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Semiparametric estimation of rigid

transformations on compact Lie groups

Jérémie Bigot1, Jean-Michel Loubes1 and Myriam Vimond2

1 Institut de Mathématiques de Toulouse, Université de Toulouse, 31062 Toulouse
Cedex 9, France,

2 Université Haute Bretagne, Equipe de Statistique, Place du Recteur H. Le Moal,
CS 24307, 35043 Rennes Cedex, France

Abstract. We study a simple model for the estimation of rigid trans-
formations between noisy images. The transformations are supposed to
belong to a compact Lie group, and a new matching criteria based on
the Fourier transform is proposed. Consistency and asymptotic normal-
ity of the resulting estimators are studied. Some simulations are used to
illustrate the methodology, and we describe potential applications of this
approach to various image registration problems.

1 Introduction

Originating in Grenander’s pattern theory, transformation Lie groups are com-
monly used to model the deformations of images. The study of the properties
and intrinsic geometries of such deformation groups is now an active field of
research (see e.g. [3], [10], [12], [13], [14], [18]). In this setting, an important
problem is the estimation of the deformations that may exist between similar
images in the presence of additive noise. Rigid displacements such as transla-
tions, rotations or affine transformations can be modeled by finite dimensional
Lie groups. Hence, the estimation of rigid deformation parameters can be for-
mulated as a semi-parametric estimation problem which is an important field
of research in mathematical statistics [4]. Indeed, semiparametric modeling is
concerned with statistical problems where the parameters of interest are finite
dimensional but where their observation is blurred by an infinite dimensional
parameter. Here, the finite-dimensional parameters are the Lie group elements,
and the infinite-dimensional parameter is an unknown 2D or 3D image, which is
warped to obtain the different deformations. This image, that has to be recov-
ered, is often called a template. The semiparametric framework provides optimal
recovery of the warping parameters, contrary to nonparametric methods, leading
to a better estimation of the template obtained by aligning the observed images.

As Lie groups are typically nonlinear spaces, an important question is the
development of information geometry tools to extend classical notions such as
asymptotic normality and efficiency, or the Cramer-Rao bound originally pro-
posed for parameters lying in an Euclidean space. In the context of parametric
statistics, several generalizations of these concepts to arbitrary manifolds have
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been proposed (see e.g. [17]). However, in the more general situation of semi-
parametric models, there is not so much work dealing with the estimation of
parameters lying in a Lie group.

A first attempt in this direction has been proposed in [8], [20] for the simple
problem of recovering shifts between one-dimensional noisy curves observed on
an interval. The goal of this paper is extend such an approach to the more
general case where the shift parameters belong to a compact Lie group. Thanks
to a general shift property of the Fourier transform on compact Lie groups, a
matching criterion based on the Fourier transform of the data can be defined,
and we study some statistical properties of the resulting estimators.

In Section 2, a simple model for shifts on groups is introduced. Some prop-
erties on the Fourier transform are briefly reviewed (see [16] for further details),
and are then used to define a general matching criterion on compact Lie groups.
In Section 3, the consistency and the asymptotic normality of the estimators are
established. Some numerical simulations are presented in Section 4, and exten-
sions of the model are given in Section 5 for the registration of spherical images.
Finally, we give some perspectives for future work. Note that the proofs of our
theorems are based on the theory of M-estimation (see e.g. [19]), but are quite
long and technical, and are thus not given in this manuscript but can be found
in [2].

2 A shift model on Lie groups and a matching criteria

based on the Fourier transform

2.1 The Fourier transform on compact Lie groups

Let G be a compact Lie group. Denote by e the identity element, and by hg the
binary operation between two elements h, g ∈ G. Let L

2(G) be the Hilbert space
of complexed valued, square integrable functions on the group G with respect to
the Haar measure dg.

To define a Fourier transform on L
2(G), a fundamental tool is the theory of

group representations, which aims at studying the properties of groups via their
representations as linear transformation of vector spaces. More precisely, a rep-
resentation is an homomorphism from the group G to the automorphism group
of a vector space. So let V be a finite-dimensional vector space, a representa-
tion of G in V is thus defined as a continuous homomorphism π : G → GL(V ),
where GL(V ) denotes the set of automorphisms of V. Hence it provides a linear
transformation which depends on the vector space on which the group acts.

