB c Let us prove the truth lemma for the case bB c where b, c 6= a0.

⇒ Suppose bB c ∈ Γ and let us prove that wΓ |= bB c.
We have to consider two cases: either b < c or c < b. Let us study the
case b < c.
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∗ Suppose (2). Thus ¬a0 B b, a0 B c ∈ Γ, i.e. by De�nition of <:
b < a0 < c. Let us prove that ~dir(b) = Right, i.e. we have to prove
that a0 B b ↔ ¬b B a0 ∈ Γ. As we have ¬a0 B b ∈ Γ we have to
prove that bB a0 ∈ Γ.
We have aB c∧¬aB b→ (bB a↔ bB c) ∈ Γ (Ax4) and bB c ∈ Γ
(hypothesis) so bB a0 ∈ Γ.
∗ Suppose (3). Thus a0 B b, a0 B c ∈ Γ, i.e. by De�nition of <:
a0 < b < c. Let us prove that ~dir(b) = Right, i.e. we have to prove
that a0 B b ↔ ¬b B a0 ∈ Γ. But a0 B b ∈ Γ. So we have to prove
¬bBa0 ∈ Γ. But by (3), we have ¬bBa0 ↔ bBc ∈ Γ and bBc ∈ Γ.

∗ Suppose (1) (b < c < a0). Let us prove that ~dir(b) = Right. We
have to prove that a0 B b↔ ¬bB a0 ∈ Γ. But ¬a0 B b ∈ Γ. So we
have to prove bB a0 ∈ Γ. But by (1), we have bB a0 ↔ bB c ∈ Γ
and bB c ∈ Γ!

⇐ Reciprocally, suppose that wΓ |= bB c and let us prove that bB c ∈ Γ.
We have to consider the following two cases:

∗ The case ~dir(b) = Right and b < c: we have a0B b↔ ¬bB a0 ∈ Γ.
We have to consider again two cases:
1. ¬a0 B b ∈ Γ: hence bB a0 ∈ Γ because ~dir(b) = Right.

We have to consider again two cases:
* ¬a0 B c ∈ Γ. Then by De�nition of b < c, we have bB a0 ↔
bB c ∈ Γ, so we have bB c ∈ Γ;
* a0B c ∈ Γ: But a0B c∧¬a0B b→ (bBa0 ↔ bB c) ∈ Γ (Ax4)
we have bB c ∈ Γ.

2. a0 B b ∈ Γ: left to the reader.
∗ The case ~dir(b) = Left and c < b is similar and left to the reader.

(Boolean cases) They are left to the reader.

�

Corollary 2 Valid formulas of LP are exactly formulas in P.

In the previous De�nition 23, we have based the construction of the canonical
lineworld to a particular agent a0. In fact, the canonical model does not depend
on the choice of a0 ∈ AGT. More precisely:

Proposition 4 For all a0, b0 ∈ AGT, for all Γ maximal P-consistent sets, we
have wa0

Γ ≈ wb0Γ .
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Proof.

By Proposition 13 and Lemma 3. �
The previous Proposition will be useful in next Subsection for the axiomatiza-

tion with knowledge operators.

4.4.2 Perception and knowledge

The axiomatics for the perception and epistemic modal logic lies on the notion
of G-what-a-perceives-mc. It corresponds to a conjunction which speci�es exactly
the factual information agent a knows about agents in G.

De�nition 24 (G-what-a-perceives-mc)
Let G ⊆ AGT be such that G is �nite and non-empty. Let a ∈ G. We say that ϕ
is a G-what-a-perceives-mc i� ϕ is a conjunction of litterals such that there exists
a subset V ⊆ G such that:

• for all b ∈ V , aB b appears in ϕ;

• for all b ∈ G \ V , ¬aB b appears in ϕ;

• for all b ∈ V , for all c ∈ G, either bB c or ¬bB c appears in ϕ;

• ϕ is satis�able.

In the previous De�nition, the set V represents the set of agents seen by agent
a. The �rst and second items correspond to the information about agents that
agent a sees and does not see. The third item corresponds to what agents visible
to a see. The fourth item implies that a 6∈ V . Now we give an axiomatization
describing the interaction between knowledge and perception.

De�nition 25 (theory PK)
We de�ne PK as the smallest set of formulas of LPK closed by modus ponens and
necessitation rules and containing all Boolean tautologies, all proper axioms of P
and also the following formulas as proper axioms:

(AxK) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ);

(Ax7) aB b→ KaaB b ;

(Ax8) ¬aB b→ Ka¬aB b;

(Ax9) aB b ∧ bB c→ KabB c;

(Ax10) aB b ∧ ¬bB c→ Ka¬bB c;
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(Ax11) ϕ → K̂aΦ where ϕ is G-what-a-perceives-mc and Φ is any G-describing
conjunction containing ϕ.

The axiom Ax7 says that an agent knows when she is seeing somebody (positive
introspection). The axiom Ax8 says that an agent knows when she is not seeing
somebody (negative introspection). In that sense, an agent a is aware of the
existence of the other agents and knows whether she sees b them or not. The
axiom Ax9 says that a is aware of the perception of the agents she sees. The
axiom Ax10 says that a is aware of the non-perception of the agents she sees. The
axiom Ax11 says that a always can imagine all possible situations compatible with
her perceptions. The last axiom can be recursively enumerated since deciding
satis�ability of a formula in LP is in NP (Theorem 14). Actually, we do not know
if Ax11 can be replaced by a �nite set of axioms.

Note that any instances of T, 4, 5 forKa are in PK. This follows from Corollary
3 and the fact that such instances are valid.

Example 11 Let us consider G = {a, b, c}. The formula ϕ = ¬a B a ∧ a B
b ∧ ¬a B c ∧ b B a ∧ ¬b B b ∧ b B c is a G-what-a-perceives-mc. The formula
Φ = ¬a B a ∧ a B b ∧ ¬a B c ∧ b B a ∧ ¬b B b ∧ b B c ∧ c B a ∧ c B b ∧ ¬c B c is
an G-describing conjunction which subsumes ϕ. So ϕ → K̂aΦ is an axiom of the
theory PK.

We let the reader check that the axiomatics is sound: each formula of the
theory PK is valid.

The notion of maximal PK-consistency is de�ned as usual. Obviously, given
a maximal PK-consistent set Γ of formulas in LPK , Γ ∩ LP is maximal and P-
consistent in LP . Therefore, for all a0 ∈ AGT, one may associate to Γ the lineworld
wa0

Γ as in De�nition 23. Note that since Γ is maximal and consistent, given an agent
a and given a �nite set of agents G, Γ constains a unique G-what-a-perceives-mc.
Now let us demonstrate that the formulas true in wa0

Γ are exactly the formulas in
Γ.

Lemma 4 (truth lemma) For all a0 ∈ AGT, For all ϕ ∈ LPK, for all Γ maxi-
mal PK-consistent set, ϕ ∈ Γ i� wa0

Γ |= ϕ.

Proof.

We prove the truth lemma by induction on the modal degree of the formula
ϕ. If ϕ is a formula in LP then by Lemma 3, ϕ ∈ Γ i� wa0

Γ |= ϕ. Boolean cases
are left to the reader. We are left with the case ϕ = Kaψ.

⇒ Suppose that Kaψ ∈ Γ. We have to prove that wa0
Γ |= Kaψ. In other words,

we have to prove that for all u ∈ Ra(w
a0
Γ ), u |= ψ. Let G = {b ∈ AGT
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| b occurs in ϕ}. Let χ be the G-what-a-perceives-mc contained in Γ. Let
us take u ∈ W such that wa0

Γ Rau. Let Φ be the G-describing conjunction
true in u. By De�nition of Ra, we have that Φ subsumes χ. Thus, the
instance χ → K̂aΦ of Ax11 is in Γ. Hence K̂aΦ ∈ Γ. Since Kaψ ∈ Γ, then
by axiom AxK with Ka, the necessitation rule with Ka and modus ponens,
the singleton {Φ ∧ ψ} is consistent. By Lindenbaum's lemma, there exists
a maximal PK-consistent set ∆ containing the formula Φ ∧ ψ. The modal
degree of the formula Φ∧ψ is strictly less that the modal degree of Kaψ. So
we can apply the induction hypothetis with Φ ∧ ψ: we have wa0

∆ |= Φ ∧ ψ.
But u |= Φ. Hence by Lemma 2, u |= ψ. This holds for all u ∈ Ra(w

a0
Γ ).

Finally wa0
Γ |= Kaψ.

⇐ Reciprocally suppose we have K̂aψ ∈ Γ. And let us prove that wa0
Γ |=

K̂aψ. By Proposition 4, up to ≈-equivalence, there is only one Γ-canonical
lineworld. For this reason, it su�ces to prove that waΓ |= K̂aψ. Using
AxK with Ka, the necessitation rule with Ka and modus ponens, it follows
that the set S = {ψ} ∪ {χ | Kaχ ∈ Γ} is consistent. Let ∆ be a maximal
PK-consistent set containing S. By induction, we obtain wa∆ |= ψ. So
it su�ces to prove that waΓRaw

a
∆. Let VΓ = {b ∈ AGT | waΓ |= aB b} and

V∆ = {b ∈ AGT | wa∆ |= aB b}.
We have VΓ = V∆. Indeed:

⊆ If waΓ |= aB b then aB b ∈ Γ. By Ax7 we obtain KaaB b ∈ Γ. Hence by
de�nition of ∆, aB b ∈ ∆. Hence by induction, wa∆ |= aB b.

⊇ If waΓ 6|= aB b then ¬aB b ∈ Γ. By Ax8 we obtain Ka¬aB b ∈ Γ. Hence
by de�nition of ∆, ¬aB b ∈ ∆. Hence, wa∆ 6|= aB b.

For all b ∈ VΓ, for all c ∈ AGT, we have the following equivalence referred
as (*): bB c ∈ Γ i� bB c ∈ ∆. Indeed:

⇒ If bB c ∈ Γ, since aB b ∈ Γ the axiom Ax9 and modus ponens give that
KabB c ∈ Γ. Hence by De�nition of ∆, bB c ∈ ∆.

⇐ If ¬bB c ∈ Γ, by Ax10, we have Ka¬bB c ∈ Γ. Hence ¬bB c ∈ ∆.

We are going to check di�erents points of the De�nition 17 using the De�ni-
tion of waΓ and wa∆ (De�nition 23):

� First V (a)waΓ = VΓ = V∆ = V (a)wa∆ ;

� We have for all b, c ∈ V (a)waΓ , b <waΓ
c i� b <wa∆

c because VΓ = V∆ and
(*);

� For all b ∈ V (a)waΓ ,
~dirwaΓ(b) = ~dirwa∆(b) because VΓ = V∆ and (*).
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Hence waΓRaw
a
∆. Finally, we proved that waΓ |= K̂aψ.

�

Corollary 3 Valid formulas of LPK are exactly formulas in PK.

4.5 Conclusion and perspectives

Figure 4.9: Example of a �atworld w.

We have studied an epistemic logic interpreted over lineworlds where knowledge
of agents is based on what they can see. We have given a complete axiomatization
and tight decision procedures for model checking and satis�ability problems.

We do not know if our epistemic logic is �nitely axiomatizable. In other re-
spects, it is unknown whether PSPACE-hardness of the model checking and the
satis�ability problems still hold when we the constructionKaϕ is allowed for agents
a which belongs to a �nite set AGT ′ ⊆ AGT.

In the next Chapter, we extend our work to Flatland [Abb84], i.e. interpreting
formulas of LPK in �atworlds : a �atworld is speci�ed by giving to any agent a
position in the plane and a direction the agent is looking in. For example, in Figure
4.9, agent a sees b and d but cannot see c.

4.6 Implementation

Algorithms to solve the model-checking problem and the satis�ability problem in
Lineland has been implemented in Scheme/Java.

4.6.1 Pedagogical motivation

In addition to robotics and video games application, Lineland (and also Flatland
etc.) is a pedagogical tool. Epistemic logic has the syntax and the semantics of
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Figure 4.10: Screenshot of the model-checker for Lineland

modal logic and contrarily to temporal logics, it is perhaps more di�cult to explain
where the possible worlds come from to students who lack a strong background in
logic. This is a reason why we study a concrete example of multi-agent system:
we put agents in a space (here a line) and then ask �what do agents know about
lamps, about the knowledge of other agents about lamps and so on.?� Our logic is
implemented as a pedagogical tool in order to illustrate any epistemic logic course.
Indeed, students can easily understand some epistemic logic on concrete examples,
like the Muddy-children puzzle where each child must guess whether her forehead
is muddy or not by considering the others' and knowing that at least one of them
is muddy.

Our approach can also be compared to the pedagogical approach in [BE93]
where there are objects like cubes and pyramids and where one can write formulas
in �rst order logic to check properties of and relations between these objects. Here
our approach is similar: we put agents and lamps in �atland and then, we can
write formulas in epistemic logic to check whether some property is true.

4.6.2 How deos it work ?

As you can show in the Figure 4.10, the graphical user interface is divided in two
parts:

• the line you can write the formula you want to check. The language is similar
to the theoretical language and based on the syntax of Scheme;
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• a drawing of a lineworld. You can move agents and lamps with the mouse.
You can also change direction of an agent or the state of a lamp.

The language for formulas is the following:

• Agents are natural numbers;

• lamps are a lower-case character;

• ( . . . s e e s . . . ) ;

( . . . or . . . ) ;

•• ( . . . and . . . ) ;

( . . . or . . . ) ;

•• ( . . . knows . . . ) ;

( announce . . . . . . ) .

4.6.3 Technical information

4.6.3.1 The engine in Scheme

The language Scheme [EA93] is adapted to write this kind of algorithms for many
reasons:

•• Pattern matching of expressions (formulas) is supported;

• The syntax of Scheme is such that we can directly use a syntax for formulas
closed to the formal de�nition;

• The syntax is simple and the language is dynamically typed so it is suitable
for a prototype;

• Scheme can embedded into a Java application via Kawa so it is multi-
platform too.

The Figure 4.11 shows the main function of the program written in Scheme:
the function is a model-checker. It checks if the formula is true in the world,
provided the context. The context is here in order to deal with a sequence of
public announcements.

You can download the program on the Internet for more information: http:

//www.irit.fr/~Francois.Schwarzentruber/lineland/.

http://www.irit.fr/~Francois.Schwarzentruber/lineland/
http://www.irit.fr/~Francois.Schwarzentruber/lineland/
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( d e f i n e (mc−with−context world context formula )
(match formula

( ' top #t )
( ( phi 'or p s i )
(or (mc−with−context world context phi )

(mc−with−context world context p s i ) ) )
( ( 'not phi1 )
(not (mc−with−context world context phi1 ) ) )

( ( phi1 'and phi2 )
(and (mc−with−context world context phi1 )

(mc−with−context world context phi2 ) ) )
( ( phi1 ' imp l i e s phi2 )
(or (not (mc−with−context world context phi1 ) )

(mc−with−context world context phi2 ) ) )
( ( a ' knows phi )
( val idin−with−context
( wor ldset−de le te−not− sat i s fy ing
( wor ld−getposs ib l ewor lds world a ) context )

context
phi ) )

( ( ' announce phi p s i )
( l et ( ( newcontext ( l i s t context 'and phi ) ) )

( i f (mc−with−context world context phi )
(mc−with−context world newcontext p s i )
#t ) ) )

( ( a ' s e e s b)
( s e e s ? world a b ) )

(p ( world−getvalue world p ) ) ) )

Figure 4.11: The function for the model-checking in Scheme
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4.6.3.2 The front end in Java

The language Java is adapted in order to create the graphic user interface for many
reasons:

• Java o�ers the suitable and easy to use Application Programming Interface
(API) Swing [ELW+98] adapted to design graphic user interface;

• Java is multi-platform via a virtual machine [LY99].

The interface between Java and Scheme is the library kawa: http://www.gnu.

org/software/kawa/. This library provides a Scheme interpreter that enables to
execute Scheme code from a Java program.

Open questions

• Is the logic of Lineland �nitely axiomatizable?

• What is the complexity of the satis�ability problem if we restrict construc-
tions of the form Kaϕ so that a belongs to a �nite and �xed set of agents?

http://www.gnu.org/software/kawa/
http://www.gnu.org/software/kawa/


Chapter 5

Knowledge in Flatland

5.1 Introduction

In the previous Chapter we have studied the logic of perception and knowledge
when the dimension of the space is one. In this Chapter we are interested in the
logic of perception and knowledge when the dimension is two: Flatland.

This chapter is organized as follows:

• We present again the epistemic language LPK in Section 5.2;

• We recall geometric standard notations in Section 5.3,;

• We present the semantics of LPK in Section 5.4;

• We deal with decidability of the logic in Section 5.5;

• We add public announcements in Section 5.6;

• We talk about perspectives in Section 5.9.

As for Lineland, initially, the �rst formalization of Flatland [BGS10] used
agents and lamps. The aim of the lamps was to denote propositions in the world.
For instance, as you can see in the muddy-children puzzle, Figure 5.1, lamps are
kind of propositions and here represents the state of foreheads. If `i is on, then it
means that the forehead of agent ai is dirty. In Figure 5.1, the forehead of agent
a2 is clean but the foreheads of the other agents are dirty. As for Lineland, we
can easily encode the state of a lamp by extra agents as following: a lamp `i is on
(Figure 5.1) i� the agent `i is looking at agent ai (Figure 5.2) That is why we have
decided to delete lamps from the language and the models.
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Figure 5.1: Muddy-children in �atland with lamps (denoting the state of foreheads)
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Figure 5.2: Muddy-children in �atland with only agents (the state of foreheads are
encoded by agents lk)
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5.2 Syntax

In this Section, we recall the language of perception and knowledge introduced in
Subsection 4.2.1 for Lineland.

Let AGT = {a, b, c . . .} be a countable set of agents.

De�nition 26 (language)
The language LPK is de�ned by the following BNF:

ϕ ::= aB b | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | Kaψ

where a, b ∈ AGT.

As usual, (ϕ∧ψ) =def ¬(¬ϕ∨¬ψ). K̂aψ =def ¬Ka¬ψ. We follow the standard
rules for omission of parentheses. Let agt(ϕ) be the set of all agents occurring in
ϕ. The formula KabB c is read �agent a knows that b sees agent c�.

As for Lineland, LP denotes the set of formulas without epistemic modality.

5.3 Notations

In this Section, we recall some basic notions of geometry. We note N the set of
natural numbers and R the set of real numbers. We note R2 the real plane. If
a ∈ R2, we note a = (ax, ay) where ax, ay ∈ R: ax is called abscise of a and ay is
called ordinate of a. If a, b ∈ R2, we de�ne ~ab ∈ R2 as ~ab = (bx − ax, by − ay).

The scalar product of a and b is a�b = ax×bx + ay×by ∈ R. If x ∈ R2, we de�ne
||x|| =

√
x�x. ||x|| is called euclidian norm of the vector x.

Let U = {x ∈ R2 | ||x|| = 1}. U is called unit circle.

5.4 Concrete semantics

The semantics is not de�ned with a class of models but directly with a concrete
�atland situation. A �atworld is a situation where all agents have a location
(position and direction at which they look) in the plane , all lamps have a position
and a state (on or o�). From it, we will obtain a spatially grounded epistemic
logic. Formally:

De�nition 27 (�atworld)

A �atworld w is a tuple 〈pos, ~dir〉 where:

• pos : AGT→ R2;

• ~dir : AGT→ U ;
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The set of all worlds is noted W .

In a �atworld w = 〈pos, ~dir〉, for all agent a, pos(a) is the position of agent a
in the plane. For all agent a, the vector ~dir(a) of norm 1 denotes the direction
where agent a is looking. The agent see all the closed half-plane in the direction
~dir(a).

Example 12 The Figure 2.1 of Muddy children is a �atworld in the sense of
De�nition 27:

• AGT = {a1, . . . , a8, `1, . . . , `8};

• pos(ak) =
(
cos(kπ

4
), sin(kπ

4
)
)
; (positions of agents ak)

• pos(`k) =
(
1.1×cos(kπ

4
), 1.1×sin(kπ

4
)
)
; (positions of agents `k)

• ~dir(ak) =
(
− cos(kπ

4
),− sin(kπ

4
)
)
; (directions of ak)

• ~dir(ak) =
(
− cos(kπ

4
),− sin(kπ

4
)
)
; (directions of ak for all k 6= 2)

• ~dir(a2) = (0, 1).

Now we de�ne the set of all points that an agent a sees.

De�nition 28 (cone)

Let us consider a �atworld w = 〈pos, ~dir, val〉. For all a ∈ AGT, we note conew(a)

the set {x ∈ R2 | ~dir(a)� ~pos(a)x ≥ 0} .

As depicted in the Figure 5.3, conew(a) is the closed half-plane of all points x such
that ~dir(a)� ~pos(a)x ≥ 0. We could change this De�nition:

• Agent can see the open half-plane;

• Agent can see only a cone of angle α: conew(a) = {x ∈ R2 | ~dir(a)� ~pos(a)x ≥ cos(α)|| ~pos(a)x||};

• An agent can be myopic and does not see what is at a distance greater than
r, etc. conew(a) = {x ∈ R2 | ~dir(a)� ~pos(a)x ≥ 0 and || ~pos(a)x|| ≤ r}.

• Agent can see the open half-plane: conew(a) = {x ∈ R2 | ~dir(a)� ~pos(a)x > 0};

• Agent can see only a cone of angle α: conew(a) = {x ∈ R2 | ~dir(a)� ~pos(a)x ≥ cos(α)|| ~pos(a)x||}.

Here for the sake of simplicity, we adopt the De�nition 28.
Now we de�ne the epistemic relation over worlds. For all w, u ∈ W , wRau

means that agent a cannot distinguish w from u, i.e. agent a sees the same objects
in w and u. Di�erences between w and u only lie in positions, directions, states of
objects that agent a does not see. Formally:
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a

dir(a)

cone(a)

Figure 5.3: conew(a) = closed half-plane seen by agent a

De�nition 29 (epistemic relation)

Let a ∈ AGT. We de�ne the relation Ra over worlds w = 〈pos, ~dir〉 and u =:

〈pos′, ~dir
′
〉: wRau i�:

• for all b ∈ AGT,

pos(b) ∈ conew(a) i� pos′(b) ∈ coneu(a);

• and for all b ∈ AGT, if pos(b) ∈ conew(a) then

pos(b) = pos′(b) and ~dir(b) = ~dir
′
(b).

The Figure 5.4 presents two worlds linked by Rb: agents c, d are seen by agent b
and so they have the same positions and directions in both worlds. But, agent a
can change directions and positions provided she remains invisible from agent a.

Obviously, the relation Ra is an equivalence relation.

De�nition 30 (truth conditions)

Let w = 〈pos, ~dir, val〉 ∈ W and ϕ be a formula of LPK . We de�ne w |= ϕ by
induction:

• w 6|= ⊥;

• w |= aB b i� pos(b) ∈ conew(a);

• w |= ϕ ∨ ψ i� w |= ϕ or w |= ψ;

• w |= ¬ϕ i� w 6|= ϕ;
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a
b

c

d

a

b

c

d

R
b

Figure 5.4: Two worlds linked by Ra

• w |= Kaψ i� for all u ∈ W , wRau implies u |= ψ.

We shall say that a formula ϕ is satis�able i� there exists a �atworld w ∈ W
such that w |= ϕ. Formula ϕ is said to be valid i� for all worlds w ∈ W , w |= ϕ.
Since Ra is an equivalence relation on W , then the axioms of classical epistemic
logic S5n are valid:

• Kaϕ→ ϕ;

• Kaϕ→ KaKaϕ;

• ¬Kaϕ→ Ka¬Kaϕ.

5.5 Two decision problems

In Subsection 5.5.1, we see that �nding a qualitative semantics is not so trivial.
That is why we remain with a quantitative representation of worlds: in Subsection
3.2.1.1 , we recall the theory of real numbers enabling us to reduce the model-
checking and satis�ability of an epistemic formula in �atland in subsection 5.5.2 .
Let us recall the De�nitions of the problem of model-checking and satis�ability.

De�nition 31 (model-checking in �atland)

We call model-checking in Flatland the following problem:

• Input: a formula ϕ ∈ LPK , a description of the �atworld w;



5.5.1 A non-successful qualitative semantics 99

a

b c d

Figure 5.5: �atworld where agents b, a, lamps `, m,n are aligned

• Output: Yes i� we have w |= ϕ. No, otherwise.

In De�nition 31, the description of the �atworld w only objects occurring in ϕ
are taken in account. Positions of agents are supposed to have rational coordinates
because we need a data structure to represent positions of agents. In the same way,
we need a data structure to represent directions of agent.. We do not represent
directions with angles... because the logic of real numbers with the function cos
is... undecidable. Indeed, if we cos, we can de�ne π and then de�ne integers and
Peano's arithmetic is undecidable. We represent ~dir(a) by the abscise ~dir(a)x,
supposed to be rational and the sign of the ordinate ~dir(a)y. The value of ~dir(a)x

and the sign of ~dir(a)y entirely determine ~dir(a) because ~dir(a)
2

y = 1− ~dir(a)
2

y.

De�nition 32 (�atland-satis�ability problem)
The �atland-satis�ability problem is the following problem:

• Input: a formula ϕ ∈ LPK ;

• Output: Yes i� there exists a �atworld w such that w |= ϕ.

5.5.1 A non-successful qualitative semantics

One idea could be that facts of the form aBb are su�cient to represent a situation.
The Figures 5.5 and 5.6 gives us two worlds where we have the same valuation (*)
for those facts. In both situations:

• aB b, aB c, aB d are true;
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a

b

c

d

Figure 5.6: �atworld where objects b, a, `, m,n are not aligned

• ¬bB a, bB c, bB d are true;

• cB a, cB b, ¬cB d are true;

• ¬dB a, ¬dB b, ¬dB c are true.

Nevertheless, in the situation of the Figure 5.6, the formula ϕ = K̂b(aB b ∧ aB d ∧ ¬aB c)
holds whereas this formula ϕ is false in the situation of the Figure 5.5. Indeed:

• ϕ holds in the �atworld of Figure 5.6 because agent a can imagine the �at-
world of the Figure 5.4.

• ϕ does not hold in Figure 5.5 because as pos(b), pos(c), pos(d) are aligned for
all possible worlds u for agent b, pos(b) ∈ conew(a)u and pos(d) ∈ conew(a)u
implies pos(c) ∈ conew(a)u because coneu(a) is a convex set. Hence in the
�atword of Figure 5.5 the formula Kb(aB b ∧ aB d→ aB c) holds.

To sum up, we have exhibited two worlds (one of Figure 5.6 and one of 5.5),
satisfying the same extra propositions of the form aBb but not the same epistemic
formulas. What agents see or not does not determine a unique epistemic situation.
This means that representing a �atland situation is not trivial. In other worlds,
the Lemma 2 is no longer true in Flatland. We tried other formalization that takes
into account that such and such agents are aligned, or that the former is on the left
of the latter, etc. but unsuccessfully. The existence of a qualitative and complete
representation of a �atworld remains an open question.
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5.5.2 Translation into real numbers

In order to translate a formula of LPK into the logic of real numbers, we will intro-
duce numerated situations to simulate the truth condition of Kaψ. (see De�nition
33) We need the set of variables VAR to contain some extra variables (written in
bold face):

• For all n ∈ N and for all a ∈ AGT, the set VAR contains the variables posnx,a
and posny,a. They will be equal respectively to the abscise and ordinate of
the position of the agent a in the situation number n.

• For all n ∈ N and for all a ∈ AGT, the set VAR contains the variables dirnx,a
and dirny,a. They will be respectively equal to the abscise and ordinate of
the direction of the agent a in the situation number n.

We de�ne the following abbreviations:

• DIR(n, ϕ) says the variables of directions of agents of the formula ϕ represent
vectors of the unit circle U :

DIR(n, ϕ) =
∧
b∈agt(ϕ) || ~dir

n

b ||2 = 1 where || ~dirnb ||2 is the expression dirnx,b×
dirnx,b + dirny,b× dirny,b.

• FORALL(n, ϕ) = ∀ posnx,a1
, . . .∀ posnx,ak∀ posny,a1

, . . .∀ posny,ak

∀ dirnx,a1
, . . .∀ dirnx,al∀ dirny,a1

, . . .∀ dirny,al

where agt(ϕ) = {a1, . . . , al}.
FORALL(n, ϕ) is a �for all quanti�er� over all variables interpreted as po-
sitions of objects, directions of agents and valuations of atoms of ϕ in the
situation number n.

• The formula EPI(n, a, ϕ) will be a formula of LR saying that the situations
number n and n+ 1 are linked by the epistemic relation Ra, i.e. are similar
w.r.t. what agent a sees. More precisely, the variables representing the
situations number n and n + 1 are satisfying the constraints of De�nition
29. Moreover, in EPI(n, a, ϕ) we are only interested about objects of the
formula ϕ. Formally:

EPI(n, a, ϕ) =
∧
b∈agt(ϕ)[ ~dir

n

a � ~posnapos
n
b ≥ 0↔

~dir
n+1

a � ~
posn+1

a pos
n+1
b ≥ 0]∧∧

b∈agt(ϕ)[ ~dir
n

a � ~posnapos
n
b ≥ 0

→ ( pos
n+1
x,b = posnx,b ∧ pos

n+1
y,b = posny,b∧
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dir
n+1
x,b = dirnx,b ∧ dir

n+1
y,b = dirny,b)].

where ~dir
n

a � ~posnapos
n
a is the expression dirnx,a× ( posnx,a− posnx,a) + dirny,a×

( posny,a − posny,a) etc.

Now we we can give the translation of a formula of LPK into LR. Given ϕ ∈ LPK
and n ∈ N, we introduce τ(n, ϕ) ∈ LR whose meaning is �ϕ is true in the situation
number n�.

De�nition 33 (translation)
We de�ne the translation τ : N× LPK → LR by, for all n ∈ N:

• τ(n,⊥) = ⊥;

• τ(n, aB b) = ( ~dir
n

a � ~posnapos
n
b );

• τ(n, ϕ1 ∨ ϕ2) = τ(n, ϕ1) ∨ τ(n, ϕ2);

• τ(n,¬ϕ) = ¬τ(n, ϕ);

• τ(n,Kaϕ) = FORALL(n+ 1, ϕ)

DIR(n+ 1, ϕ) ∧ EPI(n, a, ϕ)→ τ(n+ 1, ϕ).

where FORALL(n+ 1, ϕ), DIR(n+ 1, ϕ), EPI(n, a, ϕ) are de�ned above.

Let us explain τ(n,Kaϕ): the variables of the situation number n are such
that for all situation number n + 1 [FORALL(n + 1, ϕ)], if the directions are
correct [DIR(n+ 1, ϕ)] and if the situation number n+ 1 is linked to the situation
number n by Ra [EPI(n, a, ϕ)] then the formula ϕ is true in the situation number
n+ 1 [τ(n+ 1, ϕ)]. The De�nition τ(n,Kaϕ) simulates the truth condition of Kaψ
(De�nition 30) by using numerated situations.

Proposition 5 For all ϕ ∈ LPK, for all n ∈ N, for all w = 〈pos, ~dir〉 ∈ W , we
have:

w |= ϕ i� I |= τ(n, ϕ) for all I ∈ Inter(n,w, ϕ) where Inter(n,w, ϕ) is the set
of all interpretations I such that:

• I( posnx,a) = pos(β)x, I( posny,a) = pos(β)y for all a ∈ agt(ϕ);

• I( dirnx,a) = ~dir(a)x, I( dirny,a) = ~dir(a)y for all a ∈ agt(ϕ);
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Proof.

Let V n,ϕ = { ~posn, ~dirn}. By induction on ϕ. The property is P(ϕ) =�for all
n ∈ N, for all w ∈ W , we have w |= ϕ i� I |= τ(n, ϕ)�.

ϕ = aB b
Left to the reader.
¬ϕ
w |= ¬ϕ i� w 6|= ϕ i� not[for all I ∈ Inter(n,w, ϕ), I |= τ(n, ϕ)] i� there exists

I such that (*) and I 6|= τ(n, ϕ) i� there exists I ∈ Inter(n,w, ϕ) and I |= ¬τ(n, ϕ)
i� there exists I ∈ Inter(n,w, ϕ) and I |= τ(n,¬ϕ) for all I ∈ Inter(n,w, ϕ) and
I |= τ(n,¬ϕ). (because the interpretation of τ(n,¬ϕ) only depends of ~posn, ~dir

n
).

Kaϕ

w |= Kaϕ i� for all u ∈ Ra(w) u |= ϕ i� for all u ∈ W such that De�nition 29,
u |= ϕ. By induction, it is equivalent to for all u ∈ W such that De�nition 4, for
all J ∈ Inter(n+ 1, u, ϕ), J |= τ(n+ 1, ϕ). (1)

For all I ∈ Inter(n,Kaϕ), I |= τ(n,Kaϕ). It is equivalent to for all
I ∈ Inter(n,w,Kaϕ), for all interpretation J such that I|V n,ϕ = J|V n,ϕ and
J |= epi(n, a, ϕ) we have J |= τ(n+ 1, ϕ). (2)

Let us prove (1) ⇔ (2). Suppose (1). Let I ∈ Inter(n,w,Kaϕ) and J such
that I|V n,ϕ = J|V n,ϕ and J |= epi(n, a, ϕ). Let u ∈ W such that:

• I(posn+1
β ) = pβ for all β ∈ AGT ∩ ϕ;

• I( ~dir
n+1

b ) = db for all b ∈ AGT ∩ ϕ;

and for all objects it is like in w. We can prove that u ∈ Ra(w). And as J ∈
Inter(n + 1, u, ϕ), we have by (1), we have J |= τ(n + 1, ϕ) and we have proved
(2).

On the contrary, suppose (2). Let u ∈ Ra(w) and J ∈ Inter(n + 1, u, ϕ). Let
I ∈ Inter(n,w,Kaϕ) and let K be as J plus K|V n,ϕ = I|V n,ϕ . As u ∈ Ra(w), we
haveK |= epi(n, a, ϕ). SoK |= τ(n+1, ϕ). As J|V n+1,ϕ = K|V n+1,ϕ , J |= τ(n+1, ϕ).
We have proved (1).
�

Corollary 4 The LPK-satis�ability problem is decidable.

Proof.

Given ϕ ∈ LPK and w = 〈p, d, π〉, we have ϕ is satis�able i�DIR(0, ϕ)∧τ(0, ϕ)
is R-satis�able. And τ is computable (and in polynomial time!). �

Corollary 5 The model-checking in �atland in decidable.
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Proof.

Given ϕ ∈ LPK and w = 〈pos, ~dir〉 such coordinates of positions are rational
and abscises of directions are rational. We have w |= ϕ i� INIT (w,ϕ) ∧ τ(0, ϕ)
is R-satis�able where INIT (w) is a formula saying that the �atworld number 0 is
the �atworld w. More precisely:

INIT (w,ϕ) = ∧
a∈agt(ϕ)( pos0

x,a = pos(a)x) ∧ ( pos0
y,a = pos(a)y)∧∧

a∈agt(ϕ)[( dir0
x,a = ~dir(a)x) ∧ ( dir0

y,a4a 0)]∧
DIR(0, ϕ)

where:

• 4a = “ =′′ i� ~dir(a)y = 0;

• 4a = “ >′′ i� ~dir(a)y > 0;

• 4a = “ <′′ i� ~dir(a)y < 0.

�
We have tried to solve the satis�ability problem for small formulas of LPK by

treating the translation of it with the solver REDLOG for the real logic [Wei93]:
it is slow1! In the Chapter 4, we have proved that the model-checking problem
and the satis�ability problem are PSPACE-complete in lineland. We conjecture
(and hope!) that, in �atland, these decision problems are PSPACE-complete too.

5.6 Public announcement

As done in [Pla07] we can extend our framework with public announcements. This
is essentially motivated by modeling examples like Muddy children. With public
announcements, an agent will be able to learn something about the part of the
actual �atworld which he can not see. The technique is classical: we add an
operator [ϕ!] and we de�ne semantics as in S5n.

5.6.1 De�nitions

Our new language L! is de�ned by the following rule:

ϕ ::= aB b | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | Kaψ | [ϕ!]ϕ

where a, b ∈ AGT.

