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A GRADIENT FLOW APPROACH TO A THIN FILM APPROXIMATION

OF THE MUSKAT PROBLEM

PHILIPPE LAURENÇOT AND BOGDAN–VASILE MATIOC

Abstract. A fully coupled system of two second-order parabolic degenerate equations arising as a thin
film approximation to the Muskat problem is interpreted as a gradient flow for the 2-Wasserstein distance
in the space of probability measures with finite second moment. A variational scheme is then set up and
is the starting point of the construction of weak solutions. The availability of two Liapunov functionals
turns out to be a central tool to obtain the needed regularity to identify the Euler-Lagrange equation in
the variational scheme.

1. Introduction

The Muskat model is a free boundary problem describing the motion of two immiscible fluids with
different densities and viscosities in a porous medium (such as intrusion of water into oil). Assuming
that the thickness of the two fluid layers is small, a thin film approximation to the Muskat problem
has been recently derived in [10] for the space and time evolution of the thickness f = f(t, x) ≥ 0 and
g = g(t, x) ≥ 0 of the two fluids (f + g being then the total height of the layer) and reads

{

∂tf = (1 +R)∂x (f∂xf) +R∂x (f∂xg) ,

∂tg = Rµ∂x (g∂xf) +Rµ∂x (g∂xg) ,
(t, x) ∈ (0,∞) ×R, (1.1a)

supplemented with the initial conditions

f(0) = f0, g(0) = g0, x ∈ R. (1.1b)

Here, R and Rµ are two positive real numbers depending on the densities and the viscosities of the fluids.
Since f and g may vanish, (1.1a) is a strongly coupled degenerate parabolic system with a full diffusion
matrix due to the terms ∂x(f∂xg) and ∂x(g∂xf). There is however an underlying structure which results
in the availability of an energy functional

E(f, g) := 1

2

∫

R

[

f2 +R(f + g)2
]

dx, (1.2)

which decreases along the flow. More precisely, a formal computation reveals that

d

dt
E(f, g) = −

∫

R

[

f ((1 +R)∂xf +R∂xg)
2 +RRµ g (∂xf + ∂xg)

2
]

dx . (1.3)

A similar property is actually valid when (1.1a) is set on a bounded interval (0, L) with homogeneous
Neumann boundary conditions: in that setting, the stationary solutions are constants and the principle
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of linearized stability is used in [10] to construct global classical solutions which stay in a small neighbour-
hood of positive constant stationary states. Local existence and uniqueness of classical solutions (with
positive components) are also established in [10] by using the general theory for nonlinear parabolic
systems developed in [2]. Weak solutions have been subsequently constructed in [9] by a compactness
method: the first step is to study a regularized system in which the cross-diffusion terms are “weakened”
and to show that it has global strong solutions, the proof combining the theory from [2] for the local
well-posedness and suitable estimates for the global existence. Some of these estimates turn out to be
independent of the regularisation parameter and provide sufficient information to pass to the limit as
the regularisation parameter goes to zero and obtain a weak solution to (1.1a) in a second step. A key
argument in the analysis of [9] was to notice that there is another Liapunov functional for (1.1a) given
by

H(f, g) :=

∫

R

[

f ln f +
R

Rµ
g ln g

]

dx , (1.4)

which evolves along the flow as follows:

d

dt
H(f, g) = −

∫

R

[

|∂xf |2 +R |∂xf + ∂xg|2
]

dx .

The basic idea behind the above computation is to notice that an alternative formulation of (1.1a) is
{

∂tf = ∂x [f ∂x ((1 +R)f +Rg)] ,

∂tg = Rµ ∂x [g ∂x (f + g)] ,
(t, x) ∈ (0,∞) × R,

so that it is rather natural to multiply the f -equation by ln f and the g-equation by ln g and find nice
cancellations after integrating by parts. In this note, we go one step further and observe that a concise
formulation of (1.1a) is actually























∂tf = ∂x

[

f ∂x

(

δE
δf

(f, g)

)]

,

R

Rµ
∂tg = ∂x

[

g ∂x

(

δE
δg

(f, g)

)]

,

(t, x) ∈ (0,∞) × R, (1.5)

which is strongly reminiscent of the interpretation of second-order parabolic equations as gradient flows
with respect to the 2-Wasserstein distance, see [3, Chapter 11] and [18, Chapter 8]. Indeed, since
the pioneering works [12] on the linear Fokker-Planck equation and [15, 16] on the porous medium
equation, several equations have been interpreted as gradient flows with respect to some Wasserstein
metrics, including doubly degenerate parabolic equations [1], a model for type-II semiconductors [4],
the Smoluchowski-Poisson equation [5], some kinetic equations [6, 8], and some fourth-order degenerate
parabolic equations [14], to give a few examples, see also [3] for a general approach. As far as we know,
the system (1.5) seems to be the first example of a system of parabolic partial differential equations which
can be interpreted as a gradient flow for Wasserstein metrics. Let us however mention that the parabolic-
parabolic Keller-Segel system arising in the modeling of chemotaxis has a mixed Wasserstein-L2 gradient
flow structure [7].

The purpose of this note is then to show that the heuristic argument outlined previously can be made
rigorous and to construct weak solutions to (1.1) by this approach. More precisely, let K be the convex
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subset of the Banach space L1(R, (1 + x2)dx) ∩ L2(R) defined by

K :=

{

h ∈ L1(R, (1 + x2)dx) ∩ L2(R) : h ≥ 0 a.e. and

∫

R

h(x) dx = 1

}

, (1.6)

and consider initial data (f0, g0) ∈ K2 := K × K. We next denote the set of Borel probability measures
on R with finite second moment by P2(R) and the 2−Wasserstein distance on P2(R) by W2. Recall that,
given two Borel probability measures µ and ν in P2(R),

W 2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫

R2

|x− y|2dπ(x, y) ,

where Π(µ, ν) is the set of all probability measures π ∈ P(R2) which have marginals µ and ν, that is
π[A×R] = µ[A] and π[R×B] = ν[B] for all measurable subsets A and B of R. Alternatively, π ∈ Π(µ, ν)
is equivalent to

∫

R2

(φ(x) + ψ(y)) dπ(x, y) =

∫

R

φ(x) dµ(x) +

∫

R

ψ(y) dν(y) for all (φ,ψ) ∈ L1(R;R2).

With these notation, our result reads:

Theorem 1.1. Assume that R > 0, Rµ > 0. Given τ > 0 and (f0, g0) ∈ K2, the sequence (fnτ , g
n
τ )n≥0

obtained recursively by setting

(f0τ , g
0
τ ) := (f0, g0) , (1.7)

Fn
τ

(

fn+1
τ , gn+1

τ

)

:= inf
(u,v)∈K2

Fn
τ (u, v) , (1.8)

with

Fn
τ (u, v) :=

1

2τ

(

W 2
2 (u, fnτ ) +

R

Rµ
W 2

2 (v, gnτ )

)

+ E(u, v) , (u, v) ∈ K2 , (1.9)

is well-defined. Introducing the interpolation (fτ , gτ ) defined by

fτ (t) := fnτ and gτ (t) := gnτ for t ∈ [nτ, (n+ 1)τ) and n ≥ 0, (1.10)

there exist a sequence (τk)k≥1 of positive real numbers, τk ց 0, and functions (f, g) : [0,∞) → K2 such

that

(fτk , gτk) −→ (f, g) in L2((0, T ) × R;R2) for all T > 0. (1.11)

Moreover,

(i) (f, g) ∈ L∞(0,∞;L2(R;R2)), (∂xf, ∂xg) ∈ L2(0, t;H1(R;R2)),
(ii) (f, g) ∈ C([0,∞);H−3(R;R2)) with (f, g)(0) = (f0, g0),

and the pair (f, g) is a weak solution of (1.1) in the sense that



















∫

R

f(t) ξ dx−
∫

R

f0 ξ dx+

∫ t

0

∫

R

f(σ) [(1 +R)∂xf +R∂xg] (σ)∂xξ dx dσ = 0 ,

∫

R

g(t) ξ dx−
∫

R

g0 ξ dx+Rµ

∫ t

0

∫

R

g(σ) (∂xf + ∂xg) (σ)∂xξ dx dσ = 0 ,

(1.12)
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for all ξ ∈ C∞
0 (R) and t ≥ 0. In addition, (f, g) satisfy the following estimates

(a) H(f(T ), g(T )) +

∫ T

0

∫

R

[

|∂xf |2 +R|∂x(f + g)|2
]

dx dt ≤ H(f0, g0) ,

(b) E(f(T ), g(T )) + 1

2

∫ T

0

∫

R

[

f ((1 +R)∂xf +R∂xg)
2 +RRµg(∂xf + ∂xg)

2
]

dx dt ≤ E(f0, g0) ,

for a.e. T ∈ (0,∞), E and H being the functionals defined by (1.2) and (1.4), respectively.

