-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Scientific Publications of the University of Toulouse Il Le Mirail

HAL

archives-ouvertes

Efficient estimation of conditional covariance matrices
for dimension reduction
Jean-Michel Loubes, Clément Marteau, Michael Solis, Sébastien Da Veiga

» To cite this version:

Jean-Michel Loubes, Clément Marteau, Michael Solis, Sébastien Da Veiga. Efficient estimation
of conditional covariance matrices for dimension reduction. 2011. <hal-00632576>

HAL Id: hal-00632576
https://hal.archives-ouvertes.fr /hal-00632576
Submitted on 14 Oct 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50540215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00632576

Efficient estimation of conditional covariance
matrices for dimension reduction

JEAN-MICHEL LOUBES
Institut de Mathématiques de Toulouse

loubes@math.univ-toulouse.fr

CLEMENT MARTEAU
Institut de Mathématiques de Toulouse

clement .marteau@insa-toulouse.fr

MICHAEL SOLiS CHACON
Institut de Mathématiques de Toulouse

msolisch@math.univ-toulouse.fr

SEBASTIEN DA VEIGA
Institut Francais du Pétrole

sebastien.da-veigaQifp.fr

Abstract

We consider the problem of estimating a conditional covariance matrix in
an inverse regression setting. We show that this estimation can be achieved by

estimating a quadratic functional extending the results of[Da Veiga & Gamboa
(-). We prove that this method provides a new efficient estimator whose

asymptotic properties are studied.

1 Introduction

Consider the nonparametric regression
Y =o(X) +e

where X € R?, Y € R and E[¢] = 0. The main difficulty with any regression
method is that, as the dimension of X becomes larger, the number of observations
needed for a good estimator increases exponentially. This phenomena is usually
called the curse of dimensionality. All the “classical” methods could break down,
as the dimension p increases, unless we have at hand a very huge sample.
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For this reason, there have been along the past decades a very large number
of methods to cope with this issue. Their aim is to reduce the dimensionality of
the problem, using just to name a few, the generalized linear model in m

), the addmve models in [Hasne_&_T].bshu:anﬂ (1990), sparsity constraint
models as L . ) and references therein.

Alternatively, IL Li (19914) proposed the procedure of Sliced Inverse Regression
(SIR) considering the following semiparametric model,

Y=o X,...,vpX,€)

where the v’s are unknown vectors in R?, ¢ is independent of X and ¢ is an arbi-
trary function in RX+!. This model can gather all the relevant information about
the variable Y, with only the projection of X onto the K < p dimensional sub-
space (v] X,...,viX). In the case when K is small, it is possible to reduce the
dimension by estimating the v’s efficiently. This method is also used to search
nonlinear structures in data and to estimate the prOJectlon directions v’s. For a
review on SIR methods, we refer to Li (1221@@1, (1991); Hardle &
Tsybakov (@) and references therein. The v’s define the effective dimension
reduction (e.d.r) direction and the eigenvectors of E[Cov(X|Y)] are the e.d.r
directions. Many estimators have been proposed in order to study the e.d.r direc-
tions in many different cases. For example, |Z_u_@m§ (1996) and [Ferré & Yad
(m ) use kernel estimators, @é ) combines nearest neighbor and
SIR, Bura_& CooK (2001) assume that E[X|Y] has some parametric form, Setodji
& Cook (2004) use k-means and ICook & Ni (]lO_OH) transform SIR to least square
form.
In this paper, we propose an alternate estimation of the matrix

Cov(E[X|Y]) =E[E[X|Y]E[X|Y]] - E[X]E[X],

using ideas developed by Da Veiga & Gamboa (2008), inspired by the prior work

of Laurent (1996). More precisely since E[X]E[X] " can be easily estimated with

many usual methods, we will focus on finding an estimator of E[E [ X |V |E[X|Y] T] )
For this we will show that this estimation implies an estimation of a quadratic func-
tional rather than plugging non parametric estimate into this form as commonly
used. This method has the advantage of getting an efficient estimator in a semi-
parametric framework.

This paper is organized as follows. Section [2lis intended to motivate our inves-
tigation of Cov(E[X|Y]) using a Taylor approximation. In Section [3.I we set up
notation and hypothesis. Section is devoted to demonstrate that each coordi-
nate of Cov(E[X|Y]) converge efficiently. Also we find the normality asymptotic
for the whole matrix. An asymptotic bound of the variance for the quadratic part
for the Taylor’s expansion of Cov(E[X|Y]) is found in Section @ All technical
Lemmas and their proofs are postponed to Sections [6l and [5l respectively.




2 Methodology
Our aim is to estimate Cov (E[X|Y]) efficiently when observing X € R, for p>1,
and Y € R. For this , write the matrix
Cov(E[X[v]) = E[E[X|V]E[x|Y]"] - E[x]E[x] .
where AT means the transpose of A. If E[X| can be easily estimated by classical
methods, the remainder term
T . .
E[EXIYIE[XIY]T] = (%), @i=1l....p
is a non linear term whose estimation is the main topic of this paper. Each term of
this matrix can be written as

[ aif(z,xj,y)dada; [ f (i, 5, y)dasd,
T — s y)dedady,
Y /< ff(ffz‘,%‘, y)dx;dx; ff i, 5, y)dz;dz; [z, xj, y)dzdx;dy
(D

where f(z;,z;,y) for i and j fixed, is the joint density of (X;, X;,Y) i,j =1,...,p.

Hence, we focus on the efficient estimation of the corresponding non linear
functional for f € L(dx;, dx;, dy)

[ aif(zi,zj,y)dude;\ ([ @ f (2,25, y)dd;
Tii(f) = iy X, y)dxdrdy.
= Tlf) /( [ f(xi,xj,y)dadz; [ f(xi, xj, y)dadz; Jwis zg,y)duide;dy

(2)
In the case i = j, this estimation has been considered in [Da Veiga & Gamboa

d;O_O_d); Laurent (1996). Here we extend their methodology to this case. Assume
we have at hand an i.i.d sample (Xi(k),X;k),Y(’“)), k = 1,...,n such that it is
possible to build a preliminary estimator f of f with a subsample of size n; < n.
Now, the main idea is to make a Taylor’s expansion of 7;;( f) in a neighborhood of

f which will play the role of a suitable approximation of f. More precisely, define
an auxiliar function F : [0, 1] — R;

F(u) = Tyy(uf + (1 = u)f)
with u € [0, 1]. The Taylor’s expansion of F' between 0 and 1 up to the third order
is

F(1) = F(0) + F/(0) + 3F(0) + cF"(€)(1 - £) 3)

for some ¢ € [0, 1]. Moreover, we have

(1) = T5;(f)

_on o [ Jrif ey y)deday \ ([ f@s e y)deda; ) oo .
F(O) _Ej(f) - /( ffA(SL’Z,SL’],y)dedSL’] ) < ff(xz,xj,y)dxzdx] )f(:}c,,xya?/)dx,dx]dy

To simplify the notations, let

[ @ifuls, x;,y)dade;
ffu zi, x;,y)dxd;
f:pz xi, x4, y)dx;dz;

ff (i, x4, y)dx;dx, ’

mi(fo,y) = mi(f,y) =




where f, = uf + (1—u)f, Vu € [0,1]. Then, we can rewrite F(u) as

F(u) = /mi(fuay)mj(fuay)fU(xiaxjvy)dxidxjdy-

The Taylor’s expansion of 7;;( f) is given in the next Proposition.

Proposition 1 (Linearization of the operator 7). For the functional T;;(f) defined
in ), the following decomposition holds

le(f) = /H1<f7 Liy Ly, y)f(xivxj7y>dxidxjdy

+ /HQ(]E, Ti1, i, Y) f(zin, 21, Y) f(Tio, T2, y)drpdrjideedrjody + T, (4)

where

~ ~

Hl(fa Xy, Ly, y) = ximj(fa y) + x]ml(f,y) - ml(f? y)mj(fa y) (5)
1

HQ(.]Eu Ti1, Lj2, y) (fb’il - mi(f, y)) (ﬂsz - mj(fa y)) (6)

N ff(ﬂfuﬂig"y)dfb’idxj
L= (€)1 &), %

for some ¢ €]0,1].