1130 seconds to solve the non-validity of Kaon` on a 1.5Ghz processor!
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The formula [ϕ!]ψ says that if ϕ holds in the current situation then publicly
announcing ϕ, i.e. restricting the current situation to the set of all worlds where
ϕ holds, creates a new situation where ψ holds. From now, we write U,w |= ϕ and
it means that ϕ is true in w given that U is the set of all worlds compatible with
all announcements already made.

De�nition 34 (truth conditions)
Let U be a set of worlds (U ⊆ W ). Let w ∈ U . We de�ne U,w |= ϕ by induction:

• U,w |= aB b i� w |= aB b;

• U,w |= ϕ ∨ ψ i� U,w |= ϕ or U,w |= ψ;

• U,w |= ¬ϕ i� U,w 6|= ϕ;

• U,w |= Kaψ i� for all w′ ∈ U , wRaw
′

implies U,w′ |= ψ;

• U,w |= [ϕ!]ψ i� U,w |= ϕ implies U ′, w |= ψ

where U ′ = {w′ ∈ U | U,w′ |= ϕ}.

Example 13 (Muddy-children) Let us consider the �atworld w depicted in the
Figure 2.1. We have

W,w |= [
∧

i∈{1...8}

∧
j∈{1...8},j 6=i

ai B `j!][
∨

i∈{1...8}

`i B ai!][
∧

i∈{1...8}

¬Kai`i B ai!]
7Ka1`1 B a1.

where the construction aiB `j models the proposition �agent i sees the forehead
of agent j�, the formula

∧
i∈{1...8}

∧
j∈{1...8},j 6=i ai B `j means that all agents i sees

the forehead of all agents j and the construction `i B ai means �the forehead of
agent i is dirty�.

We shall say that a formula ϕ is satis�able i� there exists a �atworld w ∈ W
such that W,w |= ϕ. Formula ϕ is said to be valid i� for all worlds w ∈ W ,
W,w |= ϕ.

5.6.2 Decidability

As in the previous Section, we de�ne a translation from L! into LR. Here, we need
lists of formula. list(L!) denotes the set of lists of formula in L!. The empty list is
noted []. Given ψ ∈ L! and a list L ∈ list(L!), we denote by [ψ : L] the list whose
�rst element is ψ and whose queue is L.
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De�nition 35 (translation)
We de�ne the translation τ : N× list(L!)× LPK → LR by: for all n ∈ N,

• τ(n, L,⊥) = ⊥;

• τ(n, L, aB b) = τ(n, aB b);

• τ(n, L, ϕ1 ∨ ϕ2) = τ(n, L, ϕ1) ∨ τ(n, L, ϕ2);

• τ(n, L,¬ϕ) = ¬τ(n, L, ϕ);

• τ(n, [], Kaϕ) = FORALL(n+ 1, ϕ)

DIR(n+ 1, ϕ) ∧ EPI(n, a, ϕ)→ τ(n+ 1, ϕ).;

• τ(n, [ψ : L], Kaϕ) = FORALL(n+ 1, ϕ),

DIR(n+ 1, ϕ) ∧ EPI(n, a, ϕ) ∧ τ(n, L, ψ)

→ τ(n+ 1, ϕ).;

• τ(n, L, [ψ!]ϕ) = τ(n, L, ψ)→ τ(n, [ψ : L], ϕ).

where FORALL(n+ 1, ϕ), DIR(n+ 1, ϕ), EPI(n, a, ϕ) are de�ned in Subsection
5.5.2.

Here is the Proposition of correctness of the translation:

Proposition 6 For all ϕ ∈ L!, for all n ∈ N, for all w ∈ W , we have: w |= ϕ i�
I |= τ(n, ϕ) for all I ∈ Inter(n,w, ϕ).

In the same way, reasoning about knowledge and public announcements in
�atland is decidable.

5.7 Weaker semantics

With the De�nition 29, agents are �very clever�. They can make the di�erence
between aligned points, points exactly settled on the conic of equation x2−3y2 = 1

4
.

In real life, humans and also robots have not this capabilities. For instance, stars
in the sky seems to appear on a sphere (the celestial sphere) but stars are not
settled on a sphere at all. Since we do not have such perfect abilities, we decide
to make the De�nition 29 weaker.

Let us de�ne Vw(a) = {b ∈ AGT | pos(b) ∈ conew(a)}.
Here is a version of a De�nition for the epistemic relations where agents can

only know whether an agent a sees an agent b or not but they have no information
about the exact positions of agents in mind:
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De�nition 36 (epistemic relation)

Let a ∈ AGT. We de�ne the relation Ra over worlds w = 〈pos, ~dir〉 and u =:

〈pos′, ~dir
′
〉: wRau i�:

• Vw(a) = Vu(a);

• For all agent b, c ∈ Vw(a), c ∈ Vw(b) i� c ∈ Vu(b).

From now we have two semantics for �atland:

• the initial one where agents are clever and knows the exact positions of agents
with De�nition 29;

• the new one where agents are stupid and only take care about what agents
sees with De�nition 36. We note |=stupid the satis�ability symbol for this
variant.

Theorem 18 The model checking:

• input: a �atworld w and a formula ϕ;

• output: yes if w such that w |=stupid ϕ; no otherwise.

and the satis�ability problem:

• input: a formula ϕ;

• output: yes if there exists a �atworld w such that w |=stupid ϕ; no otherwise.

are PSPACE.

Proof.

The Figure 5.7 provides an algorithm to solve the model-checking of Flatland
with |=stupid. A �atworld w is now represented by the set of all literals of the form
aB b which are true, where a and b are agents appearing in the formula ϕ.

In order to test if �atworld w is satis�able we simply use the PSPACE-procedure
provided by 9. �

5.8 Comparisons

Proposition 7 Let ϕ ∈ LP (i.e. formula has no modal operator but only literals
of the form aB b).

We have equivalence between ϕ is valid in the clever version Flatland and ϕ
is valid in the stupid version of Flatland. If ϕ is valid in (clever/stupid) Flatland
then ϕ is valid in Lineland.
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Proof.

We can represent a lineworld as a �atworld. �

Proposition 8 Kd (¬aB b ∧ aB c→ (bB a↔ bB c)) is valid in Lineland but not
in Flatland (both versions).
¬dB a∧¬dB b∧¬dB c→ ¬Kd (¬aB b ∧ aB c→ (bB a↔ bB c)) is valid in

Flatland (both versions) but is not valid in Lineland.

Proposition 9 There exists a valid formula for clever agents which is not valid
for stupid agents.

There exists a valid formula for stupid agents which is not valid for clever
agents.

Proof.

Let ϕ = bB c∧ bB d∧¬bB a→ K̂b(aB b∧ aB d∧¬aB c). The formula ϕ is
valid for stupid agents but not for clever agents.
¬a B b ∧ ¬a B c ∧ ¬a B d → K̂aϕ is valid for clever agents but not for stupid

agents.
�

5.9 Perspectives

There are many perspectives emerging from this work, some of them already
brought up in the paper are long range perspectives: enrich the situation by adding
obstacles or indirect sight (like mirrors), and take into account the shape of objects.
At shorter term, we aim at solving the questions concerning the exact complexity
class of �atland-satis�ability and model-checking problems, and concerning the de-
cidability and complexity issues with the common knowledge operator CKJ . This
is a way to compare Lineland, Flatland and Spaceland. Finally, we aim at imple-
menting an e�cient a �atland solver especially to have a good pedagogical tool for
students in epistemic modal logic.

Acknowledgment. Thanks to Andreas Herzig and Emiliano Lorini for their
advices.

5.10 Open questions

• Is the logic of Flatland axiomatizable?

• Is the logic of Flatland in PSPACE?

• Is the logic of Flatland in PSPACE-hard?
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procedure istrue(w,ϕ)
match (ϕ)

>: accept ;
aB b:
accept i� aB b ∈ w
ψ1 ∨ ψ2:

choose (∃)i ∈ {1, 2};
call istrue(w,ϕi);

¬ψ: call isfalse(w,ψ);
Kaψ:

choose (∀)u ∈ W ;
if u ∈ Ra(w) then

if u satis�able then
call istrue(u, ψ)

else
accept

endIf
else

accept
endIf

endMatch
endProcedure

procedure isfalse(w,ϕ)
match (ϕ)

>: reject ;
aB b:
accept i� aB b ∈ w
ψ1 ∨ ψ2:

choose (∀)i ∈ {1, 2};
call isfalse(w,ϕi);

¬ψ: call istrue(w,ψ);
Kaψ:

choose (∃)u ∈ W ;
if u ∈ Ra(w) then

if u satis�able then
call isfalse(u, ψ)

else
reject

endIf
else

reject
endIf

endMatch
endProcedure

Figure 5.7: Algorithm for stupid agents
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• How to implement Flatland?

• Combine the operator ♦ϕ �the agent make an e�ort such that ϕ� ([MP92],
[PMS07] and [Hei06]) and Flatland: the semantics of ♦ may consist in widen
the vision cone of an agent.



Part II

Doing





Chapter 6

Towards the logic STIT

Actions are omnipresent in real life and in computer science. For instance in chess
game �moving a pawn� or �castling� are actions. For instance in robotics, actions
can be �walk� or �turn the head�.

In this chapter we �rst present well-known formalizations in modal logics deal-
ing with actions and/or choice of actions by agents. We will see the drawbacks
of those formalism in terms of expressivity. Then we introduce individual STIT
(�sees-to-it-that') logic and �nally the group STIT logic.

6.1 PDL

In this section we introduce the famous logic PDL [FL79] devoted to deal with
actions and even more precisely programs. Let us consider a countably in�nite set
of atomic propositions ATM and a countably in�nite set of atomic actions ACT .
The language of PDL is de�ned in the following way:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [π]ϕ

where p ranges over ATM and π ranges over the set of all regular expressions
formed over the set of atomic actions ACT and with operators ; and ∗.1

We do not give the semantics, axiomatization here. You can �nd an axioma-
tization and more information in [BDRV02]. Nevertheless we give an intuition of
the semantics:

• An atomic proposition p is true means that the interpretation of it in the
current state of the program/device/game is true;

1There are more complex version of PDL with ∪, ∩, ϕ?, etc.



114 6.2 Coalition Logic

• [a]ϕ means that ϕ is true in all states reachable from the current state by an
execution of the atomic action a (for instance �set a variable v to 1�, �push
the button�, etc.). We simply say that [a]ϕ i� after executing a we have ϕ.

• [π1; π2]ϕ is true means ϕ is true after executing ϕ1 then ϕ2 we have ϕ;

• [π∗]ϕ is true means ϕ is true after executing a �nite number of times the
action π.

As you can see, this logic is quite interesting to speak about actions: we can
tell the outcomes/e�ects of an action. But it does not talk at all about agents.

Drawbacks of PDL In PDL, there is only one agent: the �computer� executing
the program. As you can see, there are no agents mentioned in the language and
we can not express interaction between di�erent agents. For instance we can not
express cooperation between several agents such that if agent 1 executes π1 and if
agent 2 executes π2 they ensure a property ϕ whatever the program of agent 3 is.

6.2 Coalition Logic

In this section, we present the logic of Coalition [Pau02]. This logic is inspired
from PDL in the sense that this logic speaks about the outcomes/e�ects of actions
performed by agents. In this logic, no actions are mentioned but only group of
agents. Coalition Logic provides a construction of the form 〈〈J〉〉ϕ meaning that
�the group of agents J can ensure the property ϕ in the next state� or more
precisely �agents of J have actions in their repertoire such that if they execute
those actions then they ensure the property ϕ in the next time whatever the other
agents do�.

More precisely the language of Coalition logic is de�ned by the following rule:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈J〉〉ϕ

As designed by Pauly [Pau02], semantics of Coalition Logic is in terms of neigh-
borhood models, that is, models providing a neighborhood function, associating a
world to a set of neighborhoods, or clusters. (See [Che80, Chap. 7] for details
about those models.)

De�nition 37 (e�ectivity function)
Given a nonempty set of states S, an e�ectivity function is a function E : 2AGT →
22S . An e�ectivity function is said to be:

• J-maximal i� for all X ⊆ S, if S \X 6∈ E(AGT \ J) then X ∈ E(J);
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• outcome monotonic i� for all X,X ′ ⊆ S and for all J ⊆ AGT, if X ∈ E(J)
and X ⊆ X ′ then X ′ ∈ E(J);

• superadditive i� for all J1, J2, if J1 ∩ J2 = ∅ then for all X1, X2 ⊆ S, if
X1 ∈ E(J1) and X2 ∈ E(J2) then X1 ∩X2 ∈ E(J1 ∪ J2).

The function E intuitively associates every coalition J to a set of subsets of S (or
set of outcomes) for which J is e�ective. That is, J can force the world to be in
some state of X, for each X ∈ E(J).

De�nition 38 (playable e�ectivity function)
Given a nonempty set of states S, an e�ectivity function E : 2AGT → 22S is said
to be playable i� the following conditions hold:

1. for all J , ∅ 6∈ E(J) (Liveness)

2. for all J , S ∈ E(J) (Termination)

3. E is AGT-maximal

4. E is outcome-monotonic

5. E is superadditive

A coalition model is a pair ((S,E), V ) where:

• S is a nonempty set of states;

• E : S → (2AGT → 22S) associates every state s with a playable e�ectivity
function E(s).

• V : S → 2Prop is a valuation function.

We will write Es(J) instead of E(s)(J) to denote the e�ectivity of the group J at
the state s.

Truth conditions are standard for Boolean operators. We evaluate the coali-
tional operators against a coalition model M and a state s as follows:

M, s |= 〈〈J〉〉ϕ i� {t |M, t |= ϕ} ∈ Es(J)

Alur et al. propose a similar formalism called Alternating-Time Logic (ATL) in
[AHK99] which is an extension of Coalition Logic plus time expressivity. The idea
is namely the same than Coalition Logic except that ATL deals with long-term
strategy.
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6.3 Drawbacks of Coalition Logic

Compared to PDL, Coalition Logic enables us to speak about ability. Nevertheless
Coalition Logic has some drawbacks.

6.3.1 Combining with epistemic logic: de dicto VS de re

When an agent make a plan in order to get a certain property ϕ he must take
in account its own knowledge/belief about the world and about other agents'
action. We can distinguish essentially three di�erent situations mixing abilities
and knowledge.

1. The agent has an action a in his repertoire to ensure ϕ but she does not
know that she has this action a.

Example 14 Player Marwais playing chess and actually she has a strategy
to perform a checkmate but as she is beginner in chess she does not know she
can perform a checkmate.This situation can actually be represented in modal
logic using a Coalition Logic operator and an epistemic operator:

〈〈Marwa〉〉chessmate ∧ ¬KMarwa〈〈Marwa〉〉chessmate.

2. The agent knows that she has an action to ensure ϕ and she knows exactly
which action she has to execute to ensure ϕ. This situation is called �de re�
(of the thing): the agent has a speci�c action in mind.

Example 15 Imagine the situation where Marwa is near a lamp which is o�
and a button [BHT07a]. Suppose that Marwa knows that the button controls
the lamp. Then Marwa knows that she has an action (toggling the button) in
order to get the lamp on. Furthermore she knows that the action is �toggling�.

3. The agent knows that she has an action to ensure ϕ but she can not identify
this action. This situation is called �de dicto� (of the word): the agent can
give a word to this action but can not associate this word to a speci�c action
ensuring ϕ.

Example 16 Imagine the situation where Marwa has the credit card of Bilal
but she does not know its 4-digit pin code. In this situation, Marwa knows
that she can have money from a cash machine. Actually she knows that she
has an action in order to get money, that is to say to write the correct 4-digit
pin code but she does not know which pin code she has to write.
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Example 17 [HT06] Imagine the situation where Marwa is blind and is
located into a room where the light is o�. She is near a button enabling to
switch the state of the light. Marwa can ensure the light to be on by pressing
the button but as she does not know the state of the light she does not whether
she has to toggle the button or not.

Whatever you try to combine the epistemic operator and the coalition logic
operator you will not be able to express the di�erence between the �de re� and the
�de dicto� situations. The Coalition logic operator is not expressive enough.

6.3.2 Counterfactual emotions

As you can see in Chapter 10, formalization of regret is made up of two ingredients:

• the agent who regret ϕ now knows that ϕ is true;

• She also knows that she could have prevented ϕ, that is to say she would
have an action a in her repertoire such that ϕ would be false if she would
performed the action a (the actions of other agents are �xed).

We claim that Coalition Logic is not expressive enough to express counterfac-
tual emotions like regret: the notion of �agent a could have prevented ϕ� is di�erent
from the Coalition Logic. Indeed �agent a could have prevented ϕ� requires to have
an operator enabling to examine a change of action a by continuing to �x actions
of other agents.

6.3.3 Solutions

Many logicians [JÅ07, Jon03, JvdH04, VOJ05, Sch04] have studied quite elegant
adapted version of Coalition Logic in order to capture the notion of �de re� and
�de dicto�.

For instance in [JÅ07], the authors provide �ad hoc� non-standard operators:

• Ka〈〈a〉〉ϕ: agent a knows that she can ensure ϕ and knows a speci�c strategy
in order to get ϕ (�de re�);

• Ka〈〈a〉〉ϕ: agent a knows that she can ensure ϕ but not necessarily she knows
about a speci�c strategy (�de dicto�).

Coalition logic is a non-normal logic in the sense that the semantics is not
describe in the natural way of relations and standard truth conditions. As you can
see in the truth conditions of 〈〈J〉〉ϕ, the semantics can be reformulated as follows:
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• there exists a set of points A ∈ Es(J) (this set corresponds to the choice of
actions for all agents in J);

• such that for all state t ∈ A we have M, t |= ϕ. (that is to say, whatever the
other agents are doing, ϕ will be true)

In this thesis we study the point of view of [HT06]: we claim that we can
model �de re� and �de dicto� principles and counterfactual emotions (see Chapter
10) with standard epistemic logic using only normal modal logic. This leads to
the idea to decompose the 〈〈J〉〉 operator into three normal operators in the same
principle than in [GH93] and more precisely [BHT05]:

• a �diamond� operator ♦ to model the existential part of choosing an action
for agents of J ;

• a �box� operator [J ] in order to browse all actions of agents that are not in
J .

• and �nally a �next� operator X in order to model time.

In this formalism, the �de re� is formalized by

♦Ka[J ]Xϕ

and �de dicto� is formalized by

Ka♦[J ]Xϕ.

In this thesis, we will be interested about the operators ♦ and [J ] without time
operators. Those operators are operators of the sees-to-it-that modal logic.

Broersen et al. showed that ATL can be embedded into a strategic version
of Chellas STIT, by identifying 〈〈J〉〉Xϕ with 〈∅〉[J ]Xϕ and 〈〈J〉〉(ϕUψ) with
〈∅〉[J ](ϕUψ). [BHT06a]. This highlights that the modal operators of CL [Pau02]
and ATL [AHK99] are nothing but fusions of three modal operators. STIT-logics
are therefore the most general formal framework for agency, allowing not only to
reason about what agents can do, but also about what they do, contrary to CL

and ATL.

6.4 The STIT logic

In philosophy of action constructions of the form [i stit : ϕ] were introduced by
Belnap et col. [BPX01], read �agent i sees to it that ϕ� or �i brings it about
that ϕ�. In this paper, we focus on the basic version that is called Chellas STIT
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[Che92] (thus baptized by [HB95]), noted [i cstit : ϕ] in the literature. (The
original operator de�ned by Chellas is nevertheless notably di�erent since it does
not come with the principle of independence of agents that plays a central role in
STIT theory.) The Chellas STIT was extended to group agency in [BPX01, Section
10.C] and [Hor01b, Section 2.4]. For a set of agents J , the formula [J cstit : ϕ]
reads �group J sees to it that ϕ�. We here write [J ]ϕ instead of [J stit : ϕ]. These
logics moreover have a modal operator of historical necessity that is identi�ed with
[∅].

We present two semantics to interpret formulas in the language of group STIT
with the �next� operator. In this section, we recall the orginal semantics in terms
of Belnap's branching-time models [BPX01]. In the next section, we will de�ne
an equivalent semantics closer to standard presentations of Kripke models. For
that matter you can already �nd such a semantics in terms of Kripke models in
[BHT08] and [HS08] for the STIT without temporal operators.

6.4.1 Syntax

Let ATM be an enumerable non empty set of atomic propositions, let n be a
positive integer and let AGT = {1, . . . n} be a �nite (non empty) set of agents.
The language LXCSTIT of logic XCSTIT is de�ned by the following BNF:

ϕ ::= ⊥ | p | (ϕ ∨ ϕ) | ¬ϕ | [J ]ϕ | Xϕ
where p ∈ ATM and J ranges over 2AGT.

The construction [J ]ϕ is read �group J sees to it that ϕ is true�. When J = ∅,
the construction [∅]ϕ means that ϕ is historically necessary. The construction
Xϕ reads �ϕ will be true in the next moment�. We de�ne the following standard
abbreviations: > =def ¬⊥, (ϕ ∧ ψ) =def ¬(¬ϕ ∧ ¬ψ) and 〈J〉ϕ =def ¬[J ]¬ϕ. We
follow the standard rules for omission of parentheses.

Remark 5 The version of STIT is called �Chellas' STIT�. There exists another
version of STIT called individual deliberative STIT providing a construction of the
form [adstit:ϕ] meaning that �agent a sees to it that ϕ is true and ϕ is not neces-
sarily true�. Of course we can de�ne this operator in our language by [adstit:ϕ] =
[{a}]ϕ ∧ ¬[∅]ϕ. For more details, see [BPX01], [Wan06].

6.4.2 Traditional semantics with Branching time structure

Semantics is given to formulas of LXCSTIT in terms of a branching-time (BT) struc-
ture augmented by an agent choice (AC) function. Let us introduce �rst the
STIT-branching time structure. As we deal with the �next� operator, we suppose
in this paper the time to be discrete. Moreover, we suppose the time to be without
endpoints.



120 6.4 The STIT logic

6.4.2.1 STIT-branching time structure

De�nition 39 (STIT-branching time structure)
[BPX01][p. 30] A discrete STIT-branching time structure without endpoints (BT-
structure) is a tuple (M,≤) where:

• M is a non empty set of moments ;

• ≤ is tree-like that is to say:

1. for all m ∈M , m ≤ m (re�exive);

2. for all m1,m2,m3 ∈ M , m1 ≤ m2 and m2 ≤ m3 implies m1 ≤ m3

(transitive);

3. for all m1,m2 ∈M , m1 ≤ m2 and m2 ≤ m1 implies m1 = m2 (antisym-
metric);

4. for all m1,m2,m3 ∈ M , m1 ≤ m3 and m2 ≤ m3 implies m1 ≤ m2 or
m2 ≤ m1 (unique past);

5. for all m2,m3 ∈ M , there exists m1 ∈ M such that m1 ≤ m2 and
m1 ≤ m3 (historical connection);

6. for allm1,m2 ∈M , ifm1 < m2 then there existsm3 such thatm1 < m3,
m3 ≤ m2 and there is no m′ ∈ M such that m1 < m′ < m3 (discrete-
ness);

7. for all m1, there exists m2 such that m1 < m2 (seriality).

You can think of moments as states. m1 ≤ m2 means that the state m1 is
before or equal to m2. This relation is transitive (Item 2.) Item 3. says that if m1

is before m2 and m2 before m1 then m1 and m2 are the same moment. Items 4.
and 5. entail a tree structure. Item 6. means that the relation is discrete, that is
to say, given a moment m1, we can speak about moments which strictly just after
m1. Item 7. says there is a future.

De�nition 40 (history)

A history of a BT-structure (M,≤) is a maximal set of linearly ordered mo-
ments from M .

Notation 1 The set of all histories of (M,≤) is noted HM or simply H.

Notation 2 The set of all histories passing through m ∈M is noted HM
m or simply

Hm. Formally: HM
m = {h ∈ HM | m ∈ h}.
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Figure 6.1: Undivided and divided histories

De�nition 41 (undivided histories)
Let (M,≤) be a BT-structure. Let m ∈ M . Let h1, h2 ∈ Hm. We say that h1

and h2 are undivided histories at m i� there exists m′ ∈M such that m < m′ and
m′ ∈ h1 ∩ h2.

Example 18 Let us consider the BT-structure of the Figure 6.1. The histories
h1 and h2 are undivided at the moment m but they are divided at the moment m′.
The histories h1 and h3 are divided at the moment m.

De�nition 42 (next moment)
Given h ∈ Hm, we de�ne nexth(m) as the smallest m′ ∈ h such that m < m′.

The function nexth is total because of seriality and discreteness. Notice also that
if h and h′ are undivided at m then nexth(m) = nexth′(m).

6.4.2.2 Adding choices

Now we introduce the model to interpret formulas of LXCSTIT. It consists of a
branching-time structure augmented by agents' choices at every moment and a
valuation. Such structure are called BT+AC.

De�nition 43 (CSTIT-branching time and choices model)
A CSTIT-branching time and choices model (BT+AC-model) is a tuple M =

(M,≤, C, V ) where:

• (M,≤) is a BT-structure;

• C : 2AGT ×M → 2H×H such that for all m ∈M :

1. For all J ⊆ AGT and m ∈M , CJ,m is an equivalence relation over Hm;
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2. C∅,,m = Hm ×Hm;

3. For all J ⊆ AGT, CJ,m =
⋂
j∈J C{j},m;

4. For all J ⊆ AGT, for all h, h′ ∈ Hm, if h and h′ are undivided at m,
then hCJ,mh′;

5. For all (h1, . . . , hn) ∈ Hn
m,
⋂
j∈AGTC{j},m(hj) 6= ∅.

• V : M ×H → 2ATM .

Time is branching due to choices that agents do. At each moment m, agents
make choices which lead to di�erent histories. The choices are represented in C: we
classify histories passing through m according to the choices made by the agents.
Informally, given two histories h and h′ in Hm, we have hCJ,mh′ i� the choices
of agents in the group J at the moment m are the same in h and h′. Obviously
this informal intuition of CJ,m justi�es that CJ,m is an equivalence relation over
Hm (Item 1). The Item 2. is coherent with the informal intuition of CJ,m. Item
3. means that the choices of agents in the group J is made up of the choices of
each individual agent. We call this property additivity. Item 4. corresponds to the
property of no choice between undivided histories : agents cannot make a choice in
the moment m between two histories which are undivided at m.

A formula is evaluated with respect to a model and a moment-history pair:

De�nition 44 (truth conditions)
Given a BT+AC-model M = (M,≤, C, V ), a moment m ∈ M and a history
h ∈ Hm,

• M,m, h |= p i� p ∈ V (m,h);

• M,m, h |= Xϕ i�M, nexth(m), h |= ϕ;

• M,m, h |= [J ]ϕ i� for all h′ ∈ CJ,m(h), we haveM,m, h′ |= ϕ.

You can �nd a discussion in [BPX01] (p.31) about the fact that atomic propo-
sitions p are evaluated on a pair m/h and not only a moment. Broadly speaking,
atomic propositions not only describe the physical state of a world supposed to be
the same in all pairs m/h′ where h′ ∈ Hm. Atomic propositions can also represent
choices such that �the agents are going to organize a party� etc. Actually this kind
of propositions does depend on the history h ∈ Hm under consideration and not
just on the moment m.

As said before, in STIT theory, time is branching. But as we also consider
an history h, the �next� operator is the �next� operator of linear temporal logic
interpreted in the current history h while the operators [J ] are devoted to change
the current history but they do not change the current moment.
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As usual, a XCSTIT-formula ϕ is said to be CSTIT-satis�able if we can �nd
a BT+AC-model M, a moment m, and a history h containing m such that
M,m, h |= ϕ. A XCSTIT-formula ϕ is said to be CSTIT-valid i� ¬ϕ is not CSTIT-
satis�able.

6.5 A semantics with Kripke structures

In this section, we give an alternative semantics to BT+AC-model (De�nition 43)
in terms of Kripke structure. In other words, we extend the papers [HS08] and
[BHT08] to STIT with the temporal �next� operator . The aim is provide a good
framework to prove completeness and complexity results.

6.5.1 De�nition

De�nition 45 (XCSTIT-Kripke model)
A XCSTIT-Kripke model is a tupleM = (W,RX , {RJ}J⊆AGT, V ) where:

• W is a non-empty set of possible worlds ;

• RX : W → W is a total function;

• for all J ⊆ AGT, RJ ⊆ W ×W is an equivalence relation such that:

1. RJ ⊆ R∅;

2. RJ =
⋂
j∈J R{j};

3. for all w ∈ W , for all w1, . . . wn ∈ R∅(w),
⋂
j∈AGTR{j}(wj) 6= ∅;

4. RX ◦R∅ ⊆ RAGT ◦RX .

• V : W → 2ATM .

A world w ∈ W corresponds to a couple moment/history in a BT-structure.
Intuitively wRXu means that w and u share some same history and the moment
of u is the next moment of the moment w in that history. Intuitively, RJ is
nothing but the equivalence relation corresponding to the partition of C{j},m in
De�nition 43. wRJu means that w and u share the same moment and that their
corresponding histories are in the same choice of the group J . wR∅u simply means
that w and u are in the same moment. Condition 2., called additivity, means that
the choices of agents in the group J is made up of the choices of each individual
agent and no more. We will see later that this condition 2. can be weakened (see
De�nition 50 and De�nition 51). Condition 3. corresponds to the independence of
agents . Figure 6.2 explains this property in the case of two agents (AGT = {1, 2}):
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Figure 6.2: independence of agents
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if you have two worlds w1 and w2 such that w1R∅w2 then there exists a world
w ∈ R1(w1) ∩ R2(w2). Condition 4. corresponds to the property of no choice
between undivided histories (cf. Figure 6.3).

The truth condition is as usual in modal logic:

De�nition 46 (Truth conditions)
Given a STIT-Kripke modelM = (W,RX , {RJ}J⊆AGT, V ),

• M, w |= p i� p ∈ V (w);

• M, w |= Xϕ i�M, RX(w) |= ϕ;

• M, w |= [J ]ϕ i� for all w′ ∈ W , wRJw
′ impliesM, w′ |= ϕ.

The operator X is the �next� operator of Linear Temporal Logic because the
relation RX is a function. The BT-structure has been blown up as you can see of
Figures 6.5 and 6.4: a moment of a BT-structure is represented by a R∅-equivalence
class of possible worlds in a STIT-Kripke model.

6.5.2 Equivalence

Now we prove the equivalence between the semantics of BT+AC-models and of
Kripke model that is to say we obtain the same satis�able formulas with the both
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semantics. Let us consider the easy half: we construct a Kripke model from a
BT+AC-structure.

Theorem 19 Let ϕ ∈ LCSTIT. If ϕ is satis�able in a BT+AC-model then ϕ is
satis�able in XCSTIT-Kripke model.

Proof.

We transform a BT+AC-model (Figure 6.4) into a XCSTIT-Kripke model (see
Figure 6.5). Worlds of the CSTIT-Kripke model will be moment/history pairs of
the BT+AC-model.

Let M = (M,≤, C, V ) be a BT+AC-model, m ∈ M and h ∈ Hm such that
M,m, h |= ϕ. Now we de�neM′ = (W,RX , {RJ}J⊆AGT, V

′) where:

• W = {(m,h) ∈M ×HM | m ∈M and h ∈ Hm};

• RX : W → W
(m,h) 7→ (nexth(m), h)

• RJ = {〈(m,h), (m,h′)〉 | m ∈M,h, h′ ∈ Hm and h′ ∈ CJ,m(h)};

• V ′ = V .

Now we prove thatM′ is a CSTIT-Kripke model and thatM′, (m,h) |= ϕ.
Proof of �M′ is a CSTIT-Kripke model�
We check that all properties required by the De�nition 45 are true.
Let us prove the condition RX ◦ R∅ ⊆ RAGT ◦ RX (Item 4). Let (m,h) and

(m′, h′) be such that

(m,h)RX(nexth(m), h) and (nexth(m), h)R∅(m
′, h′).

By de�nition of R∅, m′ = nexth(m). Now let us see that h and h′ are undivided
histories in m (De�nition 41): indeed we have m < m′, m′ ∈ h and m′ ∈ h′

(because h′ ∈ Hm′). Furthermore, m′ = nexth(m) = nexth′(m). So by De�nition
43, hCAGT,mh

′. To sum up we have:

(m,h)RAGT(m,h′) and (m,h′)RX(m′, h′).

We leave it to the reader to check the other conditions of De�nition 45.
Proof ofM′, (m,h) |= ϕ

We prove by induction on ψ the property P(ψ) = �for all (m,h) ∈ W ,M′, (m,h) |=
ψ i�M,m, h |= ψ�.

(Propositions) M′, (m,h) |= p i� p ∈ V ′(m,h) i� p ∈ V (m,h) i�M,m, h |= p.
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Figure 6.5: A CSTIT-Kripke model

(Booleans) We leave the cases of Boolean operators to the reader.

(Xθ) M′, (m,h) |= Xθ i�M′, (nexth(m), h) |= θ
i�M, nexth(m), h |= θ
i�M,m, h |= Xθ.

([J ]θ) M′, (m,h) |= [J ]θ i� for all (m,h′) ∈ RJ(m,h),M′, (m,h′) |= θ
i� for all h′ ∈ CJ,m(h),M′, (m,h′) |= θ
i� for all h′ ∈ CJ,m(h),M,m, h′ |= θ
i�M,m, h |= [J ]θ.

�
The other direction, that is to say to extract a BT+AC-model from a XCSTIT-

Kripke model is much more di�cult. The proof of that point is similar to the proof
in [HL10]. Before starting the proof of the previous theorem, let us consider the
example of Figure 6.6 to see where the di�culties are.

In this model, there is one R∅-equivalence class made up of two worlds w and
u. The relation RX links w to u and u to w.

f fj
i

Figure 6.6: A XCSTIT-Kripke structure with two worlds
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Figure 6.7: An unraveled CSTIT-Kripke model

Broadly speaking, the relation R∅ corresponds to changing history passing
through the current moment. The relation RX corresponds to going to the next
moment in the current history. A moment of a BT-structure corresponds to a
R∅-equivalence class. As here there is only one equivalence class, the relation RX

is such that the next moment is equal to the current moment. This contradicts
the property of discreteness.

Solution 1. We have to unravel the CSTIT-Kripke model to get a legal BT+AC-
model.

Now let us have a look at the unraveling of the model of Figure 6.6 that is
depicted in Figure 6.7. We have here a curious contradiction:

• On the one hand, there is only one history;

• On the other hand, let us consider one R∅-class (supposed to represent a
moment m). It contains two worlds so that there are two histories passing
through m.

Our aim is to give a solution to avoid this contradiction. Given a formula
ϕ, we are only interested in worlds with RX-distance from the root at most the
X-modal depth of ϕ. The X-modal depth of ϕ is the maximal number of nested
X-operators in the formula ϕ.
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Figure 6.8: An unraveled and corrected CSTIT-Kripke model

Solution 2. For instance, if we deal with a formula of X-modal depth 3 (as
Xp ∧X(p ∨ [J ](Xq ∨Xr)), we correct the unraveled model to have singleton R∅-
equivalence classes when the X-depth is greater than 3 as depicted in Figure 6.8
in order to have as many histories as there are points in R∅-equivalence classes.

Theorem 20 Let ϕ ∈ LCSTIT. ϕ is satis�able in CSTIT-Kripke models implies ϕ
is satis�able in CSTIT-Kripke models where the relation RX is injective implies ϕ
is satis�able in BT+AC-models.

Proof.

We have to prove that we can transform a CSTIT-Kripke model into a BT+AC-
model. We do so in three steps:

1. First we unravel the CSTIT-Kripke model. This unraveling is done as usual
up to depth N (cf. Solution 1) then we simply have singleton equivalence
classes (cf Solution 2). This ensures that the resulting BT+AC-model has
as many histories as there are points in the �rst equivalence class R∅(w);

2. Finally we transform the unraveled CSTIT-Kripke frame into BT+AC-model:
moments are R∅-equivalence classes.

Let us do it.
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1. LetM = (W,RX , {RJ}J⊆AGT, V ) be a CSTIT-Kripke frame and w ∈ W such
thatM, w |= ϕ. Let N be the X-modal depth of ϕ.

We de�neM′ = (W ′, R′X , {R′J}J⊆AGT, V
′) as follows:

• W ′ is the set of all �nite sequences w0 . . . wn such that w0 ∈ R∅(w),
n ∈ N and for all i ∈ {0, . . . , n− 1}, wiRXwi+1;

• w0 . . . wnR
′
Xw0 . . . wn+1;

• w0 . . . wnR
′
Jv0 . . . vm i� n = m and{

wiRAGTvi for all i < n and wnRJvn if n ≤ N
w0 . . . wn = v0 . . . vn if n > N ;

• V ′(w0 . . . wn) = V (wn).