Let us briefly outline the proof of Theorem 1.1: in the next section, we study the variational problem
(1.8) and the properties of its minimizers. A key argument here is to note that the availability of
the Liapunov functional (1.4) allows us to apply an argument from [14] which guarantees that the
minimizers are not only in L2(R;R2) but also in H1(R;R2). This property is crucial in order to derive
the Euler-Lagrange equation in Section 2.2. The latter is then used to obtain additional regularity on the
minimizers, adapting an argument from [15]. Convergence of the variational approximation is established
in Section 3. Finally, three technical results are collected in the Appendix.

As a final comment, let us point out that we have assumed for simplicity that the initial data f0 and g0
are probability measures but that the case of initial data having different masses may be handled in the
same way after a suitable rescaling: more precisely, let (f0, g0) ∈ L2(R) ∩ L1(R, (1 + x2)dx) and denote
a solution to (1.1) by (f, g). Setting F := f/‖f0‖1 and G := g/‖g0‖1 and recalling that ‖f(t)‖1 = ‖f0‖1
and ‖g(t)‖1 = ‖g0‖1 for all t ≥ 0, we realize that (F,G) solves



















1

‖g0‖1
∂tF = ∂x

[

F ∂x
(

(1 +R)η2F +RG
)]

,

R

Rµ‖f0‖1
∂tG = ∂x

[

G ∂x
(

RF +Rη−2G
)]

,

(t, x) ∈ (0,∞) × R,

with η2 := ‖f0‖1/‖g0‖1 and initial data (F0, G0) := (f0/‖f0‖1, g0/‖g0‖1) ∈ K2. The corresponding
variational scheme then involves the functional

1

2τ

(

1

‖g0‖1
W 2

2 (u, F0) +
R

Rµ‖f0‖1
W 2

2 (v,G0)

)

+
η2

2
‖u‖22 +

R

2

∥

∥η u+ η−1 v
∥

∥

2

2
, (u, v) ∈ K2 ,

to which the analysis performed below (with η = 1) also applies.

2. A variational scheme

Given τ > 0 and (f0, g0) ∈ K2, we introduce the functional

Fτ (u, v) :=
1

2τ

(

W 2
2 (u, f0) +

R

Rµ
W 2

2 (v, g0)

)

+ E(u, v) , (u, v) ∈ K2 , (2.1)

and consider the minimization problem

inf
(u,v)∈K2

Fτ (u, v). (2.2)
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2.1. Existence and properties of minimizers. Let us start by proving that, for each (f0, g0) ∈ K2,
the minimization problem (2.2) has a unique solution in K2.

Lemma 2.1. Given (f0, g0) ∈ K2 and τ > 0, there exists a unique minimizer (f, g) ∈ K2 of (2.2).
Additionally, (f, g) ∈ H1(R;R2) with

‖∂xf‖22 +R‖∂x(f + g)‖22 ≤ 1

τ

[

H(f0)−H(f) +
R

Rµ
(H(g0)−H(g))

]

, (2.3)

where

H(h) :=

∫

R

h ln(h) dx for h ∈ L1(R) such that h ≥ 0 a.e. and h ln(h) ∈ L1(R). (2.4)

Recall that, if h ∈ K, then h ln h ∈ L1(R) (see Lemma A.1 below) so that the right-hand side of (2.3)
is well-defined.

Proof. The uniqueness of the minimizer follows from the convexity of K2 and W 2
2 and the strict convexity

of the energy functional E .
We next prove the existence of a minimizer. To this end, pick a minimizing sequence (uk, vk)k≥1 ∈ K2.

There exists a constant C > 0 such that

‖uk‖2 + ‖vk‖2 ≤ C , k ≥ 1 , (2.5)

W2(uk, f0) +W2(vk, g0) ≤ C , k ≥ 1 . (2.6)

From (2.5) we obtain at once that there exist (f, g) ∈ L2(R;R2) and a subsequence of (uk, vk)k≥1 (denoted
again by (uk, vk)k≥1) such that

uk ⇀ f and vk ⇀ g in L2(R). (2.7)

Let us first check that (f, g) ∈ K2. Indeed, the nonnegativity of f and g readily follows from that of
uk and vk by (2.7) while integrating the inequality x2 ≤ 2y2 + 2|x − y|2 with respect to an arbitrary
π ∈ Π(uk, f0) yields

∫

R

uk(x)x
2 dx =

∫

R2

x2 dπ(x, y) ≤ 2

∫

R2

y2 dπ(x, y) + 2

∫

R2

|x− y|2 dπ(x, y)

≤ 2

∫

R2

f0(y)y
2 dy + 2

∫

R2

|x− y|2 dπ(x, y) ,

which implies by virtue of (2.6) that
∫

R

uk(x)x
2 dx ≤ 2

∫

R

f0(x)x
2 dx+ 2W 2

2 (uk, f0) ≤ C , k ≥ 1 . (2.8)

Similarly,
∫

R

vk(x)x
2 dx ≤ C , k ≥ 1 . (2.9)

Owing to (2.5), (2.8), and (2.9), we deduce from the Dunford-Pettis theorem that (uk)k≥1 and (vk)k≥1

are weakly sequentially compact in L1(R). We may thus assume (after possibly extracting a further
subsequence) that uk ⇀ f and vk ⇀ g in L1(R), whence

∫

R

f(x) dx = lim
k→∞

∫

R

uk(x) dx = 1 and

∫

R

g(x) dx = lim
k→∞

∫

R
vk(x) dx = 1 .
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Finally, combining (2.5), (2.8), and (2.9) with a truncation argument ensure that f and g both belong
to L1(R, (1 + x2)dx). Summarising, we have shown that (f, g) ∈ K2.

The next step is to prove that

Fτ (f, g) = inf
(u,v)∈K2

Fτ (u, v) .

Indeed, on the one hand, the weak convergence (2.7) implies that

E(f, g) ≤ lim inf
k→∞

E(uk, vk).

On the other hand, we recall that the 2-Wasserstein metric W2 is lower semicontinuous with respect to
the narrow convergence of probability measures in each of its arguments, see [3, Proposition 7.1.3], and
the weak convergence of (uk, vk)k≥1 in L1(R;R2) ensures that

W 2
2 (f, f0) ≤ lim inf

k→∞
W 2

2 (uk, f0) and W 2
2 (g, g0) ≤ lim inf

k→∞
W 2

2 (vk, g0) .