This decomposition has the main advantage of separating the terms to be es-
timated into a linear functional of f, which can be easily estimated and a second
part which is a quadratic functional of f. In this case, Section [4 will be dedicated
to estimate this kind of functionals and specifically to control its variance. This
will enable to provide an efficient estimator of 7;;(f) using the decomposition of
Proposition Il

3 Main Results

In this section we build a procedure to estimate 7;;(f) efficiently. Since we used

ny < n to build a preliminary approximation f, we will use a sample of size
ny = n — n, to estimate (3) and (). Since (B) is a linear functional of the density
f, it can be estimated by its empirical counterpart

1 & A
LS (7, X9, X0, v, ®
U
k=1
Since (@) is a nonlinear functional of f, the estimation is harder. Its estimation

will be a direct consequence of the technical results presented in Section [, where
we build an estimator for the general functional

H(f) = /77(%‘1,%‘27y)f(xil,ijl,?/)f(ffzé,$j2,y)d$i1d$j1d$i2d$j2d?/

where 7 : R* — R is a bounded function. The estimator 6, of #(f) is an extension

of the method developed in|Da Veiga & Gamboa (2008).
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3.1 Hypothesis and Assumptions

The following notations will be used throughout the paper. Let d, and b, for s =
1,2, 3 be real numbers where d; < b. Let, for i and j fixed, L?(dz;dx;dy) be the
squared integrable functions in the cube [dy, b1] x [ds, bs] X [d3, b3]. Moreover, let
(pi(zi,24,9))1ep be an orthonormal basis of L?(dx;dx;dy), where D is a countable
set. Let q; = [ p;f denote the scalar product of f with p,.

Furthermore, denote by IL?(dz;dz;) (resp. L?(dy)) the set of squared integrable
functions in [dy, by] X [dy, by] (resp. [ds, bs]). If (aza(ffz‘,%)zae,gl)(l’esp- (ﬁlﬂ(y)lBeDg))
is an orthonormal basis of IL?(dx;dx;) (resp. L*(dy)) then py(z;, z;,y) = o, (@, ;) 81, (y)
with [ = (la, lﬁ) S Dl X DQ.

We also use the following subset of L?(dz;dx;dy)

2
E= {Z e . (el)lED is such that Z < 1}
leD leD
where (¢;),cp is a given fixed sequence.

Moreover assume that (X;, X;,Y) have a bounded joint density f on [d;, b;] X
[da, by % [d3, bs] which lies in the ellipsoid €.

In what follows, X, Py x (resp. X, Py x ) denotes the convergence in
distribution or weak convergence (resp. convergence in probability) of X, to X.
Additionally, the support of f will be denoted by supp f.

Let (M,),~, denote a sequence of subsets D. For each n there exists ), such

that M,, C D. Let us denote by |M,,| the cardinal of M,,.
We shall make three main assumptions:

€

Cl

Assumption 1. For all n > 1 there is a subset M, C D such that (supl¢ M, |cl|2)2 R~
|M,| /n? (A, ~ B means \; < A,/B < ), for some positives constants \; and
Xo). Moreover, Vf € 1L2(dxdydz), [ (Su,f — f)° dedydz — 0 when n — 0, where

SMnf - Z[eMn arpr

Assumption 2. supp f C [dy, bi]| X [da, by] X [d3,b3] and V(z,y,2) € supp f, 0 < a <
f(2,9,2) < Bwith 0, B € R.

Assumption 3. It is possible to find an estimator f of f built with n, ~ n/log (n)
observations, such that for e > 0,

V(z,y,z) €supp f, 0 < a — e < f(z,y,2) < B+ e

and,
V2 < q < oo, VIEN, Ef||f — f|[ < Cla, Oy

for some A > 1/6 and some constant C(q,l) not depending on [ belonging to the
ellipsoid &.

Assumption [Tl is necessary to bound the bias and variance of 6,. Assumption
and [3 allow to establish that the remainder term in the Taylor expansion is
negligible, i.e ', = O(1/n) . Assumption [3] depends on the regularity of the
density function. For instance for x € R?, s > 0 and L > 0, consider the class
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H,(s, L) of Nikol’skii of functions f € LL%(dx) with partials derivatives up to order
r = |s] inclusive, and for each of these derivatives (")

[f -+ h) — f(r)(.)Hq < LIh*" VheR.

Then, Assumption Blis satisfied for f € H,(s, L) with s > Z.

3.2 Efficient Estimation of 7};( f)

As seen in Section [2] 7;;(f) can be decomposed as (). Hence, using (8) and (14)
we consider the following estimate

v

~ 1
T<( H X(k‘) X(k‘) Y(
Z ! |

Z Z X(k X(k Y( )) /pl(xz,xj,Y(k/))Hg(f,xz,:L’],Xz(k/),X](k,),Y(k/))dxzdxj
lEMkik’ 1

Z Z pr (X, Xy ) py (X, x *0 y )
ll’eMk;ék/

/pz(%h%‘l,y)pl'(xw,%%y)HQ (]E, sz‘l,ijQ,y)d$i1d$j1d$i2d9€j2dy-
where H3(f, i, Tj1, Tia, Tjo, y) = Ha(f, 21, 752, y) + Ha(f, 22, 251, y) and ng = n —
ni. The remainder I',, does not appear because we will prove that it is negligible

when compared to the other error terms.
The asymptotic behavior of 7}(].”) for 7 and j fixed is given in the next Theorem.

Theorem 1. Let Assumptions hold and |M,| /n — 0 when n — oc. Then:

V(TS = Ty(f)) 2+ N (0,05(f)), ©)
and
lim nE[T" = T,(f)]" = Cy(f), (10)
where

CZ](f) = Var(H1(f, XZ'7 Xj7 Y))

Note that, in Theorem [1] it appears that the asymptotic variance of 7;;(f) de-

pends only on H(f, X;, X;,Y’). Hence the asymptotic variance of fi(j") is explained

only by the linear part of (). This will entail that the estimator is naturally effi-
cient as proved in the following.

Indeed, the semi-parametric Cramér-Rao bound is given in the next theorem.

Theorem 2 (Semi-parametric Cramér-Rao bound.). Consider the estimation of

B [ @i f (@, x;,y)deda; [ @ f (@, x5, y)dwda; o .
() = [ (Lt ) (L S ) o, o, )y
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for a random vector (X;, X;,Y') with joint density f € . Let f, € € be a density

verifying the assumptions of Theorem [Il Then, for all estimator T(" of T;;(f) and
every family {V,(fo)},-, of neighborhoods of f, we have

2
inf  liminf sup nE —T >
{Vr(fo)}r>0 n—oo fGVrl(t}O) |: ](fO)] ](fo)

where V,(fo) = {f : ||f — fo||, < r} for r > 0.
Consequently, the estimator TZ(] ") s efficient.

In the case of our estimate, its variance is C;;(f), which proves its asymptoti-
cally efficiency.

Remark that Theorem [T] proves asymptotic normality entry by entry of the ma-
trix T'(f) = (T;;(f))pxp- To extend the result for the whole matrix it is necessary
to introduce the half-vectorization operator vech. This operator, stacks only the
columns from the principal diagonal of a square matrix downwards in a column
vector, that is, for an p x p matrix A = (a;;),

vech(A) = [aq1, -+, ap1, Agay -+ 5 pa, - -+ 5 Asg, - 5 App]

Let define the estimator matrix 7' — (T”")) and H,(f) denote the matrix with

entries (H1(f, i, z;,y)), ;- Now we are able to state the following

Corollary 1. Let Assumptions [IH3| hold and |M,,| /n — 0 when n — oo. Then 7"

has the following properties:

Vaveeh(T" — T(£)) 25 N (0,C(f)) . (11)
lim nE [Vech(f(n) —T(f)) Vech(f(n) — T(f))T] =C(f) (12)

n—oo

where
Cc(f)= Cov(vech(Hl(f)))

Previous results depend on the accurate estimation of the quadratic part of the

estimator of Tz(j , which is the issue of the following section.