Notice that the relation R′X is injective. The structureM′ is a CSTIT-Kripke
frame. Here we only prove the item 4 of De�nition 45: R′X ◦R′∅ ⊆ R′AGT◦R′X .
The other constraints are left to the reader.

Let us consider w0 . . . wnR
′
X ◦ R′∅v0 . . . vm. By de�nition of R′X and R′∅,

m = n + 1, there exists wn+1 such that wnRXwn+1 and wn+1R∅vn+1 and
for all i < n+ 1, wiRAGTvi. Hence we have w0 . . . wnR

′
AGTv0 . . . vn and

v0 . . . vnR
′
Xv0 . . . vnvn+1.

We can prove by induction on k that for all integers k ∈ {0, n}, for all
formulas ψ of X-modal depth k, for all sequence w0 . . . wk we haveM, wk |=
ψ i�M′, w0 . . . wk |= ψ. So we haveM′, w |= ϕ.

2. Let ϕ be a satis�able in CSTIT-Kripke models and N be the X-modal depth
ϕ. Let M′ = (W ′, R′X , {R′J}J⊆AGT, V

′) be a CSTIT-Kripke model, w ∈ W
such that M′, w |= ϕ, for all u ∈ R∅(w), for all i > N , R′∅(R

′
X
i(u)) =

{R′X
i(u)} and such that R′X is injective. (like the modelM′ created in step

1.) As R′X is injective, we use the notation R′X
− to denote the converse of

R′X in the sequel. We now de�ne a BT+AC-model M = (M,≤, C, V ) as
follows.

First we de�ne the set of moments: M = {R∅(u) | u ∈ W}. The relation ≤
is de�ned as follows: for all m,m′ ∈ M , m ≤ m′ i� there exists u ∈ m and
u′ ∈ m′ such that uR′X

∗u′ where R′X
∗ denotes the re�exive and transitive

closure of R′X ;

From now on, we introduce w(m,h) denoting the world in W ′ corresponding
to the moment m ∈ M and the history h ∈ Hm. Formally for all m ∈
M and h ∈ Hm, the moment nextNh (m) (which is also an R′∅-equivalence
class) is a singleton {xh,m} (because R′X is injective). We de�ne w(m,h) =def
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Figure 6.9: A BT-structure from a Kripke model: moments are R∅-equivalence
classes.

R−NX (xh,m). Of course w(m,h) ∈ m. We have there exists u ∈ nextnh(m) such
that w(m,h)R′Xu. Note that for all w ∈ W , we have w = w(m,h) where
m = R′∅(w) and h = {R′∅(v) | v ∈ R′X

∗ ◦ (R′X
−)∗(w)} where (R′X

−)∗ is the
re�exive and transitive closure of the converse of R′X . All these notions are
depicted in Figure 6.9.

Finally we de�ne CJ,m and V :

• For all J ∈ 2AGT, for all h, h′ ∈ Hm, hCJ,mh′ i� w(m,h)R′Jw(m,h′);

• V (m,h) = V ′(w(m,h)).

Now we have to prove two things:

(a) M′ is a BT+AC-model;

(b) M′, R′∅(w), w(R′∅(w), {R′∅(v) | v ∈ R′X±
∗(w)}) |= ϕ.

For (a) we just check the di�erent properties of De�nition 43.

Let us prove that C∅,m = Hm×Hm. Let h, h′ ∈ Hm. w(m,h) and w(m,h′) are
both inm which is a R∅-equivalence class. In other words, w(m,h)R∅w(m,h′).
So hC∅,mh′.

Let us prove that for all J ∈ 2AGT and h, h′ ∈ Hm, if h and h′ are undivided
at m, then hCJ,mh

′. If h and h′ are undivided at m, then nexth(m) =
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nexth′(m) = m′. There exists u, v such that u, v ∈ m′ such that w(m,h)RXu
and w(m,h′)RXv. We have w(m,h)RX ◦R∅v. As RX ◦R∅ ⊆ RAGT◦RX , there
exists z ∈ W such that w(m,h)RAGTz and zRXv. As RX is injective, we have
w(m,h′) = z. Hence, w(m,h)RAGTw(m,h′). Hence w(m,h)RJw(m,h′) that is
to say hCJ,mh′.

Let us prove that for all h1, . . . , hn ∈ Hm,
⋂
j∈AGTC{j},m(hj) 6= ∅.

For all h1, . . . , hn ∈ Hm, we have
⋂
j∈AGTR{j}(w(m,hj)) 6= ∅. In other worlds,

it contains a world w = w(m,h) where h = {R′∅(v) | v ∈ R′X
∗ ◦ (R′X

−)∗(w)}.
We have �nally h ∈

⋂
j∈AGTC{j},m(hj).

For (b) we prove by induction on ψ the property

P(ψ) = �for all u ∈ W ,M′, w(m,h) |= ψ i�M,m, h |= ψ�

(Propositions) Left to the reader.

(Boolean cases) Left to the reader.

(Xθ) M′, w(m,h) |= Xθ i�M′, R′X(w(m,h)) |= θ
i�M, nexth(m), h |= θ
i�M,m, h |= Xθ.

([J ]θ) M′, w(m,h) |= [J ]θ i� for x ∈ RJ(w(m,h)),M′, x |= θ
i� for all h′ ∈ Hm,

w(m,h)RJw(m,h′) impliesM′, w(m,h′) |= θ
i� for all h′ ∈ Hm,
hCJ,mh

′ impliesM,m, h′ |= θ
i�M,m, h |= [J ]θ.

�

6.6 Conclusion

In this Chapter we have considered some logics of the literature dealing with
actions, cooperations etc. like PDL, Coalition Logic, ATL, etc. We have seen that
concerning emotions, �de dicto� and �de re� principles, those logics are not adapted.
The main reason is because we need not only to express the concept of capabilities
but also to express what agents actually do.

The logic STIT is suitable to express what agents actually do because it provides
a modal construction of the form [J ]ϕ saying that the coalition J sees to it that ϕ
is true.

We have given a semantics of group STIT with �next operator� in terms of
Kripke structure. This is interesting for researchers who want to add other modal
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operators to STIT like �knowledge�, �obligations�, �intentions� etc. and will make
it easy to give the corresponding semantics.

One major perspective is to study STIT with the time operator �eventually�.
With this kind of operator, there are some di�culties about �nding a Kripke
semantics and proving its equivalence with classical branching time structure. In-
deed, one major problem is that we do not have a control over the depth in the
model. With an operator �eventually�, we maybe do not only deal with worlds
of depth at most n as we have done with the X-modal depth of the formula is
n in Subsection 6.5.2. This fact leads to a problem called the problem of hidden
histories (the �bundled model� in [Rey05]). We are going to explain this prob-
lem on an example shown on Figure 6.10 and Figure 6.11. Figure 6.10 shows a
Kripke structure. All �histories� are such that after a �nite number of steps there
is no more branching. When you try to construct the corresponding branching
time structure you obtain Figure 6.11. In this branching time, it appears a �new�
history (in bold) in which there is always branching possible.
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Chapter 7

Satis�ability problem and
axiomatization of fragments of
STIT

In this Chapter we are going to study the satis�ability problem of a given STIT-
formula. We will also deal with axiomatization. We �rst begin to study the case
where formulas does not contain any temporal operator.

7.1 Forget time for a while

In this section, we investigate some fragments of CSTIT without the �next� op-
erator. We recall that the whole group STIT without temporal operators, called
L[{J}], that is to say the logic XCSTIT restricted to this fragment de�ned by the
following rule

ϕ ::= p | (ϕ ∨ ϕ) | ¬ϕ | [J ]ϕ

where p ranges over ATM and J ranges over 2AGT.
The semantics is given by STIT-Kripke model (De�nition 45) but the relation

for the time is useless:

De�nition 47 (STIT-Kripke model)
A STIT-Kripke modelM = (W, {RJ}J⊆AGT, V ) is a tuple where:

• W is a set of worlds;

• for all J ⊆ AGT, RJ is a equivalence relation such that:

1. RJ ⊆ R∅;
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2. RJ =
⋂
j∈J R{j};

3. for all w ∈ W , for all (wj)j∈AGT ∈ R∅(w)n,
⋂
j∈AGTR{j}(wj) 6= ∅;

• V : W → 2ATM .

7.1.1 Group STIT

In this section, we study the satis�ability problem and the axiomatization of group
STIT. You can also refer to [HS08]. We are going to reduce the problem of satis�a-
bility in S5n to the problem of satis�ability in STITGn . The range of our translation
is the set of formulas where only �anti-individuals� occur, i.e. groups J such that
J = AGT \ {i}. Noting i such a set, we de�ne the following translation:

De�nition 48 (translation from LS5n to LSTITGn )
Let tr : LS5n −→ LSTITGn be de�ned by:
tr(p) = p
tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
tr(�iϕ) = [i]tr(ϕ), where i = AGT \ {i}.

From now, we note ϕ instead of tr(ϕ).

Theorem 21 For any ϕ ∈ LS5n, those propositions are equivalent:

• |=S5n ϕ;

• |=C ϕ where C is the class of STITGn models where RAGT = idW ;

• |=
STIT

G
n

[∅](
∧
p∈atm(ϕ)[AGT]p↔ p)→ ϕ where atm(ϕ) be the set of all atomic

propositions occurring in ϕ.

Notice that [∅] has to be read [1] . . . [n].
Proof.

We are going to prove that the following statements are equivalent:

1. ϕ is S5n-satis�able ;

2. ϕ is satis�able in a STITGn -model where RAGT = idW ;

3. [∅](
∧
p∈atm(ϕ)[AGT]p↔ p) ∧ ϕ is STITGn -satis�able.

1.⇒ 2. Let ϕ ∈ LS5n such that it exists a S5n-modelM = 〈X,R, V 〉 where:

• X = X1 ×X2 × . . . Xn;
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• R is mapping associating to every i ∈ AGT the equivalence relation Ri

de�ned by Ri = {((x1, ...xn), (y1, ....yn)) ∈ X2 where for all j 6= i, xj = yj}

and a point x ∈ X such thatM, x |= ϕ.
Now, we are going to de�ne a tripleM′ = 〈W ′, R′, V ′〉 as follows:

• W ′ = X;

• R′ is a mapping associating to every i ∈ AGT the equivalence relation R′i =
{〈(x1, ...xn), (y1, ....yn)〉 ∈ W ′2 where xi = yi} on W ′;

• V ′ = V .

We can check that for all (x1, x2, . . . , xn) ∈ W n,
⋂
i∈AGTRi(xi) 6= ∅. Thus,M′

is a STIT-Kripke structure. We can see that
R′
i

=
⋂
j∈iR

′
j (see de�nition 47)

=
⋂
j∈i {〈(x1, ...xn), (y1, ....yn)〉 ∈ W ′2 where xj = yj}

= {〈(x1, ...xn), (y1, ....yn)〉 ∈ W 2 where for all j 6= i, xj = yj}
= Ri

and that
R′AGT =

⋂
j∈AGTR

′
j (see de�nition 47)

=
⋂
j∈AGT {〈(x1, ...xn), (y1, ....yn)〉 ∈ W ′2 where xj = yj}

= {〈(x1, ...xn), (x1, ....xn)〉 ∈ W 2}
= idW

.

We can check that for all z ∈ W,M, z |= ϕ i�M′, z |= ϕ by induction on ϕ.
2.⇒ 3.
Let ϕ ∈ LS5n such that there exists a STIT

G
n -model M = 〈W,R, V 〉 and a

point w ∈ W with RAGT = idW such thatM, w |= ϕ. As RAGT = idW , we have
M, w |= [∅](

∧
p∈atm(ϕ)[AGT]p↔ p). ThusM, w |= [∅](

∧
p∈atm(ϕ)[AGT]p↔ p) ∧ ϕ.

3.⇒ 1.
Let ϕ ∈ LS5n such that [∅](

∧
p∈atm(ϕ)[AGT]p↔ p) ∧ ϕ is satis�able in STIT

G
n .

Lemma 5 There exists a STIT
G
n -model M = 〈W,R, V 〉 and a point w ∈ W with

RAGT = idW such thatM, w |= ϕ.

Proof.

As [∅](
∧
p∈atm(ϕ)[AGT]p↔ p)∧ϕ is satis�able in STITGn , there exists a STIT

G
n -

modelM′ = 〈W ′, R′, V ′〉 and a point w ∈ W ′ such thatM′, w |= [∅](
∧
p∈atm(ϕ)[AGT]p↔

p) ∧ ϕ. Now, we are going to de�ne a STITGn -modelM = 〈W,R, V 〉 as follows:

• W = {R′AGT(x) | x ∈ W ′};

• Ri = {(R′AGT(x), R′AGT(y)) | (x, y) ∈ R′i};
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• V (p) = {U ∈ W | U ⊆ V ′(p)}.

Notice than RJ = {(R′AGT(x), R′AGT(y)) | (x, y) ∈ R′J}. We can check that
RAGT = idW . We can check that for all z ∈ W ′, for all subformulas ψ of ϕ that

M′, z |= ψ i�M, R′AGT(z) |= ψ

M′, z |= p i� M′, z |= [AGT]p (becauseM′, z |= [∅](
∧
p∈atm(ϕ)[AGT]p↔ p))

i� M′, y |= p for all y ∈ R′AGT(z)
i� y ∈ V ′(p) for all y ∈ R′AGT(z)
i� R′AGT(z) ⊆ V ′(p)
i� R′AGT(z) ∈ V (p)
i� M, R′AGT(z) |= p

M′, z |= [i]ψ i� M′, y |= ψ for all y ∈ R′
i
(z)

i� M, R′AGT(y) |= ψ for all y ∈ R′
i
(z)

i� M, R′AGT(y) |= ψ for all R′AGT(y) ∈ Ri(R
′
AGT(z))

i� M, R′AGT(z) |= [i]ψ
�

Let beM = 〈W,R, V 〉 a STITGn -model and a point w ∈ W with RAGT = idW
such thatM, w |= ϕ. We de�ne the S5n-modelM′ = 〈X ′, R′, V ′〉 as follows:

• X ′ = X1 ×X2 × . . . Xn where for all i ∈ AGT, Xi = {Ri(x), x ∈ W};

• R′ is a mapping associating to every i ∈ AGT the equivalence relation R′i =
{((c1, ...cn), (d1, ....dn)) ∈ X ′2 where for all j 6= i, cj = dj} on X ′;

• V ′(p) = {(c1, . . . cn) |
⋂
i∈AGT ci ∈ V (p)}. (notice that we confuse

⋂
i∈AGT ci =

{y} and y)

We can check that for all z ∈ W ,

M′, (R1(z), R2(z), . . . , Rn(z)) |= ϕ i�M, z |= tr(ϕ)

.
M′, (R1(z), R2(z), . . . , Rn(z)) |= p i� (R1(z), R2(z), . . . , Rn(z)) ∈ V ′(p)

i�
⋂
i∈AGTRi(z) ∈ V (p)

i� z ∈ V (p) (notice that
⋂
i∈AGTRi(z) = {z})

i� M, z |= p
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M′, (R1(z), R2(z), . . . , Rn(z)) |= �iψ
i� M′, (R1(z), R2(z), . . . , Ri(y), . . . Rn(z)) |= ψ for all y ∈ W

i� M′, (R1(x), R2(x), . . . , Ri(x), . . . Rn(x)) |= ψ
where R1(z) ∩R2(z) ∩ . . . Ri(y) . . . Rn(z) = {x} for all y ∈ W

i� M′, (R1(x), R2(x), . . . , Ri(x), . . . Rn(x)) |= ψ for all x ∈ Ri(z)

i� M, x |= ψ for all x ∈ Ri(z)

i� M, z |= [i]ψ
�

7.1.1.1 Group STIT is undecidable

Theorem 22 If n ≥ 3, the problem of satis�ability of a formula of STITGn is
undecidable.

Proof.

By theorem 8 and 21. �

7.1.1.2 Group STIT is non-axiomatizable

Theorem 23 If n ≤ 3, the logic STITGn is not �nitely axiomatizable.

Proof.

Suppose for a contradiction that STITGn is �nitely axiomatizable. There exists
a �nite set of axioms Ax such that for all STITGn -formula ϕ, we have |=

STIT
G
n

ϕ i� Ax ` ϕ. Let us de�ne an axiomatics Ax′ obtained from Ax by removing
[AGT] symbols. We are going to prove that for all formulas ϕ ∈ LS5n :

`Ax′ ϕ i� |=S5n ϕ

.
Hence, S5n would be axiomatizable and there is a contradiction.
First:

Lemma 6 `Ax′ ϕ implies |=S5n ϕ.

Proof.

We are going to prove that each instance of Ax′ is valid in S5n. Let us consider
an instance ψ′ of an axiom of Ax′. ψ′ is obtained from an instance ψ of Ax by
removing [AGT] symbols. We have |=

STIT
G
n
ψ. Therefore, ψ is valid in the class of
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STIT
G
n -models where RAGT = idW . Hence, ψ′ is valid in the class of STITGn -model

where RAGT = idW . Hence |=S5n ϕ. �
Here is an outline of the ⇐ -sense proof. For all S5n-formulas ϕ,
|=S5n ϕ i� |=

STIT
G
n

[∅](
∧
p∈atm(ϕ)[AGT]p↔ p)→ ϕ

i� `Ax [∅](
∧
p∈atm(ϕ)[AGT]p↔ p)→ ϕ

implies (1) `Ax,[AGT]ψ↔ψ ϕ
implies (2) `Ax′ ϕ

We just have to prove (1) and (2). They are provided by the two following
lemmas:

Lemma 7 `Ax [∅](
∧
p∈atm(ϕ)[AGT]p↔ p)→ ϕ implies `Ax,[AGT]ψ↔ψ ϕ.

Proof.

We have:
... (necessitation and principles of classical propositional logic)

`Ax,[AGT]ψ↔ψ [∅](
∧
p∈atm(ϕ)[AGT]p↔p)

Hyp
`Ax,[AGT]ψ↔ψ [∅](

∧
p∈atm(ϕ)[AGT]p↔p)→ϕ

`Ax,[AGT]ψ↔ψ ϕ

�

Lemma 8 `Ax,[AGT]ψ↔ψ ϕ implies `Ax′ ϕ.

Proof.

Assume that `Ax,[AGT]ψ↔ψ ϕ. There exists a proof of ϕ, that is to say a
sequence (ϕ1, . . . , ϕk) such that for 1 ≤ i ≤ k, one of the following holds:

• ϕi is a tautology, an instance of an axiom in Ax or an instance of [AGT]ψ ↔
ψ;

• ϕi is obtained by necessitation from ϕj where j < i;

• ϕi is obtained by modus ponens from ϕj and ϕk where j, k < i;

• ϕk = ϕ.

Now, we construct (ϕ′1, . . . , ϕ
′
n) where ϕ′i is ϕi in which we have removed [AGT]

symbols. The reader can check that (ϕ′1, . . . , ϕ
′
n) is a proof of ϕ.

�
�
Unfortunately the set of formulas valid in STIT-Kripke models is not �nitely

axiomatizable and its satis�ability problem is undecidable when the number of
agents is at least 3. Therefore we are interested in syntactic restrictions that are
as expressible as possible while having good mathematical properties like good
complexity of the satis�ability problem or axiomatizability.
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First we add the grand coalition operator [AGT] to the individual STIT studied
in [Xu98] and [BHT08]. Then we study a generalisation where coalitions belong
to the lattice of Figure 7.3. Finally, we study STIT where the coalitions form a
chain J1 ⊂ J2 ⊂ J3 . . . .

7.1.2 Individual STIT plus the grand coalition without time

In [Xu98] and [BHT08], it was proved that the satis�ability problem of the atem-
poral individual STIT logic, that is to say the fragment of L[{J}] where all [J ]
operators are of the form [{i}] where i ranges over AGT, is in NEXPTIME and
that if a formula ϕ of L[{i}]is satis�able then it is satis�able in a a CSTIT-model
where the number of worlds in bounded by 2|ϕ|. In [Wan06], you can also �nd a
tableau method for the individual deliberative STIT (see Remark 5. In this sub-
section, we extend the results of [Xu98] , [BHT08] [Wan06] by adding the operator
[AGT] where AGT is the grand coalition.

In this subsection, we suppose that card(AGT) ≥ 2.

7.1.2.1 De�nition

We de�ne now the fragment of the whole language LXCSTIT we are interested in,
denoted as L[{i}],[AGT], by the following rule:

ϕ ::= ⊥ | p | (ϕ ∨ ϕ) | ¬ϕ | [{i}]ϕ | [AGT]ϕ

where p ∈ ATM and i ∈ AGT.

7.1.2.2 Semantics

We recall the de�nition of a standard Kripke model but we only give the element
correspond to the semantics of [{i}] and [AGT]ϕ. The following De�nition 49 is
exactly the De�nition 45 but restricted to operators [{i}] and [AGT]ϕ.

De�nition 49 (L[{i}],[AGT]-Kripke model)
A L[{i}],[AGT]-Kripke modelM = (W, {RJ}J⊆AGT, V ) is a tuple where:

• W is a set of worlds;

• for all J ⊆ AGT, RJ is a equivalence relation such that:

1. R{j} ⊆ R∅;

2. RAGT =
⋂

AGT∈J R{j};

3. for all w ∈ W , for all (wj)j∈AGT ∈ R∅(w)n,
⋂
j∈AGTR{j}(wj) 6= ∅;
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• V : W → 2ATM .

We also introduce a new class of models by weakening the condition of addi-
tivity (Condition 2 of De�nition 49): the class of L[{i}],[AGT]-super-additive-Kripke
models. In these models, we only force the inclusion RAGT ⊆

⋂
j∈J R{j} but not

the equality. In other words, super-additivity means that the choices of agents in
the group J is more than the choices of each individual agent. This class of mod-
els will be helpful to provide axiomatization of all valid formulas of the fragment
L[{i}],[AGT]. More precisely:

De�nition 50 (L[{i}],[AGT]-super-additive-Kripke model)
A L[{i}],[AGT]-super-additive-Kripke modelM = (W,RX , {RJ}J⊆AGT, V ) is a tuple
where:

• W is a set of worlds;

• for all J ⊆ AGT, RJ is a equivalence relation such that:

1. R{j} ⊆ R∅;

2. RAGT ⊆
⋂
j∈AGTR{j};

3. for all w ∈ W , for all (wj)j∈AGT ∈ R∅(w)n,
⋂
j∈AGTR{j}(wj) 6= ∅;

• V : W → 2ATM .

We show that the language L[{i}],[AGT] cannot distinguish the standard Kripke
model and the super-additive variant. In other worlds, concerning the property
of additivity and super-additivity the language L[{i}],[AGT] is as poor as Coalition
Logic [Pau02]: Pauly proved that all e�ectivity function is playable (hence su-
peradditive) is the e�ectivity function of a strategic game (additive). Of course
a L[{i}],[AGT]-Kripke model is a L[{i}],[AGT]-super-additive Kripke model. But the
contrary is false. Given a L[{i}],[AGT]-super-additive Kripke model, we are going
to transform it into a L[{i}],[AGT]-Kripke model using the technique of [Vak]. This
technique consists in copyings worlds in the model without changing the truth of
formulas. We also state the �nite model property for both classes.

Theorem 24 Let ϕ be a formula in the fragment L[{i}],[AGT]. We have equivalence
between:

1. ϕ is satis�able in a L[{i}],[AGT]-Kripke model;

2. ϕ is satis�able in a L[{i}],[AGT]-super-additive-Kripke model;

3. ϕ is satis�able in a L[{i}],[AGT]-super-additive-Kripke model with 2|ϕ| worlds;
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4. ϕ is satis�able in a L[{i}],[AGT]-Kripke model with 2(n+2)|ϕ| worlds.

Proof.

2.⇒ 3. Let ϕ be a satis�able formula in a L[{i}],[AGT]-super-additive-Kripke
model: there exists a L[{i}],[AGT]-super-additive-Kripke model M′ = (W ′, R′, V ′)
and w ∈ W ′ such thatM′, w |= ϕ.

As usual, we �ltrate by the set of subformulas of ϕ: two worlds are in the
same equivalence class i� they satisfy the same subformulas of ϕ. Let |w| be the
equivalence class of w. Now we de�ne the structureM = (W,R, V ):

• W = {|w| | w ∈ W ′} is the set of equivalence classes;

• |u|R{i}|v| i� for all subformulas [{i}]ψ of ϕ, M′, u |= [{i}]ψ i� M′, v |=
[{i}]ψ;

• |u|RAGT|v| i� for all i ∈ AGT, |u|R{i}|v| and for all subformulas [AGT]ψ of
ϕ,M′, u |= [AGT]ψ i�M′, v |= [AGT]ψ;

• V (|u|) = {p ∈ ATM | p occurs in ϕ and p ∈ V (u)}.

The resulting model M is a L[{i}],[AGT]-super-additive-Kripke model with at
most 2|ϕ| worlds. We prove by induction on ψ that for all ψ ∈ SF (ϕ), for all
u ∈ W ′ we have M′, u |= ψ i� M, |u| |= ψ. In particular we have M′, w |= ϕ
henceM, |w| |= ϕ.

3.⇒ 4.
Let ϕ a L[{i}],[AGT]-formula, letM = (W,R, V ) be a L[{i}],[AGT]-super-additive-

Kripke model and w ∈ W such thatM, w |= ϕ and card(W ) ≤ 2|ϕ|.
Now we are going to transform the model M into a L[{i}],[AGT]-Kripke model

M′ with 2(n+2)|ϕ| worlds. Figure 7.1 explains this transformation.
Let us consider:

• Ci denotes the set of Ri-equivalence classes inM;

• ~C =
∏

i∈AGT Ci;

• For all ~C ∈ ~C, the setA ~C denotes the set ofRAGT-equivalence classes included
in
⋂
i∈AGTCi;

• AsM is �nite, ~C is �nite and each set A ~C is �nite. Moreover, the cardinality
of A ~C is uniformly bounded by an integer l. Note that l ≤ 2|ϕ|. We write
A ~C = {A0

~C
, . . . , Al−1

~C
} (sequence may be with repetitions). In the example

of Figure 7.1, l = 3.

We de�neM′ = (W ′, R′, V ′) as follows:



144 7.1 Forget time for a while

mmm

mmm

m

m
m
m

m

m

m m m
mm m
mmm

m
m

m
m

m m m
m
m

mm
m m

m
m
m

m
m

m m

m
m

-

M M′

a
b

c

d
e f

g

a

a

a

b

a

a

b

b

b

c c c

c c c

c c c

d d d

d d d

d d d

e

e

e

f

f

f

g

g

g

Figure 7.1: Proof of 3.⇒ 4.: �a�, . . . , �g� denote RAGT-classes. The �gure explains
how these classes are duplicated fromM to obtainM′.

• W ′ = {(~C, i1, . . . , in, w) | ~C ∈ ~C, (j1, . . . jn) ∈ {0, . . . , l − 1}n and w ∈ A
∑
j∈AGT ij [l]

~C
}

where the notation x[l] stands for �x modulo l�.

• (~C, i1, . . . , in, w)R′{j}(
~C ′, i′1, . . . , i

′
n, w

′) i� Cj = C ′j and i
′
j = ij;

• (~C, i1, . . . , in, w)R′AGT(~C ′, i′1, . . . , i
′
n, w

′) i� ~C = ~C ′ and for all j ∈ AGT,
i′j = ij;

• V ′((~C, i1, . . . , in, w)) = V (w).

Remark that we have R′AGT =
⋂
j∈AGTR{j}. The map f : (~C, i1, . . . , in, w) 7→ w is

a bounded-morphism [BDRV02, De�nition 2.10]. Indeed:

1. for all x ∈ W ′, V ′(x) = V (f(x));

2. (~C, i1, . . . , in, w)R′{j}(
~C ′, i′1, . . . , i

′
n, w

′) implies wR{j}w′ and

(~C, i1, . . . , in, w)R′AGT(~C ′, i′1, . . . , i
′
n, w

′) implies wRAGTw
′;

3. If wR{j}w′ then we have

(R{1}(w), . . . , R{n}(w), i1, . . . , in, w)R′{j}(R
′
{1}(w

′), . . . , R′{n}(w
′), i′1, . . . , i

′
n, w

′)

where ij = i′j and other ik's are such that w ∈ A
∑
j∈AGT ij [l]

~C
and w′ ∈

A
∑
j∈AGT i

′
j [l]

~C′
;



7.1.2 Individual STIT plus the grand coalition without time 145

s s ss s s
s
s s
s s s

s
s s
s s s
s
ssss s

s s s
s s s
s s s
s s ss s s

−→

Figure 7.2: Transforming a �nite STIT-model into a model where the number of
worlds in each RAGT-classes and the number of R{i}-class for all i ∈ AGT are equal
to N (N = 3 here).

4. If wRAGTw
′ then we have

(R{1}(w), . . . , R{n}(w), i, 0 . . . , 0, w)R′AGT(R{1}(w
′), . . . , R{n}(w

′), i, 0, . . . , 0, w′)
where i is such that w,w′ ∈ Ai~C .

As f is a bounded morphism, for all x ∈ W ′, for all formulas ψ, M′, x |= ψ i�
M, f(x) |= ψ. Moreover the size of W ′ is bounded by 2|ϕ|× 2|ϕ|

n× 2|ϕ| = 2(n+2)|ϕ|.
�
The above Theorem 24 allows us to give complexity result and axiomatization.
Now we give a result helping for the generalization in the next subsection:

Theorem 25 If a formula is satis�able in STIT-model, then we can suppose it is
satis�able in STIT-model such that:

• the number of worlds in each RAGT-classes is equal to N ;

• the number of R{i}-classes for all i ∈ AGT is equal to N .

where N = 2(n+2)|ϕ|.

Proof.

LetM = (W,R, V ) a STIT-Kripke model satisfying ϕ. We can suppose that
the number of worlds in M is bounded by 2(n+2)|ϕ| by Theorem 24. Thus the
number of R{i}-classes and the number of points in each RAGT-class in bounded
by 2(n+2)|ϕ|. Now the operation consists in adding R{i}-classes and points to RAGT-
classes. The transformation is depicted Figure 7.2: we �rst ��ll up� eachRAGT-class
by adding copies of worlds and then adjust the number of R{i}-classes by adding
copies of RAGT-classes. The worst we can have is to have at the end of the process:

• 2(n+2)|ϕ| points in each RAGT-classes;

• 2(n+2)|ϕ| R{i}-classes.
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This makes at most 2(n+1)(n+2)|ϕ| worlds in the �nal model. The formal proof of
this result is fastidious and based on the same idea of p-morphism that in Theorem
24. �

7.1.2.3 Complexity

The �nite model property of the previous Theorem 24 leads to the following result:

Theorem 26 The problem of satis�ability of a given formula in L[{i}],[AGT] is:

• NP-complete when card(AGT) = 1;

• NEXPTIME-complete when card(AGT) ≥ 2.

Proof.

The case card(AGT) = 1 will be established in Corollary 6. Let us consider the
case card(AGT) ≥ 2. First it is NEXPTIME-hard because the satis�ability prob-
lem of the individual CSTIT has already been proved NEXPTIME-hard [BHT08].
It is in NEXPTIME because we have an algorithm to solve the satis�ability prob-
lem of a given formula ϕ:

• guess a super-additive-Kripke structureM of 2|ϕ| worlds;

• check if ϕ is true in some point of M, which can be done in time linear in
the size ofM.

This algorithm is sound and complete because of Theorem 24.
�

7.1.2.4 Axiomatization

For the individual CSTIT, Xu [BPX01, Chapter 17] gave the following axioms:

S5([∅]) the axiom schemas of S5 for �;

S5([i]) the axiom schemas of S5 for [i] for all i ∈ AGT;

(∅→i) [∅]ϕ→ [i]ϕ, for all i ∈ AGT;

(AIAn) (♦[1]ϕ1 ∧ . . . ∧ ♦[n]ϕn)→ ♦([1]ϕ1 ∧ . . . ∧ [n]ϕn).

The characterization of Theorem 24 enties us to add the following axioms:

S5([AGT]) the axiom schemas of S5 for [AGT];

(i→AGT) [{i}]ϕ→ [AGT]ϕ;
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Theorem 27 A formula ϕ of LCSTIT is CSTIT-valid i� ϕ is provable from the
schemas S5([∅]), S5([i]), (∅→i), and (AIAn), S5([AGT]), (i→AGT) and by the
rules of modus ponens and [∅]-necessitation.

Proof.

We have a correspondence between each axiom and its semantical constraint.
According to the Theorem of Sahlqvist. [BDRV02, Theorem 4.42] this axiomati-
zation is sound and complete.
�

7.1.3 A generalization of individual coalitions

In this subsection, we investigate the complexity of the satis�ability problem of a
richer fragment of CSTIT without time. We only authorize coalitions of the lattice
Lat (or Hasse diagram) presented in Figure 7.3.

More precisely, in this subsection we suppose that AGT = {1, . . . , km+m− 1}
and we are interested in the following fragment of the whole language, denoted as
Llat, de�ned by the following rule:

ϕ ::= ⊥ | p | (ϕ ∨ ϕ) | ¬ϕ | [J ]ϕ

where p ∈ ATM and J is a coalition of the lattice Lat presented in the Figure
7.3.

De�nition 51 (Llat-super-additive-Kripke model)
A Llat-super-additive-Kripke modelM = (W,RX , {RJ}J∈Lat, V ) is a tuple where:

• W is a non-empty set of possible worlds;

• for all J ∈ Lat, RJ is a equivalence relation such that:

1. if J ⊆ J ′, R′J ⊆ RJ ;

2. for all k, for all w ∈ W , for all (wj)j∈{1,...,m−1} ∈ R{1,...,km},⋂
j∈{1,...,m−1}

R{1,...,km}∪{km+j}(wj) 6= ∅;

• V : W → 2ATM .

We introduce some notions:

• As it is depicted on the Figure 7.3, coalitions are classi�ed according to their
types. ∅, {1}, . . . , {m− 1} and {1, . . . ,m− 1} are of type 0, ..., {1, . . . , km},
. . . , {1, . . . , km} ∪ {km+ 1} and {1, . . . , km} ∪ {km+m− 1} are of type k,
and so on.
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Figure 7.3: The lattice of coalitions
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• ∆ϕ denotes the di�erence between the maximal type and the minimal type
of operators appearing in ϕ.

In this subsection, we will see that STIT-models and Llat-super-additive-models
provide in fact the same set of validities. First we explore the easy implication:
every STIT-model (De�nition 47) can obviously be seen as a Llat-super-additive-
model. So if ϕ is satis�able in a STIT-model then ϕ is satis�able in a Llat-super-
additive-model. The following theorem provides a �nite model property for Llat-
super-additive-models.

Theorem 28 Let ϕ a formula satis�able in a Llat-super-additive-Kripke model.
Then ϕ is satis�able in a Llat-super-additive-Kripke model where the number of
worlds in bounded by 2∆ϕO(|ϕ|2).1

Proof.

We prove the following statement by induction on ∆ϕ. Let P (K) be the fol-
lowing property: �For all satis�able formulas ϕ such that ∆ϕ = K, ϕ is satis�able
in a model of size 2K max(2LϕMϕ+3αϕ,|ϕ|) where Lϕ is the number of subformulas of
the form [C]ψ of ϕ and Mϕ is the maximal size of a subformulas of the form [C]ψ
of ϕ and αϕ is the number of atomic propositions in ϕ�.

The basic case correspond to ∆ϕ = 0. Without loss of generality we can
suppose that the formula ϕ only contains operators of type 0. We are in the case
of a formula with individual plus the grand coalition and the theorem is true for
this case (see Theorem 24).