Every irreducible representation π of a compact group G in a vector space V
is finite dimensional, so we denote by dπ the dimension of V . By choosing a basis
for V , it is often convenient to identify π(g) with a matrix of size dπ × dπ with
complex entries. The function g 7→ Trπ(g) is called the character of π. The char-
acters carry the essential information about the group representation. Moreover,
the fundamental theorem of Schur orthogonality states that the characters form
an orthonormal system in L

2(G) when π ranges over the dual set Ĝ of irreducible
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and equivalent representations of G. In the case of compact groups, the dual Ĝ
is a countable set, and the Peter-Weyl Theorem states that the characters are
dense in L

2(G). Indeed, if π is a finite dimensional representation of G in the
vector space V, then one can define, for every f ∈ L

2(G), the linear mapping
π(f) : V → V by

π(f)v =

∫

G

f(g)π(g)
T
vdg, for v ∈ V.

The matrix π(f) is the generalization to the case of compact group of the usual
notion of Fourier coefficient. Then, Peter-Weyl Theorem implies that (for sim-
plicity the same notation is used for π and its equivalence class in Ĝ)

f(g) =
∑

π∈Ĝ

dπTr (π(g)π(f)) and ‖f‖2
L2(G) =

∑

π∈Ĝ

dπTr
(

π(f)π(f)
T
)

(1)

In the sequel, we will also denote by 〈A,B〉HS = Tr (A
T
B) the Hilbert-Schmidt

inner product between two finite dimensional dπ × dπ matrices A and B.

2.2 A simple shift model on groups

Let X be a subset of R
d (with d = 2, 3 in our applications) and G be a compact

Lie group acting on X . A general deformation model for a set of J noisy signals
would be

Yj(x) = f∗(gj
−1 · x) +Wj(x) for x ∈ X , (2)

where f∗ : X 7→ R is an unknown template, Wj(x) is some additive noise, and
gj are the deformations to estimate. Our interest is to provide a very general
framework for image registration under warping effect given by model (2), and
thus to deal with the general problem of estimation of the elements of a Lie
Group G acting on a space X . In this paper, a simplest model for which X = G
is studied to give the main ideas of our approach. An example for which X 6= G
is given in Section 5 to show that our approach can be extended to more complex
situations, and we discuss possible extensions to more complex situations in the
concluding section.

Now, consider the following white noise model : for j = 1, . . . , J and g ∈ G

dYj(g) = fj(g)dg + ǫdWj(g), (3)

where fj(g) = f∗(h∗j
−1g). The function f∗ : G → R is the unknown common

shape of the observed images Yj . The parameter h∗j , j = 1, . . . , J are the unknown
shift parameters that we wish to estimate. Wj , j = 1, . . . , J are independent
standard Brownian sheets on the topological space G with measure dg, ǫ is
an unknown noise level parameter which will tend to zero in our asymptotic
considerations. Note that the white noise model (3) is a continuous model which
is a very useful tool for the theoretical study of statistical problem in image
analysis. In practice, the noisy images Yj are typically discretely sampled on a
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regular grid, but the model (3) can be shown to lead to comparable asymptotic
theory in a sampled data model [5].

Obviously, without any further restriction on the set of possible shifts, the
model (3) is not identifiable. Indeed, if s is an element of G with s 6= e, then
one can replace the h∗j ’s in equation (3) by h̃j = h∗js and f∗ by f̃(g) = f∗(sg)
without changing the formulation of the model. To ensure identification, we
further assume that the set of parameters GJ is reduced to the subset A0 ⊂ A
such that

A0 = {(h1, . . . , hJ) ∈ A, h1 = e}. (4)

This choice implies that the first image will be a reference and all the other im-

ages will be warped onto this particular choice. Now, remark that since π(g)
T

=
π(g−1), one has that π(fj) = π(f)π(h∗j

−1) for all j = 1, . . . , J . This equality is
classically referred to as the shift property of the Fourier transform, and is at the
heart of our estimation procedure to exhibit the shift parameters h∗j .