4 Estimation of quadratic functionals
As pointed out in Section [2] the decomposition (4) has a quadratic part (6) that

we want to estimate. To achieve this we will construct a general estimator of the
form:

0= /ﬂ(iUz'bl’j273/)f($z'1,SUjlay)f(SCiz,sz,y)dﬂfﬂdiﬁﬂdﬂfmdﬂszdya

for f € £ and n : R® — R a bounded function.



Given M,, a subset of D, consider the estimator

TrE PP SRRV

zeM kk/=1

/pl(:cl-, z;, Y (n(xl-,X;k/), Yy n(Xi(k/), z;, Y(k,))) dz;dx;

Z Z pl X(k‘ X(k‘ Y(k))pl/(Xi(k/),Xj(»k/),Y(k/))
ll’eMk;ék’

/pl(ﬂfﬂal’jlay)Pl'(ﬂsz,56’;’2719)77(372‘1,56’3’27y)dfb’z’ldﬂfﬂdiﬁmd%ﬂdy- (13)

In order to simplify the presentation of the main Theorem, let ¢)(z;1, xj1, zi1, 2j2,y) =
n(wi, Tj2,y) + n(Tia, 251, y) verifying

/w<xi17xj17xi27xj2uy)dxildledxﬂdxﬂdy: /1/1(551'27%2,%1737]‘17y)dﬂfz‘ldﬂ?ﬂdiﬁmdl’ﬂdy-

With this notation we can simplify (13) in

Z Z n(x®, Y(k))/pl(xl-,xj,Y(k,))z/}(xi,xj,X( D X Y 0 dayda
leMk;ék’ 1

WD) 2 Z (XY, X,y O (xF, X8,y #))

ll’eMk;ék/

/pl(%l,90;‘1,?/)291’(%2,90;‘2,?/)77(%‘17$j2>y)d$i1d$j1d$i2dffj2dy- (14)

Using simple algebra, it is possible to prove that this estimator has bias equal to

- /(SMf(l’z'lalevy) — f(@i, 2j1,9) (Su f iz, 2o, y) — f(Ti2, T2, y))
N(xi1, T2, y)dradrdrdrjdy  (15)

The following Theorem gives an explicit bound for the variance of 6,,.

Theorem 3. Let Assumption D hold. Then if |M,| /n — 0 when n — 0, then 6, has
the following property

B (6~ 6)7) = At < [ 122

Pl Iswo=al|.  as

where g(z;, x;,y) = f [ @iz, xjo, Y)W (x5, T, Tia, 252,y )dxs0dxjo and

2

oo and A:vizvj = (b1 — al)X(bQ — ag).
Moreover, this constant is an increasing function of these quantities.

8



Note that equation implies that
lim nE[én — «9}2 =A(f,n).

n—oo

These results will be stated in order to control the term
Q= /H2<f7 Ti1, xj27y)f(xi17leu y)f(ﬂfza, $j27y)d55i1dlﬁj1dﬂfz2d$j2dy

which has the form of the quadratic functional § with the particular choice n(x;1, zj2,y) =
Hy(f,xin,z;,y). We point out that we also show that in this particular frame, we

get A(f,n) = 0. This the reason why the asymptotic variance of the estimate f}(f)
built in the previous section, is only governed by its linear part, yielding asymptotic
efficiency.

5 Proofs

Proof of Proposition 1
We need to calculate the three first derivatives of F'(u). In order to facilitate
the calculation, we are going to differentiate m;(f,,y):

d _d fxifu(xi,xj,y)dxidxj
du (mi(fu’y))_@ ( [ fulzi,zj, y)dadz; )
_ f$z(f($z>$]>y) - f(xiaxjay))dxidxj
[ fulzi, xj,y)daidx;
_f%‘fu(%',%‘a y)d%‘d%‘ f f(%', Zj, y) - f(%',%‘, y)d%d%
(f fu(xi,a:j,y)d:cidxj)Z 7
_ Jailf (@i, a,y) — flas, 25, y))dadz;
ffu (i, x5,y )d:pdxj
mi(fu,y) [ flzi, 2,y f(xi,xj,y)d:cidxj
[ ful xz,x], y)dxdz, ’
[ ful@i, g, y)dada; '
Now, using (17) we first compute F”(u),
d d
/%(mi<fuay))mj<fu,ay)fU<xivxjvy)_'_mZ(fuv )d ( (fm ))fU<xi7xj7y)
d
i o )y ) o
:/ (2 (fury) + 250 (fur ) — M6 (fun )5 (Fun )] (f (22, 5, 9) — (20,25, y)) dasda;dy.

Taking u = 0 we have

(fu('rh Zj, y)) d'rldxjdyu

F'(0) = / [ﬂfz‘mj(ﬁ y) + zymi(f,y) — mi(f,y)my(f, y)] (f (@i, 2, 9)— f (20, 25, ) daida;dy.
(18)



We derive now m;( f,, y)m;(f.,y) to obtain

)3 ) = o O ) o)+ 7o) (o)
f(xl - ml(fua y))<f<xi7xj7 y) - f(xivxjvy»dxidxj
ffu(xi,xj,y)dxid:ij
>f(x] - mj(fu,y))(f(:ci,:cj,y) — f(zi, 25, y))dxdz;
[ fulzi, g, y)daida; i

= m;(fu,y)

(19)
Following with F”(u) and using (17) and we get,
F”(u) _ / o f(ij - mj(fU7 y))(f('rz% Tj2, y) - f(xi% Tjo, y))d'rﬂdxj2
f(%a - mi(fua y))(f(%é, %‘2,?/) - f(%a,%a, y))d$i2d$j2

T ffu(ﬂfz,xj,y)d:cidxj

—my(f )f(xzz — mi( fu, y))(f(xm, Zj2, y) — f(xig, T2, y))d$id:pj
s ffu(fci,xj,y)d:cidxj

—m;(f, y)f(sz _ mj(f“’y)xf(xi?’xj?v y) — f(ﬂfzz, $j27y))d£€¢2dxj2

(f(xila Tj1, y) — f(xila Tj1, y))dxildl'jldy-

Simplifying the last expression we obtain

F”(u) _

| Trtem s, (G =) = ) + (e = mtu) (o = i)}
(f (i e y) = fl@i, 250,9)) (f (@i, 22, y) = f 2, 250, y)) deadejdrndzady.

Besides, when u = 0

F(0) = 20)

/ [ ;,wdxiw { G = mi(F) (2 = my(F.9) + (i = malF9) (= () |
(f(@awin,y) = ez, 9) (f (@i, 20, y) = f(@i2, 250, 9))dradajidsdzady

(zir = mil f. ) (232 = 3 (f, )

2

(f@i, zj1y) = f@i, 20, 9) (f (@, 22, y) — f(@i2, 252,9) ) dwdajrdandaody.
(21)
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Using the previous arguments we can finally find F"’(u):

F///(u) —
[ T o = ms ) (a2 = m )
ffu($laxjay)dxldxj ! ’ ! ! ’
(f(l’mﬂfjla y) — JE(JM, l’jhy)) (f(%z@jzyy) - JE(J%‘Q, l’j27y))
(f (i3, 53, y) — f@i, 2, y))dzadzjdapd jpdrisdrjsdy  (22)
Replacing (18], (2I) and (22) into (@) we get the desired decomposition. O
Proof of Theorem [1
We will first control the remaining term (7)),
1 "
D = SF(€)(1- &),

Remember that
F///(g) _ —6/ (xil B mi(fﬁv y)) (x]? B mj(fﬁ? y))
2
(f(ﬂfm T2, y) - f(fb’z'z, T2, y)) (f(ﬂfz‘:s, T3, ZJ) - f(ﬂfz‘:s, T3, y)) dﬂ?ﬂdﬂ?ﬂdlﬁmdfb’ﬂd%sdfb’ﬁd%

Assumptions [Tl and [2] ensure that the first part of the integrand is bounded by a
constant u. Furthermore,

|Fn| SM/ ’f(%‘l, Zj1, y) - f(xi1>$j1,y)’ ’f(!EiQ,%‘Q, y) - JE(%'Q, sz,y)

(f(xn,xﬂ, y) — flaa, 1, ))

’f(%'?,, Tj3,Y) — e T3, y)’ dxjdxjidred jodrsda jsdy

3
_lu/(/‘f Ty, L5, Y ($laxja )‘dxldxj) dy

R 3
<ILLAm,m /’f xllax]h f(xilaxjhy)’ dxldx]dy
by the Hélder inequality. Then E[I'2] = O(E([ |f — f*)?) = O(E||f — f]|S). Since
f verifies Assumption [3] this quantity is of order O(n;®"). Since we also assume

ni ~ n/log(n) and A\ > 1/6, then n;®* = o( ) .Therefore, we get E[I'2] = o(1/n)
which implies that the remaining term I',, is negligible.