Now let us consider the inductive case. Without loss of generality we can
suppose that the minimal type appearing in the formula ϕ is 0. If it is not the case,
and if the minimum type is k, simply read this proof by replacing ∅ by {1, . . . , km},
and {i} by {1, . . . , km} ∪ {km+ i} for all i ∈ {1, . . . ,m− 1}. Suppose the formula
ϕ is satis�able in a super-additive-model M, w such that M = (W,R, V ). The
proof is done in four steps:

1. FromM, we are only interested in what is going on concerning the relation
of type 0: R∅, R{i} and R{1,...,m−1}. For that reason we introduce the model
Mf obtained from M by dropping all the accessibility relations and we
�lter it almost as in the proof of Theorem 24: we get a super-additive-model
M′ = (W ′, R′, V ′); (Figure 7.4)

2. For all u′ ∈ W ′, we de�ne a formula propagation(ϕ, u′) as the formula that
must be true in the point u′. This formula sums up the constraints dued to
operators of type > 0;

1O(. . .) is the Big Oh Notation. See [Pap03]
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M′

MfM

�ltration

−→ −→

Figure 7.4: Mf : the modelM by removing information about coalitions of type
> 0;M′: the �ltered model ofMf

3. We exhibit super-additive-models Mu′ satisfying propagation(ϕ, u′) for all
u′ ∈ W ′;

4. We de�ne a new super-additive-model M∗ by gluing the super-additive-
modelsMu alltogether satisfying ϕ. (Figure 7.5)

Step 1 For all formulas [B]ψ where B is a coalition of type > 0, we are going
to introduce extra atomic propositions p[B]ψ in the language. Suppose that there
exists a super-additive-model M = (W,R, V ) and a world w ∈ W such that
M, w |= ϕ.

Let us de�ne a super-additive-modelMf = (W,R, V f ) by:

• the set of worlds W is the same than inM;

• relations R∅, R{1}, . . . , R{m−1} and R{1,...,m−1} are the same than inM;

• V f (u) = V (u) ∪ {p[B]ψ | M, u |= [B]ψ}.

Let us de�ne freeze(ϕ) where we have replaced each subformula [B]ψ where
B is of type > 0 by the extra proposition p[B]ψ. Formally:

De�nition 52 (freeze(ϕ))
The formula freeze(ϕ) is de�ned by induction on ϕ as follows:

• freeze(p) = p;

• freeze(ψ1 ∨ ψ2) = freeze(ψ1) ∨ freeze(ψ2);

• freeze(¬ψ) = ¬freeze(ψ);
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Figure 7.5: Gluing the super-additive-modelsM′
u in order to getM∗

• freeze([A]ψ) = [A]freeze(ψ) if A is of type 0;

• freeze([B]ψ) = p[B]ψ.

We have that for all formulas ψ,M, u |= ψ i�Mf , u |= freeze(ψ).
Now we �lter the modelMf by the set2 {freeze(ψ) | ψ ∈ SF (ϕ)}where SF (ϕ)

is the set of all subformulas of ϕ. The result is a super-additive-model M′ =
(W ′, R′, V ′). We have:

• card(W ′) ≤ 2|ϕ|;

• there exists w′ ∈ W ′ such thatM′, w′ |= freeze(ϕ);

• for u′ ∈ W ′ there exists u = c(u′) ∈ W such that for all subformulas ψ ∈
SF (ϕ) we have Mf , u |= freeze(ψ) i� M′, u′ |= freeze(ψ). (as M′ is a
�ltered model of Mf , we take c(u′) as a representative of the equivalence
class u′)

Let u′ ∈ W ′. Let u = c(u′) ∈ W . Note that

for all subformulas ψ ∈ SF (ϕ),M, u |= ψ i�M′, u′ |= freeze(ψ). (7.1)

For all ψ ∈ SF (ϕ) and for all u′ ∈ W ′ we de�ne simplify(ψ, u′) as the formula ψ
in which we have replaced all subformulas of the form [A]ψ where [A] is of type 0
(not nested into another operator of type 0):

2Notice that the proof is not correct if we �lter by the set of all subformulas of freeze(ϕ)!
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• by > ifM′, u′ |= [A]freeze(ψ);

• or by ⊥ ifM′, u′ 6|= [A]freeze(ψ).

More formally:

De�nition 53 (simplify(ψ, u′))
Let u′ ∈ W ′, let ψ ∈ SF (ϕ). simplify(ψ, u′) is de�ned by induction on ψ as:

• simplify(p, u′) = p for all p ∈ ATM ;

• simplify(ψ1 ∨ ψ2, u
′) = simplify(ψ1, u

′) ∨ simplify(ψ2, u
′);

• simplify([B]ψ, u′) = [B]simplify(ψ, u′) if B is of type > 0;

• simplify([A]ψ, u′) = > ifM′, u′ |= [A]freeze(ψ) and A is of type 0;

• simplify([A]ψ, u′) = ⊥ ifM′, u′ 6|= [A]freeze(ψ) and A is of type 0.

Lemma 9 Let u′ ∈ W ′ and u = c(u′) ∈ W . For all ψ ∈ SF (ϕ), M, u |=
simplify(ψ, u′) i�M′, u′ |= freeze(ψ).

Proof.

First we prove by induction on ψ ∈ SF (ϕ) the following property:
P (ψ) = �for all v ∈ RAGT(u),M, v |= simplify(ψ, u′) i�M, v |= ψ.�

(Propositions) ok.

[B]ψ Let B be a coalition of type > 0. We have:

M, v |= simplify([B]ψ, u′) i� for u ∈ RB(v),M, u |= simplify(ψ, u′)
i� for u ∈ RB(v),M, u |= ψ (because RB ⊆ RAGT)
i�M, v |= [B]ψ

[A]ψ LetA be a coalition of type 0. Let us consider the caseM′, u′ |= freeze([A]ψ).
We have simplify([A]ψ, u′) = >. Hence M, v |=
simplify([A]ψ, u′). But in this case, as [A]ψ ∈ SF (ϕ), (7.1) impliesM, u |=
[A]ψ. Similarly when M′, u′ 6|= freeze([A]ψ), We have
simplify([A]ψ, u′) = ⊥. Hence M, v 6|= simplify([A]ψ, u′). But in this
case, as [A]ψ ∈ SF (ϕ), (7.1) impliesM, u 6|= [A]ψ.

In particular we have proven that for all ψ ∈ SF (ϕ) M, u |= ψ i� M, u |=
simplify(ψ, u′). We conclude with (7.1).�
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De�nition 54 ()
We de�ne propagation(ϕ, u′) as the formula∧

p∈ATM∩ϕ|M′,u′|=p

p ∧
∧

p∈ATM∩ϕ|M′,u′ 6|=p

¬p∧

∧
[B]ψ∈SF (ϕ)|M′,u′|=p[B]ψ

[B]simplify(ψ, u′)∧
∧

[B]ψ∈SF (ϕ)|M′,u′ 6|=p[B]ψ

¬[B]simplify(ψ, u′)∧

∧
[A]ψ∈SF (ϕ)|A of type 0 andM′,u′|=[A]freeze(ψ)

[{1, . . . ,m}]simplify(ψ, u′).

Lemma 10 Let ψ = propagation(ϕ, u′). |ψ| ≤ 3αϕ + 2LϕMϕ where αϕ is the
number of atomic propositions in ϕ, Lϕ is the number of subformulas of the form
[C]ψ in ϕ and Mϕ is the maximal size of a subformula [C]ψ of ϕ. Furthermore:

• αψ = αϕ;

• Lψ ≤ Lϕ;

• Mψ ≤Mϕ.

Proof.

Notice that |simplify(ψ, u′)| ≤ |ψ|. �

Lemma 11 For all u′ ∈ W ′, the formula propagation(ϕ, u′) is satis�able in a
Llat-super-additive-model.

Proof.

By Lemma 9.
�
For all u′ ∈ W ′, as propagation(ϕ, u′) is satis�able in a Llat-super-additive-

model, by induction, there exists a super-additive-model Mu′ = (Wu′ , Ru′ , Vu′)
and a world wu′ such that:

• card(Wu′) ≤ 2(∆ϕ−1)(2LϕMϕ+3Aϕ);

• Mu′ , wu′ |= propagation(ϕ, u′).

Furthermore, we can suppose that Ru′{1,...,m} = Wu′ ×Wu′ .
We now de�ne the super-additive-modelM∗ = (W ∗, R∗, V ∗) as follows:

• W ∗ =
⋃
u′∈W ′Wu′ ;

• R∗A = {(x, y) | x ∈ Wu′ , y ∈ Wv′ and u′R′Av
′} for all A of type 0;
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• R∗B =
⋃
Ru′B for all B of type > 0;

• V ∗(x) = Vu′(x) where u′ such that x ∈ Wu′ .

First notice that card(W ∗) ≤ 2∆ϕmax(2LϕMϕ+3Aϕ,|ϕ|).
Secondly we claim that M∗, ww′ |= ϕ. In order to prove it, we �rst prove

by induction on ψ ∈ SF (ϕ), the property P (ψ) = for all u′ ∈ W ′, for all v ∈
R∗AGT(w′u),M∗, v |= ψ i�M∗, v |= simplify(ψ, u′).

propositions simplify(p, u′) = p soM∗, v |= p i�M∗, v |= simplify(p, u′).

[B]ψ Let B be a coalition of type > 0.

M∗, v |= [B]ψ i� for all x ∈ RB(v),M∗, x |= ψ
i� for all x ∈ RB(v),M∗, x |= simplify(ψ, u′)

(because x ∈ R∗AGT(w′u))
i�M∗, v |= [B]simplify(ψ, u′)
i�M∗, v |= simplify([B]ψ, u′).

[A]ψ Let A be a coalition of type 0.

There are two cases:

� Case 1: M′, u′ |= freeze([A]ψ). In this case, simplify([A]ψ, u′) = >
and of course we haveM∗, v |= simplify([A]ψ, u′).
Let us prove that we haveM∗, v |= [A]ψ. Better said, we have to prove
that for all t ∈ R∗A(v),M∗, t |= ψ.
Let t ∈ R∗A(v). Let t′ ∈ W ′ be such that u′R′Av

′. As u′R′Av
′, M′, t′ |=

freeze([A]ψ). By De�nition of propagation(ϕ, t′), we have thatM∗, wt′ |=
[{1, . . . ,m}]simplify(ψ, t′). Hence as tR{1,...,m}t′, we have M∗, t |=
[simplify(ψ, t′). By induction (P (ψ)), M∗, t |= ψ for all t ∈ R∗A(v).
SoM∗, v |= [A]ψ.

� Case 2: M′, u′ 6|= freeze([A]ψ). In this case, simplify([A]ψ, u′) = ⊥
and of course we haveM∗, v 6|= simplify([A]ψ, u′).
Let us prove that we haveM∗, v 6|= [A]ψ.
M′, u′ 6|= freeze([A]ψ) implies that there exists t′ ∈ R′A(u′) such that
M′, t′ 6|= freeze(ψ). But then by de�nition of propagation(ϕ, t′) we
haveM∗, wt′ |= simplify(¬ψ, t′). By induction (P (ψ)), we haveM∗, wt′ |=
¬ψ. So as wt′R∗Av, we haveM∗, v 6|= [A]ψ.

Finally we have M∗, ww′ |= ϕ. Indeed, we prove by induction that P (ψ) =
M∗, wu′ |= ψ i�M′, u′ |= Freeze(ψ).
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Propositions M∗, wu′ |= p i�M′, u′ |= p (because p or ¬p appears in propagation(ϕ, u′)
according to the truth of p inM′, u′)

[B]ψ
M∗, wu′ |= [B]ψ i�M∗, wu′ |= simplify([B]ψ, u′)

i�Mu′ , wu′ |= simplify([B]ψ, u′)
i�M, u′ |= p[B]ψ.

[A]ψ
M∗, wu′ |= [A]ψ i�M∗, wu′ |= simplify([A]ψ, u′)

i�Mu′ , u
′ |= [A]freeze(ψ)).

�
Now let us consider the other direction: we have to prove that if a formula

is satis�able in a Llat-super-additive-model, then it is so in a STIT-model. In a
super-additive-model we de�ne only RJ for J in the lattice Lat whereas a STIT-
model is de�ned in terms of R{i} for all agents i ∈ AGT. In a STIT-model, the
relations RJ are de�ned from R{i} by

⋂
i∈J R{i} = RJ . Our problem is now to see

a super-additive-model as a STIT-model (De�nition 47). Of course the following
system of equations

for all J ∈ Lat,
⋂
i∈J

R{i} = RJ (7.2)

where the unknown are R{i}, has not always a solution. In fact, it is the same prob-
lem that the di�erence between L[{i}],[AGT]-super-additive-models and STIT-model
in Subsection 7.1.2 but here generalized for coalitions from Lat. Fortunately we
can always transform the super-additive-model by adding worlds without changing
the truth of formulas in order to be able to solve the system of equations and to
get a STIT-model as in Theorem 24.

Theorem 29 Let ϕ a formula in Llat that is satis�able in a super-additive-model.
Then ϕ is satis�able in STIT-Kripke-model with the same number of R{i}-classes
(at most 2(n+2)O(|ϕ|2)) where n is the total number of agents.

Proof.

Let ϕ a formula in Llat satis�able in a �nite super-additive-model. We are
going to transform the super-additive-model into a STIT-model satisfying exactly
the same formulas, and with the same number of R{i}-classes. LetN = 2(n+2)O(|ϕ|2).

The proof is done by induction over the maximal di�erence of types of the
relations appearing in the model. If the maximal di�erence of types is 0, we
already deal with a STIT-Kripke model. If not, the proof is based on the notations
of the proof of Theorem 28 and is done as follows:
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Figure 7.6: The modelM∗

• First we consider the �ltered model M′ de�ned from M as in the proof of
Theorem 28. We can suppose thatM′ satis�esR{1,...,m−1} =

⋂
i∈{1,...,m−1}R{i}

and also that the number of Ri-classes for all i ∈ {1, . . . ,m− 1} and the
number of points in R{1,...,m−1} are constant equal to N by Theorem 25;

• By induction, we then transform each super-additive-model Mu′ into a
�STIT-Kripke model� M′

u′ where relations are R{1,...m}, R{1,...,m}∪{m+1}, . . . ,
R{1,...,m}∪{m+i}, . . . , R{1,...,m}∪{km+m−1} and the number of classesR{1,...,m}∪{m+i}
are equal to N ;

• Each submodelM′
u′ has the same numberN ofR{1,...,m}∪{m+i}-classes. Classes

are numbered from 1 to N . For instance R{1,...,m}∪{m+2}-classes included in a

submodel M′
u′ are noted C

M′
u′ ,R{1,...,m}∪{m+i}

1 , . . . ,

C
M′

u′ ,R{1,...,m}∪{m+i}
N .

• Then we de�ne a modelM∗ in the same manner as in the proof of Theorem
28. The modelM∗ is depicted in Figure 7.6.

• We claim that the modelM∗ is such that we can solve the system of equations
(7.2). As R∅, R{1}, . . . , R{m−1} are already de�ned, we have to de�ne R{m},
R{m+1}, . . . , R{km+m+1}. We de�ne wR{m}v i� the number of the submodel
in which w belongs in its R{1,...m−1}-class and the number of the submodel
in which v belongs in its R{1,...m−1}-class are equal. (Figure 7.7)

We de�ne wR{m+i}v i� the number of the R{1,...m}∪{m+i}-class in which w
belongs in its submodel and the number of the R{1,...m}∪{m+i}-class in which
v belongs in its submodel are equal. (Figure 7.8)

We have to check that R{1,...m} =
⋂
i∈{1,...m}R{i} and

R{1,...m}∪{m+j} =
⋂
i∈{1,...m}∪{m+j}R{i}. We also have to ensure the prop-
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Figure 7.7: A R{m}-class

Figure 7.8: A R{m+i}-class
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erty of independence of agents:
⋂
i∈AGTR{i}(wi) 6= ∅, for all (wi)i∈AGT. We

leave the reader with Figures 7.7 and 7.8.

• You can check that that the number of R∗i classes for all i ∈ AGT is N .

�

7.1.3.1 Complexity

Suppose that m > 2. We can de�ne two satis�ability problems like in [WLWW06].
In the �rst problem the set AGT is �xed while in the second problem the set AGT
is part of the input.

Let m > 2 and k ≥ 0. We de�ne AGT = {1, . . . km+m− 1}.

• Input: A formula ϕ ∈ Llat;

• Output: yes i� ϕ is STIT-satis�able.

and

• Input: two integers k ≥ 0, m ≥ 0 and formula ϕ ∈ Llat where AGT =
{1, . . . km+m− 1}.

• Output: yes i� ϕ is STIT-satis�able.

Theorem 30 The two decision problems are both NEXPTIME-complete.

Proof.

They belong to NEXPTIME because of Theorem 28 and Theorem 29. They are
NEXPTIME-hard because of they contain the satis�ability problem of a given for-
mula of individual STIT [BHT08] with two agents, which is already NEXPTIME-
hard. �

7.1.3.2 Axiomatization

As all the constraints in a Llat-super-additive-Kripke model corresponds to Salqvist
formulas [BDRV02, Th. 4.42], and as we have the same valid formulas of the
language Llat with STIT-Kripke models and Llat-super-additive-Kripke models,
we have the following axiomatization:

Theorem 31 A formula of the language Llat is valid in STIT-Kripke models i� it
is provable from the following axiom schemas with the rule Modus Ponens and the
Necessitation rules of all modal operators:

S5([J ]) the axiom schemas of S5 for all J ∈ Lat;
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(∅→i) [J ]ϕ→ [J ]′ϕ, for every J, J ′ ∈ AGT such that J ⊆ J ′;

(AIAk
n)

(〈{1, . . . , km}〉[{1, . . . , km} ∪ {km+ 1}]ϕ1 ∧ . . .∧

〈{1, . . . , km}〉[{1, . . . , km} ∪ {km+m− 1}]ϕm−1)

→ 〈{1, . . . , km}〉([{1, . . . , km} ∪ {km+ 1}]ϕ1 ∧ . . .∧

[{1, . . . , km} ∪ {km+m− 1}]ϕm−1)

. for all k.

7.1.4 The logic of chains of coalitions

In this subsection, we are going to investigate the case where the set of coalitions
of the language form a chain:

J1 ⊂ J2 ⊂ J3 . . . .

This logic has already been investigated in [HS08] when AGT is �xed. Let us
begin to recall the results of complexity and axiomatization in this case and then
we give the results for the case when AGT is not �xed.

7.1.4.1 The case when AGT is �xed

Let AGT = {1 . . . n} be a �nite set. Without losss of generality, we only study the
following chain:

∅ ⊂ {1} ⊂ {1, 2} ⊂ . . . {1, . . . , n}.

More precisely, we are interested in the following fragment of the whole lan-
guage, denoted as L[{1...i}]�xed, by the following rule:

ϕ ::= ⊥ | p | (ϕ ∨ ϕ) | ¬ϕ | [J ]ϕ

where p ∈ ATM and J ∈ {∅, {1}, {1, 2}, . . . {1, . . . , n}}.

De�nition 55 ()
The satis�ability problem in L[{1...i}]�xed is de�ned as follows:

• Input: ϕ in L[{1...i}]�xed (where coalitions are ∅, {1}, {1, 2}, . . . {1 . . . , n});

• Ouput: yes i� the formula ϕ is satis�able.
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De�nition 56 ()
A L[{1...i}]�xed-super-additive model is a structureM = (W,R∅, R{1}, . . . , R{1,...,n}, V )
such that:

• each R{1,...k} is an equivalence relation;

• R{1,...,k+1} ⊆ R{1,...,k}.

Proposition 10 Let ϕ a formula of L[{1...i}]�xed. The formula ϕ is satis�able in a
STIT-model i� it is satis�able in a L[{1...i}]�xed-super-additive model.

Proof.

It comes from Theorem 29 where m = 2. �
In the same manner than in Theorem 31, this logic is axiomatizable by the

following axiomatics:

S5([J ]) the axiom schemas of S5 for all J ∈ Lat;

(∅→i) [{1, . . . k}]ϕ→ [{1, . . . , k + 1}]ϕ, for all k.

We will see that the satis�ability problem in L[{1...i}]�xed is NP-complete, see
Corollary 6.

7.1.4.2 The case when AGT is variable

In [WLWW06], the authors have proved that if we put the number of agents into
the input of the satis�ability problem of the logic ATL, the problem remains in
EXPTIME. Here for STIT and chains of coalitions, the result is di�erent. If the
number of agents is �xed and is not in the input of the problem, the satis�abil-
ity problem is NP-complete (Corollary 6) whereas it is PSPACE-complete if the
number of agents is part of the input (Corollary 7 and Theorem 32).

De�nition 57 ()
The satis�ability problem in L[{1...i}]variable is:

• Input:

� the cardinality n of AGT;

� a formula ϕ whose coalitions are ∅, {1}, {1, 2}, . . . {1, . . . , n};

• Ouput: yes i� the formula ϕ is satis�able.

First we establish the upper bound: the satis�ability problem in L[{1...i}]variable
is in PSPACE. Roughly speaking this result comes from two facts:



7.1.4 The logic of chains of coalitions 161

function sat(ϕ, k)
if ϕ only contains only operator [k] then

S5− satk(ϕ)
else

choose a modelM′ = (W ′, R′{1,...k}, V
′) where card(W ′) is bounded

by the number of modal operators [{1, . . . k}] appearing in ϕ,
R′{1,...k} = W ′ × W ′, V ′ is a valuation for atomic propositions and
also extra propositions [B]ψ.
choose w′ ∈ W ′;
if M′, w′ |= Freeze(ϕ) then

for all u′ ∈ W ′

call sat(propagation(ϕ, u′), k + 1)
endFor

else
reject

endIf
endIf

endFunction

where freeze(ϕ), propagation(ϕ, u′) are de�ned in the proof of Theorem 28.

Figure 7.9: An algorithm for satis�ability problem in L[{1...i}]variable

• We can treat the coalitions one after the other. Contrary to the Theorem
28 where the �ltration provides a model M′ with an exponential number
of worlds, here we can use a selection-of-points argument as for S5 [Lad77]
providing a �partial� model with a linear number of worlds (the Bi's in the
algorithm of Figure 7.9);

• In the proof of Theorem 28, we then apply the induction hypothetis to formu-
las propagation(ϕ, u′). The algorithm is based on the same idea but explore
the satis�ability of propagation(ϕ, k,Bi) one after the other so that the al-
gorithm only require a polynomial amount of memory although the whole
model can be of exponential size.

Theorem 32 The satis�ability problem in L[{1...i}]variable is in PSPACE.

Proof.

Let us consider the non-deterministic procedure sat(ϕ, k) of the Figure 7.9. We
leave the reader check that this procedure terminates and only uses a polynomial
amount of memory.

We can check that for all formulas ϕ containing operators of type ≥ k, we have
sat(ϕ, k) succeeds i� ϕ is satis�able.
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Basic case If there is no modal operator or only the operator {1, . . . , k} in ϕ
then we have sat(ϕ, k) succeeds i� ϕ is satis�able.

Inductive case
⇒
Suppose that sat(ϕ, k). succeeds. Then there exists a modelM′ = (W ′, R{1,...k}, V

′)
and w′ ∈ W ′ such thatM′, w′ |= freeze(ϕ). Every call sat(propagation(ϕ, k, u′), k+
1) has been successful so by induction for all u′, propagation(ϕ, k,Bi) is satis�able:
there exists L[{1...i}]�xed-super-additive-modelMu′ = (Wu′ , R{1...k+1}u′ , . . . , Vu′) and
a point wu′ ∈ Wi such thatMu′ , wu′ |= propagation(ϕ, k, u′).

We de�ne a modelM∗ in the same way as in the proof of Theorem 28 and that
M∗, ww′ |= ϕ.
⇐
Reciprocally suppose that the formula ϕ is satis�able. There exists a model

M = (W,R{1,...k} . . . , V ) and a world w ∈ W such thatM, w |= ϕ.
Let α1 = [{1, . . . , k}]ψ1, . . . , αK = [{1, . . . , k}]ψK an enumeration (with repeti-

tion) of all formulas of the form [{1, . . . , k}]ψ such thatM, w 6|= [{1, . . . , k}]ψ.
For all i ∈ {1, . . . |ϕ|}, there exists a world ui ∈ W such thatM, ui |= ψi.
Now we de�ne the Kripke-modelM′ = (W ′, R′{1,...k}, V

′) in the following way:

• W ′ = {u1, . . . uK} ∪ {w};

• R′{1,...k} = W ′ ×W ′;

• For all u′ ∈ W ′, V ′(u′) = V (u′) ∪ {p[B]ψ | M, u′ |= [B]ψ}.

We haveM′, w′ |= ψ. Furthermore,M, ui |= propagation(ϕ,Bi). So by induc-
tion the calls sat(propagation(ϕ,Bi), k + 1) are successful. So the call sat(ϕ, k)
succeeds. �

Theorem 33 Let ϕ be of L[{1...i}]�xed. If ϕ is satis�able in a L[{1...i}]�xed-super-
additive-model then:

1. it is satis�able in a L[{1...i}]�xed-super-additive-model where the number of
worlds is at most (|ϕ|)∆ϕ+1;

2. it is satis�able in a STIT-model where the number of worlds is at most
(|ϕ|)∆ϕ+1.

Proof.

We focus on the algorithm given in Figure 7.9 and prove Item 1. by induction:



163

• If there is no operator or only one operator [1, . . . , k] (i.e. ∆ϕ = 0), the
algorithm call S5-sat and a formula ϕ is satis�able in S5 i� it is satis�able
in a model with |ϕ| worlds;

• The induction step is as following:

� we can suppose that each super-additive-modelMi for propagation(ϕ, k,Bi)
has at most (|ϕ|)∆ϕ worlds by induction hypothesis;

� There are at most |ϕ| modelsMi;

The super-additive-modelM has at most |ϕ| × |ϕ|∆ϕ = (|ϕ|)∆ϕ+1 worlds.

Concerning Item 2, you can read again the proof of Theorem 29 withN = |ϕ|.

�

Corollary 6 If the number of agents is �xed, then the satis�ability problem is
NP-complete.

Proof.

Comes from Theorem 33. If n = card(AGT) is �xed, (|ϕ|)∆ϕ+1 ≤ (|ϕ|)n is Xn

a polynomial of degree n. So a non-deterministic algorithm for the satis�ability
problem of a given formula ϕ consists in guessing a super-additive-L[{1...i}]�xed-
model of size at most (|ϕ|)n and then checking if the formula ϕ is satis�able. �

7.2 With the neXt operator

7.2.1 Individual STIT plus the grand coalition plus neXt
operator

In this subsection, we suppose AGT = {1, . . .m− 1} where m ≥ 1 and we intro-
duce the language L[{i}],[AGT],X de�ned by:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ¬ϕ | [{i}]ϕ | [AGT]ϕ | Xϕ

where p ranges over ATM and i ranges over AGT.
In order to prove the complexity of the satis�ability problem of a formula of

L[{i}],[AGT],X , the idea consists in �attening the time like it is depicted in Figure
7.10. In the ��attened� model (a Llat-super-additive-Kripke model), a point corre-
sponds to a history. Proposition p at time 0, 1, etc. of a XCSTIT-Kripke model are
represented in the �attened model by p0, p1, etc. The relation of choice R∅ at time
0, 1, etc. is simulated by the di�erent relations of the lattice depicted in Figure 7.3.
Operators of type 0 of Llat are used to simulate operators of L[{i}],[AGT],X at the
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time 0. Operators of type 1 of Llat are used to simulate operators of L[{i}],[AGT],X

at time 1, and so on. In order to do that, we have to consider the Llat such that
the number of coalitions is not bounded. (k can be arbitrarily big).

De�nition 58 ()
For all positive integers k, we de�ne the following translation:

trk : L[{i}],[AGT],X → Llat

by induction:

• trk(p) = pk;

• trk(ϕ ∧ ψ) = trk(ϕ) ∧ trk(ϕ);

• trk(Xϕ) = trk+1(ϕ);

• trk([∅]ϕ) = [{1, . . . , km}]trk(ϕ);

• trk([{i}]ϕ) = [{1, . . . , km+ i}]trk(ϕ);

• trk([AGT]ϕ) = [{1, . . . , km+m− 1}]trk(ϕ);

The translation trk translates a formula of L[{i}],[AGT],X into Llat considering
that the current time is k. A proposition p in L[{i}],[AGT],X is translated into pk in
Llat meaning that �p is true at time k�. At time k, Xϕ is translated as �ϕ will be
true at time k + 1�. For L[{i}],[AGT],X-operators, at time k, we use operators of the
lattice Lat of type k.

Property 2 of Llat-super-additive-models (De�nition 51) corresponds to inde-
pendence of agents in XCSTIT-models for all times k. The property 1. of Llat-
super-additive-models corresponds to the property of no choice between undivided
histories in XCSTIT-models. Hence, we have a correspondence in terms of satis�-
ability in L[{i}],[AGT],X and in Llat. Formally:

Theorem 34 Let ϕ a formula of L[{i}],[AGT],X . ϕ is satis�able in a XCSTIT-Kripke
frame i� tr0(ϕ) is satis�able in a Llat-super-additive Kripke model.

Proof.

⇒ Suppose there exists a XCSTIT-Kripke frameM = (W,RX , {RJ}J⊆AGT, V )
and w ∈ W such that RX is injective andM, w |= ϕ. (we can suppose that RX is
injective because of Theorem 20)

We de�ne the Llat-super-additive-modelM′ = (W ′, {R′J}, V ′) by:

• W ′ = R∅(w);
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• R′{1,...,nk} = Rk
X ◦R∅ ◦R−kX ;

• R′{1,...,nk+1}∪{n+i} = Rk
X ◦R{i} ◦R−kX ;

• R′{1,...,nk+n−1} = Rk
X ◦RAGT ◦R−kX ;

• V ′(u) = {pk | k ∈ N and p ∈ V (RX(u))}.

We can prove by induction on ψ ∈ L[{i}],[AGT],X that for all u ∈ R∅(w), for all
k ∈ N,M, Rk

X(u) |= ψ i�M′, u |= trk(ψ). In particular, we haveM′, w |= tr0(ϕ).
⇐ Suppose there exists a Llat-super-additive-modelM′ = (W ′, {R′J}, V ′) and

w ∈ W such thatM′, w |= tr0(ϕ).
We de�ne the XCSTIT-Kripke modelM = (W,RX , {RJ}J⊆AGT, V ) by:

• W = W ′ × N;

• R∅ = {((w, k), (u, k)) | wR′1,...,nku};

• R{i} = {((w, k), (u, k)) | wR′{1,...,nk+1}∪{n+i}u};

• RAGT = {((w, k), (u, k)) | wR′{1,...,nk+n−1}u};

• RX((u, k)) = (u, k + 1);

• V ((u, k)) = {p | pk ∈ V ′(u)}.

We can prove by induction on ψ ∈ L[{i}],[AGT],X that for all u ∈ W ′, for all
k ∈ N, M, (u, k) |= ψ i� M′, u |= trk(ψ). In particular, we have M, (w, 0) |= ϕ.
�

As an exercise, we can check that if we restrict group STIT plus �next operator�
to coalitions in the lattice of Figure 7.3 we can also de�ne a translation in the
same �avour than De�nition 58 and obtain the same result of complexity for the
satis�ability problem, that is to say in NEXPTIME.

7.2.2 When there is only one agent

Theorem 35 The satis�ability problem of a given formula in LX,[∅],{1} is PSPACE-
hard.

Proof.

The logic K is the logic of all trees [BDRV02]. Its satis�ability problem is
PSPACE-hard. We are going to reduce the satis�ability problem of K to the
satis�ability problem of a given formula in LX,[∅],{1}. Here is the translation:
tr(�ψ) = [∅]Xtr(ψ). We prefer to leave it to the reader.
�
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Figure 7.10: Flatten the time

Corollary 7 The satis�ability problem of L[{1...i}]variable (unbounded chain of coali-
tions) is PSPACE-hard.

Proof.

By Theorem 35 and Theorem 34.
�
The PSPACE-ness of the satis�ability problem of a given formula in LX,[∅],{1}

is the case because we can embed LX,[∅],{1} with one agent and with the next
operator into the logic L[{1...i}]variable. We use the same translation than in the
previous subsection but with m = 2.

Corollary 8 The satis�ability problem of LX,[∅],{1} is in PSPACE.

Proof.

By Theorem 34 and Theorem 32.
�
Let LX,[∅],{1}n is the language of all formulas of LX,[∅],{1} where the X-modal

depth is �xed at most n.

Corollary 9 The satis�ability problem of a formula in LX,[∅],{1}n is NP-complete.

Proof.

By Theorem 34 and Corollary 6. �
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7.3 Conclusion and perspectives

In this Chapter we have seen that the satis�ability problem of group STIT is unde-
cidable in the general case card(AGT) ≥ 3. Furthermore, this logic is not �nitely
axiomatizable in the general case card(AGT) ≥ 3. We have given complete axioma-
tizations of group STIT fragments and studied the complexity of their satis�ability
problems. In this sense, we have �lled the gap between two previous results:

• the satis�ability problem of a given formula of individual STIT is NEXPTIME-
complete [BHT08];

• the satis�ability problem of a given formula of group STIT without restriction
is undecidable [HS08]

We have broken the myth saying STIT with coalitions is undecidable. In order to
get a decidable logic, we can use coalitions in STIT but the coalitions we write into
formulas must be part of a speci�c lattice (see Figure 7.3). You can note that the
fragment where coalitions are this lattice does not make the di�erence between a
normal-Kripke-model and a super-additive-model. In some sense it works like for
the Coalition Logic [Pau02] which also does not make this di�erence. We want
that the reader pay attention to the following conjecture:

Conjecture 1 Let us consider a STIT fragment Lfragment with temporal operator.
The satis�ability problem of a formula in Lfragment is decidable i� the language
Lfragment does not capture the di�erence between additive and super-additive mod-
els.

We have also extended this work to the satis�ability problem of individual STIT
with the �next�. Of course, the �next� operator is a weak operator with a poor
expressive power. We realize even more this weakness when we have translated
individual STIT plus �next� operator into group STIT in Section 7.2 and inherited
complexities results of the satis�ability problem. Figure 7.11 sums up the di�erent
results.

The ultimate aim is to identify an expressive fragment of strategic STIT with a
�next�, �in the future� and �until� operator embedding ATL [BHT06a] and to prove
its satis�ability problem to be NEXPTIME-complete. Thus we will be able to
reason about counterfactual emotions, etc. while having powerful time operators
like in ATL.
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Language of ϕ Complexity s-a model STIT-model
L[{1...i}]�xed (LX,[∅],{1}n) NP |ϕ|n |ϕ|n

L[{1...i}]variable (LX,[∅],{1}) PSPACE |ϕ|∆ϕ+1 |ϕ|∆ϕ+1

L[{i}] NEXPTIME 2|ϕ| 2|ϕ|

L[{i}],[AGT] NEXPTIME 2|ϕ| 2(n+2)|ϕ|

Llat (L[{i}],[AGT],X) NEXPTIME 2(∆ϕ)O(|ϕ|2) 2n(n+2)O(|ϕ|2)

L[{J}] (L[{J},X]) undecidable ... ...
where:

• n = card(AGT);

• ∆ϕ represents the maximal di�erence of type of operators in ϕ;

• s-a means super-additive model.

Figure 7.11: Exact complexities of the satis�ability problem of a given formula ϕ

Open questions

• Assume that ATM is �nite. What is the complexity of the satis�ability
problem of a formula ϕ of S52 (or STIT with two agents)? (thanks to Mikhail
Rybakov)

• Study the link between capturing the di�erence between additivity and
super-additivity and decidability of STIT?



Chapter 8

A weak STIT fragment

Unfortunately, in the Chapter 6 (and also in [HS08]) group STIT has been proved
to be undecidable and unaxiomatizable (with a �nite number of axioms schemas,
necessitation rules and modus ponens).

Here we here introduce a decidable and axiomatizable fragment of STIT with
agents and groups called dfSTIT which is su�ciently expressive to formalize coun-
terfactual emotions. First, in Subsection 8.1, we recall the syntax of STIT and
de�ne the syntactic fragment dfSTIT. In Subsection 8.2, we recall de�nition of
models of the logic STIT but here we suppose that RAGT = idW . Then, in Subsec-
tion 8.3, we recall the logic NCL [BGH+08, Tro07, Sch07]. The logic NCL shares
the same syntax with STIT and its semantics looks like the semantics of STIT. in
fact NCL is the logic STIT where you have replaced the notion of additivity by
super-additivity . As you may guess, NCL is axiomatizable. The logic NCL will be
a key point to prove the decidability of the another STIT fragment dfSTIT and
to give a complete axiomatization of dfSTIT (Subsection 8.4) inherited from NCL

axiomatization. This work is part of [LS09].