Consequently,

Fτ (f, g) ≤ lim inf
k→∞

Fτ (uk, vk) with (f, g) ∈ K2 ,

so that (f, g) is a minimizer of Fτ in K2.
As a final step, we show that f and g belong to H1(R). To this end, we follow the approach developed

in [14] and take advantage of the availability of another Liapunov function as already discussed in the
Introduction. More precisely, denote the heat semigroup by (Gt)t≥0, that is,

(Gth)(x) :=
1√
4πt

∫

R

exp

(

−|x− y|2
4t

)

h(y) dy , (t, x) ∈ [0,∞) × R ,

for h ∈ L1(R). Since (f, g) ∈ K2, classical properties of the heat semigroup ensure that (Gtf,Gtg) ∈ K2

for all t ≥ 0. Consequently, Fτ (f, g) ≤ Fτ (Gtf,Gtg) and we deduce that

E(f, g)− E(Gtf,Gtg) ≤
1

2τ

[

(

W 2
2 (Gtf, f0)−W 2

2 (f, f0)
)

+
R

Rµ

(

W 2
2 (Gtg, g0)−W 2

2 (g, g0)
)

]

(2.10)

for all t ≥ 0. Moreover, for all t > 0, we have

d

dt
E(Gtf,Gtg) =

∫

R

[Gtf ∂tGtf +R (Gtf +Gtg) ∂t(Gtf +Gtg)] dx = −‖∂xGtf‖22 −R ‖∂xGt(f + g)‖22,

and by integration with respect to time we find that

1

t

∫ t

0

[

‖∂xGsf‖22 +R‖∂xGs(f + g)‖22
]

ds ≤ E(f, g)− E(Gtf,Gtg)

t
for all t > 0.

Since s 7→ ‖∂xGsh‖2 is non-increasing for h ∈ L1(R) we end up with

‖∂xGtf‖22 +R‖∂xGt(f + g)‖22 ≤ E(f, g)− E(Gtf,Gtg)

t
for all t > 0. (2.11)

We recall now some properties of the heat flow in connection with the 2-Wasserstein distance W2,
see [3,8,16], these properties being actually collected in [14, Theorem 2.4]. The heat flow is the gradient

flow of the entropy functional H given by (2.4) forW2 and, for all (h, h̃) ∈ K2, we have [3, Theorem 11.1.4]

1

2

d

dt
W 2

2 (Gth, h̃) +H(Gth) ≤ H(h̃) for a.e. t ≥ 0. (2.12)
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Choosing (h, h̃) = (f, f0) and (h, h̃) = (g, g0) in (2.12), we obtain

1

2

d

dt

[

W 2
2 (Gtf, f0) +

R

Rµ
W 2

2 (Gtg, g0)

]

≤ H(f0)−H(Gtf) +
R

Rµ
(H(g0)−H(Gtg))

for a.e. t ≥ 0. Integrating the above inequality with respect to time and using the time monotonicity of
s 7→ H(Gsf) and s 7→ H(Gsg) give

1

2

[

W 2
2 (Gtf, f0)−W 2

2 (f, f0) +
R

Rµ

(

W 2
2 (Gtg, g0)−W 2

2 (g, g0)
)

]

≤
∫ t

0

[

H(f0)−H(Gsf) +
R

Rµ
(H(g0)−H(Gsg))

]

ds

≤ t

[

H(f0)−H(Gtf) +
R

Rµ
(H(g0)−H(Gtg))

]

. (2.13)

Gathering (2.10), (2.11), and (2.13), we find

‖∂xGtf‖22 +R ‖∂xGt(f + g)‖22 ≤ 1

τ

[

H(f0)−H(Gtf) +
R

Rµ
(H(g0)−H(Gtg))

]

(2.14)

for t > 0. As a direct consequence of (2.14) and the boundedness from below (A.2) of H in K, (∂xGtf)t>0

and (∂xGtg)t>0 are bounded in L2(R) and converge to ∂xf and ∂xg, respectively, in the sense of distri-
butions as t→ 0. This implies that both f and g belongs to H1(R) and we can pass to the limit as t → 0
in (2.14) to obtain the desired estimate (2.3) and finish the proof. �

2.2. The Euler-Lagrange equation. We now identify the Euler-Lagrange equation corresponding to
the minimization problem (2.2).

Lemma 2.2. Given (f0, g0) ∈ K2 and τ > 0, the minimizer (f, g) of Fτ in K2 satisfies
∣

∣

∣

∣

1

τ

∫

R

ξ (f − f0) dx+

∫

R

[((1 +R) f ∂xf +R f ∂xg) ∂xξ] dx

∣

∣

∣

∣

≤ ‖∂2xξ‖∞
2τ

W 2
2 (f, f0) , (2.15)

∣

∣

∣

∣

1

τ

∫

R

ξ (g − g0) dx+Rµ

∫

R

[(g ∂xf + g ∂xg) ∂xξ] dx

∣

∣

∣

∣

≤ ‖∂2xξ‖∞
2τ

W 2
2 (g, g0) , (2.16)

for ξ ∈ C∞
0 (R).

Proof. To derive (2.15)-(2.16) we follow the general strategy outlined in [18, Chapter 8]. According to
Brenier’s theorem [18, Theorem 2.12], there are two convex functions ϕ : R → R and ψ : R → R which
are uniquely determined up to an additive constant such that

W 2
2 (f, f0) =

∫

R

|x− ∂xϕ(x)|2 f0(x) dx = inf
T#f0=f

∫

R

|x− T (x)|2 f0(x) dx, (2.17a)

where the infimum is taken over all measurable functions T : R → R pushing f0 forward to f (f = T#f0),
i.e. satisfying

∫

B
f(x) dx =

∫

T−1(B)
f0(x) dx for all Borel sets B of R,

and

W 2
2 (g, g0) =

∫

R

|x− ∂xψ(x)|2 g0(x) dx = inf
S#g0=g

∫

R

|x− S(x)|2 g0(x) dx. (2.17b)



8 PH. LAURENÇOT AND B.–V. MATIOC

We pick now two test functions η and ξ in C∞
0 (R) and define

fε := ((id+εξ) ◦ ∂xϕ)#f0 = (id+εξ)#f and gε := ((id+εη) ◦ ∂xψ)#g0 = (id+εη)#g (2.18)

for each ε ∈ [0, 1], where id is the identity function on R. To ease notation we set

Tε := id+εξ and Sε := id+εη, (2.19)

and observe that there is ε0 small enough (depending on both ξ and η) such that, for ε ∈ [0, ε0], Tε and
Sε are C∞−diffeomorphisms in R. Then, by (2.18), we find the identities

fε =
f ◦ T−1

ε

∂xTε ◦ T−1
ε

and gε =
g ◦ S−1

ε

∂xSε ◦ S−1
ε
, ε ∈ (0, ε0]. (2.20)

Observing that ‖fε‖1 = ‖f‖1 = ‖gε‖1 = ‖g‖1 = 1 and

‖fε‖22 =
∫

R

|f(x)|2
∂xTε(x)

dx and ‖gε‖22 =
∫

R

|g(x)|2
∂xSε(x)

dx, (2.21)

we clearly have (fε, gε) ∈ K2 for all ε ∈ (0, ε0] and thus Fτ (f, g) ≤ Fτ (fε, gε). Consequently,

0 ≤ 1

2τ

[

W 2
2 (fε, f0)−W 2

2 (f, f0) +
R

Rµ

(

W 2
2 (gε, g0)−W 2

2 (g, g0)
)

]

+ E(fε, gε)− E(f, g). (2.22)

Concerning the energy E , it follows from (2.21) that

2(E(fε, gε)− E(f, g)) = (1 +R) Iε1 +R Iε2 + 2R Iε3 , (2.23)

with

Iε1 :=

∫

R

(

1

∂xTε(x)
− 1

)

|f(x)|2 dx , Iε2 :=

∫

R

(

1

∂xSε(x)
− 1

)

|g(x)|2 dx ,

Iε3 :=

∫

R

(fε gε − f g) (x) dx .

We now consider the three integrals in the right-hand side of the relation (2.23) separately: since

Iε1 = −ε
∫

R

∂xξ

1 + ε∂xξ
f2 dx and Iε2 = −ε

∫

R

∂xη

1 + ε∂xη
g2 dx ,

it readily follows from Lebesgue’s dominated convergence theorem that

lim
ε→0

Iε1
ε

= −
∫

R

∂xξ f
2 dx and lim

ε→0

Iε2
ε

= −
∫

R

∂xη g
2 dx . (2.24)

We next turn to the term Iε3 involving both f and g and split it in two terms 2Iε3 = Iε31 + Iε32 with

Iε31 :=

∫

R

(fε + f) (gε − g) dx and Iε32 :=

∫

R

(gε + g) (fε − f) dx .