2.3 A matching criterion based on the Fourier transform

For h = (h1, . . . , hJ) ∈ A0, we propose to minimize the following criterion in-
spired by recent results in [8] and [20] for the estimation of shifts between curves:

M(h1, . . . , hJ) =
1

J

J
∑

j=1

∥

∥

∥

∥

∥

∥

fj ◦ Thj
−

1

J

J
∑

j′=1

fj′ ◦ Thj′

∥

∥

∥

∥

∥

∥

2

L2(G)

, (5)

where Th : g ∈ G→ hg ∈ G. Using the Parseval-Plancherel formula, the criterion
may be rewritten in the Fourier domain as:

M(h) = M(h1, . . . , hJ) =
1

J

J
∑

j=1

∑

π∈Ĝ

dπ

∥

∥

∥

∥

∥

∥

π(fj)π(hj) −
1

J

J
∑

j′=1

π(fj′)π(hj′)

∥

∥

∥

∥

∥

∥

2

HS

,

(6)
for h = (h1, . . . , hJ) ∈ A0. Given that π(fj) = π(f∗)π(h∗j

−1), the criterion M
has a minimum at h∗ = (h∗1, . . . , h

∗
J) such that M(h∗) = 0.

2.4 The empirical criterion

Our estimation method is then based on the Fourier Transform of the noisy data
given by model (3). Let π an irreducible representation of G into V . We consider
the following linear mappings from V to V which are defined from the model
(3):

π(Yj) =

∫

G

π(g−1)dYj(g) = π(fj) + ǫπ(Wj), j = 1 . . . J,

where π(Wj) =
∫

G
π(g−1)dWj(g), j = 1 . . . J. Let us denote by (πkl(Wj)) the

matrix coefficients of π(Wj) : πkl(Wj) =
∫

G
πkl(g

−1)dWj(g). Using the Schur
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orthogonality and the fact that Wj is a standard Brownian sheet on G, one ob-
tains that the complex variables πkl(Wj) are independent identically distributed
Gaussian variables NC(0, d−1

π ).
Let Ĝǫ be a finite subset of Ĝ such that the sequence Ĝǫ increases when ǫ

tends to 0 and ∪ǫ>0Ĝǫ = Ĝ. Practical choices for the set Ĝǫ will be discussed
later on for the case of Abelian groups and the non-commutative group SO(3).
Then, we consider the following criterion:

Mǫ(h1, . . . , hJ) =
1

J

J
∑

j=1

∑

π∈Ĝǫ

dπ

∥

∥

∥

∥

∥

∥

π(Yj)π(hj) −
1

J

J
∑

j′=1

π(Yj′)π(hj′),

∥

∥

∥

∥

∥

∥

2

HS

(7)

and our M-estimator is given by ĥǫ = arg minh∈A0
Mǫ(h).

3 Consistency and asymptotic normality of the

M-estimator

Theorem 1. Assume that f∗ ∈ L
2(G) is such that there does not exist a closed

subgroup H (except H = {e} or H = G) such that f(gh) = f(g) for all g ∈ G and
h ∈ H. Moreover, suppose that for all π ∈ Ĝ such that π(f∗) is not identically
null, then π(f∗) is invertible. Then, M has a unique minimum at h∗, and if

limǫ→0 ǫ
2
∑

π∈Ĝǫ
d2

π = 0, then ĥǫ converges in probability to h∗ = (h∗1, . . . , h
∗
J).

This Theorem shows the consistency of the estimators of the parameters h∗

when the noise level goes to zero (recall that in the discretized model, this is
equivalent to the fact that the number of observations increase). We stress that
this result is obtained by minimizing a quadratic contrast without prior knowl-
edge of the main pattern, thanks to the empirical criterion (7) which enables to
get rid of f∗. Asymptotic normality of these estimators and thus rates of con-
vergence will provided in Theorem 2. The first condition of Theorem 1 ensures
identifiability of the model since a function which would not satisfy this condition
would be shift invariant, preventing any estimation. The second condition can
be viewed as a smoothness condition which ensures unicity of the minimization
scheme. In the following, we will denote by ℜ(z) the real part of any complex
number z.