8.1 Syntax

Let us recall the syntax of STIT. Let n be a strictly positive integer. Let ATM be
a countable set of atomic propositions and let AGT = {1, . . . , n} be a �nite set of
agents. The language LSTIT of the logic STIT with agents and groups proposed by
Horty [Hor01a] is de�ned by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [J ]ϕ

where p ranges over ATM and J over 2AGT. 〈J〉ϕ is an abbreviation of ¬[J ]¬ϕ.
Operators of type [J ] are used to describe the e�ects of the action that has been
chosen by J . If J is a singleton we refer to J as an agent, whereas if J has more
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than one element we refer to J as a group. We call joint actions the actions chosen
by groups. If J has more than one element the construction [J ]ϕ means �group
J sees to it that ϕ no matter what the other agents in AGT \ J do�. If J is a
singleton {i} the construction [{i}]ϕ means �agent i sees to it that ϕ no matter
what the other agents in AGT \ {i} do�. For notational convenience, we write [i]
instead of [{i}]. [∅]ϕ can be shorten to �ϕ is necessarily true�. The operator [∅]
is exactly the historic necessity operator already present in the individual STIT
logic [BPX01]. The dual expression 〈∅〉ϕ means �ϕ is possibly true�. Note that
the operators 〈∅〉 and [J ] can be combined in order to express what agents and
groups can do: 〈∅〉[J ]ϕ means �J can see to it that ϕ whatever the other agents
in AGT \ J do�.

Here we are interested in a fragment of LSTIT we call LdfSTIT. It is de�ned by
the following BNF:
χ ::= ⊥ | p | χ ∧ χ | ¬χ (propositional formulas)
ψ ::= [J ]χ | ψ ∧ ψ (see-to-it formulas)
ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | 〈∅〉ψ (see-to-it and �can� formulas)
where p ranges over ATM and J over 2AGT \ {∅}.
LdfSTIT is a syntactic restriction of LSTIT. We have LdfSTIT ⊆ LSTIT but LSTIT 6⊆

LdfSTIT. For instance, [{1}][{1, 2}]p is in LSTIT but is not in LdfSTIT.

8.2 Models

We give two semantics of STIT. It is proved in [HS08] that these two semantics are
equivalent. The �rst one corresponds to the original semantics of STIT with agents
and groups proposed by Horty [Hor01a]. The other one is based on the product
logic S5n [GKWZ03] and will be used in Section 8.4 in order to characterize the
satis�ability of a dfSTIT -formula. Let us �rst recall the original semantics of STIT,
except that we suppose determism (the actions of agents completely determine the
world):

De�nition 59 (STIT-model)
A STIT-model is a tuple
M = (W, {RJ}J⊆AGT, V ) where:

• W is a non-empty set of possible worlds or states;

• For all J ⊆ AGT, RJ is an equivalence relation over W such that:

1. RJ ⊆ R∅;

2. RJ =
⋂
j∈J R{j};

3. for all w ∈ W , for all (wj)j∈AGT ∈ R∅(w)n,
⋂
j∈AGTR{j}(wj) 6= ∅;



171

4. RAGT = idW .

• V is a valuation function, that is, V : W → 2ATM .

As in the previous Constraint 3, it is convenient to view relations onW as functions
from W to 2W , that is, for every J ∈ 2AGT, RJ(w) = {v ∈ W | wRJv}. RJ(w)
represents the actual action chosen by J in the world w: if wRJv then v is an
outcome of the action chosen by J at w. We recall that R∅ is the relation over all
possible outcomes: if w is the current world and wR∅v then v is a possible outcome
at w. Thus, Constraint 1 on STIT models just means that all outcomes brought
about by J are possible outcomes. Constraint 2 just says that the set of outcomes
brought about by J at a given world w is equal to the pointwise intersection of the
sets of outcomes brought about by the agents in J at w. Constraint 3 expresses a
so-called assumption of independence of agents : if w1, . . . , wn are possible outcomes
at w then the intersection of the set of outcomes that agent 1 brings about at w1,
and the set of outcomes that agent 2 brings about at w2,..., and the set of outcomes
that agent n brings about at wn is not empty. More intuitively, this means that
agents can never be deprived of choices due to the choices made by other agents.
Constraint 4 expresses an assumption of determinism: the set of outcomes brought
about by all agents is a singleton that is to say we have RAGT(w) = {w} for all
w ∈ W .

Truth conditions for atomic formulas and the boolean operators are entirely
standard. For every J ∈ 2AGT, the truth conditions of the modal operators [J ] are
classicaly de�ned by:

M, w |= [J ]ϕ i�M, v |= ϕ for all v ∈ W such that wRJv.

The alternative semantics of STIT is based on the product logic S5n. It is de�ned
as follows:

De�nition 60 (product STIT-model)
A product STIT-model is a tupleM = (W,V ) where:

• W = W1 × · · · ×Wn where Wi are non-empty sets of worlds or states;

• V is a valuation function, that is, V : W → 2ATM .

Truth conditions for atomic formulas and the boolean operators are also entirely
standard. The truth conditions for the modal operators [J ] in product STIT-
models are:

M, (w1, . . . , wn) |= [J ]ϕ i�M, (v1, . . . , vn) |= ϕ
for all (v1, . . . , vn) ∈ W such that vj = wj if j ∈ J.
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Now let us just recall the notion of validity and satis�ability in STIT. As there
is an equivalence between a STIT-model and a product STIT-model as proved by
[HS08], we can de�ne those notions either with STIT-models or with STIT-models.
A formula ϕ is STIT-valid (noted |=STIT ϕ) if and only if ϕ is true in every world
of every STIT-model. Or, equivalently, a formula ϕ is STIT-valid if and only if ϕ is
true in every world of every product STIT-model. A formula ϕ is STIT-satis�able
if and only if there exists a STIT-model M = (W, {RJ}J⊆AGT, V ) and a point
w ∈ W such that M, w |= ϕ. Or, equivalently, a formula ϕ is STIT-satis�able if
and only if there exists a product STIT-model M = (W,V ) and a point w ∈ W
such thatM, w |= ϕ.

8.3 The NCL logic

Unfortunately, STIT is not axiomatizable. Nevertheless, there exists an axiomati-
zable logic which is very close to STIT. This logic is the fragment of the Normal
Coalition Logic [BGH+08, Tro07, Sch07, BHT07b] in which we do not deal with
the next operator. The Normal Coalition Logic was originally proposed in order
to embed the non-normal Coalition Logic CL [Pau02] into a normal modal logic.
This embedding uses a general technique developed in [GH93]. The reader can
�nd more details about this speci�c embedding in [BGH+08, Tro07, BHT07b].
Furthermore, the Normal Coalition Logic is also axiomatizable and decidable as
CL. Below we show that the fragment of this logic without time axiomatizes the
set of validities in the fragment LdfSTIT of STIT. Moreover, we prove our central
characterization theorem of STIT-satis�able formula of the fragment LdfSTIT by
using the Normal Coalition Logic without time. From now on, we de�ne NCL

as the fragment of the Normal Coalition Logic with the group operators [J ] and
without the next operator.

8.3.1 De�nition

We start by giving the de�nition of the logic NCL. Concerning the syntax, as here
we do not deal with the next operator, the language of NCL-formulas is the same
as the language of STIT-formulas, that is to say, LNCL = LSTIT.

Concerning the semantics, here is the de�nition of a NCL-model:

De�nition 61 (NCL-model)
A NCL-model is a tupleM = (W,R, V ) where:

• W is a nonempty set of worlds or states;

• R is a collection of equivalence relations RJ (one for every coalition J ⊆
AGT) such that:
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1. RJ1∪J2 ⊆ RJ1 ∩RJ2 ;

2. R∅ ⊆ RJ ◦RAGT\J ;

3. RAGT = IdW .

• V : W → 2ATM is a valuation function.

As in De�nition 59, RJ(w) represents the set of outcomes of the action chosen
by the group J . Constraint 1 says that the outcomes of the action chosen by the
group J1 ∪ J2 are outcomes of the action chosen by the group J1 and outcomes
of the action chosen by the group J2. Constraint 2 is close to the assumption of
independence of agents of STIT logic. According to Constraint 2, if v is a possible
outcome at w then, there must exists a world u such that u is an outcome of the
action chosen by group J at w and v is an outcome of the action chosen by group
AGT \ J at u. Constraint 3 expresses an assumption of determinism.

As usual truth conditions for atomic formulas and the boolean operators are
entirely standard and the truth conditions of the operators [J ] are given in a
traditional way by:

M, w |= [J ]ϕ i�M, v |= ϕ for all v ∈ W such that wRJv.

In the same way, we introduce notions of validity and satis�ability in NCL.
A formula ϕ is NCL-valid (noted |=NCL ϕ) if and only if ϕ is true in every world
of every NCL-model. A formula ϕ is NCL-satis�able if and only if there exists a
NCL-modelM = (W,R, V ) and a point w ∈ W such thatM, w |= ϕ.

8.3.2 Axiomatization of NCL

Constraints 1, 2, 3 presented in the De�nition 61 above directly correspond to
Sahlqvist axiom schemas [BDRV02]. For instance Constraint 2 (R∅ ⊆ RJ ◦RAGT\J)
corresponds to the axiom schema 〈∅〉ϕ→ 〈J〉〈AGT \ J〉ϕ. This is the reason why
NCL logic is axiomatizable unlike STIT logic. The following Theorem 36, which
has been proved by [BHT07b], sums up this fact.

Theorem 36 The logic NCL is complete with respect to the following axiomatiza-
tion:

(ProTau) all tautologies of propositional calculus

S5([J ]) all S5-theorems, for every [J ]

(Mon) [J1]ϕ ∨ [J2]ϕ→ [J1 ∪ J2]ϕ

Elim(∅) 〈∅〉ϕ→ 〈J〉〈AGT \ J〉ϕ
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Triv(AGT) ϕ→ [AGT]ϕ

plus modus ponens and necessitation for all [J ].

Proof.

Sahlqvist theorem. [BDRV02] �
As NCL is axiomatizable, we can introduce the symbol `NCL to deal with proofs.

We write `NCL ϕ to say that ϕ is a theorem of the axiomatization given in Theorem
36.

8.3.3 Link between STIT and NCL

In the individual case, that is to say when the language only has operators [∅]
and [{i}] where i ∈ AGT, the notion of satis�ability in STIT and the notion of
satis�ability in NCL are equivalent [BGH+08] (Theorem 14). Nevertheless, when
we authorize the whole group STIT language, the two notions are di�erent. The
following Proposition 11 highlights the relation between satis�ability in STIT and
satis�ability in NCL.

Proposition 11 Let ϕ be a formula of LSTIT.

• If card(AGT) ≤ 2, ϕ is STIT-satis�able i� ϕ is NCL-satis�able;

• If card(AGT) ≥ 3, ϕ is STIT-satis�able implies ϕ is NCL-satis�able. (the
converse is false: there exists ϕ such that ϕ is NCL-satis�able and ¬ϕ STIT-
valid.)

Proof.

Let us prove that a STIT-model is a NCL-model. LetM = (W, {RJ}J⊆AGT, V )
be STIT-model and let us prove it is an NCL model. It su�ces to prove that the
constraints of a NCL model are true inM. For instance: RJ1∪J2 =

⋂
j∈J1∪J2

R{j} =⋂
j∈J1

R{j} ∩
⋂
j∈J2

R{j} = RJ1 ∩ RJ2 . So we have RJ1∪J2 ⊆ RJ1 ∩ RJ2 . Now let
us prove R∅ ⊆ RJ ◦ RAGT\J . If wR∅v, then the constraints 3 of De�nition 59
gives:

⋂
j∈J R{j}(w) ∩

⋂
j∈J R{j}(v) 6= ∅. That is to say: RJ(w) ∩ RJ(v) 6= ∅. So

wRJ ◦RJv.
Now given that a STIT-model is a NCL-model, whatever the cardinality of

AGT, we have the implication �ϕ is STIT-satis�able implies ϕ is NCL-satis�able�.
If card(AGT) = 1, we have ϕ is STIT-satis�able ϕ is NCL-satis�able. Indeed,

both the logic STIT and NCL is fusion of the logic S5 for the operator [∅] and the
trivial operator [{1}].

If card(AGT) = 2, From [HS08] we have that STIT is exactly the logic S52

where operators are [{1}] and [{2}]. (we do not care about operators [{1, 2}]



8.3.3 Link between STIT and NCL 175

and [∅] because we have the two validities [{1, 2}]ϕ↔ ϕ and [∅]ϕ↔ [{1}][{2}]ϕ.)
Concerning NCL, Directly from the axiomatics of NCL, we have that NCL is exactly
[S5, S5] where operators are [{1}] and [{2}]. As S52 = [S5, S5] [GKWZ03], we
have that STIT and NCL have the same satis�able formulas.

If card(AGT) ≥ 3, the problem of satis�ability of NCL is in NEXPTIME (see
[BGH+08] or [Sch07]) whereas the problem of satis�ability of STIT is undecidable
(see [HS08]). So the two logics do not have the same satis�able formulas.

To sum up, we have:

• If card(AGT) = 1, STIT is the same logic than S5 and NCL;

• If card(AGT) = 2, STIT is the same logic than S52 and NCL;

• If card(AGT) ≥ 3, we have:

� STIT is the same logic than S5card(AGT);

� If a formula is STIT-satis�able then it is NCL-satis�able. There exists
a NCL-satis�able which is not STIT-satis�able.

�
Although the satis�ability problem of NCL is NEXPTIME-complete [BGH+08],

hence decidable, we can not use NCL to capture reasoning about choices like STIT
because there are no philosophical justi�cations of this logic. NCL was only de-
voted to embed Coalition Logic into a decidable normal modal logic. Moreover
NCL and STIT already di�ers with a formula of modal depth 3. Indeed, the for-
mula ϕ = ¬[〈{2, 3}〉p ∧ 〈{1, 3}〉q ∧ 〈{1, 2}〉r → 〈∅〉[〈{2, 3}〉(〈{1, 3}〉p ∧ 〈{2, 3}〉q) ∧
〈{1, 3}〉(〈{2, 3}〉r∧〈{1, 2}〉p)∧〈{2, 3}〉(〈{1, 2}〉q∧〈{1, 3}〉r)]] is NCL-satis�able and
¬ϕ is STIT-valid. [GKWZ03] We leave to the reader the proof that ¬ϕ is STIT-
valid and you can check that ϕ is indeed satis�able in the NCL-model depicted in
Figure 8.1. This model is an NCL-model for AGT = {1, 2, 3}. It contains 25 worlds.
The relations R{1,2}, R{1,3}, R{2,3} are de�ned by the picture. R∅ = W ×W and
RAGT = idW . Then R1 is de�ned as R{1,2} ◦ R{1,3}, R2 is de�ned as R{1,2} ◦ R{2,3}
and R3 is de�ned as R{1,3} ◦R{2,3}.

It is an open question to know if NCL and STIT di�ers with a formula of modal
depth 2.

Although the two logics NCL and STIT are di�erent, the property of indepen-
dence of agents holds in NCL. This fact is stated in the following Lemma 12 and
illustrated in Figure 8.2. Every NCL-model satis�es the constraint 3 (assumption
of independence of agents) of De�nition 59. This property will be important in
the constructive proof of Theorem 37. More precisely, it will be used in the proof
of Lemma 13.
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Figure 8.1: A NCL-model for ¬[〈{2, 3}〉p ∧ 〈{1, 3}〉q ∧ 〈{1, 2}〉r →
〈∅〉[〈{2, 3}〉(〈{1, 3}〉p∧〈{2, 3}〉q)∧〈{1, 3}〉(〈{2, 3}〉r∧〈{1, 2}〉p)∧〈{2, 3}〉(〈{1, 2}〉q∧
〈{1, 3}〉r)]]

RJ1

R∅

RJ2

RJ3

Figure 8.2: Independence of agents in NCL
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Lemma 12 LetM = (W,R, V ) be a NCL-model. Let r be a positive integer1. Let
w1, . . . wr ∈ W be such that for all i, j ∈ {1, . . . r}, wiR∅wj . Let J1, . . . Jr ⊆ AGT
such that i 6= j implies Ji ∩ Jj = ∅. We have:⋂

i=1...r

RJi(wi) 6= ∅.

Proof.

Let us prove the lemma by recurrence on r ∈ N∗. Let us call P(r) the
statement of the lemma.

• P(1) is true.

• Let us prove P(2) because we need it in order to prove P(r + 1) from P(r).

Let u and w be inW such that uR∅w. Let J,K ⊆ AGT such that J∩K = ∅.
As uR∅w, we have uRJ ◦RJw. And then uRJ ◦RKw. This proves P(2).

• Now, assume that P(r) is true for a �xed r ∈ N∗ and let us prove P(r + 1)
is true. Let w1, . . . , wr, wr+1 ∈ W such that for all i, j ∈ {1, . . . r}, wiR∅wj.
Let J1, . . . , Jr, Jr+1 ⊆ AGT such that i 6= j implies Ji ∩ Jj = ∅. As P (r)
is assumed, we can apply it on (w1, . . . , wr) and (J1, . . . , Jr) and obtain⋂
i=1...r RJi(wi) 6= ∅. Let w ∈

⋂
i=1...r RJi(wi). Now consider R⋃

i=1...r Ji
(w)

and RJr+1(wr+1). By applying P (2) on (w,wr+1), and (
⋃
i=1...r Ji, Jr+1), we

obtain that R⋃
i=1...r Ji

(w) ∩ RJr+1(wr+1) is not empty, i.e. R⋃
i=1...r Ji

(w) ∩
RJr+1(wr+1) contains a point v. Notice that by point 1. of De�nition 61 we
have R⋃

i=1...r Ji
(w) ⊆

⋂
i=1...r RJi(w). As

⋂
i=1...r RJi(w) ⊆

⋂
i=1...r RJi(wi),

we have a point v in
⋂
i=1...r+1RJi(wi). In other words, P(r + 1) is true.

Conclusion: We have proved by recurrence that for all r ≥ 1, P(r) is true. �
Our fragment dfSTIT of STIT logic with agents and groups has interesting

computational properties. In the rest of this section, we are going to show that
dfSTIT can be axiomatized by the axiomatics of the logic NCL, and that dfSTIT
is decidable. To prove this, we are going to study the link between NCL and STIT
when we restrict formulas to the fragment dfSTIT. Proposition 11 given above
explains that in the general case, if a formula is STIT-satis�able then it is NCL-
satis�able. The following Theorem 37 explains that the notion of satis�ability in
STIT and in NCL is the same if we restrict formulas to the fragment dfSTIT.

Theorem 37 Let ϕ ∈ LdfSTIT. Then, the following three propositions are equiva-
lent:

1You can notice that the Lemma 12 in the degenerated case r = 0 says that the intersection
of zero subset is not empty. Indeed the intersection of zero subset of W ×W is equal to W ×W
itself and therefore is not empty.
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1. ϕ is NCL-satis�able;

2. ϕ is STIT-satis�able;

3. ϕ is STIT-satis�able in a polynomial sized product STIT-model.

Proof.

Given that proving that 2. implies 1. is exactly the Proposition 11, we focus
here on the proof of 1. implies 3. and we use a selection-of-points argument as in
[Lad77]. Let ϕ a NCL-satis�able formula: there exists a NCL�modelM = (W,V )
and z0 such that M, z0 |= ϕ. We �rst construct from M a product STIT-model
M′ = (W ′, V ′). Secondly we ensure that that there exists a point (Z0, . . . Z0) ∈ W ′

such thatM′, (Z0, . . . Z0) |= ϕ. Broadly speaking, we take care in the construction
to create a new point inM′ for each subformula 〈∅〉ψ true inM. We also take care
to construct enough points so that all subformulas 〈∅〉ψ and [J ]χ false in M, z0

can also be false in tM′.

Notations

• Elements of W are noted x, y etc.

• elements of W ′ are noted ~x, ~x0, ~y etc. xj stands for the j-th coordinate of
~x. Given an element ~x, we note ~xJ = (xj)j∈J ;

• (P, . . . , P ) denotes the vector ~x where for all j ∈ AGT, xj = P ;

• (P, . . . , P )J denotes ~xJ where for all j ∈ J , xj = P ;

• SF (ϕ) denotes the set of all subformulas of ϕ. SF1(ϕ) is the set of all
subformulas which are not in the scope of a modal operator and which are of
the form [J ]χ where χ is propositional. For instance, if ϕ = [{1}]p∧〈∅〉[{2}]q,
then SF (ϕ) = {p, q, {1}]p, [{2}]q, 〈∅〉[{2}]q, ϕ} whereas SF1(ϕ) = {[{1}]p}.

Part 1: we de�ne the model M′

The de�nition ofM′ relies on the two following sets of formulas:

• Pos = {ψ | 〈∅〉ψ ∈ SF (ϕ) andM, z0 |= 〈∅〉ψ} ∪ {Z0}
where Z0 =

∧
{[J ]χ | [J ]χ ∈ SF1(ϕ) andM, z0 |= [J ]χ}. Formulas in Pos

are called positive formulas.

• Neg = {[J ]χ | [J ]χ ∈ ψ and 〈∅〉ψ ∈ SF (ϕ) andM, z0 6|= 〈∅〉ψ}∪Neg_in_z0

where Neg_in_z0 = {[J ]χ | [J ]χ ∈ SF1(ϕ) andM, z0 6|= [J ]χ}. Formulas
in Pos are called negative formulas.
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Example 19 Let ϕ = 〈∅〉([1]χ1 ∧ [{1, 3}]χ2)∧¬〈∅〉([2]χ3 ∧ [4]χ4)∧ [5]χ5 ∧ [6]χ6 ∧
¬[7]χ7 ∧ ¬[8]χ8.

We have:

• Z0 = [5]χ5 ∧ [6]χ6;

• Pos = {[1]χ1 ∧ [{1, 3}]χ2, [5]χ5 ∧ [6]χ6};

• Neg_in_z0 = {[7]χ7, [8]χ8};

• Neg = {[2]χ3, [4]χ4, [7]χ7, [8]χ8}.

First we de�ne the cartesian product W ′ = Cn = C × C × . . . C where C =
Pos ∪ {0, . . . , card(Neg)− 1}.

The vector (Z0, . . . Z0) is the root of the model. For instance, if 〈∅〉P =
〈∅〉([1]p ∧ [{2, 3}]q) is true inM, then the point (P, . . . , P ) will be both the root
of the hyperplane {(P, α2, . . . αn) ∈ W ′ | α2, . . . αn ∈ C} where p is true and the
root of the space of dimension n−2 {(α1, P, P, α4 . . . αn) ∈ W ′ | α1, α4, . . . αn ∈ C}
where q is true. Idea for negative formulas will be explained later.

Secondly we will de�ne the valuation V ′. Before that, we introduce few nota-
tions and prove the following Lemma 13 which is a bridge between W ′ and W .

• For all ~x ∈ W ′, for all P ∈ Pos, we consider the set:

Coord~x=P = {j ∈ AGT | xj = P};

Given a vector ~x and a positive formula P ∈ Pos, the set Coord~x=P denotes
the set of the agents j such that the coordinate j of the vector ~x is equal to
P .

• For all ~x ∈ W ′, we consider the set:

Pos~x = {χ | P ∈ Pos, [J ]χ ∈ SF (P ), J ⊆ Coord~x=P};

Pos~x denotes a set of boolean formulas that must be true in ~x because of
positive formulas. Formulas are boolean because of the syntactic restriction
over the language (De�nition of dfSTIT). For instance let us consider the
positive formula P = [1]p ∧ [{2, 3}]q. The model M′ will be designed such
that the point (P, . . . , P ) is the world where P must be true. Indeed, as we
have de�ned Pos(P,α2,...αn) so that it contains p, the formula p must be true
in the hyperplane {(P, α2, . . . αn) ∈ W ′ | α2, . . . αn ∈ C}.
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• For all ~x ∈ W ′, we consider the formula

Boxes~x =
∧

χ∈Pos~x

χ

Boxes~x corresponds to the conjunction of all (boolean) formulas which have
to be true in ~x because of [J ]χ positive formulas.

• We �x a bijection i : {0, . . . , card(Neg)− 1} → Neg;

We need such a bijection between integers in {0, . . . , card(Neg)− 1} andNeg
in order to use arithmetic operations + and mod (modulo) in the following
construction. Those arithmetic operations enables us to de�ne the model in
an easier way. The modulo enables us to permute negative formulas in the
model.

• We extend i to a function from W ′ to Neg in the following way:

i(~x) = i
(
Σi∈{1,...,n}|xi∈{0,...,card(Neg)−1}xi mod card(Neg)

)
.

where mod is the operation of modulo.

Intuitively, i(~x) will correspond to the negative formula [J ]χ which will be
false at ~x if there are no contradictions with Boxes~x.

Lemma 13 For all ~x ∈ W ′, there exists y ∈ W such thatM, y |= Boxes~x.

Proof.

We just recall that by de�nition of Pos, we have that for all P ∈ Pos,M, z0 |=
〈∅〉P . So for all P ∈ Pos, there exists a point yP ∈ W , such thatM, yP |= P .

Let ~x ∈ W ′. In the proof, �rst we de�ne y ∈ W . Then we prove M, y |=
Boxes~x.

1. First, we de�ne the candidate y ∈ W of our Lemma 13. As M is an NCL-
model, M satis�es the assumption of independence of agents (Lemma 12).
We are simply going to apply Lemma 12 where points are {yP | P ∈ Pos}
and sets of agents are {Coord~x=P , P ∈ Pos}. We take care that sets Coord~x=P
are disjoint if P ranges over Pos. Indeed, for all P,Q ∈ Pos, Coord~x=P ∩
Coord~x=Q 6= ∅, implies there exists j ∈ Coord~x=P ∩ Coord~x=Q. By De�nition
of Coord~x=P , we have xj = P . In the same way xj = Q, so P = Q. Brie�y,
Lemma 12 leads to: ⋂

P∈Pos

RCoord~x=P
(yP ) 6= ∅.

As this set is not empty, let us take y in it. Let y ∈
⋂
P∈PosRCoord~x=P

(yP ).
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2. We have de�ned y ∈ W . Now let us prove thatM, y |= Boxes~x. Better said,
we are going to prove that for all χ ∈ Pos~x,M, y |= χ.

Let χ ∈ Pos~x. By de�nition of Pos~x, there exists P ∈ Pos and [J ]χ ∈ SF (P )
such that J ⊆ Coord~x=P . Recall thatM, ~yP |= P and, consequently, we have
M, ~yP |= [J ]χ. By de�nition of y, we have yPRCoord~x=P

y. But as J ⊆
Coord~x=P , we have RCoord~x=P

⊆ RJ . So, we have yPRJy and, consequently,
we haveM, y |= χ. So we haveM, y |= Boxes~x.

�
Finally, we de�ne V ′ = f ◦ V where f is a mapping from W ′ to W de�ned by:

• f(Z0, . . . , Z0) = z0;

• For all ~x ∈ W ′ such that ~x 6= (Z0, . . . , Z0), i(~x) is of the form [J ]χ ∈ Neg.

� If there exists y ∈ W , such that M, y |= ¬χ ∧ Boxes~x then we pose
f(~x) = y.

� Else, we choose a point y in W such that M, y |= Boxes~x. We pose
f(~x) = y. We recall that there always exist such a point because of
Lemma 13.

Clearly,M′ = (W ′, V ′) is a product STIT-model and its size is polynomial. As
V ′ = f ◦ V , we have immediately the following lemma useful for the Part 2 of the
proof.

Lemma 14 For all ~x ∈ W ′,M′, ~x |= Boxes~x.

Proof.

Let ~x ∈ W ′. By De�nition of f ,M, f(~x) |= Boxes~x. But recall that V ′ = f◦V :
in particular, we have V ′(~x) = V (f(~x)). Recall also that Boxes~x is a boolean
formula. So we obtainM, ~x |= Boxes~x. �

Part 2 of the proof : we prove M′, (Z0, . . . , Z0) |= ϕ

1. Let P ∈ Pos. Let us prove that M′, (P, . . . P ) |= P . P is a conjunction of
formula of the form [J ]χ where χ is a Boolean formula. Let [J ]χ ∈ SF (P ).
We have to show that for ~x ∈ W ′ such that ~xJ = (P, . . . , P )J , we have
M, ~x |= χ. The situation is drawn in Fig. 8.3. The subspace represents all
worlds ~x ofW ′ where J performs the same actions than in (P, . . . P ). But for
those ~x, we have J ⊆ Coord~x=P . So χ ∈ Pos~x implying that |= Boxes~x → χ.
But, by Lemma 14, M′, ~x |= Boxes~x and this leads toM′, ~x |= χ. Finally,
M′, (P, . . . , P ) |= [J ]χ. Finally, P ∈ Pos,M′, (P, . . . P ) |= P .
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Figure 8.3: Model M′: a point (P, . . . , P ) and the subspace of all points ~x such
that ~xJ = (P, . . . , P )J , that is to say the subspace of worlds ofM′ where agents
in J all perform action �P �.
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Figure 8.4: Case 2. (a) in the part 2 of the Proof of Theorem 37

2. (a) Let N = [J1]χ1∧. . . [Jk]χk be such that 〈∅〉N ∈ SF (ϕ) andM, 6|= 〈∅〉N .
Let us prove that for all ~x0 ∈ W ′,M′, ~x0 |= ¬N . We suggest the reader
to look at the Fig. 8.4 during this part.
Consider y0 = f(~x0) ∈ W . By de�nition of f , we have M, y0 |=
Boxes~x0 . We also have M, y0 |= ¬N . So, there is i ∈ {1, . . . , k}
such thatM, y0 6|= [Ji]χi. Notice that [Ji]χi belongs to Neg.
Now we are going to prove thatM′, ~x0 6|= [Ji]χi. We are going to de�ne
a vector ~x ∈ W ′ such that ~x0R

′
Ji
~x and M′, ~x |= ¬χi. As depicted on

the Fig. 8.4, we want that Ji performs the same actions in both ~x0 and
~x.
The case where Ji = AGT is trivial: we take ~x = ~x0. Else, let j0 be an
arbitrary agent in Ji and ~x ∈ W ′ be the candidate vector such that:

• ~xJi = ~x0Ji ;
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• xj = 0 for all j ∈ Ji \ {j0};
• xj0 = i−1([Ji]¬χi) −Σj∈AGT|j 6=j0 and xj∈{0,...,card(Neg)−1}xj mod N

Now we check that M′, ~x |= ¬χi. As M, y0 |= 〈Ji〉¬χi, there exists
y ∈ W such that y ∈ RJiy0 and M, y |= ¬χi. Notice that M, y |=
Boxes~x. Indeed, Boxes~x only contains subformulas χ1 provided by
formulas of the form [K]χ1 from Pos, where K ⊆ Ji. (because only
coordinates in Ji of ~x are in Pos; others are integer). Then we have
|= Boxes ~x0 → Boxes~x. Hence M, y |= Boxes~x. To sum up, we have
M, y |= Boxes~x ∧¬χi. So, as i(~x) = [Ji]¬χi, by de�nition of f we have
that f(~x) is a such point y where M, y |= Boxes~x ∧ ¬χi. Finally, by
de�nition of V ′,M′, ~x |= ¬χi.

(b) We prove M′, (Z0, . . . Z0) |= Neg_in_z0 in the same way. Let us
prove that M′, (Z0, . . . Z0) |= Neg_in_z0. More precisely we prove
that for all [J ]χ ∈ Neg_in_z0, M′, (Z0, . . . , Z0) |= 〈J〉¬χ. We know
that M, z0 |= 〈J〉¬χ. So there exists y ∈ W such that yRJz0 and
M, y |= ¬χ. The case J = AGT is trivial. Let us consider j0 ∈ J and
let us de�ne the candidate ~x:

• ~xJ = (Z0, . . . , Z0)J ;
• xj = 0 for all j ∈ J \ {j0};
• ~xj0 = i−1([J ]χ);

Let us check that M′, ~x |= ¬χ. Remark that Boxes~x only contains
Boolean formulas χ′ where formulas [J ′]χ′ are subformulas of Z0, where
J ′ ⊆ J . Hence M, y |= Boxes~x. Furthermore, M, y |= ¬χ. So by
de�nition of f , as i(~x) = [J ]χ we have that f(~x) is a point y such that
M, y |= ¬χ ∧Boxes~x. By de�nition of V ′,M′, ~x |= ¬χ.

The conclusion of the proof is left to the reader.
�
Figure 8.5 highlights the relation between STIT and NCL. If we consider the

whole set of formulas LSTIT, then we have that all validities of NCL are validities
of STIT but not the converse. But if we restrict formulas to the fragment LdfSTIT,
then the set of validities of NCL is equal to the set of validities of STIT.

8.4 Decidability and axiomatization

The result of Theorem 37 is close to the result of Pauly in [Pau02]. In [Pau02],
Pauly compares strategic form games (like STIT-models) and CL standard models
(like NCL-models). Theorem 37 provides two crucial results: one about complexity
and another one about axiomatization of dfSTIT.
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L

LdfSTITNCL

STIT

Figure 8.5: Overview over languages L and LdfSTIT and logics STIT and NCL.

The following corollary follows from the equivalence between point 2 and 3 in
the Theorem 37.

Corollary 10 Deciding if a formula in LdfSTIT is STIT-satis�able is NP-complete.

Proof.

SAT is reducible to the STIT-satis�ability problem of a formula in LdfSTIT.
Thus deciding if a formula in LdfSTIT is STIT-satis�able is NP-hard. Now let us
see that it is in NP.

According to Theorem 37, if a formula ϕ is STIT-satis�able, ϕ is satis�able
in a polynomial-sized STIT-model. So a non-deterministic algorithm to solve the
satis�ability can be the following:

• we guess a polynomial-sized modelM′ = (W ′, V ′) and a world ~x ∈ W ′;

• we check whetherM′, ~x |= ϕ holds or not.

Note that checking whetherM′, ~x |= ϕ or not can be done in polynomial time in
the size ofM′ and the length of ϕ. As the size ofM′ is polynomial in the length
of ϕ, checking whether M′, ~x |= ϕ or not can be done in polynomial time in the
size of ϕ.
�
The following corollary follows from the equivalence between point 1 and 2 in

the Theorem 37.
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Corollary 11 A formula ϕ in LdfSTIT is STIT-valid i� we have `NCL ϕ.

Proof.

We have:

• for all formula ϕ ∈ L, |=NCL ϕ i� `NCL ϕ (Theorem 36);

• for all formula ϕ ∈ LdfSTIT, |=STIT ϕ i� |=NCL ϕ. (Theorem 37).

Hence: for all formula ϕ ∈ LdfSTIT, |=STIT ϕ i� `NCL ϕ. �

8.5 Open questions

• The fragment we have obtained here is NP-complete whereas all the other
interesting fragment of the Chapter 7 are generally NEXPTIME-complete.
Can we exhibit an interesting fragment of STIT which is PSPACE?

• It is an open question to know if NCL and STIT di�ers with a formula of
modal depth 2. May be for all formula ϕ of the language of group STIT, we
have ϕ STIT-satis�able i� ϕ NCL-satis�able.
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Chapter 9

Modal logic of epistemic games

9.1 Introduction

We present a multi-modal logic integrating the concepts of joint action, preference
and knowledge. Our logic supports reasoning about epistemic games in strategic
form in which agents decide what to do according to some general principles of
rationality while being uncertain about several aspects of the interaction such as
other agents' choices, other agents' preferences, etc.

This logic is not strickly speaking STIT but the philosophy of the models is
the same: as you will see, a world is determined by agents are performing. In this
sence, this logic di�ers from Coalition Logic, etc.

While epistemic games have been extensively studied in economics (in the so-
called interactive epistemology area, see e.g. [AB95, Aum99, Bon08, BB99, Bra92,
Gin09]) and while there have been few analyses of epistemic games in modal logic
(see, e.g., [vB07, dB04, Bon08, Roy08]), no modal logic approach to epistemic
games has been proposed up to now which addresses all the following issues at the
same time:

• to provide a formal language, and a corresponding formal semantics, which
is su�ciently general to express solution concepts like Nash equilibrium or
iterated deletion of strictly dominated strategies (IDSDS) and to deduce
formally the epistemic and rationality conditions on which such solution
concepts are based;

• to prove its soundness and completeness ;

• to study its computational properties like decidability and complexity.