By (2.20),

Iε31 =

∫

R

(

f ◦ T−1
ε

∂xTε ◦ T−1
ε

+ f

)(

g ◦ S−1
ε

∂xSε ◦ S−1
ε

− g

)

dx

=

∫

R

(

f ◦ T−1
ε ◦ Sε

∂xTε ◦ T−1
ε ◦ Sε

+ f ◦ Sε
)

(g − (g ◦ Sε) ∂xSε) dx

=

∫

R

(

f ◦ T−1
ε ◦ Sε

∂xTε ◦ T−1
ε ◦ Sε

+ f ◦ Sε
)

(g − g ◦ Sε) dx− ε

∫

R

∂xη (g ◦ Sε)
(

f ◦ T−1
ε ◦ Sε

∂xTε ◦ T−1
ε ◦ Sε

+ f ◦ Sε
)

dx.
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On the one hand, invoking Lemma A.2 (with (h, ζ) = (g, η)), we know that (g − g ◦ Sε)/ε ⇀ −η∂xg
in L2(R) as ε → 0. On the other hand, using again Lemma A.2 as well as Lemma A.3, we have that
f ◦Sε −→ f and f ◦ T−1

ε ◦Sε −→ f in L2(R) as ε→ 0, and so does f ◦ T−1
ε ◦Sε/(∂xTε ◦ T−1

ε ◦Sε) owing
to the uniform convergence of (∂xTε)ε to 1. Consequently,

lim
ε→0

Iε31
ε

=− 2

∫

R

f ∂x(ηg) dx, (2.25)

and similarly

lim
ε→0

Iε32
ε

=− 2

∫

R

g ∂x(ξf) dx. (2.26)

Gathering (2.24)-(2.26), it follows from (2.23) that

lim
ε→0

E(fε, gε)− E(f, g)
ε

= −(1 +R)

∫

R

f2

2
∂xξ dx−R

∫

R

g2

2
∂xη dx−R

∫

R

[f ∂x(ηg) + g ∂x(ξf)] dx.

(2.27)
To handle the terms of (2.22) involving the Wasserstein distance, we argue as in [18, Section 8.4] and
write

W 2
2 (fε, f0) ≤

∫

R

| id−Tε ◦ ∂xϕ|2 f0 dx =

∫

R

| id−∂xϕ− ε ξ ◦ ∂xϕ|2 f0 dx

=

∫

R

| id−∂xϕ|2 f0 dx− 2ε

∫

R

(id−∂xϕ) (ξ ◦ ∂xϕ) f0 dx+ ε2
∫

R

|ξ ◦ ∂xϕ|2 f0 dx,

from which we deduce, according to the definition of ∂xϕ,

W 2
2 (fε, f0) ≤W 2

2 (f, f0)− 2ε

∫

R

(id−∂xϕ) (ξ ◦ ∂xϕ) f0 dx+ ε2
∫

R

|ξ ◦ ∂xϕ|2 f0 dx, (2.28)

and similarly

W 2
2 (gε, g0) ≤W 2

2 (g, g0)− 2ε

∫

R

(id−∂xψ) (η ◦ ∂xψ) g0 dx+ ε2
∫

R

|η ◦ ∂xψ|2 g0 dx. (2.29)

Summing (2.27), (2.28), and (2.29), we obtain by dividing (2.22) by ε and letting ε→ 0 that

1

τ

[
∫

R

(id−∂xϕ) (ξ ◦ ∂xϕ) f0 dx+
R

Rµ

∫

R

(id−∂xψ) (η ◦ ∂xψ) g0 dx
]

+ (1 +R)

∫

R

∂xξ
f2

2
dx+R

∫

R

∂xη
g2

2
dx+R

∫

R

[f ∂x(ηg) + g ∂x(ξf)] dx ≤ 0.

Since the relation is valid for (ξ, η) as well as for (−ξ,−η), we end up with

1

τ

[
∫

R

(id−∂xϕ) (ξ ◦ ∂xϕ) f0 dx+
R

Rµ

∫

R

(id−∂xψ) (η ◦ ∂xψ) g0 dx
]

+ (1 +R)

∫

R

∂xξ
f2

2
dx+R

∫

R

∂xη
g2

2
dx+R

∫

R

[f ∂x(ηg) + g ∂x(ξf)] dx = 0

(2.30)

for all (ξ, η) ∈ C∞
0 (R;R2).
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Consider now Ξ ∈ C∞
0 (R). For x ∈ R, we have

|Ξ(x)− Ξ(∂xϕ(x)) − ∂xΞ(∂xϕ(x)) (x− ∂xϕ(x))| =
∣

∣

∣

∣

∣

∫ x

∂xϕ(x)
(x− y) ∂2xΞ(y) dy

∣

∣

∣

∣

∣

≤‖∂2xΞ‖∞
(x− ∂xϕ(x))

2

2
.

Multiplying the above inequality by f0(x), integrating over R, and using the definition of ∂xϕ yield
∣

∣

∣

∣

∫

R

[Ξ(x)− Ξ(∂xϕ(x)) − ∂xΞ(∂xϕ(x)) (x− ∂xϕ(x))] f0(x) dx

∣

∣

∣

∣

≤ ‖∂2xΞ‖∞
W 2

2 (f, f0)

2
. (2.31)

Owing to (2.30) with (ξ, η) = (∂xΞ, 0) and the property f = ∂xϕ#f0, we deduce that
∣

∣

∣

∣

1

τ

∫

R

(f − f0) Ξ dx− (1 +R)

∫

R

f2

2
∂2xΞ dx−R

∫

R

g ∂x (f ∂xΞ) dx

∣

∣

∣

∣

≤ 1

2
‖∂2xΞ‖∞

W 2
2 (f, f0)

τ
.

Taking into account that (f, g) ∈ H1(R;R2) by Lemma 2.1, we arrive, after integrating by parts once,
to (2.15). A similar argument leads to (2.16). �

We next develop further an argument from the proof of [15, Proposition 2] which allows us to gain
regularity on f and g by using the Euler-Lagrange equation.

Corollary 2.3. The functions
√
f ∂x((1 +R)f +Rg) and

√
g ∂x(f + g) both belong to L2(R) and

τ
∥

∥

∥

√

f ∂x[(1 +R)f +Rg]
∥

∥

∥

2
≤ W2(f, f0) , (2.32a)

τ Rµ ‖
√
g ∂x(f + g)‖2 ≤ W2(g, g0) . (2.32b)

It is worth mentioning here that the estimates (2.32) match exactly the regularity of (f, g) given by
the dissipation in the energy inequality (1.3).

Proof. Consider ξ ∈ C∞
0 (R). We infer from (2.30) with η = 0 that, after integrating by parts,

∫

R

[(1 +R) f ∂xf +R f ∂xg] ξ dx =
1

τ

∫

R

(x− ∂xϕ(x)) (ξ ◦ ∂xϕ)(x) f0(x) dx .

Since f = ∂xϕ#f0, it follows from the Cauchy-Schwarz inequality and (2.17a) that
∣

∣

∣

∣

∫

R

(x− ∂xϕ(x)) (ξ ◦ ∂xϕ)(x) f0(x) dx
∣

∣

∣

∣

≤
(
∫

R

(x− ∂xϕ(x))
2 f0(x) dx

)1/2 (∫

R

(ξ ◦ ∂xϕ)2(x) f0(x) dx
)1/2

≤W2(f, f0)

(
∫

R

ξ2(x) f(x) dx

)1/2

.