To prove the asymptotic normality of fi(j"), we shall show that \/n (fi(j") —Ty(f ))
and define

Z = ZH £ XM xW y®)y / Hy(f, @i, 05,9) f (3,25, y))dwida;dy (23)
o

have the same asymptotic behavior. We can get for ZZ(]" ) a classic central limit
theorem with variance

Cz_](f) = Var(Hl(f, Tiy Xyg, y))

2
= /Hl(f7 xiaxjay)zf(xiaxjay))dxidxjdy - </ Hl(f> $ivxjvy)f(xi’xj>y))dxidxjdy)

11



which implies and (TI0). In order to establish our claim, we will show that
R™ = /n [f.(ﬁ) —Ty(f) - Z@] (24)
1] 1] ) 1

has second-order moment converging to O.
Define Zi(f) as Zi(f) with f replaced by f. Let us note that RZ(;L) = Ry + R, where

By = | T = Ty(f) = 2

Ry =+n|Z — 7.

%] %]

It only remains to state that E[R}| and E[R3] converges to 0. We can rewrite R;
as

Rlz_\/ﬁ[@_Q+Pn]

where we note that

Q= /HQ(f> Ti1, 90;‘2,?/)]0(901‘1,%17 y)f(%a, $j2,y)dffi1d$j1d$i2d9€j2dy

) 1 ) )
Hy(f, wi, xjo,y) = [ Tz y)dnds, (%'1 - m,~(f,y)> (%‘2 - mj(f,y)>

has the form of a quadratic functional studied in Section M with n(x;1, zj2,y) =
Hy(f,xi1,x52,y). Hence such functional can be estimated as done in Section (4
and let @ be its corresponding estimator. Since E[I'?] = o(1/n), we only have to

control the term \/ﬁ(@ — @) which is such that lim,,_,,, nE [@ - Q] =0 by Lemma
[Zl This Lemma implies that E[R}| — 0 as n — oc. For R, we have

n

E[R;]=— {/ (H1(f, Ti, Tj,Y) — Hl(fﬂfz‘,xjay)>2f($zaﬂfjay))dﬂfid5€jdy}

ng
n N

The same arguments as the ones of Lemma [7] (mean value and Assumptions[2] and

B) show that E[R%] — 0. O

Proof of Theorem [2]. To prove the inequality we will use the usual framework
described in Ibragimov & Khas'minskii (1991). The first step is to calculate the
Fréchet derivative of T};(f) at some point f, € £. Assumptions[2l and [3]and equa-
tion (4), imply that

T(9) = o) = [ (s o) + 2yl fos ) = (o by o))
(f(%,%‘,?/) - fo(%,%,y))d%d%d?/ + O (/ (f = f0)2>

12



where m;(fo,y) = [ @ifolwi, x;,y)dxdzidy/ [ fo(xi, xj,y)dx;dz;dy. Therefore, the
Fréchet derivative of Tj;(f) at fo is T;(fo) - h = (H1(fo, ), h) with

Hi(fo, zi, x5,y) = ximy(fo, y) + zymi(fo, y) — mailfo, y)mi(fo, v)-

Using the results of [Ibragimov & Khas'minskii (1991), denote
H(fy) = {u € L2(dxidz;dy), [ulz, xj,y)\/ folz, xj,y)dede;dy = O} the set of
functions in L?(dz;dx;dy) orthogonal to \/fy, Prp(y,) the projection onto H( fo),
A, (t) = (Vfo)t/+/n and P}:) the joint distribution of (Xi(k),Xj(k)) k=1,....n
under f;. Since (Xi(k),Xj(k)) k = 1,...,n are ii.d., the family {P(:),f € }is
differentiable in quadratic mean at f, and therefore locally asymptotically normal
at all points f, € £ in the direction H( f,) with normalizing factor A, (fy) (see the
details in Van der Vaart (2000)). Then, by the results of i "minski
) say that under these conditions, denoting K,, = B,0'(fy) A Pru(s,) with
B, = /nu, if K, = K and if K (u) = (t,u), then for every estimator ﬁ(f) of
T;;(f) and every family V( f;) of vicinities of f;, we have

. o ~(n) 3 2 2
{ng)}llggffesg&)nE[nj —ng(fo)} ZHtH]LQ(dJ:idxjdy)'

Here,

Ka) = VAT () Loy ) = T (VA (u- Vi [/R)).

since for any u € L?(dxz;dz;dy) we can write it as u = v/fo (v/fo, u) + Pry(s) (). In
this case K, (u) does not depend on n and

k) =1 (Vi (e Vi [ V)
=/H1(fo,-) fou—/H1(fo,-)\/%/u Jo

= (t,u)

with
t(xi, 25,y) = Hi(fo, 2,25, 9)V/ fo — (/Hl(fo,xi,xj,y)fo> Vfo.

The semi-parametric Cramér-Rao bound for this problem is thus

2
HtHLQ(dmi,d:vj,dy) :/Hl(fo,:cl-,:cj,y)2f0d:cl-d:cjdy— </H1(foafﬁiaxjay)fodfﬁidfﬁjdy) = Ci;(fo)

and we recognize the expression Cj;( fy) found in Theorem Il O

Proof of Corollary[Il The proof is based in the following observation. Employing
equation (24) we have



where Z™(f) and R"™ are matrices with elements 2y ™ and R\, defined in (23)
and (24), respectively.

Hence we have,

E[vech (T = () = 20(0) ] = Bl Jvech (R[] = S B[() ]

1<j

Z]’

We see by Lemma 7] that E[R?] — 0 as n — 0. It follows that

~(n)

E[[[vech (7" = T(f) = 2(1))|]'] = 0asn 0.

We know that if X,,, X and Y, are random variables, then if X, 2, X and
(X, — Y,) 2> 0, follows that Y, =5 X.

Remember also that convergence in L2 implies convergence in probability,
therefore

Jnvech (T("’ - T(f) - 2"(h)) Lo
By the multivariate central limit theorem we have that \/n vech (Z ) (f )) 2
(|

N (0,C(f)). Therefore, \/n vech (T("’ T f)) 25 N (0,C(f)).

Proof of Theorem 3 For abbreviation, we write M instead of M, and set m =
|M,,|. We first compute the mean squared error of 6,, as

E[én — 9}2 = Biasz(én) + Var(én)
where Bias (én) = E[@An} —0.

We begin the proof by bounding Var (Hn) Let A and B be m x 1 vectors with
components

a Z/pz(%',%‘,y)f(%,%,y)d%d%dy [=1,....,m,
bl:/pl(xilaleay)f(xi2axj27y)¢(xi1>leaxi27$j2>y)dxi1d$j1d$i2d$j2dy

where g([L‘Z, Zj, y) = f f([[’ig, T2, y)’g[)(l‘l, Tj,Ti2, Tj2, y)dl‘igdl‘jg. Let Q and Rbemx1
vectors of centered functions

QZ(%,%‘,?/) = pl(l'i,l'j,y) —ap

ri(zi, xj,y) = /pl(ﬂfmﬂijzay)w(ﬂfz‘,55j7$z2,56’j27y)d55i2d56j2 — b
fori=1,...,m. Let C am x m matrix of constants
Qr = /pl(%'l,ijl,?/)Pl/(%‘m953‘2,y)n(%l,$j2,y)d9€i1d$j1d$i2d$j2dy LI=1,...,m.