In this Chapter, we try to �ll this gap by proposing a sound and complete modal
logic for epistemic games interpreted on a Kripke-style semantics. We also provide
complexity results for our logic.
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We think that developing modal logic frameworks for the analysis of epistemic
aspects of strategic interaction is a promising research avenue which can contribute
to the cross-fertilization of economics with other disciplines like computer science,
arti�cial intelligence (AI) and formal philosophy. Modal logics has been extensively
studied in the last four decades both in the area of theoretical computer science
and in the area of philosophical logic, and enormous progress have been made in
recent times especially on model-theoretic aspects and on complexity aspects of
epistemic logic and multi-modal logics (see, e.g., [GKWZ03, BDRV02, FHMV95]).
Game-theoretic models of strategic interaction can therefore bene�t from these
advancements in the area of modal logic for several reasons.

First of all, it is typical of multi-modal logics to de�ne a given concept such
as the concepts of space, time, knowledge, preference, etc. by a corresponding
modal operator and to specify the relationships between di�erent concepts by
means of so-called `interaction' axioms between di�erent modal operators. This
is the reason why ,ulti-modal logics are formal frameworks which are well-suited
to do conceptual analysis. Epistemic games studied in economics involve several
primitive concepts like the concepts of action, knowledge, preference, and time (in
the case of extensive games). Therefore, a multi-modal logic of epistemic games
can be extremely useful to better understand the properties of these primitive
concepts, and the relationships between them. Closely related to the previous
point is the fact that a modal logic analysis of the epistemic aspects of strategic
interaction can facilitate the task of studying di�erent assumptions on players'
knowledge and the task of verifying whether di�erent equilibrium notions such as
Nash equilibrium and IDSDS are based on these assumptions. In fact, in a modal
logic analysis of epistemic games every assumption on the players' knowledge can
be easily formulated by means of a logical axiom on epistemic modal operators.
Typical assumptions on players' knowledge are for example the assumption that
every player knows what he has decided to do, or the assumption that a player has
perfect knowledge about some aspects of the game such as the players' strategy sets
(or action repertoires) and the players' preference ordering over strategy pro�les.

Another aspect of a modal logic analysis of strategic interaction which could
be relevant for a game-theorist is computational complexity. Computational com-
plexity is a fundamental issue in computer science and in modal logic. The study
of computational complexity of a modal logic of games can raise many interesting
questions closely related to the reasoning aspects involved in strategic interaction.
For example, how complex is the problem of deciding whether a certain strategy
pro�le is a Nash equilibrium of a given game? how complex is the problem of
deciding whether a given action is a best response to the action of another player?
Is a realistic resource-bounded agent able to face with such a complexity? If no, is
it plausible to suppose that a human involved in strategic interaction does `best-
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response' reasoning (i.e. he chooses a given action only if he believes that this
action is a best response to what he expects the others will do)?

The remainder of the article is organized as follows. In Section 9.2 we present
our modal logic of joint actions, preference and knowledge calledMLEG (Modal
Logic of Epistemic Games). Section 9.3 is devoted to the analysis in MLEG of
the epistemic conditions of Nash equilibrium and IDSDS. In Section 9.4 we make
MLEG dynamic by extending it with constructions of Dynamic Epistemic Logic
(DEL) [vDvdHK07, BM04, GG97], and we show that this dynamic version of
MLEG enables to express the notion IDSDS in a more compact way than in the
staticMLEG. In Section 9.5 we show how our logical framework can be applied
to the analysis of strategic interaction with imperfect information about the game
structure. In Section 9.6 we discuss several assumptions about di�erent variants
of perfect information on a game structure. Finally, in Section 9.7, we compare
our approach with some existing approaches to epistemic games in modal logic.

9.2 A logic of joint actions, knowledge and prefer-

ences

We present in this section the multi-modal logicMLEG (Modal Logic of Epistemic
Games) integrating the concepts of joint action, belief and preference. This logic
supports reasoning about epistemic games in strategic form in which an agent
might be uncertain about the current choices of the other agents.

9.2.1 Syntax

The syntactic primitives ofMLEG are the �nite set of agents Agt , the set of atomic
formulasAtm, a nonempty �nite set of atomic action namesAct = {a1, a2, . . . , a|Act |}
and a non-empty �nite set of n integers I = {0, . . . , n}. Non-empty sets of agents
are called coalitions or groups, noted C1, C2, . . .. We note 2Agt∗ = 2Agt \ {∅} the
set of coalitions.

To every agent i ∈ Agt we associate the set Act i of all possible ordered pairs
agent/action i:a, that is, Act i = {i:a | a ∈ Act}. Besides, for every coalition C
we note ∆C the set of all joint actions of this coalition, that is, ∆C =

∏
i∈C Act i.

Elements in ∆C are C-tuples noted αC , βC , γC , δC , . . .. If C = Agt , we write ∆
instead of ∆Agt . Elements in ∆ are also called strategy pro�les. Given δ ∈ ∆,
we note δi the element in δ corresponding to agent i. Moreover, for notational
convenience, we write δ−i = δAgt\{i}.

The language LMLEG of the logicMLEG is given by the following rule:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | [δC ]ϕ | �ϕ | Kiϕ | [good]i ϕ
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where p ranges over Atm, i ranges over Agt , and δC ranges over
⋃
C∈2Agt∗ ∆C . The

classical Boolean connectives ∧, →, ↔ and > (tautology) are de�ned from ⊥, ∨
and ¬ in the usual manner. We also follow the standard rules for omission of
parentheses.

The formula [δC ]ϕ reads �if coalition C chooses the joint action δC then ϕ
holds�. Therefore, [δC ]⊥ reads �coalition C does not choose the joint action δC �.
� is a necessity operator which enables to quantify over possible joint actions

of all agents, that is, over the strategy pro�les of the current game (the terms �joint
actions of all agents" and �strategy pro�les" are supposed here to be synonymous).
�ϕ reads �ϕ holds for every alternative strategy pro�le of the current game�, or
simply �ϕ is necessarily true�.

Operators Ki are standard epistemic modal operators. Construction Kiϕ is
read as usual �agent i knows that ϕ is true�, whereas the construction [good]i ϕ
is read �ϕ is true in all worlds which are for agent i at least as good as the
current one concerning the strategy pro�le that is chosen�. We de�ne 〈good〉iϕ as
an abbreviation of ¬ [good]i ¬ϕ. Operators [good]i are used in MLEG to de�ne
agents' preference orderings over the strategy pro�les of the current game. Similar
operators are studied by [vBL07].

We use EKCϕ as an abbreviation of
∧
i∈C Kiϕ, i.e. every agent in C knows ϕ

(if C = ∅ then EKCϕ is equivalent to >). Then we de�ne by induction EKkCϕ for
every natural number k ∈ N:

EK0
Cϕ

def
= ϕ

and for all k ≥ 1,

EKkCϕ
def
= EKC(EKk−1

C ϕ).

We de�ne for all natural numbers n ∈ N,MKnCϕ as an abbreviation of
∧

1≤k≤n EK
k
Cϕ.

MKnCϕ expresses C's mutual knowledge that ϕ up to n iterations, i.e. everyone
in C knows ϕ, everyone in C knows that everyone in C knows ϕ, and so on until
level n.

Finally, 〈δC〉ϕ abbreviates ¬ [δC ]¬ϕ, ♦ϕ abbreviates ¬�¬ϕ and K̂iϕ abbre-
viates ¬Ki¬ϕ. ♦ϕ means �ϕ is possibly true�. Therefore 〈δC〉ϕ reads �coalition
C chooses the joint action δC and ϕ holds�, and 〈δC〉> simply reads �coalition C
chooses the joint action δC�.

The operator ♦ and the operators 〈δC〉 can be combined in order to express
what a coalition of agents can do. In particular, ♦〈δC〉> has to be read �coalition
C can choose the joint action δC�. For the individual case, ♦〈i:a〉> has to be
read �agent i can choose action a� or also �action a is in the strategy set (action
repertoire) of agent i�. Furthermore, ♦〈δ〉> is read �coalition Agt can choose the
joint action (strategy pro�le) δ� or also �δ is a strategy pro�le of the current game�.
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9.2.2 Semantics

In this subsection, we introduce a Kripke-style possible world semantics of our
logicMLEG.

De�nition 62 (MLEG-frames)
MLEG-frames are tuples F = 〈W,∼, R,E,�〉 where:

• W is a nonempty set of possible worlds or states;

• ∼ is an equivalence relation on W ;

• R is a collection of total functions RC : W −→ ∆C one for every coalition
C ∈ 2Agt∗, mapping every world in W to a joint action of the coalition such
that:

C1 δC = RC(w) if and only if for every i ∈ C, δi = Ri(w),1

C2 if for every i ∈ Agt there is vi such that w ∼ vi and δi = Ri(vi) then
there is a v such that w ∼ v and δ = RAgt(v),

C3 if w ∼ v and δ = RAgt(w) and δ = RAgt(v), then w = v;

• E : Agt −→ W ×W maps every agent i to an equivalence relation Ei on W
such that:

C4 if wEiv, then i:a = Ri(w) if and only if i:a = Ri(v),

C5 if wEiv then w ∼ v;

• �: Agt −→ W ×W maps every agent i to a re�exive, transitive relation �i
on W such that:

C6 if w �i v then w ∼ v,

C7 if w ∼ v and w ∼ u then v �i u or u �i v.

δC = RC(w) means that coalition C performs the joint action δC at world w.
If w ∼ v then w and v correspond to alternative strategy pro�les of the same

game. For short, we say that v is alternative to w. Given a world w, we use
the notation ∼(w) = {v | w ∼ v} to denote the equivalence class made up of
those worlds corresponding to alternative strategy pro�les of the game of which w
is one of the strategy pro�le. Consider e.g. Agt = {1, 2} and Act = {c, d, skip}.
In the frame in Figure 9.1 we have w1 ∼ w2. This means that the joint action
performed at w1 (viz. 〈1:c, 1:c〉) and the one performed at w2 (viz. 〈1:c, 1:d〉) are

1Note that for notational convenience we write Ri instead of R{i}.
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v v

vv

w1 w2

w3 w4

2 : c 2 : d

1 : c

1 : d

w2 <1 w4 <1 w1 <1 w3
w3 <2 w4 <2 w1 <2 w2

Figure 9.1: The equivalence class {w1, w2, w3, w4} represents the Prisoner's
Dilemma game [OR94] between two players 1 and 2 (action c stands for `coop-
erate' and action d stands for `defect'). Thick ellipses are epistemic relations for
1, thin ellipses are epistemic relations for 2 (both 1 and 2 are uncertain about the
other's action).

alternative strategy pro�les of the same game de�ned by the equivalence class
∼(w1) = {w1, w2, w3, w4}.

For every C ⊆ Agt , if there exists v ∈ ∼(w) such that C performs δC at v then
we say that δC is possible at w (or δC can be performed at w).

wEiv means that, for agent i, world v is (epistemically) possible at w, whilst
w �i v means that for agent i, world v is at least as good as world w. We write
w =i v i� w �i v and v �i w, and w <i v i� w �i v and not v �i w.

Let us discuss the seven semantic constraints C1-C7 in De�nition 62.
According to Constraint C1, at world w coalition C chooses the joint action

δC if and only if, every agent i in C chooses the action δi at w. In other words,
a certain joint action is performed by a coalition if and only if every agent in the
coalition does his part of the joint action. According to the Constraint C2, if every
individual action in a joint action δ is possible at world w, then their simultaneous
occurrence is also possible at world w. We moreover suppose determinism for the
joint actions of all agents: di�erent worlds in an equivalence class ∼(w) correspond
to the occurrences of di�erent strategy pro�les (Constraint C3).

Constraint C4 just says that an agent knows what he has decided to do. This is
a standard assumption in interactive epistemology and epistemic analysis of games
(see [Bon08] for instance).
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We also suppose perfect information about the speci�cation of the game, in-
cluding the players' strategy sets (or action repertoires) and the players' preference
ordering over strategy pro�les. This assumption is formally expressed by the Con-
straint C5: if world v is epistemically possible for agent i at w, then w and v
correspond to alternative strategy pro�les of the same game. Perfect information
about the structure of the game is a standard assumption in game theory. In Sec-
tion 9.5, this assumption will be relaxed in order to deal with realistic situations in
which an agent might be uncertain about his own utility and other agents' utilities
associated to a certain strategy pro�le, as well as about his own action repertoire
and other agents' action repertoires.

Finally, we have two constraints over the relations �i. We suppose that a
world v is for agent i at least as good as w only if v is a world which is possible
at w, i.e. only if v and w correspond to alternative strategy pro�les of the same
game (Constraint C6). Furthermore, we suppose that every agent has a complete
preference ordering over the strategy pro�les of the current game (Constraint C7).

De�nition 63 (MLEG-models)
MLEG-models are couples F = 〈F, π〉 where:

• F is aMLEG-frame;

• π : Atm −→ 2W is a valuation function.

The truth conditions for Boolean operators and for operators [δC ], �, Ki and
[good]i are:

• M,w |= p i� w ∈ π(p);

• M,w |= ¬ϕ i� not M,w |= ϕ;

• M,w |= ϕ ∨ ψ i� M,w |= ϕ or M,w |= ψ ;

• M,w |= [δC ]ϕ i� if RC(w) = δC then M,w |= ϕ;

• M,w |= �ϕ i� M, v |= ϕ for all v such that w ∼ v;

• M,w |= Kiϕ i� M, v |= ϕ for all v such that wEiv;

• M,w |= [good]i ϕ i� M, v |= ϕ for all v such that w �i v.

A formula ϕ is true in anMLEG-model M i� M,w |= ϕ for every world w in M .
A formula ϕ is MLEG-valid (noted |= ϕ) i� ϕ is true in all MLEG-models. A
formula ϕ isMLEG-satis�able i� ¬ϕ is notMLEG-valid.
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All principles of classical propositional logic (CPL)

All principles of modal logic S5 for � (S5�)

All principles of modal logic S5 for every Ki (S5Ki)

All principles of modal logic S4 for every [good]i (S4[good]i
)

[δC ]ϕ↔ (〈δC〉> → ϕ) (Def[δC ])

〈δC〉> ↔
∧
i∈C

〈δi〉> (JointAct)∨
δC∈∆C

〈δC〉> (Active)

〈δC〉> → [δ′C ]⊥ if δC 6= δ′C (Single)( ∧
i∈Agt

♦〈δi〉>

)
→ ♦〈δ〉> (Indep)

(〈δ〉> ∧ ϕ)→ �(〈δ〉> → ϕ) (JointDet)

〈i:a〉> → Ki〈i:a〉> (Aware)

�ϕ→ [good]i ϕ (Incl[good]i,�)

(♦ϕ ∧ ♦ψ)→ (♦(ϕ ∧ 〈good〉iψ) ∨ ♦(ψ ∧ 〈good〉iϕ)) (PrefConnect)

�ϕ→ Kiϕ (PerfectInfo)
ϕ, ϕ→ ψ

ψ
(ModusPonens)

Figure 9.2: Axiomatization ofMLEG

9.2.3 Axiomatization

We callMLEG the logic that is axiomatized by the principles given in Figure 9.2.
Note that the principles of modal logic S5 for the operator � are: the four

axiom schemas (K) (�ϕ ∧�(ϕ→ ψ))→ �ψ, (T) �ϕ→ ϕ, (4) �ϕ→ ��ϕ, (B)
ϕ → �♦ϕ, and the rule of inference (Necessitation) ϕ

�ϕ . The principles of modal
logic S5 for the operators Ki are: the four axiom schemas (K) (Kiϕ ∧ Ki(ϕ →
ψ)) → Kiψ, (T) Kiϕ → ϕ, (4) Kiϕ → KiKiϕ, (B) ϕ → KiK̂iϕ, and the rule of
inference (Necessitation) ϕ

K̂iϕ
. The principles of modal logic S4 for the operators

[good]i are: the three axiom schemas (K) ([good]i ϕ∧[good]i (ϕ→ ψ))→ [good]i ψ,
(T) [good]i ϕ → ϕ, (4) [good]i ϕ → [good]i [good]i ϕ, and the rule of inference
(Necessitation) ϕ

[good]iϕ
.

Note also that Axiom Indep is theMLEG counterpart of the so-called axiom
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of independence of agents of STIT logic (the logic of Seeing to it that) [BPX01].
This axiom enables to express the basic game theoretic assumption that the set of
strategy pro�les of a game in strategic form is the cartesian product of the sets of
individual actions for the agents in Agt .

We write `MLEG ϕ if ϕ is a theorem ofMLEG, that is, if ϕ can be deduced by
applying the axioms and the rules of inference of the logicMLEG.

As the following theorem 38 highlights, we can prove that the logicMLEG is
sound and complete with respect to the class ofMLEG-models.

Theorem 38 MLEG is determined by the class ofMLEG-models.

Proof.

We here provide a sketch of the proof.
It is straightforward to show that all our axioms are valid and that the rules

of inference preserve validity in the class ofMLEG-models. The other part of the
proof is shown using two major steps.

Step 1. We provide an alternative semantics forMLEG in terms of standard
Kripke models whose semantic conditions correspond one-to-one to the axioms in
Table 9.2. The de�nition of KripkeMLEG-models is the following one.

De�nition 64 (Kripke MLEG-model)
KripkeMLEG-models are tuples M = 〈W,∼, R,E,�, π〉 where:

• W is a nonempty set of possible worlds or states;

• ∼ is an equivalence relation on W ;

• R :
⋃
C∈2Agt∗ ∆C −→ 2W×W maps every joint action δC to a transition relation

RδC ⊆ W ×W between possible worlds such that:

S1 RδC (w) 6= ∅ if and only if, for every i ∈ C Rδi(w) 6= ∅,
S2 if RδC (w) 6= ∅ then RδC (w) = {w},
S3
⋃
δC∈∆C

RδC (w) 6= ∅,
S4 if δC 6= δ′C then RδC (w) = ∅ or Rδ′C

(w) = ∅,
S5 if for every i ∈ Agt there is vi such that w ∼ vi and Rδi(vi) 6= ∅ then

there is a v such that w ∼ v and Rδ(v) 6= ∅,
S6 if w ∼ v and Rδ(w) 6= ∅ and Rδ(v) 6= ∅, then w = v;

• E : Agt −→ W ×W maps every agent i to an equivalence relation Ei on W
such that:

S7 if (w, v) ∈ Ei, then i:a = Ri(w) if and only if i:a = Ri(v),
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S8 if wEiv then w ∼ v;

• �: Agt −→ W ×W maps every agent i to a re�exive, transitive relation �i
on W such that:

S9 if w �i v then w ∼ v,

S10 if w ∼ v and w ∼ v′ then v �i v′ or v′ �i v;

• π : Atm −→ 2W is a valuation function.

Truth conditions ofMLEG formulas in KripkeMLEG-models are again standard
for atomic formulas and the Boolean operators. The truth conditions for Boolean
operators and for operators �, Ki and [good]i are the ones of Section 9.2.2. The
truth condition for operators [δC ] are:

• M,w |= [δC ]ϕ i� M, v |= ϕ for all v ∈ RδC (w).

It is a routine task to prove that the axiomatic system of the logicMLEG given
in Table 9.2 is sound and complete with respect to this class of Kripke MLEG-
models via the Sahlqvist theorem, cf. [BDRV02, Th. 2.42]. Indeed all axioms in
Table 9.2 are in the so-called Sahlqvist class [Sah75]. Thus, they are all expressible
as �rst-order conditions on Kripke models and are complete with respect to the
de�ned model classes.

Step 2. The second step shows that the semantics in terms ofMLEG-models
of De�nition 63 and the semantics in terms of KripkeMLEG-models of De�nition
64 are equivalent. As the logic MLEG is sound and complete for the class of
KripkeMLEG-models and is sound for the class ofMLEG-models, we have that
for everyMLEG formula ϕ, if ϕ is valid in the class of KripkeMLEG-models then
ϕ is valid in the class ofMLEG-models. Consequently, for everyMLEG formula
ϕ, if ϕ is satis�able in the class ofMLEG-models then ϕ is satis�able in the class
of KripkeMLEG-models. Therefore, in this second step we just need to show that
for everyMLEG formula ϕ, if ϕ is satis�able in the class of KripkeMLEG-models
then ϕ is satis�able in the class ofMLEG-models.

Suppose ϕ is satis�able in the class of KripkeMLEG-models. This means that
there is a Kripke MLEG-model M = 〈W,∼, R,E,�, π〉 and world w such that
M,w |= ϕ. We can now build a MLEG-model M ′ = 〈W ′, R′, E ′,�′, π′〉 which
satis�es ϕ. The model M ′ is de�ned as follows:

• W ′ = W ;

• for every C ∈ 2Agt∗ and v ∈ W ′, R′C(v) = δC if and only if RδC (v) 6= ∅;

• for every i ∈ Agt , E ′i = Ei;
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• for every i ∈ Agt , �′i=�i;

• π′ = π.

By induction on the structure of ϕ, it is just a trivial exercise to show that we
have M ′, w |= ϕ.
�
Moreover we can prove a result about complexity of the satis�ability problem

of the logic MLEG, that is, the complexity of the problem of deciding whether
a given MLEG formula ϕ is MLEG-satis�able or not. This question is highly
related to automated reasoning.

Theorem 39 The satis�ability problem ofMLEG is NP-complete.

Proof.

The satis�ability problem ofMLEG is clearly NP-hard because it is a conser-
vative extension of the classical propositional logic whose satis�ability problem in
NP-complete (Cook's Theorem [Pap03]).

Now let us prove it is in NP. Clearly if a formula ϕ isMLEG-satis�able, there
exists aMLEG-model F = 〈F, π〉 whose size is bounded by card(Act)card(Agt). Here
is an non-deterministic algorithm to check if a given formula ϕ is satis�able:

• Guess non-deterministically aMLEG-modelM = 〈F, π〉 whose size is bounded
by card(Act)card(Agt) where π only gives truthness of propositions occuring in
ϕ;

• Guess non-deterministically a world w of M ;

• Check if M,w |= ϕ.

This algorithm non-deterministically runs in polynomial time. So the satis�a-
bility problem ofMLEG is in NP.
�

9.3 A logical account of epistemic games

This section is devoted to the analysis in the modal logicMLEG of the epistemic
aspects of strategic games. We �rst consider the basic game-theoretic concepts
of best response and Nash equilibrium, and their relationships with the notion
of epistemic rationality assumed in classical game theory. Finally, we provide an
analysis of iterated deletion of strictly dominated strategies (IDSDS).
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9.3.1 Best response and Nash equilibrium

The modal operators [good]i and � enable to capture inMLEG a notion of com-
parative goodness over formulas of the kind �ϕ is for agent i at least as good as
ψ�, noted ψ ≤i ϕ:

ψ ≤i ϕ
def
= � (ψ → 〈good〉iϕ) .

According to the previous de�nition, ϕ is for agent i at least as good as ψ if and
only if, for every world v corresponding to a strategy pro�le of the current game in
which ψ is true, there is a world u corresponding to a strategy pro�le of the current
game in which ϕ is true and which is for agent i at least as good as world v. We can
prove that ψ ≤i ϕ is a total preorder. Indeed, the formulas ψ ≤i ψ (re�exivity),
(ϕ1 ≤i ϕ2) ∧ (ϕ2 ≤i ϕ3) → (ϕ1 ≤i ϕ3) (transitivity) and (ϕ1 ≤i ϕ2) ∨ (ϕ2 ≤i ϕ1)
(connectedness) are valid inMLEG. We de�ne the corresponding strict ordering
over formulas:

ψ <i ϕ
def
= (ψ ≤i ϕ) ∧ ¬(ϕ ≤i ψ).

Formula ψ <i ϕ has to read �ϕ is for agent i strictly better than ψ�. Finally, we de-
�ne a notion of comparative goodness over strategy pro�les and the corresponding
strict ordering over strategy pro�les:

δ ≤i δ′
def
= 〈δ〉> ≤i 〈δ′〉> and δ <i δ

′ def= (δ ≤i δ′) ∧ ¬(δ′ ≤i δ).

Formula δ ≤i δ′ has to be read �strategy pro�le δ′ is for agent i at least as good
as strategy pro�le δ� and formula δ <i δ

′ has to be read �strategy pro�le δ′ is for
agent i strictly better than strategy pro�le δ�.

Some basic concepts of game theory can be expressed in MLEG in terms of
comparative goodness. We �rst consider best response. Agent i's action a is said
to be a best response to the other agents' joint action δ−i, noted BR(i:a,δ−i), if
and only if i cannot improve his utility by deciding to do something di�erent from
a while the others choose the joint action δ−i, that is:

BR(i:a,δ−i)
def
=

∧
b∈Act

((〈i:b〉> ∧ 〈δ−i〉>) ≤i (〈i:a〉> ∧ 〈δ−i〉>)).

Given a certain strategic game, the strategy pro�le (or joint action) δ is said to
be a Nash equilibrium if and only if for every agent i ∈ Agt , i's action δi is a best
response to the other agents' joint action δ−i:

Nash(δ)
def
=
∧
i∈Agt

BR(δi,δ−i).

From Axiom PerfectInfo and S5 for �, the following theorems are provable
expressing perfect information about the players' preferences ordering over strategy
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pro�les, perfect information about the existence of a Nash equilibrium, and perfect
information about the players' repertoires: (ψ ≤i ϕ)↔ MKnAgt(ψ ≤i ϕ), Nash(δ)↔
MKnAgtNash(δ) and ♦〈δi〉> ↔ MKnAgt♦〈δi〉>, for every n ∈ N.

9.3.2 Epistemic rationality

The followingMLEG formula characterizes a notion of rationality which is com-
monly supposed in the epistemic analysis of games (see, e.g., [BB99, vB07]):∧

a,b∈Act

(
〈i:a〉> →

∨
δ∈∆

(
K̂i〈δ−i〉> ∧ (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

This means that an agent i is rational if and only if, if he chooses a particular
action a then for every alternative action b, there exists a joint action δ−i of the
other agents that he considers possible such that, playing a while the others play
δ−i is for i at least as good as playing b while the others play δ−i. As inMLEG
formula δ ≤i δ′ and formula Ki(δ ≤i δ′) are equivalent, the previous de�nition of
rationality can be rewritten in the following equivalent form:

Rati
def
=

∧
a,b∈Act

(
〈i:a〉> →

∨
δ∈∆

(
K̂i〈δ−i〉> ∧ Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

Theorem 40 For all i ∈ Agt :

`MLEG Rati ↔ KiRati (9.40a)

`MLEG ¬Rati ↔ Ki¬Rati (9.40b)

Proof.

We only give the proof of 9.40a. Rati is equivalent to∧
a,b∈Act(〈i:a〉> →

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

which is equivalent to∧
a,b∈Act(Ki [i:a]⊥ ∨

∨
β∈∆ Ki(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉))),

by classical principles of propositional logic, Axiom 5 for Ki, and the twoMLEG
theorems (β′ ≤i β)↔ Ki(β

′ ≤i β) and [i:a]⊥ ↔ Ki [i:a]⊥.
The latter implies∧

a,b∈Act Ki([i:a]⊥ ∨
∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉))),

by standard principles of normal modal logic. By standard principles of normal
modal logic, the latter is equivalent to

Ki
∧
a,b∈Act([i:a]⊥ ∨

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉))).

This is equivalent to KiRati. �
Theorem 40 highlights that the concepts of rationality and irrationality are

introspective. That is, an agent i is (resp. is not) epistemically epistemically
rational if and only if he knows this. The following theorem speci�es some su�cient
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epistemic conditions for guaranteeing that the chosen strategy pro�le is a Nash
equilibrium: if all agents are rational and every agent knows the choices of the
other agents, then the selected strategy pro�le is a Nash equilibrium. A similar
theorem has been stated for the �rst time in [AB95, Bra92].

Theorem 41 For all n ∈ N, for all δ ∈ ∆:
`MLEG

((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

Proof.

Let us take aMLEG-modelM and a world w such thatM,w |= (
∧
i∈Agt Rati∧∧

i∈Agt Ki〈δ−i〉>). Now, let us prove that M,w |= Nash(δ).
Let i ∈ Agt and let us prove that M,w |= BR(δi, δ−i).
More precisely, we have to prove that M,w |= ([δi]⊥ ∧ 〈δ−i〉>) ≤i (〈δi〉> ∧

〈δ−i〉>).
Let j 6= i. We have Kj〈−j〉>, soM,w |= 〈δi〉> by Axiom T for Kj. AsM,w |=

Rati, we then have M,w |=
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))).

That is to say for all b ∈ Act, there exists β ∈ ∆ such that M,w |= K̂i〈β−i〉> ∧
(〈β−i, i:b〉 ≤i 〈β−i, δi〉).

But, we have Ki〈δ−i〉>. So for all b ∈ Act, β−i = δ−i.
So we haveM,w |=

∧
b∈Act(〈β−i, i:b〉 ≤i 〈β−i, δi〉). This is equivalent toM,w |=

([δi]⊥ ∧ 〈δ−i〉>) ≤i (〈δi〉> ∧ 〈δ−i〉>).
�

9.3.3 Iterated deletion of strictly dominated strategies

A strategy a for agent i is a strictly dominated strategy, noted SD≤0(i:a), if and
only if, if a can be performed then there is another strategy b such that, no matter
what joint action δ−i the other agents choose, playing b is for i strictly better than
playing a:

SD≤0(i:a)
def
= 〈i:a〉> →∨

b∈Act

(
♦〈i:b〉> ∧

∧
δ∈∆

(♦〈δ−i〉 → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉))

)
.

An example of strictly dominated strategy is cooperation in the Prisoner Dilemma
(PD) game: whether one's opponent chooses to cooperate or defect, defection
yields a higher payo� than cooperation. Therefore, a rational player will never
play a dominated strategy. So when trying to predict the behavior of rational
players, we can rule out all strictly dominated strategies. The so-called iterated
deletion of strictly dominated strategies (IDSDS) (or iterated strict dominance)
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[OR94] is a procedure that starts with the original game and, at each step, for
every player i removes from the game all i's strictly dominated strategies, thereby
generating a subgame of the original game, and that repeats this process again and
again. IDSDS can be inductively characterized in our logicMLEG by de�ning a
concept of strict dominance in the subgame of depth at most n, noted SD≤n(i:a).
For every n ≥ 1:

SD≤n(i:a)
def
= ¬SD≤n−1(i:a)→∨

b∈Act

(
¬SD≤n−1(i:b) ∧

∧
δ∈∆

(
¬SD≤n−1(δ−i)→ (〈δ−i, i:a〉 <i 〈δ−i, i:b〉)

))
.

where SD≤k(δC) is de�ned as follows

SD≤k(δC)
def
=
∨
i∈C

SD≤k(δi)

for every k ≥ 0 and for every δC . According to this de�nition, a is a strictly
dominated strategy for agent i in a subgame of depth at most n, noted SD≤n(i:a),
if and only if, if a is not strictly dominated for i in all subgames of depth k < n
then there is another strategy b such that b is not strictly dominated for i in all
subgames of depth k < n and, no matter what joint action δ−i the other agents
choose, if the elements in δ−i are not dominated in all subgames of depth k < n
then playing b is for i strictly better than playing a. In other terms SD≤n(i:a)
means that strategy i:a does not survive after n rounds of IDSDS.

It has been shown that common knowledge of rationality implies that players
choose strategies which survive IDSDS ([Bon08, BB99, Bra92]). This latter prin-
ciple can be derived in our logicMLEG. According to the following Theorem 42,
if there is mutual knowledge of rationality among the players to n levels and the
agents play the strategy pro�le δ then, for every agent i, δi survives IDSDS until
the subgame of depth n+1.

Theorem 42 For all δ ∈ ∆, `MLEG
((

MKnAgt
∧
i∈Agt Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ)

(note that ¬SD≤n(δ) is just the abbreviation of
∧
i∈Agt ¬SD

≤k(δi)).
Proof.

We are going to prove the theorem by induction on n.

• Let us begin to prove the theorem for n = 0. Let us take aMLEG-model M
and a world w such that M,w |=

∧
i∈Agt Rati ∧ 〈δ〉>. By de�nition of Rati,

we have:

M,w |=
∧
i∈Agt

∧
b∈Act

(∨
β∈∆

(
K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

))
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This implies:

M,w |=
∧
i∈Agt

∧
b∈Act

(∨
β∈∆ (♦〈β−i〉> ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)
, by Ax-

iom PerfectInfo.

Furthermore, we have M,w |=
∧
i∈Agt〈δi〉>. So, M,w |=

∧
i∈Agt ¬SD

≤0(δi)

and M,w |= ¬SD≤0(δ).

So

`MLEG

( ∧
i∈Agt

Rati ∧ 〈δ〉>

)
→ ¬SD≤0(δ).

• Now, let n ∈ N and let us prove that if the theorem 42 is true for all
k ≤ n then it is true for n + 1. Let us take a MLEG-model M and a
world w such that M,w |=

(
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δ〉>. We have to prove

M,w |= ¬SD≤n+1(δ). That is to say, we have to prove that for all i ∈ Agt ,
M,w |= ¬SD≤n+1(δi).

¬SD≤n+1(δi) = ¬SD≤n(δi)∧

∧
b∈Act

(
¬SD≤n(i:b)→

∨
β∈∆

(
¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)

))
.

First, asM,w |= (MKn+1
Agt

∧
i∈Agt Rati)∧〈δ〉> we also haveM,w |= (MKnAgt

∧
i∈Agt Rati)∧

〈δ〉>. So by applying Theorem 42 for n we have M,w |= ¬SD≤n(δi).

It remains to be proven M,w |=
∧
b∈Act(¬SD

≤n(i:b) →
∨
β∈∆(¬SD≤n(β−i) ∧

(〈β−i, i:b〉 ≤i 〈β−i, δi〉))).

In fact, we are going to prove something less strong:

M,w |=
∧
b∈Act

∨
β∈∆(¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:δi〉)).

But, we have M,w |= Rati ∧ 〈δ〉>. So, M,w |=
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧

(〈β−i, i:b〉 ≤i 〈β−i, δi〉)).

The only thing which remains to proven is that we have `¬SD≤n(β−i)'.

But for all b ∈ Act , there exists β ∈ ∆ such that M,w |= K̂i〈β−i〉> ∧
(〈β−i, i:b〉 ≤i 〈β−i, δi〉))).

For all b ∈ Act , there exists a world u such that wEiu andM,u |= 〈β−i〉>. As
M,w |= MKn+1

Agt

∧
i∈Agt Rati, we have for all k ≤ n, M,u |= MKkAgt

∧
i∈Agt Rati.
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The Theorem 42 is supposed to be true by induction for n so M,u |=
¬SD≤n(β−i). But as |= ¬SD≤n(β−i) ↔ �¬SD≤n(β−i), and as Ei ⊆∼ (con-
straint C5 on MLEG-frames), we have M,w |= ¬SD≤n(β−i), this for all
b ∈ Agt .

�
Unfortunately, we can prove by recurrence on n that the length of the formula

SD≤n(δ) is

O(|Act ||Agt |)2n+1)

where O(...) is the �Big Oh Notation� [Pap03], |Act | is the number of action and
|Agt | is the number of agent and n is the number of rounds of IDSDS. That is,
the length of the formula SD≤n(δ) is exponential in n. In the next section, we are
going to extend the language in order to capture the concept of IDSDS with a
compact formula.

9.4 Game transformation

We provide in this section an alternative and more compact characterization of the
procedure IDSDS in our logic MLEG. To this aim, we introduce special events
whose e�ect is to transform the current game by removing certain strategies from
it. In particular, these special events can used to delete a strictly dominated
strategy from the current game. These special events are similar to the notion of
announcement in Dynamic Epistemic Logic (DEL) [vDvdHK07, BM04, GG97].
LGT is the set of game transformation formulas and is de�ned by the following

rule:

χ ::= �ψ → [i:a]⊥ | χ ∧ χ

where ψ ∈ LMLEG, i ∈ Agt and a ∈ Act . Thus, game transformation formulas
are of the form `if property ψ necessarily holds in the current game, then action a
should not be performed by agent i'.
GT is the set of game transformation events and is de�ned as GT = {χ! | χ ∈

LGT }.
We extend theMLEG language with dynamic operators of the form [χ!] with

χ! ∈ GT . The formula [χ!]ϕ has to be read `ϕ holds, after the occurrence of the
game transformation event χ!'. We callMLEGGT the extended logic. The truth
condition for [χ!]ϕ is:

M,w |= [χ!]ϕ i� if M,w |= χ then Mχ, w |= ϕ
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with Mχ = 〈W χ,∼χ, Rχ, Eχ,�χ, πχ〉 and:

W χ = {w | w ∈ W and M,w |= χ};
∼χ = ∼ ∩(W χ ×W χ);

for every C ∈ 2Agt∗, Rχ
δC

= RδC |Wχ ;

for every i ∈ Agt , Eχ
i = Ei ∩ (W χ ×W χ);

for every i ∈ Agt , �χi = �i ∩(W χ ×W χ);

for every p ∈ Atm, πχ(p) = π(p) ∩W χ.