As the estimator ĥǫ takes its values in a Lie group, it is not that obvious to
define a notion of asymptotic normality as the space A0 is typically not a linear
space if the group G is not Abelian. To overcome this, a classical approach is to
use the exponential map to “project” ĥǫ into the Lie algebra G of G. If we can
write ĥǫ = exp(ûǫ), then one can study the asymptotic normality of ûǫ which be-
longs to the linear space G supposed to be of finite dimension p. For this, we first
re-express the criterion Mǫ defined on GJ as a function M̃ǫ defined on GJ . If G is
a compact group, then the exponential map is surjective, but it is not necessarily
injective. Hence, define U to be a compact neighborhood of 0 ∈ GJ onto which the
exponential map is a smooth diffeomorphism, and let A = exp(U). For u ∈ UJ ,
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we re-express our criterion as M̃(u1, . . . , uJ) = M(exp(u1), . . . , exp(uJ)), and
M̃ǫ(u1, . . . , uJ) = Mǫ(exp(u1), . . . , exp(uJ)). Then, define

ûǫ = (û1, . . . , ûJ) = arg min
u∈U1

M̃ǫ(u1, . . . , uJ),

where U1 =
{

(u1, . . . , uJ) ∈ UJ , u1 = 0
}

. Suppose that h∗1 = exp(u∗1), . . . , h
∗
J =

exp(u∗J), with u∗ = (u1, . . . , uJ) ∈ UJ , then the following result holds:

Theorem 2. Assume that the conditions of Theorem 1 hold. Moreover, assume
that for all j = 2, . . . , J and k = 1, . . . , p

lim
ǫ→0

ǫ
∑

π∈Ĝǫ

d2
π‖deπ

(

du∗

j
exp(xk)

)

‖2
HS = 0, (8)

and that

lim
ǫ→0

sup
u1∈U







∑

π∈Ĝ\Ĝǫ

dπ ‖π(f∗)‖2
HS

∥

∥deπ
(

du1
exp(xk1)

)∥

∥

2

HS







= 0 (9)

lim
ǫ→0

sup
u1∈U







∑

π∈Ĝ\Ĝǫ

dπ ‖π(f∗)‖2
HS

∥

∥

∥∇xk2

u1
deπ

(

du1
exp(xk1)

)

∥

∥

∥

HS







= 0 (10)

lim
ǫ→0

ǫ2 sup
u1∈U







∑

π∈Ĝǫ

d2
π

∥

∥deπ
(

du1
exp(xk1)

)∥

∥

2

HS







= 0 (11)

lim
ǫ→0

ǫ2 sup
u1∈U







∑

π∈Ĝǫ

d2
π

∥

∥

∥∇xk2

u1
deπ

(

du1
exp(xk1)

)

∥

∥

∥

HS







= 0, (12)

where x1, . . . , xp is an arbitrary basis of G. Then,

ǫ−1(ûǫ − u∗) → N(0,H−1ΣH−1), as ǫ→ 0,

where Σ is a positive definite (J − 1)p × (J − 1)p matrix whose entries for
2 ≤ j1, j2 ≤ J and 1 ≤ k1, k2 ≤ p are given by

Σ(j1,k1)×(j1,k1) =
4

J2

∑

π∈Ĝ

dπ

(

1 −
1

J

)

‖π(f∗)deπ
(

du∗

j1
exp(xk1)

)

‖2
HS

Σ(j1,k1)×(j1,k2) =
4

J2

∑

π∈Ĝ

dπ

(

1 −
1

J

)

ℜ
〈

π(f∗)deπ
(

du∗

j1
exp(xk1)

)

, π(f∗)deπ
(

du∗

j1
exp(xk2)

)〉

HS
,

and for j1 6= j2 by

Σ(j1,k1)×(j2,k2) = −
4

J2

∑

π∈Ĝ

dπ
1

J
ℜ

〈

π(f∗)deπ
(

du∗

j1
exp(xk1)

)

, π(f∗)deπ
(

du∗

j2
exp(xk2)

)〉

HS
,
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and where H is a positive definite (J − 1)p× (J − 1)p matrix whose entries for
2 ≤ j1, j2 ≤ J and 1 ≤ k1, k2 ≤ p are given by

H(j1,k1)×(j1,k2) = −
2

J

∑

π∈Ĝ

dπℜ
{〈

π(f∗)deπ
(

du∗

j1
exp(xk2)