Therefore,
∣

∣

∣

∣

∫

R

[(1 +R) f ∂xf +R f ∂xg] ξ dx

∣

∣

∣

∣

≤ W2(f, f0)

τ

(
∫

R

ξ2(x) f(x) dx

)1/2

. (2.33)

Consider next a nonnegative function χ ∈ C∞
0 (R) such that ‖χ‖1 = 1 and define χm(x) := mχ(mx) for

m ≥ 1 and x ∈ R. Then, (χm)m≥1 is a sequence of mollifiers in R and, given ϑ ∈ C∞
0 (R) and m ≥ 1,
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the function ϑ/(m−1/4 + χm ∗ f)1/2 belongs to C∞
0 (R). Taking ξ = ϑ/(m−1/4 + χm ∗ f)1/2 in (2.33), we

obtain
∣

∣

∣

∣

∣

∫

R

f ∂x[(1 +R)f +Rg]
√

m−1/4 + χm ∗ f
ϑ dx

∣

∣

∣

∣

∣

≤ W2(f, f0)

τ

∥

∥

∥

∥

f

m−1/4 + χm ∗ f

∥

∥

∥

∥

1/2

∞

‖ϑ‖2 .

The previous inequality being valid for all ϑ ∈ C∞
0 (R), a duality argument yields

∥

∥

∥

∥

∥

f ∂x[(1 +R)f +Rg]
√

m−1/4 + χm ∗ f

∥

∥

∥

∥

∥

2

≤ W2(f, f0)

τ

∥

∥

∥

∥

f

m−1/4 + χm ∗ f

∥

∥

∥

∥

1/2

∞

. (2.34)

Now, since f ∈ H1(R) by Lemma 2.1, we have ‖χm ∗ f − f‖∞ ≤ Cχ ‖∂xf‖2 m−1/2 for some constant
Cχ > 0 depending only on χ from which we deduce that

∥

∥

∥

∥

f

m−1/4 + χm ∗ f

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

f − χm ∗ f
m−1/4 + χm ∗ f

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

χm ∗ f
m−1/4 + χm ∗ f

∥

∥

∥

∥

∞

≤ 1 +
Cχ ‖∂xf‖2
m1/4

. (2.35)

In particular, for x ∈ R,
∣

∣

∣

∣

∣

f(x)
√

m−1/4 + χm ∗ f(x)

∣

∣

∣

∣

∣

≤
(

1 +
√

Cχ ‖∂xf‖2
)

√

f(x) ∈ L2(R)

and

lim
m→∞

f(x)
√

m−1/4 + χm ∗ f(x)
=







0 =
√

f(x) if f(x) = 0 ,

√

f(x) if f(x) > 0 ,

so that
f

√

m−1/4 + χm ∗ f
−→

√

f in L2(R)

by the Lebesgue dominated convergence theorem. Since (1+R)f +Rg belongs to H1(R) by Lemma 2.1,
we conclude that

f
√

m−1/4 + χm ∗ f
∂x[(1 +R)f +Rg] −→

√

f ∂x[(1 +R)f +Rg] in L1(R) . (2.36)

Owing to (2.35) and (2.36), we may let m→ ∞ in (2.34) and deduce that
√
f ∂x[(1+R)f +Rg] ∈ L2(R)

and satisfies (2.32a). The proof of (2.32b) is similar. �

2.3. Interpolation. Thanks to the results established in the previous sections, we are now in a position
to set up a variational scheme to approximate the solution to (1.1). More precisely, given (f0, g0) ∈ K2

and τ ∈ (0, 1), we define inductively a sequence (fnτ , g
n
τ )n≥0 as follows:

(f0τ , g
0
τ ) := (f0, g0) , (2.37)

Fn
τ

(

fn+1
τ , gn+1

τ

)

:= inf
(u,v)∈K2

Fn
τ (u, v) , (2.38)

with

Fn
τ (u, v) :=

1

2τ

(

W 2
2 (u, fnτ ) +

R

Rµ
W 2

2 (v, gnτ )

)

+ E(u, v) , (u, v) ∈ K2 ,
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the existence and uniqueness of
(

fn+1
τ , gn+1

τ

)

being guaranteed by Lemma 2.1 for each n ≥ 0. We next
define two interpolation functions fτ and gτ by (1.10), i.e. fτ (t) := fnτ and gτ (t) := gnτ for t ∈ [nτ, (n+1)τ)
and n ≥ 0. By Lemma 2.2, we have


















∣

∣

∣

∣

∫

R

(

fnτ − fn−1
τ

)

ξ dx+ τ

∫

R

fnτ ∂x ((1 +R) fnτ +R gnτ ) ∂xξ dx

∣

∣

∣

∣

≤ ‖∂2xξ‖∞
2

W 2
2 (f

n
τ , f

n−1
τ ),

∣

∣

∣

∣

∫

R

(

gnτ − gn−1
τ

)

ξ dx+ τ Rµ

∫

R

gnτ ∂x (g
n
τ + gnτ ) ∂xξ dx

∣

∣

∣

∣

≤ ‖∂2xξ‖∞
2

W 2
2 (g

n
τ , g

n−1
τ ),

(2.39)

for all n ≥ 1 and ξ ∈ C∞
0 (R). Given T > 0 arbitrary, we set N := [T/τ ]. Summing both equations of

(2.39) from n = 1 to n = N, we find
∣

∣

∣

∣

∫

R

(fτ (T )− f0) ξ dx +

∫ (N+1)τ

τ

∫

R

fτ ∂x ((1 +R) fτ +R gτ ) ∂xξ dxdt

∣

∣

∣

∣

∣

≤ ‖∂2xξ‖∞
2

N
∑

n=1

W 2
2 (f

n
τ , f

n−1
τ ),

(2.40)
∣

∣

∣

∣

∫

R

(gτ (T )− g0) ξ dx + Rµ

∫ (N+1)τ

τ

∫

R

gτ ∂x (fτ + gτ ) ∂xξ dxdt

∣

∣

∣

∣

∣

≤ ‖∂2xξ‖∞
2

N
∑

n=1

W 2
2 (g

n
τ , g

n−1
τ ).

(2.41)

3. Convergence

We gather in the next lemma various properties of the interpolations (fτ , gτ ) defined in Section 2.3
which are consequences of Lemma 2.1 and Corollary 2.3.

Lemma 3.1. There exists a positive constant C1 depending only on R, Rµ, f0, and g0 such that, for all

t ≥ 0 and τ ∈ (0, 1), we have

(i)

∫

R

fτ (t) dx =

∫

R

gτ (t) dx = 1, (3.1)

(ii)
∞
∑

n=1

[

W 2
2 (f

n
τ , f

n−1
τ ) +W 2

2 (g
n
τ , g

n−1
τ )

]

≤ C1τ, (3.2)

(iii) E(fτ (t), gτ (t)) ≤ E(fτ (s), gτ (s)), s ∈ [0, t], (3.3)

(iv)

∫

R

(fτ + gτ ) (t, x) x
2 dx ≤ C1 (1 + t), (3.4)

(v)

∫ t

τ

[

‖∂xfτ (s)‖22 + ‖∂xgτ (s)‖22
]

ds ≤ C1 (1 + t), (3.5)

(vi)

∫ ∞

τ

∫

R

fτ |∂x [(1 +R) fτ +R gτ ]|2 dxds ≤ C1, (3.6)

(vii)

∫ ∞

τ

∫

R

gτ |∂x (fτ + gτ )|2 dxds ≤ C1. (3.7)

Proof. The property (3.1) readily follows from the fact that (fnτ , g
n
τ ) ∈ K2 for all n ≥ 0 and τ > 0. Next,

for τ > 0 and n ≥ 1, the minimizing property of (fnτ , g
n
τ ) ensures that

E(fnτ , gnτ ) +
1

2τ

[

W 2
2 (f

n
τ , f

n−1
τ ) +

R

Rµ
W 2

2 (g
n
τ , g

n−1
τ )

]

≤ E(fn−1
τ , gn−1

τ ). (3.8)
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Given t ∈ (0,∞) and s ∈ [0, t], we set N := [t/τ ], ν := [s/τ ], and sum (3.8) from n = ν +1 up to n = N
to obtain, since (fτ , gτ )(t) = (fNτ , g

N
τ ) and (fτ , gτ )(s) = (f ντ , g

ν
τ ),

E(fτ (t), gτ (t)) +
1

2τ

N
∑

n=ν+1

[

W 2
2 (f

n
τ , f

n−1
τ ) +

R

Rµ
W 2

2 (g
n
τ , g

n−1
τ )

]

≤ E(fτ (s), gτ (s)). (3.9)

The monotonicity property (3.3) is a straightforward consequence of (3.9) while the nonnegativity of E
and (3.9) with s = ν = 0 give

N
∑

n=1

[

W 2
2 (f

n
τ , f

n−1
τ ) +

R

Rµ
W 2

2 (g
n
τ , g

n−1
τ )

]

≤ 2E(f0, g0) τ .