14



Let us denote by U,, the process

and P, the empirical measure

ST r(x® XM y®)

k=1

SRS

for some h in L?(dz;, dz;, dy). With these notations, 6,, has the Hoeffding’s decom-
position

Z Z a(X7, X7 v ®) + a) (Tz(Xi(k/), X;k,), YE)) +b;)
leM ktk!=
n(n—1) Z Z (a (X X(k YY) 4 ) (QZ'(XZ(IC/),X]W),Y('“/)) + ap)cw
l VEM ktk'=

—U,K+P,L+A"B— ATCA
where

K(xi1>$jlay1>xi2>xj27y2) :QT(fEn,%‘hyl)R($i2,$]‘2,y2) - QT(wz‘l,%‘l,yl)CQ(%‘Q,%‘z,?b)
L(quﬂfja ZJ) :ATR(iUi’xj’y) + BQ(SUz'J?j’y) - QATCQ(%‘, Zj, y).

Therefore Var (Qn) = Var(U,K)+ Var(P,L) —2 Cov (U, K, P,L). These three terms
are bounded in Lemmas [2] - 4], which gives

For n enough large and a constant v € R,

Var(6) < ¥lnll 1 /112420, <E+l>'

nz n

The term Bias (én) is easily computed, as proven in Lemma 5] is equal to

—/(SMf(xu,xﬂ,y)—f(xn,xﬂ,y))(SMf(:Eiz,sz,y)—f(xiz,sz,y))

n(za, Lj1, Tiz, Tj2, y)dxildledxﬂdxﬂdy-
From Lemma [5} the bias of 6, is bounded by

Bias (én) <

vy [l oo S0P lea”
1¢M

2
The assumption of (Supl¢ M |ci|2> ~ m/n* and since m/n — 0, we deduce that

E[6, — 6]” has a parametric rate of convergence O (1/n).

15



Finally to prove (16)), note that

nlk [én - «9] ® — n Bias? (én) + n Var (én)
—n Bias? (én) +n Var(UnK) +n Var(PnL) )

We previously proved that for some A\, A, € R

n Bias ( )<)\1A2

o s
9 m
nVMUfK)<&A%%WWmWng
Thus, Lemma [6] implies

[nVar(PoL) = ACfm)| < M[[Sarf = Fll, + [[Sag = gll,]

where ) is a increasing function of || f||°, ||7/|” and A,,,,- From all this we deduce
which ends the proof of Theorem [3 O

6 Technical Results

Lemma 1 (Bias of 6,,). The estimator 6, defined in (14)) estimates 6 with bias equal
to

- / (SMf(%'l,%‘l, y) - f(xila ijl,?/)) (SMf(xi2>$j27 y) - f(%a, ijQ,?/))
n(zi, ZTj2, y)dxildledxﬂdxﬂdy-

Proof Let 6, = A — 6 where
n_n(n_ 1) pl( i ; ) pl(ﬂfi,l’j, )’Lp(ﬂfi,l’j, i Ny ) xidx;
IEM k#k/—1
0= D) Z (XX Y O ([, X, Y 00
ll’EMk;ék/

/Pl(!Ez‘l, Tj1, Y)pr (i, Tj2, y)n(xit, Tj2, y)d%ld%ld%ﬂ%ﬂy-

16



Let us first compute E[4}].
E[érll] :Z/Pl(%l,%‘l,y)f(%l,ffjl,?/)d%ld%ld?/
leM

/Pl(ffil,%‘l,y)@/)(xil,ijla%‘Q,!Eﬂ,?/)f(xzé,%a,y)d$i1d$]‘1d$i2d$]‘2d?/

:Zal /pl<xi17xj17y)w(xilaleaxi%xj%y)f(xi%xj%y)dxildledx&dxﬂdy

leM

:/ <Z alpl(xi2>xj27y)> @/)(%'1,9Cj1,$i2,90;‘2,?/)]0(5751‘2,%27y)d$i1d$]‘1d$i2d$]‘2d?/

leM

:/SMf(a:ﬂ,le,y)f(ﬂfm,sz,ZJ)TI(SUﬁ,J?jz,y)dﬂ?ﬂdﬂ?ﬂdxmdﬂszdy
+ / S f(@iz, w2, y) [ (@i, 21, y)n(@in, 52, y)dwpda i dvde jody
Now for 62, we get
E[62] =) /Pl(%ffjay)f(%ffjay)dxid%dy/pz/(%%‘ay)f(%xja?/)dxz‘dffjdy
LM

/Pl(!Ez‘l, 1, Y)pr (T2, T2, y)n (i, Tj2, y)d$i1d$j1d$i2d$j2d?/

= Z alal//pl(xiluxj17y>pl’(xi27xj27y>77<xi17xj27y>dxi1dxj1dxi2dxj2dy

Ll'eM

:/ (Z alpl<xi17leay)> (Z al/pl/(xi%xj%y)) 77(3%‘17%'27y)dlﬁildfb’jldfb’izdﬂszdy

leM l'eM

Z/SMf(%'h%‘hy)SMf(%‘Q,90;‘2,?/)77(%‘1,$j27?/)dwz‘ldffjldxﬁdxﬂdy-

Arranging these terms and using

Bias (0,) = E[0,] — 0 =E[0}] —E[6?] — 6
we obtain the desire bias. O
Lemma 2 (Bound of Var(UnK )). Under the assumptions of Theorem [3] we have

Var(U, ) < s 7] A2, (m o+ 1)

Proof. Note that U, K is centered because () and R are centered and (Xi(k), X ](k), YR k=

17



1,...,nis an independent sample. So Var(UnK ) is equal to
( (n - 1) kl;ék =1 kg;ﬁké_l

K(Xi(k2)7X;k2)7Y(k2)7Xi(kl2)7X;ké)’y(ké))>

Z%E <K2(XZ(1)’X](1) y® X_(2) X(z) Y(Q))

Y ) ) Y
n(n —1 ! J

By the Cauchy-Schwarz inequality, we get

Var (U,K) < 2

— = B[R (x XDy, x P Xy @],
— TL(TL _ 1) 7 Y 7 7 ) 7 Y ] )

Moreover, using the fact that 2 |[E[XY ]| < E[X?] + E[Y?], we obtain

E[(QT(x", xM yMR(x®, X y®))?]

J Y

E[K” ( X XM ym, x@ X]@,Y@))] <9

HE[(QT(XV, XV yM)oQ(xP, xP vy ?)) }]-

We will bound these two terms. The first one is
[(QT( X(l) y ))R(X(Q) X( )7}/(2)))2}

= (/Pl(u%$j7y)pl'($i7$j7y)f(fb’z’,56j7y)d5€idﬂfjdy - alal/)

LVeM

(/pl(%a,90;‘2,?/)Pl/(%?ﬂ90;‘3,?/)w(wil,%‘hxﬂ,%‘%y)

Q/J(ffz‘l, Xj1, Xi3, Lj3, ?/)f(%‘l, Tj1, y)d$i1d$j1d$i2d$j2d$i3d$j3d?/ - blbl’)

=Wy — Wa — Ws + W,

18



where

Wl:/ Z pl(xilvlevy)pl’(l’ualeay)pl(xi%55j27yl)pl'(5€i3737j37y/)w(ﬂfi4,5€j47$z2737j27y/)
L'eM

(w44, Tj4, Xi3, Tj3, yl)f<55i1, Tj1, y) f (w4, L4, y/)dl’udﬂ?j1dﬂ?mdlﬁjzd%sd$j3d$¢4d$j4dydyl
Ws :/ Z bibupi(ziv, 21, Y)pr (i, Tj1, y) f (v, 11, y)deadejdy

L'eM

W3:/ Z alal/pl(l’z’z’sz,y/)pl/(fb’is,fb’j:s’y')

LI'eM
/ / / /
(w44, Tja, Tiz, Tj2,Y ) (Tia, Tj4, Xi3,2j3,Y ) f(@ia, L4, Y )dll?zadib’j2d56¢3du”€j3d$i4dﬂfj4dy
W4 = E alal/blbl/.