)

deπ
(

du∗

j1
exp(xk1)

)

+ π(f∗)∇xk2

u∗

j1

deπ
(

du∗

j1
exp(xk1)

)

, π(f∗)
〉

HS

+
1

J

〈

π(f∗)deπ
(

du∗

j1
exp(xk1)

)

, π(f∗)deπ
(

du∗

j1
exp(xk2)

)〉

HS

}

,

and for j1 6= j2 by

H(j1,k1)×(j2,k2) = −
2

J2

∑

π∈Ĝ

dπℜ
〈

π(f∗)deπ
(

du∗

j1
exp(xk1)

)

, π(f∗)deπ
(

du∗

j2
exp(xk2)

)〉

HS
.

The convergence result in the above theorem must be understood for the
vector ûǫ = (û2, . . . , ûJ) ∈ GJ−1 since the first component is fixed to û1 = 0.
Moreover, the notation deπ stands for the differential of π at e, while du1

exp(xk1)
corresponds to the differential of the exponential at u1 in the direction xk1 . We
point out that the estimator converges at the parametric rate of convergence, and
thus optimal rate of convergence, which would not have been the case if we had
considered a preliminar estimate of f∗. This is one of the main achievements
of the semiparametric type methodology proposed in this paper. Proving the
optimality up to the constants imply studying the semiparametric efficiency of
the estimators and falls beyond the scope of this paper. Some intuitions about
such a result is provided in Section 6.

3.1 Abelian groups : the special case of the torus

The assumptions of Theorem 2 are rather technical and difficult to state in the
very general case. However, for Abelian groups their statement is much simpler,
which is due to the fact that the mapping d expu : G → G reduces to the identity
on G i.e. du exp(v) = v for all u ∈ G and v ∈ G. The assumptions can be rewritten
as

lim
ǫ→0

ǫ2#{Ĝǫ} = 0, lim
ǫ→0

ǫ
∑

π∈Ĝǫ

|deπ(xk)|2 = 0, lim
ǫ→0

∑

π∈Ĝ\Ĝǫ

|π(f∗)|2
∣

∣deπ(xk)
∣

∣

2
= 0,

(13)
where x1, . . . , xp is an arbitrary basis of G. Thus, Condition (??) states that the
common shape is differentiable and its derivatives are square integrable on G.
Conditions (13) give some assumptions on the choice of Ĝǫ.

As an illustrative example, let us consider the case where G = (R/Z)p which
corresponds to the classical multi-dimensional Fourier decomposition of a func-
tion f ∈ L

2([0, 1]p)

f(x) =
∑

ℓ∈Zp

cℓ(f)eℓ(x), for x = (x1, . . . , xp) ∈ [0, 1]d and ℓ = x = (ℓ1, . . . , ℓp) ∈ Z
d,
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where eℓ(x) = π(x) = e−i2π(
Pp

k=1
ℓkxk) and cℓ(x) = π(f) =

∫

[0,1]d
f(x)eℓ(x)dx.

Note that also that deπ(xk) = −i2πℓk. Now, take Ĝǫ = {(ℓ1, . . . , ℓp) ∈ Z
p, |ℓk| ≤

ℓǫ for all k = 1, . . . , p}, for some positive integer ℓǫ. Then, the following corollary
holds:

Corollary 1. Let G = (R/Z)p and f∗ ∈ L
2([0, 1]p) be a periodic function sat-

isfying the conditions of Theorem 1. Assume that h∗ ∈ GJ or equivalently that
u∗ ∈ ([0, 1]p)J . If

ǫℓp+2
ǫ = o(1) and

∑

(ℓ1,...,ℓp)∈Zp

(

|ℓ1|
2 + . . .+ |ℓp|

2
)

|cℓ(f
∗)|2 <∞,

then ǫ−1(ûǫ − u∗) → N(0, Γ−1), as ǫ→ 0, where the matrix Γ is given by

Γ(j1,k1)×(j1,k2) =
∑

ℓ∈Z

(

1 −
1

J

)

|cℓ(f
∗)|2(2π)2ℓk1

ℓk2
,

Γ(j1,k1)×(j2,k2) = −
1

J

∑

ℓ∈Z

|cℓ(f
∗)|2(2π)2ℓk1

ℓk2
for j1 6= j2,

4 Numerical simulations and some illustrative examples

4.1 A general gradient descent algorithm

To compute the estimator ĥǫ one has to minimize the functionMǫ(h). As this cri-
terion is defined on a Lie group, a direct numerical optimization is generally not
feasible. Finding minima of functions defined on a Lie group is generally done by
reformulating the problem as an optimization problem on its Lie algebra. Since
the expression of the gradient of M̃ǫ(u) is available in a closed form, the follow-
ing gradient descent algorithm with an adaptive step can be easily implemented:

Initialization : let u0 = 0 ∈ GJ , γ0 = 1
‖∇

u0M̃ǫ‖
, M(0) = M̃ǫ(u

0), and set

m = 0.
Step 2 : let unew = um − γm∇umM̃ǫ and M(m+ 1) = M̃ǫ(u

new)
While M(m+ 1) > M(m) do

γm = γm/κ, and unew = um − γm∇umM̃ǫ, and M(m+ 1) = M̃ǫ(u
new)

End while

Then, take um+1 = unew and set m = m+ 1.
Step 3 : if M(m) −M(m + 1) ≥ ρ(M(1) −M(m + 1)) then return to Step 2,

else stop the iterations, and take ĥǫ = exp(um+1).

In the above algorithm, ρ > 0 is a small stopping parameter and κ > 1 is a
parameter to control the choice of the adaptive step γm. Note that to satisfy the
identifiability constraints the first p components of um are held fixed to zero at
each iteration m.
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4.2 Registration of translated 2D images

As an illustrative example, we consider the registration of translated 2D images
(see [9] for a related work in a similar setting for 2D images). The chosen template
f∗ is the Shepp-Logan phantom image [1] of size N×N with N = 100 (see Figure
1). Noisy images can be generated by translating this image and adding Gaussian
noise to each pixel value:

Y j(i1, i2) = f∗(
i1
N

−h1
j ,
i2
N

−h2
j )+σzj(i1, i2), 1 ≤ i1, i2 ≤ N, j = 1, . . . , J (14)

where i1, i2 denotes a pixel position in the image, zj(i1, i2) ∼i.i.d. N(0, 1), σ is
the level of noise, and h1

j , h
2
j ∈ [0, 1] are the unknown translation parameters

to estimate. One could argue that the sampled data model (14) does not truly
correspond to the white noise model (3). However, as previously explained there
exists a correspondence between these two models in the sense that they are
asymptotically equivalent if ǫ = σ

N (see [5]).

We have repeated M = 100 simulations with J = 6 noisy images simulated
from the model (14). The various values taken for the translation parameters
are the bold numbers given in Table 1. A typical example of a simulation run
is shown in Figure 1. Here, G = [0, 1] × [0, 1] and its Lie algebra is G = R

2.
The criterion M̃ǫ(u) can be easily implemented via the use of the fast Fourier
transform for 2D images:

M̃ǫ(u) =
1

J

J
∑

j=1

∑

|ℓ1|≤ℓǫ

∑

|ℓ2|≤ℓǫ

∣

∣

∣

∣

∣

∣
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+ℓ2uj

2
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J
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1
+ℓ2uj′

2
)

∣

∣

∣

∣

∣

∣

2

for u = (u1
1, u

2
1, . . . , u

1
J , u

2
J), and where the yj

ℓ1,ℓ2
’s are the empirical Fourier co-

efficients of the image Y j . Moreover, if (x1
1, x

2
1, . . . , x

1
J , x

2
J) denotes the canonical

basis of the product space (R2)J , then the components of the gradient of M̃ǫ(u)
are given by

∂

∂xk
j

M̃ǫ(u) = −
2

J

∑

|ℓ1|≤ℓǫ

∑

|ℓ2|≤ℓǫ

ℜ



(i2πℓk)yj
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ei2π(ℓ1uj
1
+ℓ2uj

2
)(

1

J

J
∑

j′=1
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ℓ1,ℓ2
ei2π(ℓ1uj′

1
+ℓ2uj′

2
))



 .