Thus, an event χ! removes from the model M all worlds in which χ is false. Every
epistemic relations Ei, every preference orderings �i, every function RδC , and the
valuation π are restricted to the worlds in which χ is true.

In the resulting structure Mχ, the relations ∼χ, Rχ
δC
, Eχ

i , �
χ
i verify the con-

straints C1 to C7 because of the syntactic restriction χ ∈ LGT . This result is
summed up in the following theorem:

Theorem 43 Let χ ∈ LGT . If M is aMLEG model then Mχ is aMLEG model.

Proof.

It is just a routine to verify that ∼χ and every Eχ
i are equivalence relations,

every �χi is re�exive and transitive, and the model Mχ satis�es the semantic
constraints C1, C3, C5, C6 and C7.

Let us prove that Mχ satis�es constraints C2 and C4.
We �rst prove that Mχ satis�es constraint C2. We introduce the following

useful notation. Suppose χ1, χ2 ∈ LGT . Then, χ2  χ3 i� there is χ3 ∈ LGT such
that χ1 = χ2 ∧ χ3.

Now, suppose for every i ∈ Agt there is vi such that vi ∼χ w and Rχ
i (vi) = δi.

It follows that for every i ∈ Agt there is vi such that vi ∼ w and Ri(vi) = δi. The
latter implies that there is v such that v ∼ w and Rδ(v) 6= ∅ (by the semantic
constraint C2). Now, suppose for all v′ if v′ ∼χ w then Rχ

Agt(v
′) = δ. It follows

that: there is i ∈ Agt and ψ ∈ LMLEG such that �ψ → [δi]⊥ χ andM, v |= �ψ.
The latter implies that there is i ∈ Agt and ψ ∈ LMLEG such that �ψ → [δi]⊥ χ
and for all v′ ∼ w, M, v′ |= �ψ. We conclude that there is no vi ∼χ w such that
Rχ
i (vi) = δi which leads to a contradiction.
We now consider constraint C4. Suppose wEχ

i v and Rχ
i (w) = i:a. It follows

that wEiv and Ri(w) = i:a which implies Ri(v) = i:a, because M satis�es con-
straint C4. The latter implies Rχ

i (v) = i:a. Now, suppose wEχ
i v and R

χ
i (v) = i:a.

It follows that wEiv and Ri(v) = i:a which implies Ri(w) = i:a, becauseM satis�es
constraint C4. The latter implies Rχ

i (w) = i:a.
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�
Note that in the general case where χ ∈ LMLEG, the theorem above is false.
We have reduction axioms for χ! which guarantee the completeness of the

logicMLEGGT explaining how a dynamic operator [χ!] interacts with the Boolean
operators and modal logic operators ofMLEG.
Theorem 44 The following schemata are valid in the logicMLEGGT .

R1. [χ!]p↔ (χ→ p)

R2. [χ!]¬ϕ↔ (χ→ ¬[χ!]ϕ)

R3. [χ!](ϕ1 ∧ ϕ2)↔ ([χ!]ϕ1 ∧ [χ!]ϕ2)

R4. [χ!]�ϕ↔ (χ→ �[χ!]ϕ)

R5. [χ!]Kiϕ↔ (χ→ Ki[χ!]ϕ)

R6. [χ!] [good]i ϕ↔ (χ→ [good]i [χ!]ϕ)

R7. [χ!] [δC ]ϕ↔ (〈δC〉> → [χ!]ϕ)

Proof.

The proofs of R1-R6 go as in Dynamic Epistemic Logic (DEL) (see [vDvdHK07]).
We here prove R7.
M,w |= [χ!] [δC ]ϕ,
IFF if M,w |= χ then Mχ, w |= [δC ]ϕ,
IFF if M,w |= χ then Mχ, w |= 〈δC〉> → ϕ (by Axiom Def[δC ]),
IFF if M,w |= χ then Mχ, w |= [δC ]⊥ or Mχ, w |= ϕ,
IFF if Mχ, w |= 〈δC〉> then, if M,w |= χ then Mχ, w |= ϕ,
IFF if Mχ, w |= 〈δC〉> then, M,w |= [χ!]ϕ,
IFF if M,w |= 〈δC〉> then, M,w |= [χ!]ϕ,
IFF if M,w |= 〈δC〉> → [χ!]ϕ. �

The principles R1.-R7. are called reduction axioms because, read from left to
right, they reduce the complexity of those operators in a formula. In particular
the principles R1.-R7. explains how to transform any formula ϕ of the language
with dynamic operators in a formula without dynamic operators. More generally,
we have an axiomatization result:

Theorem 45 The logic MLEGGT is completely axiomatized by the axioms and
inference rules ofMLEG together with the schemata of Theorem 44 together with
the following rule of replacement of proved equivalence:

ψ1 ↔ ψ2

ϕ↔ ϕ[ψ1 := ψ2]

where ϕ[ψ1 := ψ2] is the formula ϕ in which we have replaced all occurrences
of ψ1 by ψ2.
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Proof.

By means of the principlesR1-R7 in Theorem 44, it is straightforward to prove
that for everyMLEGGT formula there is an equivalentMLEG formula. In fact,
each reduction axiom R2-R7, when applied from the left to the right by means
of the rule of replacement of proved equivalence, yields a simpler formula, where
'simpler' roughly speaking means that the dynamic operator is pushed inwards.
Once the dynamic operator attains an atom it is eliminated by the equivalence
R1. Hence, the completeness of MLEGGT is a straightforward consequence of
Theorem 38. �

Now, consider the following formula:

χSD
def
=

∧
i∈Agt ,a∈Act

(�SD≤0(i:a)→ [i:a]⊥).

where SD≤0(i:a) has been de�ned in Subsection 9.3.3. The e�ect of the game
transformation event χSD! is to delete from every game ∼(w) in the model M all
worlds in which a strictly dominated strategy is played by some agent.

As the following Theorem 46 highlights, the procedure IDSDS that we have
characterized in Section 9.3.3 in the staticMLEG can be characterized in a more
compact way in MLEGGT . Suppose δ is the selected strategy pro�le. Then, for
every agent i, δi survives IDSDS until the subgame of depth n+1 if and only if,
the event χSD! can occur n+1 times in sequence.

Theorem 46 For all δ ∈ ∆, for all n ≥ 0,
`MLEGGT 〈δ〉> →

(
¬SD≤n(δ)↔ 〈χSD!〉n+1>

)
.

Proof.

We are going �rst to prove the theorem by induction.
Let us begin to prove the case n = 0. Let M,w be a MLEG-pointed-model

such that M,w |= 〈δ〉>. M,w |= ¬SD≤0(δ) means that for all i ∈ Agt , we
have M,w |= ¬SD≤0(δi). It is equivalent to: for all i ∈ Agt , for all a ∈ Act ,
M,w |= SD≤0(i:a) → [i:a]⊥ (indeed, if a = δi, we have M,w |= ¬SD≤0(δi) and
if a 6= δi, we have M,w |= [i:a]⊥). So it is equivalent to M,w |= χSD which is
equivalent to M,w |= 〈χSD!〉>.

Now, we suppose the theorem true for n− 1. We suppose that

`MLEGGT 〈δ〉> →
(
¬SD≤n−1(δ)↔ 〈χSD!〉n>

)
(∗)

.

Lemma 15 Let M,w aMLEG-pointed model. Let i ∈ Agt . There exists a ∈ Act
such that M |= ¬SD≤0(i:a).
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Proof.

By contradiction. Suppose for all a ∈ Act , we have M,w |= SD≤0(i:a). Let
β ∈ ∆. Let a1 ∈ Act such that M,w |= ♦〈i:a1〉>. We have M,w |= SD≤0(i:a1).
We recall the de�nition of SD≤0(i:a1):

SD≤0(i:a1)
def
= 〈i:a1〉> →∨

a2∈Act

(♦〈i:a2〉> ∧
∧
δ∈∆

(♦〈δ−i〉 → (〈δ−i, i:a1〉 <i 〈δ−i, i:a2〉))).

By de�nition of SD≤0(i:a1), there exists a2 ∈ Act such that 〈δ−i, i:a1〉 <i 〈δ−i, i:a2〉.
We have M,w |= SD≤0(i:a2). So we can �nd a3 such that M,w |= 〈δ−i, i:a2〉 <i

〈δ−i, i:a3〉. We continue the process and we de�ne a sequence of actions a1, a2, a3, . . .
such that for all j ≥ 1, M,w |= 〈δ−i, i:aj〉 <i 〈δ−i, i:aj+1〉. But Act is �-
nite, so there exists k > 1 such that a1 = ak. By transitivity of <i, we have
M,w |= 〈δ−i, i:a1〉 <i 〈δ−i, i:ak〉. This is not possible.
�

Lemma 16 For all i ∈ Agt , for all a ∈ Act,

•
M,w |= ¬SD≤0(i:a) i� MχSD , w |= ♦〈i:a〉>.

• for all n ≥ 0, we have:

M,w |= ¬SD≤n+1(i:a) i� MχSD , w |= ¬SD≤n(i:a).

Proof.

• Consider a pointed-model M,w such that M,w |= ¬SD≤0(i:a). Thus, by
de�nition of ¬SD≤0(i:a), we have M,w |= ♦〈i:a〉>. According to Lemma 15
we have for all j 6= i the existence of βj such that M,w |= ¬SD≤0(βj). We
de�ne δ as δi = i:a and δj = βj for all j 6= i. So, by the semantic constraint
C2, there exists a point u such that w ∼ u and M,u |= 〈δ〉>. The world u
is not removed by the event χSD!. Thus, we have MχSD , u |= 〈i:a〉>.
If M,w |= SD≤0(i:a), then all worlds w in which M,w |= 〈i:a〉> are removed
because χSD is false in w. So MχSD , w 6|= ♦〈i:a〉>.

• The second point is the induction case. You can read the �rst case as the
initial case of induction by de�ning ¬SD≤−1(i:a)

def
= ♦〈i:a〉>.

Let n ∈ N. Suppose that we haveM |= ¬SD≤n(i:a) i� MχSD |= ¬SD≤n−1(i:a).

We leave to the reader checking that the latter implies M |= ¬SD≤n+1(i:a)
i� MχSD |= ¬SD≤n(i:a).
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�
Let M,w be a MLEG-pointed-model such that M,w |= 〈δ〉>. If M,w |=

¬SD≤n(δ) then M,w |= ¬SD≤0(δ). So, M,w |= 〈χSD!〉>, and w remains in MχSD .
As M,w |= ¬SD≤n(δ), the lemma gives us MχSD , w |= ¬SD≤n−1(δ). Now we

are going to apply the induction hypothesis (*). We obtain MχSD , w |= 〈χSD!〉n>.
So M,w |= 〈χSD!〉n+1>.

If M,w |= 〈χSD!〉n+1>, we have also M,w |= 〈χSD!〉>. So w remains in
MχSD . By applying Lemma 16 and induction hypothesis (*), we obtain M,w |=
¬SD≤n−1(δ). Finally, M,w |= ¬SD≤n(δ).
�
The above theorem says that if δ is performed, then the formula ¬SD≤n(δ),

de�ned in Subsection 9.3.3, whose length is exponential in n and the more compact
formula 〈χSD!〉n+1> are equivalent. Indeed the length of the formula 〈χSD!〉n+1>
is O(n(|Agt ||Act |)2) where n is the number of IDSDS rounds, |Agt | is the number
of agents and |Act | is the maximal number of actions. Finally, here is a compact
reformulation of Theorem 42 inMLEGGT .

Theorem 47 For all n ≥ 0, `MLEGGT
(
MKnAgt

∧
i∈Agt Rati

)
→ 〈χSD!〉n+1>.

Proof.

By Theorem 42 and 46. Indeed, let M,w aMLEG-pointed-model such that
M,w |= MKnAgt

∧
i∈Agt Rati. There exists δ ∈ ∆ such that M,w |= 〈δ〉>. Theorem

42 gives M,w |= ¬SD≤n(δ). Theorem 46 gives M,w |= ¬SD≤n(δ) ↔ 〈χSD!〉n+1>.
So, M,w |= 〈χSD!〉n+1>. �

9.5 Imperfect information

We here consider a more general class of games which includes strategic games with
imperfect information about the game structure including the players' strategy sets
(or action repertoires) and the players' preference ordering over strategy pro�les.
This kind of games have been explored in the past by Harsanyi [Har67]. A more
recent analysis is given by [HR07]).

We are interested here in verifying whether the results obtained in Sections
9.3.2 and 9.3.3 can be generalized to this kind of games, that is:

1. Are rationality of every player and every agent's knowledge about other
agents' choices still su�cient to ensure that the selected strategy pro�le is a
Nash equilibrium in a strategic game with imperfect information about the
game structure?
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2. Is mutual knowledge of rationality among the players still su�cient to ensure
that the selected strategy pro�le survives iterated deletion of dominated
strategies in a strategic game with imperfect information about the game
structure?

To answer these questions, we have to remove Axiom PerfectInfo of the form
�ϕ → Kiϕ fromMLEG and the corresponding semantic constraint C5 from the
de�nition ofMLEG frames expressing the hypothesis of perfect information about
the game structure. We callMLEG∗ the resulting logic andMLEG∗-models the
resulting class of models. Then we have to check whether Theorems 41 and 42
given in Sections 9.3.2 and 9.3.3 are still derivable inMLEG∗.

We have a positive answer to the previous �rst question. Indeed, the formula((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

is derivable in MLEG∗. But we have a negative answer to the second question.
Indeed, the following formula is invalid inMLEG∗ for every δ ∈ ∆ and for every
n ∈ N such that n > 0:((

MKnAgt
∧
i∈Agt Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ).

This can be proved as follows. We suppose Agt = {1, 2} and we exhibit in Figure
9.3 a MLEG∗-model M and a world w1 in M in which for all n,
(MKn{1,2}

∧
i∈{1,2} Rati) ∧ 〈1:main〉> ∧ SD≤1(1:main) is true. We call Alarm Game

the scenario corresponding to this model.

Scenario description. We call Alarm Game the scenario represented by the
model in Figure 9.3. Agent 1 is a thief who intends to burgle agent 2's apartment.
Agent 1 can enter the apartment either by the main door or by the back door
(action 1:main or action 1:back). Agent 2 has two actions available. Either he
does nothing (action 2:skip) or he follows a security procedure (action 2:proc) which
consists in locking the two doors and in activating a surveillance camera on the
main door. Entering the apartment by the main door when agent 2 does nothing
(i.e. the strategy pro�le 〈1:main, 2:skip〉 executed at world w2) and entering by
the back door when agent 2 does nothing (i.e. the strategy pro�le 〈1:back , 2:skip〉
executed at world w4) are for agent 1 the best situations and are for him equally
preferable. Indeed, in both cases agent 1 will successfully enter and burgle the
apartment. On the contrary, trying to enter the apartment by the back door when
2 follows the security procedure (i.e. the strategy pro�le 〈1:back , 2:proc〉 executed
at world w3) is for 1 strictly better than trying to enter by the main door when 2
follows the security procedure (i.e. the strategy pro�le 〈1:main, 2:proc〉 executed
at world w1). Indeed, in the former case agent 1 will be simply unable to burgle the
apartment, in the latter case not only he will be unable to burgle the apartment
but also he will disclose his identity. The two possible situations in which agent
1 does not succeed in burgling the apartment (worlds w1 and w3) are equally
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u u
uu

w1 w2

w3 w4

2 : proc 2 : skip

1 : main

1 : back

w5 =2 w6 =2 w7 =2 w8
w2 <2 w4

w5 =1 w6 =1 w7 =1 w8
w1 <1 w3 <1 w2

w1 <1 w3

w1 <2 w3

u u
uu

w5 w6

w7 w8

1 : main

1 : back

2 : proc 2 : skip

Figure 9.3: Alarm Game. Again thick circles represent epistemic possibility
relations for agent 1 whereas thin circles represent epistemic possibility rela-
tions for agent 2. The two equivalence classes ∼ (w1) = {w1, w2, w3, w4} and
∼ (w5) = {w5, w6, w7, w8} correspond to two di�erent games where agents have
di�erent preference ordering over strategy pro�les.

preferable for agent 2 and are for 2 strictly better than the situations in which
agent 1 successfully burgles the apartment (worlds w2 and w4).

At world w1 agent 1 enters by the main door while agent 2 follows the security
procedure. This is the only world in the model M in which agent 1 has some
uncertainty. Indeed, in this world agent 1 can imagine the alternative game de�ned
by the equivalence class ∼(w5) = {w5, w6, w7, w8} in which he enters by the back
door while agent 2 does nothing (world w8). We suppose that in such a game,
even if agent 2 follows the security procedure, agent 1 will succeed in burgling
his apartment. This is the reason why the four strategy pro�les 〈1:main, 2:skip〉,
〈1:back , 2:skip〉, 〈1:main, 2:proc〉 and 〈1:back , 2:proc〉 are equally preferable for the
two agents.

Concerning the automated reasoning aspects of the logicMLEG∗, we can prove
that the complexity of the satis�ability problem increases and reaches the com-
plexity of the satis�ability problem of epistemic modal logic.
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Theorem 48 • If card(Agt) = 1 and card(Act) = 1 then the satis�ability
problem of a given formula ϕ in aMLEG∗-model is NP-complete.

• If card(Agt) ≥ 2 or card(Act) ≥ 2 the satis�ability problem of a given for-
mula ϕ in aMLEG∗-model is PSPACE-complete.

Proof.

We give here some hint for the proof. When there is only one agent and
card(Act) = 1 then the games are trivial and reduced to singletons. In these
settings, a MLEG∗-frame F = 〈W,∼, R,E,�〉 is such that ∼ and �i for each
agent i are equal to the relation {(w,w) | w ∈ W}. So the modal operators [good]i
and � are super�uous. The operator [δC ] can be treated as a proposition. Hence
the logic is similar to the logic S5 which is NP. This is the main argument why when
there is only one agent and card(Act) = 1 the logicMLEG∗ is NP. NP-hardness
is granted becauseMLEG∗ is a conservative extension of Classical Propositional
Logic.

Now let us prove that the satis�ability problem of a given formula ϕ in a
MLEG∗-model is PSPACE-hard in other cases. First let us consider the case
where card(Agt) ≥ 2. Let us consider two distinct agents a, b ∈ Agt . Let ϕ be a
formula written only with atomic propositions and with epistemic modal operators
Ka and Kb. We have equivalence between:

1. ϕ is satis�able in aMLEG∗-model;

2. ϕ is satis�able in the logic S52(Ka, Kb) (i.e. the fusion of the logic S5 for Ka

and S5 for Kb).

The direction 1.→ 2. is straightforward and is already true with the assumption of
the AxiomPerfectInfo. The direction 2.→ 1. is true because AxiomPerfectInfo
has now disappeared. So we can easily transform a model of the epistemic modal
logic into aMLEG∗-model. Note that in the case of the logicMLEG, the direction
2. → 1. is not true anymore. Indeed, it is not possible to transform a model of
S52(Ka, Kb) with more than card(Act)card(Agt) worlds into aMLEG-model. Hence,
we have reduced the satis�ability problem of a given formula ϕ in a MLEG∗-
model into the satis�ability problem of a given formula ψ of S52(Ka, Kb) which is
PSPACE-hard. So the satis�ability problem of a given formula ϕ in a MLEG∗-
model is PSPACE-hard.

Now let us the consider the case where Agt = {a} and card(Act) ≥ 2. Let
a and b be two distinct actions. We prove that we can reduce the satis�ability
problem of a given formula ϕ in aMLEG∗-model to the satis�ability problem of
K. Here is a possible translation:

• tr0(�ψ) = i:a ∧ ♦Katr1(ψ) where � is the K-operator;
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• tr1(�ψ) = i:b ∧ ♦Katr0(ψ) where � is the K-operator;

• tr0(p) = i:a ∧ p for all propositions p;

• tr1(p) = i:b ∧ p for all propositions p.

And ϕ is satis�able in K i� tr0(ϕ) is satis�able in MLEG∗. Hence, the logic
MLEG∗ is also PSPACE-hard in this case.

Now we are going to prove that the satis�ability problem ofMLEG∗ is PSPACE.
We do not give all the details but we give the idea for a tableau method [?] for
the logic MLEG∗. The tableau method is a non-deterministic procedure. The
creation of a model proceeds as follows:

• We start the procedure by guessing a �grid�, that is to say an equivalence
class for the relation ∼ of maximal size card(Act)card(Agt) and also its pref-
erence relation as in the algorithm of Theorem 39. We also choose non-
deterministically a world w in this class.

• We adapt the classical tableau method rules for the epistemic modal logic
[?], that is to say:

� Suppose that a world w contains a formula of the form Kiψ. Then we
propagate the formula ψ in all nodes v such that wEiv.

� Suppose that a world w contains a formula of the form K̂iψ. Then
we create an equivalence class for ∼, we choose a point v such that
Ri(v) = Ri(w) in this equivalence class and we propagate ψ in v.

• Suppose that a node w contains a formula �ψ. Then we propagate the
formula ψ in all nodes v such that v ∼ w;

• Suppose that a node w contains a formula ♦ψ. Then we choose non-determiniscally
a world v such that v ∼ w and we propagate ψ in v.

• Suppose that a node w contains a formula [good]i ϕψ. Then we propagate
the formula ψ in all nodes v such that v �i w;

• Suppose that a node w contains a formula 〈good〉iψ. Then we choose non-
determiniscally a world v such that v �i w and we propagate ψ in v.

During the construction, we explore the structure in depth �rst so that we only
need to have one branch in memory at each step. Thus, the algorithm is a non-
deterministic procedure that uses only a polynomial amount of memory. So the
satis�ability problem ofMLEG∗ is in NPSPACE. According the Savitch's theorem
[Sav70], it is in PSPACE.
�
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9.6 Weaker forms of perfect information

In the previous section, we have removed Axiom PerfectInfo of the form �ϕ→
Kiϕ from the logic MLEG to obtain a new logic MLEG∗ in which agents may
have imperfect information about all aspects of the game they play, including the
players' strategy sets (or action repertoires) and the players' preference ordering
over strategy pro�les.

Nevertheless, in some cases we would like to suppose that agents have perfect
information about some speci�c aspects of the game they play. For example, we
would like to suppose that:

1. an agent has perfect information about his strategy sets even though he may
have imperfect information about other agents' strategy sets or,

2. that an agent has perfect information about the strategy set of every agent
even though he may have imperfect information about agents' preference
ordering over strategy pro�les.

The former assumption applies to the scenario in which a robber enters a bank,
approaches the bank teller and demands money waving a gun. In this situation
the bank teller has perfect information about his strategy set: he knows that he
can either sound the alarm or do nothing. But the bank teller does not know
the robber's strategy set, as he is not sure whether the robber's gun is loaded or
not (i.e. the bank teller does not know whether the robber is able to kill him by
shooting). The latter assumption applies to a card game like Poker. In Poker a
player has perfect information about every player's strategy set, as he knows that
a given point in the game a player has the option to check (if no bet is in front of
him), bet, or fold. However, a Poker player has imperfect information about other
players' preference ordering over strategy pro�les, as he cannot see other players'
cards.

In this section, we are going to show how to relax the axiom PerfectInfo
in order to be able to model the previous assumptions. If we replace Axiom
PerfectInfo by the following axiom schemas:

♦〈i:a〉> → Ki♦〈i:a〉> (PerfectInfoStrategyi)

for all i ∈ Agt and a ∈ Act , then every agent i has perfect information about his
strategy set. That is, if an agent i can perform an action a then agent i knows
that he can perform action a. Axiom PerfectInfoStrategyi corresponds to the
following semantic constraint on models. For every i ∈ Agt and a ∈ Act :

• if wEiu and there is v such that w ∼ v and i:a = Ri(v) then, there is z such
that u ∼ z and i:a = Ri(z).
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If we replace Axiom PerfectInfo by the following axiom schemas:

♦〈j:a〉> → Ki♦〈j:a〉> (PerfectInfoStrategyi,j)

for all i, j ∈ Agt and a ∈ Act , then an agent i has perfect information about
the strategy sets of every agent. That is, if an agent j can perform an ac-
tion a then every agent i knows that agent j can perform action a. Axiom
PerfectInfoStrategyi,j corresponds to the following semantic constraint on mod-
els. For every i, j ∈ Agt and a ∈ Act :

• if wEiu and there is v such that w ∼ v and j:a = Rj(v) then, there is z such
that u ∼ z and j:a = Rj(z).

Obviously Axiom PerfectInfoStrategyi,j is more general than
Axiom PerfectInfoStrategyi, that is, PerfectInfoStrategyi,j implies
PerfectInfoStrategyi. It is also worth noting that the previous Axiom
PerfectInfoStrategyi,j together with Axiom Indep and Axiom JointAct im-
ply ♦〈δ〉> → Ki♦〈δ〉>. The latter means that if δ is a strategy pro�le of the
current game then every agent knows this.

9.7 Related works

Although several modal logics of games in strategic forms have been proposed
(see, e.g., [vdHJW05, Lor10a]), few modal logics exist which support reasoning
about epistemic (strategic) games. Among them we should mention [dB04, Roy08,
Bon08].

De Bruin [dB04] has developed a logical framework which enables to reason
about the epistemic aspects of strategic games and of extensive games. His system
deals with several game-theoretic concepts like the concepts of knowledge, ratio-
nality, Nash equilibrium, iterated strict dominance, backward induction. Never-
theless, de Bruin's approach di�ers from ours in several respects. First of all, our
logical approach to epistemic games is minimalistic since it relies on few prim-
itive concepts: knowledge, action, historical necessity and preference. All other
notions such Nash equilibrium, rationality, iterated strict dominance are de�ned
by means of these four primitive concepts. On the contrary, in de Bruin's logic all
those notions are atomic propositions managed by a ad hoc axiomatization (see,
e.g., [dB04, pp. 61,65] where special propositions for rationality and iterated strict
dominance are introduced). Secondly, we provide a semantics and a complete ax-
iomatics for our logic of epistemic games. De Bruin's approach is purely syntactic:
no model-theoretic analysis of games is proposed nor completeness result for the
proposed logic is given. Finally, de Bruin does not provide any complexity results
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about his logic while we prove that the satis�ability problem of a formula in our
logic is PSPACE-complete.

Roy [Roy08] has recently proposed a modal logic integrating preference, knowl-
edge and intention. In his approach every world in a model is associated to a nom-
inal which directly refers to a strategy pro�le in a strategic game. This approach is
however limited in expressing formally the structure of a strategic game. In partic-
ular, in Roy's logic there is no principle like theMLEG Axiom Indep explaining
how possible actions δi of individual agents are combined to form a strategy pro�le
δ of the current game. Another limitation of Roy's approach is that it does not
allow to express the concept of (weak) rationality that we have been able to de�ne
in Section 9.3.2 (see [Roy08, pp. 101]). As discussed in the previous sections this
is a crucial concept in interactive epistemology since it is used for giving epistemic
justi�cations of several solution concepts like Nash equilibrium and IDSDS (see
Theorems 41 and 42).

Bonanno [Bon08] integrates modal operators for belief, common belief with
constructions expressing agents' preferences over individual actions and strategy
pro�les, and applies them to the semantic characterization of solution concepts like
iterated deletion of strictly dominated strategies (IDSDS) and iterated deletion of
inferior pro�les (IDIP). As in [Roy08], in Bonanno's logic every world in a model
corresponds to a strategy pro�le of the current game. Although this logic allows
to express the concept of weak rationality, it is not su�ciently general to enable to
express in the object language solution concepts like Nash equilibrium and IDSDS
(note that the latter is de�ned by Bonanno only in the metalanguage).

It is to be noted that, di�erently fromMLEG, most modal logics of epistemic
games in strategic form (including Roy's logic and Bonanno's logic) postulate a
one-to-one correspondence between models and games (i.e. every model of the
logic corresponds to a unique strategic game, and worlds in the model are all
strategy pro�les of this game). Such an assumption is quite restrictive since it
prevents from analyzing in the logic games with imperfect information about the
game structure in which an agent can imagine alternative games. As shown in
Section 9.5, this is something we can do in our logical framework by removing
Axiom PerfectInfo fromMLEG.

Before concluding this section about related works it is to be noted that the
approach to game dynamics based on Dynamic Epistemic Logic (DEL) we pro-
posed in Section 9.4 is inspired by [vB07] in which strategic equilibrium is de-
�ned by �xed-points of operations of repeated announcement of suitable epistemic
statements and rationality assertions. However, the analysis of epistemic games
proposed in [vB07] is mainly semantical and the author does not provide a full-
�edged modal language for epistemic games which allows to express in the object
language solution concepts like Nash Equilibrium or IDSDS, and the concept of
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rationality. Moreover, van Benthem's analysis does not include any completeness
result for the proposed framework and there is no proposal of reduction axioms
for a combination of DEL with a static logic of epistemic games. On the contrary,
these two aspects are central in our analysis.

9.8 Conclusion

We have presented a multi-modal logic that enables to reason about epistemic
games in strategic form. This logic, called MLEG (Modal Logic of Epistemic
Games), integrates the concepts of joint action, preference and knowledge. We
have shown thatMLEG provides a highly �exible formal framework for the anal-
ysis of the epistemic aspects of strategic interaction. Indeed,MLEG can be easily
adapted in order to integrate di�erent assumptions on players' knowledge about
the structure of a game.

Directions for future research are manifold. In this article (Section 9.3.2) we
only considered the notion of individualistic rationality assumed in classical game
theory: an agent decides to perform a certain action only if the agent believes
that this action is a best response to what he expects the others will do. Our
plan is to extend the present modal logic analysis of epistemic games to other
forms of rationality such as fairness and reciprocity [FS03]. According to these
notions of rationality, rational agents are not necessarily self-interested but they
also consider the bene�ts of their choices for the group. Moreover, their decisions
can be a�ected by their beliefs about other agents' willingness to act for the well-
being of the group. In [Lor10b] we did some �rst steps into this direction.

Another aspect we intend to investigate in the future is a generalization of our
approach to mixed strategies. Indeed, at the current stage the multi-modal logic
MLEG only enables to reason about pure strategies. To this aim, we will have to
extendMLEG by modal operators of probabilistic beliefs as the ones studied by
[Hal03, FH94].



Chapter 10

Counterfactual emotions

In this Chapter we exploit the decidable fragment of STIT studied in Chapter 8
in order to express counterfactual emotions like regret and rejoicing. This study
is part of [LS09]. This Chapter is organized as follows:

• First we see how to express counterfactual statements in STIT;

• Secondly we add an epistemic modal operator to the decidable fragment of
STIT seen in Chapter 8;

• Finally we show how to express counterfactual emotions.

10.1 Counterfactual statements in STIT

In this section we exploit the STIT fragment dfSTIT studied in Section ?? in order
to formalize counterfactual statements of the form �group J (or agent i) could
have prevented a certain state of a�airs χ to be true now�. Such statements are
indeed basic constituents of the appraisal patters of counterfactual emotions such
as regret. In particular, counterfactual emotions such as regret originate from
reasoning about this kind of statements highlighting the connection between the
actual state of the world and a counterfactual state of the world that might have
been had one chosen a di�erent action. The counterfactual statements formalized
in this section will be fundamental in the formalization of counterfactual emotions
we will give in Section 10.3.

10.1.1 J could have prevented χ

The following counterfactual statement is a fundamental constituent of an analysis
of counterfactual emotions:
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(*) J could have prevented a certain state of a�airs χ to be true now.

The statement just means that there is a counterfactual dependence between the
state of a�airs χ and group J (i.e. χ counterfactually depends on J 's choice). The
STIT fragment studied in Section ?? enables a formal translation of it. We denote
this translation by CHPJχ, de�ned as follows:

CHPJχ
def
= χ ∧ ¬[AGT \ J ]χ.

The expression ¬[AGT\J ]χ just means that: the complement of J with respect to
AGT (i.e. AGT\J) does not see to it that χ (no matter what the agents in J have
chosen to do). This is the same thing as saying that: given what the agents in
AGT\J have chosen, there exists an alternative joint action of the agents in J such
that, if the agents in J did choose this action, χ would be false now. Thus, χ and
¬[AGT \ J ]χ together correctly translate the previous counterfactual statement
(*). If J is a singleton {i}, we write CHPiχ instead of CHP{i}χ which means �agent
i could have prevented χ to be true�.

v

2:water

2:skip

1:water 1:skip

dead

dead
w4

w3

w2

w1

Figure 10.1: The four worlds w1, w2, w3 and w4 are in the equivalence class
determined by R∅. Vertical circles represent the actions that agent 1 can choose,
whereas horizontal circles represent the actions that agent 2 can choose. For
example, w1 is the world that results from agent 1 choosing the action water and
agent 2 choosing the action skip.

Example 20 Imagine a typical coordination scenario with two agents AGT =
{1, 2}. Agents 1 and 2 have to take care of a plant. Each agent has only two
actions available: water the plant (water) or do nothing (skip). If either both
agents water the plant or both agents do nothing, the plant will die (dead). In the
former case the plant will die since it does not tolerate too much water. In the
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latter case it will die since it lacks water. If one agent waters the plant and the
other does nothing, the plant will survive (¬dead). The scenario is represented
in the STIT model in Fig. 10.1. For instance both at world w2 and w4, formulas
CHP1dead and CHP2dead are true: each agent could have prevented the plant to be
dead. Indeed, at world w2, dead and ¬[2]dead are true: given what agent 2 has
chosen (i.e. water), there exists an alternative action of agent 1 (i.e. skip) such
that, if 1 did choose this action, dead would be false now. At world w4, dead and
¬[2]dead are also true: given what agent 2 has chosen (i.e. skip), there exists an
alternative action of agent 1 (i.e. water) such that, if 1 did choose this action,
dead would be false now. The case for agent 2 is completely symmetrical.

The following are some interesting properties of the operator CHPJ . For every
J and for every J1, J2 such that J1 ⊆ J2:

|=STIT CHPJ1(χ1 ∨ χ2)→ (CHPJ1χ1 ∨ CHPJ1χ2) (10.1)

|=STIT CHPJ1χ→ CHPJ2χ (10.2)

|=STIT (CHPJ1χ1 ∧ CHPJ1χ2)→ CHPJ1(χ1 ∧ χ2) (10.3)

|=STIT ¬CHPJ> (10.4)

|=STIT ¬CHPJ⊥ (10.5)

Proof.

We give the proof of Validity 10.2 as an example. LetM be a STIT-model and
w ∈ W such thatM, w |= CHPJ1χ. We haveM, w |= χ andM, w |= ¬[AGT\J1]χ.
As RAGT\J1 ⊆ RAGT\J2 , it implies that M, w |= ¬[AGT \ J2]χ. That is why we
haveM, w |= CHPJ2χ. �

According to Validity 10.1, J1 could have prevented χ1 or could have prevented
χ2 implies J1 could have prevented χ1 or χ2 to be true. Validity 10.2 expresses
a monotonicity property: if J1 is a subset of J2 and J1 could have prevented χ
then, J2 could have prevented χ as well. Validity 10.3 shows how the operator
CHPJ behaves over conjunction: if J1 could have prevented χ1 to be true and
could have prevented χ2 to be true separately then J1 could have prevented χ1

and χ2 to be true. Finally, according to the Validities 10.4 and 10.5, tautologies
and contradictions cannot counterfactually depend on the choice of a group: it
is never the case that a coalition J could have prevented a tautology (resp. a
contradiction).

Remark 6 It is worth noting that counterfactual statements of the form �group
J (or agent i) could have prevented χ to be true�, which are expressible in STIT,
are not expressible in other well-known logics of multi-agent interaction such as
Alternating-time temporal logic (ATL) [AHK02], Coalition Logic (CL) [Pau02],
and some existing approaches based on ATL and CL (see, e.g., [ÅvdHW07, vdHJW05]).
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Admittedly, CL can express the statement �the group of agents AGT\J has not
a joint strategy that force χ (in the next state)�. In CL we can speak about agents
abilities. But we can not express the statement �the current chosen actions of the
group AGT\J does not force χ�. In CL we can speak about the actions that agents
have chosen.