Li'eM

W, and W3 are positive, hence

2
E[(QQT<Xi(1)7X](1)7Y(l))R(Xi(2)7X](2)7y(2))) | < W+ W,

Wi :/ Z pl(!Eil,%‘lay)pw(fﬂz‘l,%hy)(/pl(%a,!Ej2>y/)¢(9€z‘4,$j4,901‘2,%‘2,y/)d%deﬂ)

LreM

(/pl/ (%‘3, Tj3, y/)¢($¢47 Tja, Ti3, Tj3, y/)dxinij) f(SUz'l, Tj1, y)f(55¢47 Tj4, y/)dib’ildﬂfﬂdﬂfmdﬂszldydy

SHinO Z /Pl(ffil,%‘l,y)pw(%l,%‘l,y)d%'ld%‘ld?/

L'eM

/(/Pl(!m,%‘2,?/)@/)(%4,%47$i2>$j2ay,)d$i2d$j2)
(/pl/ (l’ig,xj?n y’)w(m, Tj4, Xi3, Tj3, y,)dﬂfz‘:sdﬂfjs) dxidej2dxi4dxj4dy,

Since p,’s are orhonormal we have

2
Wy SHinOZ/ (/pl(xi2>xj27y,)¢(xi4a$j4>$i27$j2>y/)dxi2d$j2) dl‘z‘4dl'j4dy,-

leM

Moreover by the Cauchy-Schwarz inequality and Hz/;”oo < QHWHOO
2
</ PuTiz, Tjo, Y ) (Tia, Tja, Tio, Tj2, y')d%'zd%Q) = /Pz(m, 0,y )2dwinda
/ ’l/}<xi47 .Tj4, X2, xj27 y/>2dxi2dxj2
2
S HwHooAl'zxj /pl(xZQ) xj27 y,)le'iQd{L'jQ
2
§4HnHooA$,$J /pl(xi27l‘j27y/)2dl'i2dl’j2’

19



and then
/ / 2 /
/(/pl(%a,%a,?/ )¢($i4,$]‘4,$i2,%‘2,?/ )dffzédffﬂ) d$i4d$j4dy
< 4H77Hoo T, /pl(llfz?’%‘z,y/)2d$i2dl’j2dy/

:4HTIHOOA33¢$]"

Finally,
Wi < 4l AL A2 m

e’} 15’33

For the term W, using the facts that Sy, f and S, g are projection and that [ f =1,
we have

mz(zalb,) <SS @S0 < 1 lol2 < A1 ol

leM leM leM

By the Cauchy-Schwartz inequality we have || 9”; < 4”77”1“ f]|.A2 . and then

0o Xilj

Wi < 4flnf ]2

e’} 3333]

which leads to

E[(QT(XY, XV, YO RXP XP YO <daf|n|” || £||2A2%, (m+1). (25)

The second term E[(QT (X", X(1 Mex? X](Z), YON] = W5 — 2Ws + W5
where

/ /
Wi 2/ § E Clllgclglgpll(%l,%‘l,y)plg(%l,903‘1,?/)291'1(%2,903‘2,9)pl’g(%m!ﬂﬂ,y)
SRR

f(lea lea y)f(l‘z% x]Qa ,)dled$]1dx12dx32dy,dy

W = /chlll 1 Claly Gy Q1o P (xuxjay)pl (@i, x5, y)dx;dz;dy

1,17 12,1},

W7 = E E 6111/16121/2611104/1 al2al/2.

1,1, ol
Using the previous manipulation, we show that Wy > 0. Thus

E[(QT(x", XM, yMeQx?, x® vy O] < Ws + Wy,

20



First, observe that

Ws = Z Z Cu1 Clolyy (/pll(ﬂfih i1, Y)Pi (T, 21, y) f (2, leay)dxildledy)

A

</Pl’1 (w32, 242, y/)plg (Ti2, l’j27y/)f(5€¢2, $j27y/)d$i2d56j2dy/>

SHinO Z Z Cil, Clol, </p11($i1, i1, Y) P (T, T, y)d$i1d$j1d?/)

RPN
(/Pl’l (w32, 252, Z/)plg (a2, 42, y/)dl’z'zdﬂ?jzdy/)

=FI5> "

L
agin using the orthonormality of the the p,’s. Besides given the decomposition

(@i, x5, y) = au, (T4, 25) Biy (),

S o= [ 3 ), 0)60, (), )

I /
1l (PR

Z (/ o, (Tin, T )auy, (%2,56’]'2)77(3%17117]‘27y)dﬂfz‘ldl’ﬂd%zdiﬁjz)

lall,
</ au, (@i, 53) (SU¢47$j4)77(5€¢37$j47y/)dﬂfz‘3d~”€j3dfb’i4dl’j4) dydy’

But

Z (/ a, (Tin, Tj1)auy, (%2,56’]'2)77(3%1,56’j2ay)d$€z'1d5€j1d$i2d$€j2>

la,lL,

</ g, (%‘3, $j3)041g (%‘4, $j4)71(9€z‘3, Tja, y/)d$i3d$]‘3d9€i4d%4)

:Z/Oéla(llfﬂ,56’;’1)041&(56’@'273%2)77(56’@'1,$5j2ay)041a(5€z’3,5€j3)

la,lL,

/
Q. (%’47 37j4)77(5€z'3, Tja,Y )dfb’udfb’jld$¢2d$j2d$i3dﬂfj3d$z4dl’j4

Z/Z (/ ala(xilale)n(xilaijay)d$i1d$jl) o, (Tiz, T53)
la

Z (/ al;($i4,$j4)7)($z‘3, $j4,y/)d$z‘4d9€j4) %(901‘2,$j2)d$i2d9€j2d$i3d$j3

A
< /77(3%‘37 T3, Ti2, Tj2, y)n(xis, Zj2, y/)dﬂimdﬂszdl’isdl’jzs

<oz, llf.
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using the orthonormality of the basis «;, . Then we get

St <2 [l | [ 32 510060y ()80, (o oy

Ll Ig,lly

=2l 3 (/ ) )
<82, bl X (f o)

<82,

since the 3, are orthonormal. Finally

< 7L Nl A%, m

Now for W, we first will bound,

Cll’ a;ayr

|/ Z wayp (Ti, T, Y)py (i, T2, Y)N(Ti, Tjo, y)deade drdzjsdy

Ly L'eM

S/|SM(xi17leay)SM(szaxﬂay)n<xilaxj27y)|dxildledxmdxﬂdy
< HTIHOO/ </\SM(SL’u’J?jlay)SM(SUm,lsz,y)‘dy) drydxjidrpdr .

Taking squares in both sides and using the Cauchy-Schwartz inequality twice, we
get

2 2
(Z Cll/alal/> = Hﬁ”io (/ </ |Sm(@in, j1,Y) Sm (Tiz, 2, y) dy) dxildledxﬂdxﬂ)
L

2
SH’I]H J:,xj/(/|SM i1, L1, Y )S (l‘ig,l‘jg,y”dy) dxildl‘jldl‘igdl‘jg

< HTIH a;zxj / (/ SM<xilaxj17y)2dy) (/ SM(SL’z'z,SL’ﬂ,y/)Zdy,) dzrpdrjidrpd

_HTIH xzxj/SM(fEilaleay)QSM(xilaleay,)deildledxidejZdydy/

= HnHioAixj (/ SM(xiyxj,y)2d$id$jdy)
<[lmlZ A 1712
Finally,

E[(QT(X", xM yMeQx®, xP vy ONT < |lnll2|IfIIF.A%, (m+1). (26)

x,xj
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Collecting and (26]), we obtain

Var (U, K) < HnH 7]

(m+1)
n(n

x,a:J

which concludes the proof of Lemma IZL O

Lemma 3 (Bound for Var (PnL)). Under the assumptions of Theorem [3] we have

Var(PL) < —H 1%

xﬂ:]

Proof. First note that given the independence of (Xl(lC X ](k), Y®) k=1,...,nwe

have

Var(P,L) = %Var(L( XM x ymy)

we can write L(Xi(l), X](I)7 Y) as

T (v® v vO) . pTo (vO v v T M ) v
A R(XZ. XDy )+B Q(XZ. XDy )—2A CQ(XZ. X0y )

=2

leM

a (/pl 56’@737]73/( ))Q/J(SL’Z-,SC]',X( ) X(1 YW dx;dx; — bl)

S (X)) =2 3 (w0, X 1) )

le

M Ll'eM

/Zalpl xz,x],Y( ))w(:pz,xj,X(l) X(1 Y(1 dxdx;

leM
+ Z blpl(Xi(l ,X] -2 Z cll/al/pl X(l) Y(l)) - 2AtB - 2AtCA
leM Ll'eM

:/SMf(.TZ‘,xj,Y(l))w(ﬂji’xj’Xi(l)’X;I),Y(l))d.ridxj + SMg(Xi(l),Xj(l),Y(l))

-2
!