According to Corollary 1, the smoothing parameter ℓǫ should be chosen such
that ǫℓ4ǫ = o(1). Since the models (14) and (3) are asymptotically equivalent if
ǫ = σ

N , this condition becomes ℓǫ = ℓN = o(N1/4). With N = 100, this suggests

to take ℓN ≤ 1001/4 ≈ 3.16. In Table 1 we give the empirical average of the
estimated parameters over the M = 100 simulations, for the choice ℓN = 3,
together with their standard deviation. The results are extremely satisfactory
as averages are very close to the true values and standard deviations are very
small.
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Fig. 1. A typical simulation run for J = 6 images generated from the model (14).

Table 1. Average and standard deviation (in brackets) of the estimators ĥj = (ĥ1

j , ĥ
2

j )
over M = 100 simulations. The bold numbers represent the true values of the param-
eters (h1

j , h
2

j ).

j = 2 j = 3 j = 4 j = 5 j = 6

h1

j 0.07 0.1 0.05 -0.05 -0.08

ĥ1

j 0.0704 (0.0031) 0.0997 (0.0031) 0.0494 (0.0028) -0.0502 (0.0031) -0.0801 (0.0032)

h2

j 0.02 0.08 -0.10 -0.05 0.06

ĥ2

j 0.0201 (0.0031) 0.0803 (0.0031) -0.1002 (0.0030) -0.0493 (0.0029) 0.0604 (0.0032)

5 Registration of spherical images

In many applications, data can be organized as spherical images i.e. as functions
defined on the unit sphere S

2. For instance, spherical images are widely used
in robotics since the sphere is a domain where perspective projection can be
mapped, and an important question is the estimation of the camera rotation
from such images (see [11]). Obviously such data do not correspond exactly
to the shift model on group (3) as spherical images are defined on S

2 while
the shifts parameters belong the special orthogonal group SO(3). However this
setting corresponds to the general model (2) with X = S

2 and G = SO(3), and a
matching criterion similar to the one defined in equation (6) can still be defined
by combining the spherical harmonics on S

2 with the irreducible representations
of SO(3).

Indeed, let x ∈ S
2 be a point on the unit sphere parameterized with spherical

coordinates θ ∈ [0, π] and φ ∈ [0, 2π[. Then any f ∈ L
2(S2) can be decomposed

as (see [6])

f(x) =

+∞
∑

ℓ=0

ℓ
∑

m=−ℓ

cmℓ (f)ψm
ℓ (x), with cmℓ (f) =

∫ π

0

∫ 2π

0

f(θ, φ)ψm
ℓ (θ, φ)dφ sin(θ)dθ,

and where the functions (ψm
ℓ , ℓ ∈ N,m = −ℓ, . . . , ℓ) are the usual spherical

harmonics which form an orthonormal basis of L
2(S2). Since these functions form

a basis for the irreducible representations (πℓ)ℓ∈N of SO(3) which are matrices
of size (2ℓ+ 1) × (2ℓ+ 1), it follows that the action of a rotation h ∈ SO(3) on
a function f ∈ L

2(S2) is given by (see [6])

f(h−1x) =

+∞
∑

ℓ=0

cℓ(f)Tπℓ(h
−1)ψℓ(x) for all x ∈ S

2, (15)

where cℓ(f) = (cmℓ (f))m=−ℓ,...,ℓ and ψℓ(x) = (ψm
ℓ (x))m=−ℓ,...,ℓ denotes vectors

in C
2ℓ+1.
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Now, suppose that one observes a set of noisy spherical images fj that satisfy
the following shift model: for j = 1, . . . , J and x ∈ S

2

dZj(x) = fj(x)dx+ ǫdWj(x) with dx = dφ sin(θ)dθ, (16)

where fj(x) = f∗(h∗j
−1x), and h∗j ∈ SO(3), j = 1, . . . , J are rotation parame-

ters to estimate. For h = (h1, . . . , hJ) ∈ GJ , the shift property (16) and the
orthonormality of the spherical harmonics imply that the following matching
criterion

N(h) =
1

J

J
∑

j=1

∥

∥

∥

∥

∥

∥

fj ◦ Thj
−

1

J

J
∑

j′=1

fj′ ◦ Thj′

∥

∥

∥

∥

∥

∥

2

L2(S2)