It has been proved formally in [BHT06a] that STIT is more expressive than CL,
and STIT extended with strategies (strategic STIT) is even more expressive than
ATL. For instance there are STIT formulas such as [J ]χ and ¬[J ]χ that cannot be
translated into ATL and CL.

10.1.2 Discussion

We have given above a logical translation of the statement �agent i could have
prevented χ to be true� noted CHPiχ and expressing a counterfactual dependence
between the state of a�airs χ and agent i's choice. We said that the latter statement
is true if and only if χ is true and, given what the other agents have chosen, there
exists an alternative action of agent i such that, if i did choose this action, χ would
be false now.

It is worth noting that CHPiχ does not cover situations in which agent i is par-
tially responsible for χ up to a certain degree without being fully responsible for χ.
The following voting example illustrates the di�erence between full responsibility
and partial responsibility.

Example 21 A and B are the two candidates for an election and 1, 2, 3 are the
three voters. Suppose w7 in the STIT model in Fig. 10.2 is the actual world. In this
world, voter 1 and voter 2 vote for candidate A while voter 3 votes for candidate
B so that A wins the election against B by a vote of 2-1. Formulas CHP1Awin and
CHP2Awin are true at w7. In fact, at w7 candidate A wins the elections and, given
what the other voters have chosen, there exists an alternative action of voter 1
(i.e. voting for candidate B) such that, if voter 1 did choose this action, candidate
A would not win the elections. In other words, at w7 the result of the election
counterfactually depends on 1's vote. The same is true for voter 2: at w7 the
result of the election counterfactually depends on 2's vote. In this case, voter 1
and voter 2 can be said to be fully responsible for candidate A's win.

Suppose now w5 in the STIT model in Fig. 10.2 is the actual world. At w5

candidate A wins the election against candidate B by a vote of 3-0. In this case,
CHPiAwin is false for every voter, that is, for every voter the result of the election
does not counterfactually depend on his vote. Nevertheless, we would like to say
that each of the three voters is partially responsible for candidate A's win up to a
certain degree. Indeed, voter 1 is is a cause of A winning even if the vote is 3-0
because, under the contingency that one of the other voters had voted for candidate
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B instead, voter 1's vote would have become critical; if he had then changed his
vote, candidate A would not have won. The same is true for voter 2 and for voter
3.

It is not the objective of this paper to provide a logical account of the notion of
partial responsibility and of the corresponding notion of degree of responsibility.
These notions have been studied for instance in [CH04] in which the degree of
responsibility of an event A for an event B is supposed to be 1

N+1
, where N is the

minimal number of changes that have to be made to the actual situation before
B counterfactually depends on A. For instance, in the case of the 3-0 vote in
the previous example, the degree of responsibility of any voter for the victory of
candidate A is 1

2
, since one change has to be made to the actual situation before

a vote is critical. In the case of the 2-1 vote, the degree of responsibility of any
voter for the victory is 1, since no change has to be made to the actual situation
before a vote is critical.

10.2 A STIT extension with knowledge

10.2.1 knowledge

In order to capture the subjective dimension of emotions, this section presents an
extension of the fragment dfSTIT of STIT logic presented in section ?? with stan-
dard operators for knowledge of the form Ki, where i is an agent. The formula Kiϕ
means �agent i knows that ϕ is true�. This is a necessary step for the formalization
of counterfactual emotions that will be presented in section 10.3.

10.2.2 De�nition

First we present the language LSTIT of the Subsection 8.1 extended with epistemic
constructions Kiϕ. We give the language of all formulas we can construct with
STIT operators and knowledge operators. The language LKSTIT of the logic KSTIT
is de�ned by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [J ]ϕ | Kiϕ

where p ranges over ATM , i ranges over AGT and J over 2AGT.
For the same reasons that in Subsection 8.1, we are here interested in a frag-

ment of LKSTIT. Indeed, the satis�ability problem of the logic KSTIT will be
undecidable if the number of agents is more than 3 (because the logic KSTIT will
be a conservative extension of the logic STIT which is already undecidable). So
we focus into a syntactic fragment we call dfKSTIT.
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The language LdfKSTIT of logic dfKSTIT is de�ned by the following BNF:
χ ::= ⊥ | p | χ ∧ χ | ¬χ (propositional formulas)
ψ ::= [J ]χ | ψ ∧ ψ (see-to-it formulas)
ϕ ::= χ | ψ | ϕ ∧ ϕ | ¬ϕ | 〈∅〉ψ | Kiϕ
(see-to-it, �can�, knowledge formulas )
where p ranges over ATM , i ranges over AGT and J over 2AGT \ {∅}.

For instance, K1〈∅〉[{1, 2}]p ∈ LdfKSTIT. But 〈∅〉K1[{1, 2}]p 6∈ LdfKSTIT.
Let us give the semantics of the logic dfKSTIT. We start with the de�nition

of model.

De�nition 65 (KSTIT -model)
A KSTIT -model is a tupleM = (W, {RJ}J⊆AGT, {Ei}i∈AGT, V ) where:

• (W, {RJ}J⊆AGT, V ) is a STIT-model (see De�nition 59);

• For all i ∈ AGT, Ei is an equivalence relation.

As usual truth conditions for atomic formulas and the boolean operators are
entirely standard. Truth conditions for the STIT operators [J ] are given in Section
??. Truth conditions for knowledge operators are de�ned in the standard way:

M, w |= Kiϕ i�M, v |= ϕ for all v ∈ W such that wEiv.

That is, agent i knows that ϕ at world w in modelM if and only if ϕ is true at
all worlds that are indistinguishable for agent i at world w.

As usual, a formula ϕ is KSTIT -valid (noted |=KSTIT ϕ) i� ϕ is true in every
world of every KSTIT -model. A formula ϕ is KSTIT -satis�able i� there exists a
KSTIT -modelM = (W, {RJ}J⊆AGT, {Ei}i∈AGT, V ) and a world w ∈ W such that
M, w |= ϕ.

10.2.3 Decidability

The following is a extension of Corollary 10 given in Section 8.4.

Theorem 49 The satis�ability problem of dfKSTIT is NP-complete if card(AGT) =
1 and PSPACE-complete if card(AGT) ≥ 2.

10.2.4 Axiomatization

The study of an axiomatization for dfKSTIT relies on an epistemic extension of
the logic NCL presented in Section 8.3 which will also be axiomatizable. We call
KNCL this epistemic extension of NCL. The syntax of the logic KNCL is the
same as the logic KSTIT , that is to say LKNCL = LKSTIT.

Let us now give the de�nition of model for the logic KNCL .
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De�nition 66 ( KNCL -model)
A KNCL -model is a tuple
M = (W, {RJ}J⊆AGT, {Ei}i∈AGT, V ) where:

• (W, {RJ}J⊆AGT, V ) is a NCL-model (see De�nition 61);

• For all i ∈ AGT, Ei is an equivalence relation.

Truth conditions, validity and satis�ability in KNCL are de�ned as usual.
We can now prove an extension of Theorem 37, stating the equivalence between

the satis�ability inKNCL and the satis�ability inKSTIT if we restrict the formula
to the syntactic fragment LdfKSTIT.

Theorem 50 Let ϕ be a formula of LdfKSTIT. We have equivalence between:

• ϕ is satis�able in KNCL ;

• ϕ is satis�able in KSTIT .

In the same way, we have an extension of the Corollary 11 about a complete
axiomatization of the logic dfKSTIT.

Corollary 12 A formula ϕ in LdfKSTIT is KSTIT -valid i� we have `KNCL ϕ where
`KNCL ϕ means that there exists a proof of ϕ using all principles of the logic NCL,
all principles of modal logic S5 for every Ki.

10.3 A formalization of counterfactual emotions

In the following sections, we will use the STIT fragment extended with epistemic
modalities studied in Section 10.2 and called dfKSTIT, in order to provide a logical
formalization of this class of emotions. We consider four types of counterfactual
emotions: regret and its positive counterpart rejoicing, disappointment and its
positive counterpart elation.

10.3.1 Regret and rejoicing

In order to provide a logical characterization of counterfactual emotions such as
regret, we need to introduce a concept of agent's preference. Modal operators for
desires and goals have been widely studied (see e.g. [CL90, MvdHvL99]). The
disadvantage of such approaches is that they complicate the underlying logical
framework. An alternative, which we adopt in this paper is to label states with
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atoms that capture the �goodness� of these states for an agent. Our approach
supposes a binary relation of preference between worlds.

Let us introduce a special atom goodi for every agent i ∈ AGT. These atoms
are used to specify those worlds which are good for an agent.

We say that χ is good for agent i if and only if χ is true in all good/pleasant
states. Formally:

GOODiχ
def
= [∅](goodi → χ).

Now, we are in a position to de�ne the concept of desirable state of a�airs. We
say that χ is desirable for agent i if and only if, i knows that χ is something good
for him:

DESiχ
def
= KiGOODiχ.

As the following valid formulas highlight, every operator DESi satis�es the principle
K of normal modal logic, and the properties of positive and negative introspection:
χ is (resp. is not) desirable for i if and only if i knows this.

|=KSTIT (DESiχ1 ∧ DESi(χ1 → χ2))→ DESiχ2 (10.6)

|=KSTIT DESiχ↔ KiDESiχ (10.7)

|=KSTIT ¬DESiχ↔ Ki¬DESiχ (10.8)

We have now all necessary and su�cient ingredients to de�ne the cognitive struc-
ture of regret and to specify its counterfactual dimension. Such a dimension has
been widely studied in the psychological literature where several authors (see, e.g.,
[LS82, Sug85, Roe97, KM86, Kah95, ZvDM98]) agree in considering regret as the
emotion originating from an agent's comparison between the actual bad outcome
and a counterfactual good outcome that might have been had the agent chosen a
di�erent action.

We say that an agent i regrets for χ if and only if ¬χ is desirable for i and i
knows that it could have prevented χ to be true now. Formally:

REGRETiχ
def
= DESi¬χ ∧KiCHPiχ.

The following example is given in order to better clarify this de�nition.

Example 22 Consider the popular two-person hand game �Rock-paper-scissors�.
Each of the two players AGT = {1, 2} has three available actions: play rock,
play paper, play scissors. The goal of each player is to select an action which
defeats that of the opponent. Combinations of actions are resolved as follows: rock
wins against scissors, paper wins against rock; scissors wins against paper. If both
players choose the same action, they both lose. The scenario is represented in the
STIT model in Fig. 10.3. It is supposed winning is something good for each agent
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and each agent has the desire to win the game: GOOD11Win, GOOD22Win, DES11Win
and DES22Win are true at worlds w1-w9. Suppose world w1 is the actual world in
which 1 plays rock and 2 plays paper. In this world 1 loses the game (¬1Win),
and 1 knows that (by playing scissors) it could have prevented ¬1Win to be true
(i.e. K1CHP1¬1Win is true at w1). It follows that at w1 player 1 regrets for having
lost the game, that is, REGRET1¬1Win is true at w1.

As the following validity highlights, regret implies the frustration of an agent's
desire:

|=KSTIT REGRETiχ→ (Kiχ ∧ DESi¬χ) (10.9)

More precisely, if agent i regrets for χ then, i knows that χ holds and ¬χ is some-
thing desirable for i (in this sense i feels frustrated for not having achieved ¬χ).
Moreover, regret satis�es the properties of positive and negative introspection:

|=KSTIT REGRETiχ↔ KiREGRETiχ (10.10)

|=KSTIT ¬REGRETiχ↔ Ki¬REGRETiχ (10.11)

As emphasized by some psychological theories of counterfactual emotions (see,
e.g., [ZBvdPdV96, ZvDMvdP00]), the positive counterpart of regret is rejoicing:
while regret has a negative valence (i.e. it is associated with the frustration of
an agent's desire), rejoicing has a positive valence (i.e. it is associated with the
satisfaction of an agent's desire). According to these theories, a person experiences
regret when believing that the foregone outcome would have been better if she did
a di�erent action, whilst she rejoices when believing that the foregone outcome
would have been worse if she did a di�erent action. More precisely, an agent i
rejoices for χ if and only if, χ is desirable for i and, i knows that it could have
prevented χ to be true now by doing a di�erent action:

REJOICEiχ
def
= DESiχ ∧KiCHPiχ.

Example 23 Consider again the game �Rock-paper-scissors� represented by the
STIT-model in Fig. 10.3. Suppose world w2 is the actual world in which player 1
plays rock and player 2 plays scissors. In this world player 1 is the winner (1Win)
and it knows that (by playing paper or scissors) it could have prevented 1Win to
be true (i.e. K1CHP11Win is true at w2). Since DES11Win holds at w2, it follows
that at w2 player 1 rejoices for having won the game, that is, REJOICE11Win is
true at w2.

The following validity highlights that rejoicing implies desire satisfaction:

|=KSTIT REJOICEiχ→ (Kiχ ∧ DESiχ) (10.12)
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More precisely, if agent i rejoices for χ then, i knows that χ and χ is something
desirable for i (in this sense i feels satis�ed for having achieved χ). Like regret,
rejoicing satis�es the properties of positive and negative introspection:

|=KSTIT REJOICEiχ↔ KiREJOICEiχ (10.13)

|=KSTIT ¬REJOICEiχ↔ Ki¬REJOICEiχ (10.14)

That is, agent i rejoices (resp. does not rejoice) for χ if and only if it knows this.

10.3.2 Disappointment and elation

According to some authors [LS87, DZ02, ZvDvdP+98], disappointment too is part
of the family of counterfactual emotions: like regret, disappointment originates
from the comparison between the actual outcome and a counterfactual outcome
that might have occurred. However, there is an important di�erence between
regret and disappointment. If an agent feels regret he considers himself to be
responsible for the actual outcome, whereas if he feels disappointed he considers
external events and other agents' actions to be responsible for the actual outcome.

Thus, we can say that an agent i feels disappointed for χ if and only if ¬χ is
desirable for i and i knows that the others could have prevented χ to be true now.
Formally:

DISAPPOINTMENTiχ
def
= DESi¬χ ∧KiCHPAGT\{i}χ.

Example 24 In the �Rock-paper-scissors� game represented in Fig. 10.3, regret
is always joined with disappointment. For instance, at world w1 player 1 not only
regrets for having lost the game (i.e. REGRET1¬1Win), but also he feels disappointed
for this (i.e. DISAPPOINTMENT1¬1Win). In fact, at w1, 1 knows that (by playing
scissors) the others (i.e. player 2) could have prevented ¬1Win to be true (i.e.
K1CHPAGT\{1}¬1Win is true at w1).

Like regret and rejoicing, disappointment satis�es the properties of positive
and negative introspection:

|=KSTIT DISAPPOINTMENTiχ↔ KiDISAPPOINTMENTiχ (10.15)

|=KSTIT ¬DISAPPOINTMENTiχ↔ Ki¬DISAPPOINTMENTiχ (10.16)

Moreover, like regret, disappointment implies desire frustration:

|=KSTIT DISAPPOINTMENTiχ→ (Kiχ ∧ DESi¬χ) (10.17)

It is worth noting that regret and disappointment do not necessarily occur
in parallel, i.e. the formulas REGRETiχ ∧ ¬DISAPPOINTMENTiχ and ¬REGRETiχ ∧
DISAPPOINTMENTiχ are satis�able. The following examples illustrate the situation
in which an agent feels disappointed without feeling regret.
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Example 25 Two agents AGT = {1, 2} have made an appointment to dine to-
gether at a restaurant. When the time of the appointment comes near, each of the
two agents can either go to the restaurant in order to meet the other or decide to
stay home. The two agents will have dinner together only if each of them decides to
go to restaurant to meet the other. The scenario is represented in the STIT model
in Fig. 10.4. It is supposed that having dinner with agent 2 is something good for
agent 1 and agent 1 desires to have dinner with agent 2: GOOD1dinnerTogether and
DES1dinnerTogether are true at worlds w1-w4. Suppose world w1 is the actual world
in which 1 goes to the restaurant, while 2 does not go and breaks his appointment
with 1. In this world 1 does not have dinner with 2 (¬dinnerTogether), and 1 knows
that (by going to the restaurant) the others (i.e. agent 2) could have prevented
¬dinnerTogether to be true (i.e. K1CHPAGT\{1}¬dinnerTogether is true at w1). It
follows that at w1 agent 1 feels disappointed for not having dinner with 2, that
is, DISAPPOINTMENT1¬dinnerTogether is true at w1. Note that at w1 agent 1 does
not feel regret for not having dinner with agent 2 (i.e. REGRET1¬dinnerTogether is
false at w1). In fact, at w1, 1 knows that ¬dinnerTogether only depends on what 2
has decided to do. Therefore, at w1, 1 does not think that he could have prevented
¬dinnerTogether to be true
(i.e. ¬K1CHP1¬dinnerTogether is true at w1).

We conclude with a formalization of the positive counterpart of disappointe-
ment, that is commonly called elation [ZBvdPdV96, ZvDMvdP00]. We say that
agent i elates for χ if and only if, χ is desirable for i and i knows that the others
could have prevented χ to be true now:

ELATIONiχ
def
= DESiχ ∧KiCHPAGT\{i}χ.

Like regret, rejoicing and disappointment, elation satis�es the properties of positive
and negative introspection:

|=KSTIT ELATIONiχ↔ KiELATIONiχ (10.18)

|=KSTIT ¬ELATIONiχ↔ Ki¬ELATIONiχ (10.19)

Moreover, like rejoicing, elation implies desire satisfaction:

|=KSTIT ELATIONiχ→ (Kiχ ∧ DESiχ) (10.20)

Note also that elation and rejoicing do not necessarily occur in parallel, i.e. the
formulas REJOICEiχ∧¬ELATIONiχ and ¬REJOICEiχ∧ELATIONiχ are satis�able. In
fact, an agent might consider the others to be responsible for the actual good situ-
ation, without considering himself to be responsible for the actual good situation.
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Notice that constructions REGRETiχ and REJOICEiχ requires to have group
STIT. This justi�es the study of the syntactic restriction of the decidable frag-
ment of group STIT introduced in this paper. On the contrary, the individual
STIT is su�cient to express constructions DISAPPOINTMENTiχ and ELATIONiχ. Let
us recall that the fusion of two decidable modal logics is decidable [GKWZ03].
As the satis�ability problem of the individual STIT is decidable [BHT08], the
fusion of the individual STIT and the epistemic logic is also decidable. So we
do not have to introduce syntactic restrictions in order to automatically reason
about DISAPPOINTMENTiχ and ELATIONiχ. In particular we can reason about
nested emotions like �agent i feels disappointed because agent j elates for χ�
(DISAPPOINTMENTiELATIONjχ).

10.3.3 Discussion

Let us discuss some aspects we did not consider in the previous formalization of
counterfactual emotions.

According to [Cas05], disappointment entails invalidation of an agent's positive
expectation. That is, an agent feels disappointed for χ, only if ¬χ is desirable for
the agent and the agent believes that χ, and in the previous state he believed ¬χ
to be true in the next state. In other words, an agent feels disappointed for χ
because he would like χ to be false now and he just learnt that χ is true and,
before learning that χ is true, he believed ¬χ to be true in the next state. In
the formalization of disappointment proposed in Section 10.3.2, this relationship
between disappointment and expectations was not considered. We included in the
de�nition of disappointment only the agent's mental states at the moment in which
the emotion arises.

Another aspect we did not consider in our formalization of counterfactual emo-
tions is the distinction between regret due to a choice to act (i.e. action) and
regret due to a choice not to act (i.e. inaction). A classical example which clari�es
this distinction is the one given by [KT82] in which an agent i owned shares in
company A, and he considered switching to stock in company B but he decided
against it. He now �nds out that he would have been better o� if he had switched
to the stock of company B (regret due to inaction). Another agent j owned shares
in company B, and he switched to stock in company A. He now �nds out that
he would have been better o� if he had kept his stock in Company B (regret due
to action). The logic STIT is not su�ciently expressive to make this distinction
between regret due to action and regret due to inaction. Indeed, in STIT logic
it is supposed that at a given state w every agent has made a choice. Moreover,
STIT allows to reason about the e�ects of the agents' choices at a given state.
Nevertheless, STIT does not allow to distinguish the situation in which, at a given
state, an agent has made the choice to act from the situation in which the agent
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has made the choice not to act.

10.4 Related works

As emphasized in the introduction emotion is a very active �eld in AI. Several
computational architectures of a�ective agents have been proposed in the last few
years (see, e.g., [RB92, Ell92, dR99]). The cognitive architecture EMA (Emotion
and Adaption) [GM04] is one of the best example of research in this area. EMA
de�nes a domain independent taxonomy of appraisal variables stressing the many
di�erent relations between emotions and cognition, by enabling a wide range of
internal appraisal and coping processes used for reinterpretation, shift of moti-
vations, goal reconsideration etc. EMA also deals with complex social emotions
based on attributions of responsibility such as guilt and shame.

There are also several researchers who have developed formal languages which
allow to reason about emotions and to model a�ective agents. We discuss here
some of the most important formal approaches to emotions and compare them
with our approach.

Meyer et al.'s logic of emotions One of the most prominent formal analysis
of emotions is the one proposed by Meyer et al. [Mey06, SDM07, TMC09]. In
order to formalize emotions, Meyer et al. exploit the logical framework KARO
[MvdHvL99]: a framework based on a blend of dynamic logic with epistemic logic,
enriched with modal operators for motivational attitudes such as desires and goals.

In Meyer et al.'s approach each instance of emotion is represented with a special
predicate, or �uent, in the jargon of reasoning about action and change, to indicate
that these predicates change over time. For every �uent a set of e�ects of the
corresponding emotions on the agent's planning strategies are speci�ed, as well as
the preconditions for triggering the emotion. The latter correspond to generation
rules for emotions. For instance, in [Mey06] generation rules for four basic emotions
are given: joy, sadness, anger and fear, depending on the agent's plans. More
recently [TMC09], generation rules for social emotions such as guilt and shame
have been proposed.

Contrarily to Meyer et al.'s approach, in our logic there are no speci�c formal
constructs, like special predicates or �uents, which are used to denote that a certain
emotion arises at a certain time. We just de�ne the appraisal pattern of a given
emotion in terms of some cognitive constituents such as desire and knowledge. For
instance, according to our de�nition of regret, an agent regrets for χ if and only if,
he desires ¬χ and, i knows that it could have prevented χ to be true now. In other
words, following the so-called appraisal theories in psychology, in our approach an
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emotion is reduced to its appraisal variables which can be de�ned through the
basic concepts of a BDI logic (e.g. knowledge, belief, desires, intentions).

It has to be noted that, although Meyer et al. provide a very detailed formal
analysis of emotions, they do not take into account counterfactual emotions. This
is also due to some intrinsic limitations of the KARO framework in expressing
counterfactual reasoning and statements of the form �agent i could have prevented
χ to be true� which are fundamental constituents of this kind of emotions. Indeed,
standard dynamic logic on the top of which KARO is built, is not suited to express
such statements. In contrast to that, our STIT-based approach overcomes this
limitation.

Note also that while Meyer et al. do not prove completeness and do not study
complexity of their logic of emotions, these are central issues in our work. As
emphasized in the introduction of the article, our aim is to develop a logic which
is su�ciently expressive to capture the fundamental constituents of counterfactual
emotions and, at the same time, with good mathematical properties in terms of
decidability and complexity.

Other logical approaches to emotions Adam et al. [AHL09] have recently
exploited a BDI logic in order to provide a logical formalization of the emotion
types de�ned in Ortony, Clore and Collins's model (OCC model) [OCC88] Similar
to our approach, in Adam et al.'s approach emotion types are de�ned in terms of
some primitive concepts (and corresponding modalities) such as the concepts of
belief, desire, and action which allow to capture the di�erent appraisal variables
of emotions proposed in the OCC model such as the desirability of an event,
probability of an event, and degree of responsibility of the author of an action.
However, Adam et al. do not consider counterfactual emotions. In fact, the logic
proposed by Adam et al. is not su�ciently expressive to capture counterfactual
thinking about agents' choices and actions on which emotions like regret, rejoicing,
disappointment and elation are based. Moreover, this is due to some limitations
of the OCC typology which does not contain de�nitions of emotions based on
counterfactual thinking such as regret and rejoicing.

In [ENYI00] a formal approach to emotions based on fuzzy logic is proposed.
The main contribution of this work is a quanti�cation of emotional intensity based
on appraisal variables like desirability of an event and its likelihood. For example,
following [OCC88], in FLAME the variables a�ecting the intensity of hope with
respect to the occurrence of a certain event are the degree to which the expected
event is desirable, and the likelihood of the event. However, in FLAME only basic
emotions like joy, sadness, fear and hope are considered and there is no formal
analysis of counterfactual emotions as the ones analyzed in our work.
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10.5 Conclusion

A logical framework which allows to formalize and to reason about counterfactual
emotions has been proposed in this paper. This framework is based on a decid-
able and �nitely axiomatizable fragment of STIT logic called dfSTIT. We have
shown that an epistemic extension of dfSTIT called dfKSTIT is su�ciently ex-
pressive to capture the fundamental constituents of counterfactual emotions and,
at the same time, it has good mathematical properties in terms of complexity and
axiomatizability. We have proved that the satis�ability problem of dfKSTIT is
NP-complete if card(AGT) = 1 and PSPACE-complete if card(AGT) ≥ 2. This
�rst result is fundamental in order to claim that we can write down algorithms
in dfKSTIT to reason about counterfactual emotions such as regret, rejoicing,
disappointment and elation. Moreover, we have provided a complete axiomati-
zation of dfKSTIT . This second result is also important because it shows that
we can perform syntactic reasoning in dfKSTIT about counterfactual emotions.
We hope that the analysis developed in this paper will be useful for improving
understanding of a�ective phenomena and will o�er an interesting perspective on
computational modeling of a�ective agents and systems.

Directions for our future research are manifold. The reader may remark there is
a gap between the complexity of the satis�ability problem of a formula in dfSTIT
(NP-complete) and the complexity of the satis�ability problem of a formula in
dfKSTIT (PSPACE-complete). Of course, the complexity for dfKSTIT can not be
improved because the satis�ability problem of S5n is already PSPACE-complete.
An interesting open question is to identify a more expressive fragment of STIT such
that its satis�ability problem is PSPACE-complete and such that adding knowl-
edge will not increase the complexity of its satis�ability problem. An analysis
of intensity of counterfactual emotions was beyond the objectives of the present
work. However, we intend to investigate this issue in the future in order to comple-
ment our qualitative analysis of a�ective phenomena with a quantitative analysis.
Moreover, we have focused in this paper on the logical characterization of four
counterfactual emotions: regret, rejoicing, disappointment and elation. We intend
to extend our analysis in the future by studying the counterfactual dimension of
�moral� emotions such as guilt and shame. Indeed, as several psychologists have
shown (see, e.g., [Laz91]), guilt involves the conviction of having injured someone
or of having violated some norm or imperative, and the belief that this could have
been avoided.
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Figure 10.2: Vertical circles represent the actions that voter 1 can choose, horizon-
tal circles represent the actions that voter 2 can choose, and rectangles represent
the actions that voter 3 can choose. For example, w1 is the world in which can-
didate B wins the election and that results from agent 1 voting for candidate A,
and agents 2 and 3 voting for candidate B.
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Figure 10.3: Vertical circles represent the actions that player 1 can choose, whereas
horizontal circles represent the actions that player 2 can choose. For the sake of
simplicity, we suppose that players 1 and 2 do not have uncertainty: everywhere
in the model players 1 and 2 only consider possible the world in which they are
(re�exive arrows represent indistinguishability relations for the two players).
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example, we suppose that agents 1 and 2 only have uncertainty about the choice
of the other (vertical dotted rectangles represent indistinguishability relations for
agent 1, whereas horizontal dotted rectangles represent indistinguishability rela-
tions for agent 2).
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Conclusion

In this thesis, we have investigated knowledge reasoning with two types of con-
straints: constraints on the geometry of the worlds (Part I) and constraints about
the structure of a game or of choices of actions by agents (part III). Part II has
been devoted to the study of the structure of a game or of choices of actions by
agents via the logic STIT. In other words, we have studied the satis�ability problem
of a modal formula in each of those di�erent systems. More precisely:

• In part I, we have studied how to reason about what an agent sees and
what an agent knows about what the other agents see when the world is a
line (Chapter 4) and when the world is a plane Chapter 5). We have seen
that the satis�ability problem in Lineland is PSPACE-complete and that
the satis�ability problem in Flatland is decidable but the complexity may be
quite high (the lower-bound is still unknown). Nevertheless we have exhibited
a weak version of Flatland whose satis�ability problem is PSPACE-complete.

• In part II, we have studied the logic STIT which is a logic which deals with
what agents do, contrary to logics like CL [Pau02] and ATL [AHK99] which
only deals with what agents can do. Broesen et al. [BHT05] proved that
CL can be embedded into a version of logic STIT. In the same way, they
[BHT06b] proved that ATL can be embedded into another version of logic
STIT.

The complexity of the satis�ability problem of STIT does not arise from the
treatment of time but from the expressivity of the choice operator of STIT. In
Chapter 7, we have focused on the satis�ability problem and on the axioma-
tization of group STIT. In [BHT08], the authors proved that the satis�ability
problem of STIT logic, without time operator and only with individual opera-
tors is NEXPTIME-complete. We have proved that the satis�ability problem
of STIT logic, without time operator but with general group operators is in
general undecidable. Then we have been interested in the quest of search-
ing decidable fragments of STIT, more expressive than the individual STIT
and less expressive than group STIT. We have exhibited a fragment of STIT
where operators [J ] are such that the coalitions J are in a given lattice and
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we proved its satis�ability problem is NEXPTIME-complete. Exploring this
fragment have enabled us to give results for satis�ability in the individual
STIT with �next� operator settings.

In Chapter 8, we have focused on a weak fragment of STIT with a strong syn-
tactic restriction of the STIT-formulas. We proved the satis�ability problem
of a formula in this fragment to be NP-complete.

• In Part III, we have given two applications of STIT into two di�erent �elds:
game theory and formalization of emotions. In Chapter 9, we focused on
a logic inspired by STIT and have tried to formalize the notion of Nash
Equilibrium and the algorithm of Iterated Deletion of Strictly Dominated
Strategies. Since we need more expressivity, we have used a new version
of the logic STIT by adding explicit actions names in the language. We
proved the satis�ability problem of a formula to be NP-complete in the case
of complete information and PSPACE-complete in the case of incomplete
information.

In Chapter 10, we have extended the fragment of STIT studied in Chapter
8 with a knowledge operator and we have proved that we can capture the
notions of regret, rejoice, disappointment and elation. We have also proved
that the satis�ability problem is PSPACE-complete.

Analogy between Part I and Part II

In this thesis, we have discovered a curious analogy between the study of logics of
perception and knowledge in Part I and STIT theory in Part II:

• In both formalisms, when the dimension is low (Lineland in Part I or STIT
with one or two agents in Part II), the satis�ability problem in �easy�: respec-
tively PSPACE-complete for Lineland and NEXPTIME-complete for STIT;

• In both formalisms, when the dimension is high (Flatland in Part I or STIT
with three agents or more in Part II), the complexity of the satis�ability
problem increases: respectively in EXPSPACE (maybe less?) for Flatland
and undecidable for STIT;

• Moreover when the dimension is high, we were able to weaken the seman-
tics of both formalisms so that the complexity of the satis�ability problem
becomes equal to the complexity of the satis�ability problem when the di-
mension is low, in each case:

� In Flatland, we have weakened the semantics (see De�nition 36) so that
the truth of a formula only depends of the truth of literals a B b. The
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satis�ability problem in this weak Flatland version is PSPACE-complete
as in Lineland;

� Concerning STIT, we have weakened the additivity property RJ1∪J2 =
RJ1∩RJ2 (see De�nitions 43, 45) into the super-additivity property (see
De�nitions 50, 61). In those weaker con�gurations, the satis�ability
problem is NEXPTIME-complete as for STIT with two agents.

Perspectives

Theoretical perspectives

Dynamism

We aim at extending the results of this thesis by adding public announcements to
the language. For the moment, the complexity of Lineland, Flatland with public
announcements is unknown. We may also add the framework of dynamic epistemic
logic to Lineland and Flatland in order to model private announcements.

Concerning the logic STIT extended with the knowledge operator of the Chap-
ter 10, we aim at extending the language with dynamic operators in order to
capture emotion changes.

Variant of Lineland/Flatland

In the future, we will compare di�erent semantics of Lineland/Flatland (myopic
agents, agents with multiple angles of view, etc.) and we shall study the satis�a-
bility problem and axiomatization of each of these variants.

In addition we aim at combining the epistemic modal constructions Kaϕ with
modal constructions ♦aϕ of [MP92] meaning �if agent a can make an e�ort (widen
her vision cone) such that ϕ is true�.

Combining Lineland/Flatland and STIT

In Part I, we have studied the combination of constructions a B b (agent a sees
agent b) and the epistemic construction Kaϕ (agent a knows that ϕ is true). In
Part II, we have studied the logic of agency STIT (�see-to-it-that� logic) where
modal constructions are of the form [{a}]ϕ and stands for �agent a sees to it that
ϕ is true. The logic STIT also provides constructions for group of agents: [J ]ϕ
stands for �the coalition J sees to it that ϕ is true�. In Part III, we have combined
the construction [J ]ϕ of logic STIT with epistemic modal logic in order to model
notion of rationality and counterfactual emotions.
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Another perspective consists in modeling all aspects of �Seeing, knowing and
doing� altogether in one framework, that is to say to study a logic containing
constructions of the form a B b, Kaϕ and [J ]ϕ. We may consider a traditional
fusion of modal logics. However, we will be rather interested in considering axioms
of interaction between the three constructions:

• a B b → ([{b}]ϕ → Ka[{b}]ϕ): if an agent a sees an agent b then agent a
knows what agent b does;

•
∧
b∈J a B b → ([J ]ϕ → Ka[J ]ϕ): if an agent a sees all agents belonging to a

coalition J then agent a knows what the coalition J is performing.

In other terms, positions of agents in Lineland/Flatland may provide con-
straints over what agents know about the actions that are performed.

Implementation

A model-checker for Lineland has been already implemented (see Section 4.6).
Nevertheless no model-checker have been implemented for Flatland yet. The main
problem concerns the link between Flatland and the real number theory:

• Concerning the initial version of Flatland (De�nition 30), we only have a
translation from our epistemic language into the language of real number
theory which preserves the satis�ability (Subsection 5.5.2). Unfortunately,
this will not lead to a suitable implementation.

• Concerning the �stupid� version of Flatland (see De�nition 36), we have an
optimal PSPACE-algorithm (see Figure 5.7). This algorithm requires to
check if formulas of the �rst order theory of real numbers with only exis-
tential quanti�ers are satis�able. For the moment, we do not know how to
implement this;

• Concerning STIT, the high complexities (NEXPTIME-complete and unde-
cidable) discourage us to implement a satis�ability prover for this logic.
However, inspite of this high-complexity, tableau methods could be good
candidates for implementation as it is done in [Wan06] for another version of
STIT. Furthermore, it would be possible to implement a satis�ability checker
for the weak STIT fragment of the Chapter 8. A solution to do this may con-
sist in translating a formula into a formula of the classical propositional logic
for which we have e�cient satis�ability prover [LBP].
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A project

I would like to conclude this thesis with the road-map of a project: I want this
thesis to be useful to create a pedagogical video game devoted to teach epistemic
modal logic, reasoning about emotions in modal logic, epistemic planning, public
announcements, private announcements, etc. This future piece of software may
represent arti�cial agents in Flatland. The user may interact with the agents:

• Asking questions to agents:

� Do you regret that ϕ?

� Do you know that agent a sees agent b?

• Make public announcements;

Of course, this project shall mix the Lineland/Flatland approach and logic
STIT. We shall also consider concrete actions for STIT such as:

• agent a moves one step;

• agent a turns;

• agent a widen her vision cone.

When an agent speaks, she may only make private announcements to agents
which are near from her.

PartI︷ ︸︸ ︷
Seeing, knowing,

PartII︷ ︸︸ ︷
doing︸ ︷︷ ︸

PartIII︸ ︷︷ ︸
Perspectives
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