Since the right-hand side of the above inequality does not depend on N , we obtain (3.2). In order to
prove (3.4), we combine (2.8) and (3.2) and obtain for t ≥ 0 with N := [t/τ ]

∫

R
fτ (t, x) x

2 dx =

∫

R

fNτ (x) x2 dx ≤ 2

∫

R

f0(x) x
2 dx+ 2W 2

2 (f
N
τ , f0)

≤ 2

∫

R

f0(x) x
2 dx+ 2N

N
∑

n=1

W 2
2 (f

n
τ , f

n−1
τ )

≤ 2

∫

R

f0(x) x
2 dx+ 4Nτ E(f0, g0) ≤ C (1 + t) .

We next infer from (2.3) that, for n ≥ 1,

τ
(

‖∂xfnτ ‖22 +R ‖∂x(fnτ + gnτ )‖22
)

≤ H(fn−1
τ )−H(fnτ ) +

R

Rµ

(

H(gn−1
τ )−H(gnτ )

)

.

Let N ≥ 1. Summation from n = 1 to N yields
∫ (N+1)τ

τ

(

‖∂xfτ (s)‖22 +R ‖∂x(fτ + gτ )(s)‖22
)

ds ≤ H(f0)−H(fτ (Nτ)) +
R

Rµ
(H(g0)−H(gτ (Nτ))) .

(3.10)

It now follows from Lemma A.1, (3.1), (3.4), and (3.10) that
∫ (N+1)τ

τ

(

‖∂xfτ (s)‖22 +R ‖∂x(fτ + gτ )(s)‖22
)

ds

≤ H(f0) +
R

Rµ
H(g0) +

(R +Rµ)Cℓ

Rµ
+

∫

R

(1 + x2)

(

fτ (Nτ) +
R

Rµ
gτ (Nτ)

)

≤ C (1 +Nτ) ,

which entails the validity of (3.5) for t ∈ [Nτ, (N + 1)τ).
We finish the proof by showing (3.6) and (3.7). By Corollary 2.3, we have for n ≥ 1

τ2
∥

∥

∥

√

fnτ ∂x [(1 +R) fnτ +R gnτ ]
∥

∥

∥

2

2
≤W 2

2 (f
n
τ , f

n−1
τ ) .

Summing over n ≥ 1 and using (3.2) give
∞
∑

n=1

τ2
∥

∥

∥

√

fnτ ∂x [(1 +R) fnτ +R gnτ ]
∥

∥

∥

2

2
≤

∞
∑

n=1

W 2
2 (f

n
τ , f

n−1
τ ) ≤ C1τ ,

whence (3.6). The proof of (3.7) also relies on Corollary 2.3 and is similar. �
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3.1. Compactness. We now turn to the compactness properties of (fτ )τ>0 and (gτ )τ>0 and point out
that the nonlinearity of (1.1a) requires strong compactness. We first observe that the compactness with
respect to the space variable x is granted by (3.5) thanks to the following lemma.

Lemma 3.2. The spaces H1(R)∩L1(R, (1+x2) dx) and L2(R)∩L1(R, (1+x2) dx) are compactly embedded

in L2(R) and H−3(R), respectively.

Proof. Let us first consider a bounded sequence (hi)i≥1 in H1(R)∩L1(R, (1+x2) dx). On the one hand,

since H1(R) is continuously embedded in L∞(R) and C1/2(R), the Arzelà-Ascoli theorem implies that
there are h ∈ H1(R) and a subsequence of (hi)i≥1 (not relabeled), such that (hi)i≥1 converges to h in
C([−R,R]) for all R > 0. On the other hand, using once more the embedding of H1(R) in L∞(R), we
have for R > 1

∫

R

|hi(x)− h(x)|2 dx ≤
∫

{|x|≤R}
|hi(x)− h(x)|2 dx+

∫

{|x|>R}
|hi(x)− h(x)|2 dx

≤2R ‖hi − h‖2C([−R,R]) +
1

R2
‖hi − h‖∞

∫

R

x2 |hi(x)− h(x)| dx

≤2R ‖hi − h‖2C([−R,R]) +
2

R2
sup
i≥1

{

‖hi‖∞
∫

R

x2 |hi(x)| dx
}

.

Letting first i→ ∞ and then R→ ∞ shows that (hi)i≥1 converges to h in L2(R).
Next, let (hi)i≥1 be a bounded sequence in L2(R)∩L1(R, (1+x2) dx) and denote the Fourier transform

of hi by Fhi for i ≥ 1. A straightforward consequence of the bounds for (hi)i≥1 is that (Fhi)i≥1 is
bounded in L2(R) ∩W 2,∞(R). Arguing as above, this implies that (Fhi)i≥1 is relatively compact in
L2(R, (1 + x2)−3 dx). Coming back to the original variable, (hi)i≥1 is relatively compact in H−3(R) as
claimed. �

We next turn to the compactness in time and prove the following result:

Lemma 3.3. There is a positive constant C2 depending only on R, Rµ, f0, and g0 such that, for τ ∈ (0, 1)
and (t, s) ∈ [0,∞)× [0,∞),

‖fτ (t)− fτ (s)‖H−3 + ‖gτ (t)− gτ (s)‖H−3 ≤ C2

√

|t− s|+ τ . (3.11)

Proof. Consider t ∈ (0,∞), s ∈ [0, t], and define the integers N := [t/τ ] and ν := [s/τ ]. Either N = ν
and fτ (t)− fτ (s) = 0 satisfies (3.11) or N ≥ ν+1 and it follows from (2.39) that, for n ∈ {ν+1, · · · , N}
and ξ ∈ C∞

0 (R),

∣

∣

∣

∣

∫

R

(fnτ − fn−1
τ ) ξ dx

∣

∣

∣

∣

≤
∫ (n+1)τ

nτ

∫

R

fτ (s) |∂x [(1 +R) fτ +R gτ ] (s)| |∂xξ| dx ds

+
‖∂2xξ‖∞

2
W 2

2 (f
n
τ , f

n−1
τ )
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Summing the above inequality from n = ν + 1 to n = N and using (3.1), (3.3), (3.6), and the Cauchy-
Schwartz inequality, we are led to

∣

∣

∣

∣

∫

R

(fτ (t)− fτ (s)) ξ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

(fNτ − f ντ ) ξ dx

∣

∣

∣

∣

≤
N
∑

n=ν+1

∣

∣

∣

∣

∫

R

(fnτ − fn−1
τ ) ξ dx

∣

∣

∣

∣

≤
∫ (N+1)τ

(ν+1)τ

∫

R

fτ (s) |∂x [(1 +R) fτ +R gτ ] (s)| |∂xξ| dx ds

+
‖∂2xξ‖∞

2

N
∑

n=ν+1

W 2
2 (f

n
τ , f

n−1
τ )

≤ ‖∂xξ‖∞
∫ (N+1)τ

(ν+1)τ
‖fτ (s)‖1/21

∥

∥

∥

√

fτ ∂x [(1 +R) fτ +R gτ ] (s)
∥

∥

∥

2
ds

+C1 τ ‖∂2xξ‖∞
≤ C ‖ξ‖W 2,∞

(

√

(N − ν)τ + τ
)

≤ C ‖ξ‖W 2,∞

(√
t− s+ τ + τ

)

.