Let h(ﬂfz
Surh

:Z(

leM

—Z(

leM

-5

L'eM

_22

Ll'eM

:22

Z C”/al/pl X(l) Y(l ) — 2ATB — 2ATCA

JeM
y L, y) = f SMf(SUw, T2, y)d’(%ﬁ Zj, Ti2, Tj2, y)dﬂfmdﬂ?jz, we have
xiaxjay)

/ h(llfza, Zj2, y>pl<xi27 Zj2, y)dﬂfzadl’ﬁdy) pl(ﬂfu Ty, ZJ)
/SMf %3,%3,y)¢($i2,$]‘2,$1‘3,%3,?/)Pl(xu,90;‘2,?/)dxwdxﬂd%sd%‘?,dy) pi(xi, xj,y)
(/ ayppy (Tis, iz, Y)Y (Tia, T2, Tis, Tz, Y)Pi(Tiz, Tjo, y)d$i2d$j2d$i3d$j3dy) (i, xj,y)

</ aypy %3,%3,?/)77(%'2,%‘3,?/)Pl(%‘m%‘%y)d$i2d$j2d$z‘3d$j3dy) pi(xi, x5, y)

al/Cu'pl(le‘, Zj, y)

LVeM
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and we can write

L(X() X(l) Y(l)) h(X(l) X() y )—I—S g( (1) X(l) Y(l))
—sMh(X}1 Xy W) —24TB —247CA.

Thus,
al"(L(XZ(l),X(l y(l)))
=Var(h(X"”, XV, YD) 4+ Spg (XY, XV, YD) 4 Syh (XY, X v D))

SE[(h(Xfl) X(l) YD) + Sy g(Xm X() M) 1 5y h( X(l) Y<1>))]
SE[(h(X(l) X(l) Y(l)) (S g( 1) X(l) Y(l)) (Su h(X(l X( Y(l)))Q}_

Each of these terms can be bounded
E[(h(x", XV, v1))’]
2
2/ (/ SMf(xiQ, T2, y)@/)(%'l%z, T2, Tj2, y)dxmd%a) f(xila L1, y)d$i1d$j1d?/
< AWCJ. /SMf(%‘Q, ZTj2, ?/)21/}(901‘1%‘2, L2, Lj2, y)Zf(xila Tj1,Y)dridrjidrpdsjdy

S 1 W oy e

=422, | Al Nl s f

2 2
VAN e
<4nl, 1125

i

and similar calculations are valid for the others two terms,

E[(Swg (X", X7 YO < fI| Swally < 1711 Mol < 485 1AL ]
E[(Suh(X] X(” YO <l lISueblly < 1711 Nall; < 482, 1715 Il

XTiTy

Finally we get,
Var(Bz) < 2 [all I

00 xl’]

0

Lemma 4 (Computation of Cov (UnK , PnL)). Under the assumptions of Theorem 3]
we have
Cov(U,K, P,L) = 0.
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Proof of Lemmal4] Since U, K and P, L are centered, we have

Cov (U, K, P,L)

=E[U,KP,L]
1 n / L
-E T k§1K(lek)j)(](k)jY(k),Xl,(k)7X](k)’y(k)) ;L(Xi(k)’xj(k)’y(k))

E[K(Xi(l),X](»l),Y(l)aXi(z),X]@),Y(Z))(L(XZ.(D,X( ) Y(l)) n L(X(Q) X( ),Y(Q)))]

1
n
1 1 1 2 2 1 1 2 2
=—E[(Q"(xV, X" YR, X, v®) - "(x{V, X}V, Y)cQ(x”, X, v )
(AR, X vy 4 BTQ(x Y, XV, YWy —24TcQ(x Y, X1V, v )
o) ) To(x® v@ 1 T @) x@ 3
+ATR(XY, X7 YY) + BTQ(XY, X7, Y®P) —24TCQ(X;”, X3 Y?))]
=0.
Since K, L, () and R are centered. O

Lemma 5 (Bound of Bias (6,,)). Under the assumptions of Theorem [3} we have

Bias (én) <

i [l e 510 e
1¢M
Proof.

/ </ S f (i, 251, y) — f(@a, 251, 9)] dxildle)

</ |Sar f (20, Zj2, y) — f(ffz‘2>$j2>?/)| dxz?dxj?) dy

2
:H”Hoo/</|5Mf($i7$jay)—f(xi,%yﬂd%d%) dy

= Amﬂﬁj HnH /(SMf(xiaxjv y) - f(xiaxjay))Q dxid$jdy

J:,anj }WH Z alal’/pl SUz,l’],y)pl/(sz,xj, )d.T dxjdy
N34

Bias ( )

=A <A 2
ximjunum%zjww < Bl csup

We use the Holder’s inequality and the fact that f € £ then )., |a ? < SUPg s |C1 .
(|

Lemma 6 (Asymptotic variance of \/n(P,L).). Under the assumptions of Theorem

Bl we have
nVar(PnL) — A(f,n)

where

2
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Proof. We proved in Lemma [3] that
Var(L(xV, XV y®))
= Var(h(X", XV, YD) 1+ Syg(x7, XV vO) 4 Syn(xM, x My ™))
= Var(A1 + A2 + Ag)
3
= Z COV(Ak, Al) .
k=1

We claim that Vk, [ € {1,2,3}?, we have

2
Cov (Ak’ Al) — €kl [/g<xi7 Ly, y)2f<xi7 Ly, y)dxidxjdy - (/g<xi7 Lj, y)f<xi7 Ly, y>dxidxjdy) ]

< MISaf = £l + 1539 = gll,] - 27)

where

Y

—1 ifk=3orl=3and k #1
€kl = .
1 otherwise

and where \ depends only on || ||, [|n]| and A, . We will do the details only
for the case k = [ = 3 since the calculations are similar for others configurations.

2
Var(Ag) = /SZQMh (i, 25, y) f(x, xj,y)drdejdy— (/ SMh(xi,xj,y)f(xi,xj,y)dxid:pjdy) )

The computation will be done in two steps. We first bound the quantity by the
Cauchy-Schwartz inequality

< / ‘Szz\/lh ('riuxjuy) f(l’@',l’j,y) - S%dg (xivxj7y> f(xivxjvy)‘ dxidxjdy

+/ ’512\49 (xiaxjay) f($lv Ly, y) - g($iv Ly y)Qf(xiv Ly y)’ dxidxjdy
Sl ISach+ Saagll,[|Sache = Saglly + [1£]|c[1S329 + g1, |29 = 91l

Using several times the fact that since S), is a projection,
is bounded by

Sugl, <9, the sum
I lcllfe+ gl 17 = gll, + 2] 71 c[l9ll. ][ Sarg = 9]l
<[l ally + llgllo) 1o = gll, + 201l gl 1 Sheg = gl
We saw previously that [lgl|, < 24, || ]| [lnll.. and B[], < 24, [ £]12*[lnll...
The sum is then bound by

L 1 e i 1 I S
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We now have to deal with || — g]|,:
2
1h = g]f;
2
:/ (/ (Saf (w2, o, y) — @i, Tjo, y)) Y (in, 41, Tia, Tjo, y)dxﬂdxj?) dradr;dy

S/ (/ (SMf(SUi27lUj27 y) — [, 56’;’2719))2 dl’wdxj?) (/ wz(ﬂfm Tj1, Ti2, Tj2, y)dxﬂdxﬂ) dxpdxjidy

<422, nll%[1af = £l

Finally this first part is bounded by
<48 AL [l (20, [0l NS00 f = 711, + [1S0a = g11,)

Following with the second quantity

2

2
(/ SMh(SUz'aijay)f(ﬂfzaxjay)dﬂfidxjdy) — </9(fﬁz‘af€jay)f(ﬂfzaﬂfjay)dﬂfidxjdy)

_ ( [ Suth ) = oty Sl y)dxidxjdy)

(/ (Sah (x5, 25, y) + g(zi, 25, y)) f(xi, 25, ?/)dez‘d%dy)

By using the Cauchy-Schwartz inequality, it is bounded by

171,152 = gL, 171, | Sach + g1l
<[L7I1; el + llgll,) (ISah = Sugll, + [[Saeg = o]l,)

<48, 12 Il (U = gll, + [1Sasg — g1,

<D A2 0l (280, il LIS = £1], 4 [1S0s9 = o],
using the previous calculations. Collecting the two inequalities gives (27) for k =

| = 3. Finally, since by assumption V¢ € L2(dp), ||Sut —t||, — 0 whenn — oo a
direct consequence of (27) is

tim Var(L (X, X0,y 0))

2
= /92<xi7xj7y>f<xiv Ljs y)dxidxjdy - (/g<xi7 Ljs y)f<xi7xj7y>dxidxjdy)
=A(f,n).