, (17)

where Thj
: x ∈ S

2 → hjx ∈ S
2, can be written as

N(h) =
1

J

J
∑

j=1

+∞
∑

ℓ=0

∥

∥

∥

∥

∥

∥

cℓ(fj)
Tπℓ(hj) −

1

J

J
∑

j′=1

cℓ(fj′)Tπℓ(hj′)

∥

∥

∥

∥

∥

∥

2

C2ℓ+1

, (18)

where cℓ(fj)
T = cℓ(f

∗)Tπℓ(h
∗−1
j ) and ‖·‖2

C2ℓ+1 denotes the usual euclidean norm

in C
2ℓ+1. Then, remark that the spherical harmonic coefficients of the noisy

images Zj are given by (in vector form) by cℓ(Zj) =
∫

S2 ψℓ(x)dZj(x) = cℓ(fj) +
ǫcℓ(Wj), j = 1 . . . J, where cℓ(Wj) =

∫

S2 ψℓ(x)dWj(x) is a complex random
vector whose components are independent and identically distributed Gaussian
variables NC(0, 1). Now, let ℓǫ be an appropriate frequency cut-off parameter.
The following empirical criterion can thus be proposed for registering spherical
images:

Nǫ(h1, . . . , hJ) =
1

J

J
∑

j=1

ℓǫ
∑

ℓ=0

∥

∥

∥

∥

∥

∥

cℓ(Zj)
Tπℓ(hj) −

1

J

J
∑

j′=1

cℓ(Zj′)Tπℓ(hj′)

∥

∥

∥

∥

∥

∥

2

C2ℓ+1

,

(19)

and an M-estimator of the rotation parameters is given by ĥǫ = arg minh∈A0
Nǫ(h).

The criterion Nǫ is very similar to the criterion Mǫ, and the study of the
consistency and the asymptotic normality of ĥǫ can be done by following exactly
the arguments as those developed in the previous sections.

6 Some perspectives and future work

The results on the asymptotic normality of the estimators show that there exists
a significant difference between semi-parametric estimation on a linear Euclidean
space and semi-parametric estimation on a nonlinear manifold. If the group G
is non-commutative, then the asymptotic covariance matrix of the estimator
ûǫ depends on the point u∗ (and thus on h∗). Hence, this matrix can be in-
terpreted as a Riemanian metric on G. This is a classical result in parametric
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statistics for random variables whose law is indexed by parameters belonging
to a finite-dimensional manifold. In such setting, the Fisher information matrix
is a Riemanian metric and lower bounds analogue to the classical Cramer-Rao
bound for parameters in an Euclidean space can be derived (see e.g. [17]). If G
is supposed to be an Abelian group, then the asymptotic covariance matrix of
the estimator does not depend on the point h∗ since the parameter space for the
shifts is a flat manifold.

An important issue is then the question of optimality of our estimators. We
are currently studying analogs of the Cramer-Rao bound for the semi-parametric
model (3), and in particular we are investigating if the covariance matrix given
in Theorem 2 corresponds to the Fisher information matrix of this model. This
result would provide a proof of the optimality of our reconstruction, even in a
non asymptotic framework.

Another important question is the implementation of our approach for non-
commutative groups. The numerical computation of our method for the regis-
tration of spherical images is more involved that the one used for the alignment
of 2D images. Indeed, one has to deal with both the problem of computing the
Fourier transform for images defined on a sphere, and with the problem of com-
puting the irreducible representations of the group SO(3) from its Lie algebra.
We are currently working on the development of an efficient and fast numerical
scheme to minimize the criterion Nǫ, and we believe that this approach could
yield good results for the registration of spherical images.

Finally, it should be mentioned that this work is rather preliminary and
practical applications are restricted to estimation of shifts in 2D images and
rotation on a sphere for the registration of spherical images. Another application
that would be of great interest is the analysis of images of the fundus of the eye
as described in [7]. However, many other interesting applications in medical
images involve the study of more sophisticated Lie groups of transformations
that are generally non-compact. We believe that there is a good chance to obtain
satisfactory results for the estimation of deformations on non-commutative and
compact groups. However, an important challenge is to investigate the extension
of this work to the case of non-compact groups and at least to identify the
difficulties introduced by such a generalization.
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