Since H3(R) is continuously embedded in W 2,∞(R), the claimed estimate for fτ (t) − fτ (s) follows by a
density argument. A similar computation relying on (2.39), (3.1), (3.3), and (3.7) gives the same estimate
for gτ (t)− gτ (s) and completes the proof of Lemma 3.3. �

We are now in a position to establish the strong compactness of (fτ , gτ )τ>0 in L2((0, T ) × R) for all
T > 0 as announced in (1.11).

Lemma 3.4. There are a sequence (τk)k≥1, τk → 0, and functions f and g in C([0,∞);H−3(R)) such

that, for all t ≥ 0,

(fτk(t), gτk (t)) −→ (f(t), g(t)) in H−3(R;R2) , (3.12)

(fτk , gτk ) −→ (f, g) in L2((0, t) × R;R2) , (3.13)

(fτk , gτk ) −→ (f, g) a.e. in (0,∞)× R . (3.14)

Proof. The proof relies on [3, Proposition 3.3.1] and [17, Lemma 9]. Indeed, it first follows from (3.1),
(3.3), (3.4), and Lemma 3.2 that (fτ (t))τ∈(0,1) lies in a compact subset of H−3(R). This fact, together
with Lemma 3.3 and a refined version of the Arzelà-Ascoli theorem [3, Proposition 3.3.1] ensures that
there are a sequence (τk)k≥1, τk → 0, and a function f ∈ C([0,∞);H−3(R)) such that (fτk(t)) converges
towards f(t) in H−3(R;R2) for each t ≥ 0. Since the same argument applies for (gτ )τ∈(0,1), we have

established (3.12). We then infer from (3.3), the embedding of L2(R) in H−3(R), the convergence (3.12),
and the Lebesgue dominated convergence theorem that

(fτk , gτk ) −→ (f, g) in L2(0, T ;H−3(R;R2)) for all T > 0 . (3.15)

Now, given δ ∈ (0, 1) and T > 1, the estimates (3.1), (3.3) (with s = 0), (3.4), and (3.5) in Lemma 3.1
ensure that

(fτk , gτk )k≥1 is bounded in L2(δ, T ;H1(R) ∩ L1(R, (1 + x2) dx)) . (3.16)

SinceH1(R)∩L1(R, (1+x2) dx) is compactly embedded in L2(R) by Lemma 3.2 and L2(R) is continuously
embedded in H−3(R), we are in a position to apply [17, Lemma 9] and deduce from (3.15) and (3.16) that
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(fτk , gτk )k≥1 converges towards (f, g) in L2((δ, T )×R;R2). Owing to (3.3), this convergence may actually

be improved to (3.13). The a.e. convergence (3.14) then follows from (3.13) after possibly extracting a
further subsequence. �

Finally, (3.5) implies that, after possibly extracting a further subsequence, we may assume that

(∂xfτk , ∂xgτk)⇀ (∂xf, ∂xg) in L2((δ, T ) × R) for all 0 < δ < T . (3.17)

Now, combining (3.6), (3.7), (3.13), and (3.17), we obtain

{ √

fτk ∂x [(1 +R) fτk +R gτk ] ⇀
√
f ∂x [(1 +R) f +R g]√

gτk ∂x (fτk + gτk) ⇀
√
g ∂x (f + g)

in L2((δ, T ) × R) (3.18)

for 0 < δ < T, while (3.13) and (3.17) imply that, for 0 < δ < T,

{

fτk ∂x [(1 +R) fτk +R gτk ] ⇀ f ∂x [(1 +R) f +R g]
gτk ∂x (fτk + gτk) ⇀ g ∂x (f + g)

in L1((δ, T ) × R) . (3.19)

3.2. Passing to the limit. Combining the convergence (3.12) with the estimates (3.1), (3.3) (with
s = 0) and (3.4) in Lemma 3.1 ensures that (f(t), g(t)) ∈ K2 for all t ≥ 0. Moreover, gathering (3.3),
(3.5), (3.13), and (3.17), we conclude that (f, g) satisfies the integrability properties (i) of Theorem 1.1.
In addition, it follows from (3.12) and Lemma 3.3 that

‖f(t)− f(s)‖H−3 + ‖g(t)− g(s)‖H−3 ≤ C2

√

|t− s| , (t, s) ∈ [0,∞) × [0,∞) , (3.20)

which proves assertion (ii) of Theorem 1.1.
In order to establish the estimate (b) of Theorem 1.1, we pick T > 0 and set Nk := [T/τk] for all

integers k ≥ 1. Then, we infer from Corollary 2.3 and (3.9) (with s = 0) that for all k ≥ 1 we have

1

2

∫ T

τk

{

∥

∥

∥

∥

√

fτk(σ) ∂x [(1 +R)fτk +Rgτk ] (σ)

∥

∥

∥

∥

2

2

+RRµ

∥

∥

∥

∥

√

gτk(σ) ∂x[fτk + gτk ](σ)

∥

∥

∥

∥

2

2

}

dσ

≤
Nk
∑

n=1

[

W 2
2 (f

n
τk
, fn−1

τk
)

2τk
+

R

Rµ

W 2
2 (g

n
τk
, gn−1

τk
)

2τk

]

≤ E(f0, g0)− E(fτk(T ), gτk(T )).

Letting k → ∞, the convergences (3.13) and (3.18) lead us to

1

2

∫ T

δ

{

∥

∥

∥

√

f(σ) ∂x [(1 +R)f +Rg] (σ)
∥

∥

∥

2

2
+RRµ

∥

∥

∥

√

g(σ) ∂x[f + g](σ)
∥

∥

∥

2

2

}

dσ

≤ E(f0, g0)− E(f(T ), g(T )).

for all δ ∈ (0, 1), whence the desired assertion (b) of Theorem 1.1 after letting δ → 0.



17

Now, we identify the equations solved by f and g. To this end, fix ξ ∈ C∞
0 (R), t ∈ (0,∞), s ∈ (0, t)

and set N := [t/τ ] and ν := [s/τ ]. We infer from (2.40), (3.1), (3.2), and (3.6) that

∣

∣

∣

∣

∫

R

(fτ (t)− fτ (s)) ξ dx+

∫ t

s

∫

R

fτ (σ) ∂x [(1 +R) fτ +R gτ ] (σ) ∂xξ dxdσ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

R

(fτ (t)− f0) ξ dx+

∫ (N+1)τ

τ

∫

R

fτ (σ) ∂x [(1 +R) fτ +R gτ ] (σ) ∂xξ dxdσ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

R

(fτ (s)− f0) ξ dx+

∫ (ν+1)τ

τ

∫

R

fτ (σ) ∂x [(1 +R) fτ +R gτ ] (σ) ∂xξ dxdσ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ (N+1)τ

t

∫

R

fτ (σ) ∂x [(1 +R) fτ +R gτ ] (σ) ∂xξ dxdσ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ (ν+1)τ

s

∫

R

fτ (σ) ∂x [(1 +R) fτ +R gτ ] (σ) ∂xξ dxdσ

∣

∣

∣

∣

∣

≤ ‖∂2xξ‖∞
N
∑

n=1

W 2
2 (f

n
τ , f

n−1
τ )

+ ‖∂xξ‖∞
∫ (ν+1)τ

s
‖fτ (σ)‖1/21

∥

∥

∥

√

fτ ∂x [(1 +R) fτ +R gτ ] (σ)
∥

∥

∥

2
dσ

+ ‖∂xξ‖∞
∫ (N+1)τ

t
‖fτ (σ)‖1/21

∥

∥

∥

√

fτ ∂x [(1 +R) fτ +R gτ ] (σ)
∥

∥

∥

2
dσ

≤ C ‖ξ‖W 2,∞

(

τ +
√
τ
)

.

Taking τ = τk in the above inequality and letting k → ∞ with the help of (3.12) and (3.19), we end up
with the first identity in (1.12)

∫

R

(f(t)− f(s)) ξ dx+

∫ t

s

∫

R

f(σ) ∂x [(1 +R) f +R g] (σ) ∂xξ dxdσ = 0 .