We conclude by noting that Var(y/n(P,L)) = Var(L (X-(l), X}l), YY), O

7
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Lemma 7 (Asymptotics for \/n(Q — Q) ). Under the assumptions of Theorem I} we
have

lim nE[Q — Q}Q = 0.
n—o0
Proof. The bound given in states that if | M,,| /n — 0 we have

nE[(@ _ Q)2|ﬂ _ [/g(xi,xj,y)Zf(xi,xj,y)da:id:cjdy — </g(:cl-,a:j,y)f(:cl-,:cj,y)d:cl-d:cjdy) ]

<Yl

s i) [P 4 110 = 11+ 1500 =

where g(l‘i,l‘j, y) = ng(f, Ty Ty Ti2, l‘jQ,y)f(l‘iQ,x]‘Q, y)dl‘igdl‘jg, where we recall
that Hs(f, 1, 1, 2o, T2, y) = Ho(f, xin, o, y)+Ho(f, 2i2, xj1,y) with Ho(f, 21, 2j2,y) =

W (zi1 — mi(f,v)) (x50 — m;(f,y)). By deconditioning we get

nE[(Q-Q)7] - E

2
/Q(IE“ Tj, y)Qf(xia Tj, y)dxidxjdy - </g(xzv Lj, y)f(x,, Lj, y)dxidxjdy) ]

<[/
Note that
E[|[S.5 = all,) <E[||Sxg — Sugll,] +E[l|g - gll,] +E[||Sa.9 — 9]l,]
<2E[[|g - gll,] + E[||Srr.9 — 9|,

where g(l‘l, Zj, ’y) = f Hg(f, Ti, Tj, T4z, Lo, y)f(l‘lg, Zj2, y)dl‘igdl‘jg. The second term
converges to 0 since g € L*(dvdydz) and Vt € L?(dzdydz), [ (Syt —t)* dedydz —
0 . Moreover

. 2 .
g_g”2:/[g(x27xjvy) —g(%,%,y)]Q dl’ldl’]dy

s ) [P 1800f = 7, + B0 - 9],

n

:/ l/ (H?’(f’ iy Ty Tizy T2, Y) — Ha(f, 0, 25, g, %‘27?/)) f(ziz, ija?/)dxigdxﬂ} 2 dx;dx;dy
S/ {/ (Hg(f, Ty X, Tin, T, y) — Hs(f, xi,xj,.[L'ig,l'j2,’!/))2dl‘i2dxj2:|

{/ f (242, xj2, y)2d$i2d$j2:| da;dz;dy
<Ay, Hino/ (HZ(f’ Tiy Tj, Tiz, Tjo, y) — Ho(f, 21, 5, T2, :Ejz,y)>2 dz;dz jdrndrjody

<082, I1f15 | (Flwswsy) = Flasa; " drdayd
= TiT; ) 79 jay) f(xwx]vy)) "L‘Z "L‘j y

for some constant ¢ that comes out of applying the mean value theorem to H3( f,z, Tj, Tiz, Tjo, Y)—
Hs(f, i, x4, 20, 2j2,y). The constant § was taken under Assumptions [IH3] Since
E[||f = f|l,] = 0thenE[||g — g]||,] — 0. Now show that the expectation of

2
/Q(xlv Ljs y>2f<xi7 Ljs y)dxidxjdy - (/ g<x27 Ljs y)f<xi7 Ljs y>dxidxjdy)
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converges to 0. We develop the proof for only the first term. We get

‘/ 'T27x]7 .TZ,ZC], )dxzdx]dy_/g(xlvx]7y>2f(xl7xj7y)dxld'rjdy
/ (s, 25,9)” — g@is 5 y)?| f i, 2, y)ddady

/( (SL’Z,SC],Z/) g(.TZ,ZC], ))Qdazzd:c]dy

for some constant \. By taking the expectation of both sides, we see it is enough
~ 2 . .
to show that E[||§ — g|,] — 0. Besides, we can verify

g(xz‘,%,y):/H:%(f, Ti, Tj, Tio, T2, Y) [ (Xi2, T2, y)daioda jo

2
= T o gz, W)

</ $j2f($z‘2, 9Cj2,?/)d$z‘2d$j2 - m](y) /f($i2>$j27 y)d%ad%'z)
=0

which proves that the expectation of [ §(x;, z;,y)*f (s, x;,y)dx;dx; converges to O.
Similar computations shows that the expectation of ( [ §(xz;, ;. y) f (2, z;, y)d:pidxj)Q

also converges to 0. Finally we have

lim nE[@— Q}Q =

n— o0

References

Brillinger, D. R. (1983). A generalized linear model with" gaussian" regressor
variables. A Festschrift for Erich L. Lehmann in Honor of His Sixty-Fifth Birthday,
(pp. 97-114).

Bura, E. & Cook, R. D. (2001). Estimating the structural dimension of regressions
via parametric inverse regression. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 63(2), 393-410.

Cook, R. D. & Ni, L. (2005). Sufficient dimension reduction via inverse regression.
Journal of the American Statistical Association, 100(470), 410-428.

Da Veiga, S. & Gamboa, F. (2008). Efficient estimation of nonlinear conditional
functionals of a density. Submitted in The Annals of Statistics. 42 pages 62G20,
62G06, 62G07, 62P30.

29



Duan, N. & Li, K. C. (1991). Slicing regression: a link-free regression method. The
Annals of Statistics, (pp. 505-530).

Ferré, L. & Yao, A. F. (2003). Functional sliced inverse regression analysis. Statis-
tics, 37(6), 475-488.

Ferré, L. & Yao, A.-F. (2005). Smoothed functional inverse regression. Statist.
Sinica, 15(3), 665-683.

Hardle, W. & Tsybakov, A. B. (1991). Sliced inverse regression for dimension
reduction: Comment. Journal of the American Statistical Association, 86(414),
pp- 333-335.

Hastie, T. J. & Tibshirani, R. J. (1990). Generalized Additive Models. Monographs
on Statistics and Applied Probability ;; 43. Chapman & Hall/CRC, 1st ed. edi-
tion.

Hsing, T. (1999). Nearest neighbor inverse regression. The Annals of Statistics,
27(2), 697-731.

Ibragimov, I. A. & Khas’minskii, R. Z. (1991). Asymptotically normal families of
distributions and efficient estimation. The Annals of Statistics, (pp. 1681-1724).

Laurent, B. (1996). Efficient estimation of integral functionals of a density. The
Annals of Statistics, 24(2), 659-681.

Li, K. C. (1991a). Sliced inverse regression for dimension reduction. Journal of
the American Statistical Association, 86(414), 316-327.

Li, K. C. (1991b). Sliced inverse regression for dimension reduction: Rejoinder.
Journal of the American Statistical Association, 86(414), pp. 337-342.

Li, L. (2007). Sparse sufficient dimension reduction. Biometrika, 94(3), 603.

Setodji, C. M. & Cook, R. D. (2004). K-means inverse regression. Technometrics,
46(4), 421-429.

Van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge Series on Statistical
and Probabilistic Mathematics. Cambridge University Press.

Zhu, L. X. & Fang, K. T. (1996). Asymptotics for kernel estimate of sliced inverse
regression. The Annals of Statistics, 24(3), 1053-1068.

30



	1 Introduction
	2 Methodology
	3 Main Results
	3.1 Hypothesis and Assumptions 
	3.2 Efficient Estimation of Tij(f)

	4 Estimation of quadratic functionals
	5 Proofs 
	6 Technical Results
	References