The proof of the second one being similar, it remains to check the property (a) stated in Theorem 1.1.
To this end, we first claim that

(fτk ln fτk , gτk ln gτk) −→ (f ln f, g ln g) in L1((0, T ) ×R) , T > 0 . (3.21)

Indeed, by (3.13) and the continuity of r 7→ r ln r in [0,∞), we have for T > 0

(fτk ln fτk , gτk ln gτk) −→ (f ln f, g ln g) a.e. in (0, T )× R. (3.22)

Moreover, it readily follows from (3.3) (with s = 0) that

(fτk ln fτk , gτk ln gτk)k≥1 is uniformly integrable in L1((0, T ) × R;R2) , (3.23)
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while (3.3), (3.4), and the inequality |r ln r| ≤ 2
√
r max {r, 1}, r ≥ 0, guarantee that, for R > 1,

∫ T

0

∫

{|x|≥R}
|fτk ln fτk | dxdt ≤ 2

∫ T

0

∫

{|x|≥R}

√

fτk 1[0,1](fτk) dxdt

+ 2

∫ T

0

∫

{|x|≥R}
f3/2τk

1(1,R)(fτk) dxdt

+ 2

∫ T

0

∫

{|x|≥R}
f3/2τk

1[R,∞)(fτk) dxdt

≤ 2

(

∫ T

0

∫

{|x|≥R}
x2 fτk dxdt

)1/2 (
∫ T

0

∫

{|x|≥R}

dxdt

x2

)1/2

+ 2
√
R

∫ T

0

∫

{|x|≥R}
fτk dxdt+

2√
R

∫ T

0

∫

{|x|≥R}
f2τk dxdt

≤ C
1 + T√
R

+
2

R3/2

∫ T

0

∫

{|x|≥R}
x2 fτk dxdt+ C

1 + T√
R

≤ C
1 + T√
R

. (3.24)

Due to (3.22)-(3.24), we are in a position to apply Vitali’s convergence theorem (see, e.g., [11, Theo-
rem 2.24] or [13, Théorème I.4.13]) and deduce the claim (3.21) for (fτk)k≥1, the proof for (gτk )k≥1 being
identical. Consequently, after possibly extracting a subsequence, we have also

(H(fτk(t)),H(gτk (t))) −→ (H(f(t)),H(g(t))) a.e. in (0,∞) , (3.25)

the functional H being defined in (2.4). We next infer from (3.17) and the Fatou lemma that, for t > 0,

∫ t

0

(

‖∂xf(s)‖22 +R ‖∂x(f + g)(s)‖22
)

ds = lim
δ→0

∫ t

δ

(

‖∂xf(s)‖22 +R ‖∂x(f + g)(s)‖22
)

ds

≤ lim
δ→0

lim inf
k→∞

∫ t

δ

(

‖∂xfτk(s)‖22 +R ‖∂x(fτk + gτk)(s)‖22
)

ds . (3.26)

Owing to (3.25) and (3.26), we may pass to the limit as k → ∞ in (3.10) to obtain the assertion (a) of
Theorem 1.1, which completes its proof.
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Appendix A. Some technical results

We first collect some well-known properties of the functional H defined by (2.4).
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Lemma A.1. Let h be a nonnegative function in L1(R, (1 + x2)dx) ∩ L2(R). Then h ln h ∈ L1(R) and

there is a positive constant Cℓ such that
∫

R

h(x) | ln h(x)| dx ≤ Cℓ +

∫

R

h(x)
(

1 + x2
)

dx+ ‖h‖22 , (A.1)

H(h) ≥ −Cℓ −
∫

R

h(x)
(

1 + x2
)

dx . (A.2)

Proof. Introducing the function ω(x) := e−(1+x2), x ∈ R, and using the monotonicity of r 7→ r| ln r| in
[0, 1/e], we have

∫

R

h(x)| ln h(x)| dx =

∫

{h(x)<ω(x)}
h(x)| ln h(x)| dx+

∫

{ω(x)≤h(x)≤1}
h(x)| ln h(x)| dx

+

∫

{h(x)>1}
h(x)| ln h(x)| dx

≤
∫

{h(x)<ω(x)}
e−(1+|x|2) (1 + x2) dx+

∫

{ω(x)≤h(x)≤1}
h(x)(1 + x2) dx

+

∫

{h(x)>1}
h(x)(h(x) − 1) dx

≤
∫

R

e−(1+|x|2) (1 + x2) dx+

∫

R

h(x)(1 + x2) dx+ ‖h‖22 ,

whence (A.1). Similarly,

H(h) ≥
∫

{h(x)<ω(x)}
h(x) ln h(x) dx+

∫

{ω(x)≤h(x)≤1}
h(x) ln h(x) dx

≥ −
∫

{h(x)<ω(x)}
e−(1+|x|2) (1 + x2) dx−

∫

{ω(x)≤h(x)≤1}
h(x)(1 + x2) dx ,

from which (A.2) readily follows. �

The next results allowed us to identify the limit of some terms arising in the derivation of the Euler-
Lagrange equation in Lemma 2.2.

Lemma A.2. Consider h ∈ H1(R) and ζ ∈ C∞
0 (R). Setting ζε := id+ε ζ for ε > 0, we have

h ◦ ζε−→
ε→0

h in L2(R) and
h ◦ ζε − h

ε
⇀
ε→0

ζ∂xh in L2(R). (A.3)

Proof. Since ζε is a C∞−diffeomorphism from R onto R for ε small enough, its inverse ζ−1
ε is well-defined

and satisfies
∣

∣x− ζ−1
ε (x)

∣

∣ ≤ ε ‖ζ‖∞ , x ∈ R. (A.4)

It follows from the Cauchy-Schwarz inequality, the Fubini theorem, and (A.4) that

‖h ◦ ζε − h‖22 =

∫

R

(

∫ ζε(x)

x
∂xh(y) dy

)2

dx ≤
∫

R

|x− ζε(x)|
∣

∣

∣

∣

∣

∫ ζε(x)

x
|∂xh(y)|2 dy

∣

∣

∣

∣

∣

dx

≤ ε ‖ζ‖∞
∫

R

|∂xh(y)|2
∣

∣y − ζ−1
ε (y)

∣

∣ dy ≤ ε2 ‖ζ‖2∞ ‖∂xh‖22 ,
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which gives the first assertion in (A.3) and the boundedness of ((h ◦ ζε − h)/ε)ε in L2(R). Next, since
h ∈ H1(R), almost every x ∈ R is a Lebesgue point for ∂xh and, for such points,

h(x+ εζ(x))− h(x)

ε
=

1

εζ(x)

∫ x+εζ(x)

x
∂xh(y) dy ζ(x)−→

ε→0
∂xh(x) ζ(x) .

Therefore, ((h ◦ ζε − h)/ε)ε converges a.e. to ζ∂xh as ε → 0 and is bounded in L2(R), and the second
assertion in (A.3) readily follows from these two facts. �

The first assertion of Lemma A.2 is actually true in a more general setting:

Lemma A.3. Consider h ∈ H1(R) and a sequence (ζε)ε>0 of functions in C∞
0 (R) such that ωε :=

‖ζε − id ‖∞ −→ 0 as ε→ 0. Then

h ◦ ζε−→
ε→0

h in L2(R) .

Proof. As in the proof of Lemma A.2, it follows from the Cauchy-Schwarz inequality and Fubini’s theorem
that

‖h ◦ ζε − h‖22 ≤
∫

R

|x− ζε(x)|
∣

∣

∣

∣

∣

∫ ζε(x)

x
|∂xh(y)|2 dy

∣

∣

∣

∣

∣

dx ≤ ωε

∫

R

∫ x+ωε

x−ωε

|∂xh(y)|2 dydx

≤ 2 ω2
ε ‖∂xh‖22 ,

and the right-hand side of the above inequality converges to zero as ε→ 0. �
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