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Abstract

When conjunctively merging two belief functions concerning a single variable but coming from different
sources, Dempster rule of combination is justified only when information sources can be considered as
independent. When dependencies between sources are ill-known, it is usual to require the property of idem-
potence for the merging of belief functions, as this property captures the possible redundancy of dependent
sources. To study idempotent merging, different strategies can be followed. One strategy is to rely on
idempotent rules used in either more general or more specific frameworks and to study, respectively, their
particularisation or extension to belief functions. In this paper, we study the feasibility of extending the
idempotent fusion rule of possibility theory (the minimum) to belief functions. We first investigate how
comparisons of information content, in the form of inclusion and least-commitment, can be exploited to
relate idempotent merging in possibility theory to evidence theory. We reach the conclusion that unless we
accept the idea that the result of the fusion process can be a family of belief functions, such an extension
is not always possible. As handling such families seems impractical, we then turn our attention to a more
quantitative criterion and consider those combinations that maximise the expected cardinality of the joint
belief functions, among the least committed ones, taking advantage of the fact that the expected cardinality
of a belief function only depends on its contour function.

Keywords: belief functions, least commitment, idempotence, ill-known dependencies, contour function

1. Introduction

To-date, there exist many fusion rules in the theory of belief functions [34]. When conjunctively merging
sources (assuming that they are reliable), the most usual one is still Dempster’s rule of combination [5],
either normalised or not. When several sources deliver information over a common frame of discernment
V, combining belief functions by Dempster’s rule is justified only when the sources can be assumed to be
independent. However, such an assumption cannot always be made. Sometimes, a specific dependence
structure between sources can be assumed (or known), and merging rules corresponding to such structures
can then be used [11,19,31] (for example, an assumption of complete positive or negative correlation between
the confidence levels in the correctness of sources).

However, assuming that the (in)dependence structure between sources is well-known is often unrealistic.
In those cases, an alternative is to adopt a conservative approach when merging belief functions (i.e., by
adding no more extra information nor assumption about source relationship in the combination process than
necessary). Adopting such a cautious attitude is equivalent to applying the “least commitment principle”,
which informally states that one should never presuppose more beliefs than justified. This principle is
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basic in the frameworks of possibility theory (minimal specificity), imprecise probability (the idea of natural
extension) [36], and the Transferable Belief Model (TBM) [35]. It can be naturally exploited for the cautious
merging of belief functions.

This cautious approach can be interpreted and used in different ways. For instance, Denoeux [8] proposes
a cautious conjunctive rule of combination based on Smets canonical decomposition of a belief function [33].
Cattaneo [2] proposes to first consider the set of merged belief functions minimizing the resulting conflict
(hence maximizing the result coherence) and then to select the most cautious one among them. Recently [10],
we have proposed to define a belief function resulting from a cautious merging process by maximizing the
expected cardinality of its focal sets. Although different, all these approaches agree on the fact that a
cautious conjunctive merging should satisfy the property of idempotence, as this property ensures that the
same information supplied by two possibly dependent sources will remain unchanged after merging (i.e., our
beliefs are not modified if two possibly dependent sources provide the same information about a common
event or variable).

There are three main strategies to investigate idempotent merging that makes sense in the belief function
setting. The first one looks for idempotent rules that satisfy a certain number of desired properties and
appear sensible in the framework of belief functions. This is the solution retained by Denoeux [8] and
Cattaneo [2, 3]. The second strategy relies on the natural idempotent rule consisting of intersecting sets of
probabilities and tries to express it in the particular case of belief functions (Chateauneuf [4]). Finally, the
third approach, explored in this paper, starts from the natural idempotent rule in a less general framework,
possibility theory, trying to extend it to belief functions. If (m1,F1), (m2,F2) stand for two belief functions,
P1,P2 two convex sets of probabilities, and π1, π2 two possibility distributions, the three approaches are
summarised in Figure 1 below.

P1,P2

(m1,F1), (m2,F2)

π1, π2

P1 ∩ P2

min(π1, π2)

Idempotent
rule in belief

function frame

idempotence

idempotence

axioms [2, 3, 8]

particularise [4]

generalise

Figure 1: Search of idempotent merging rules

Viewing possibility distributions as contour functions of consonant belief functions [30], we propose
various expressions of the principle of “least commitment” so as to extend the minimum rule of possibility
theory to general belief functions (so that the latter be recovered when particularised to consonant belief
functions). This is similar to the unnormalised Dempster rule (also called TBM conjunctive rule) that
performs the product of contour functions (without maintaining consonance). Least commitment principles
rely on the use of various inclusion relations that compare information content of belief functions. As this
principle often leads to a solution consisting of sets of merged belief structures instead of a single one, the
second part of the paper explores the maximisation of expected cardinality as a possible practical refinement
that can help in the selection of one belief structure in this set.

Section 2 recalls basics of belief functions and defines conjunctive merging in this framework. Section 3
then studies to what extent the minimum rule of possibility theory can be extended to the framework
of belief functions. The idea is to request that the contour function after merging be the minimum of
the contour functions of the input belief functions, what we call the strong idempotent contour function
merging principle. In Section 4, we are led to propose a weak version of the idempotent contour function
merging principle, as the former condition turns out to be too strong. This part of the paper extends some
previous preliminary results [9]. Section 5 then studies the maximisation of expected cardinality as a simple
computational tool to select minimally committed merged belief structures. The notion of commensurate
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belief functions is used to gain insight into the structure of focal element combinations allowing to reach a
maximal expected cardinality. Finally, Section 6 compares the cautious approach considered in this paper
with other propositions found in the literature.

2. Preliminaries

This section recalls basic notions of evidence theory needed in this paper, as well as links between belief
functions and with other frameworks (possibility theory [13], convex sets of probabilities [23]). It also
provides an overview of definitions of relative amount of precision based on generalised inclusions. Then we
propose a general definition of conjunctive merging of belief functions, and we recall a result stating that
the minimum rule of possibility theory obeys a minimal commitment principle in the theory of evidence,
restricted to consonant belief functions.

In the whole paper, we consider that information pertains to a variable V taking its values on a finite
space V, with generic element denoted v.

2.1. Belief functions

Here, we assume that belief states are modelled by so-called basic belief assignments determining belief
structures.

Definition 1 (Basic belief assignment). A basic belief assignment (bba) is a function m from the power set
2V of V to [0, 1] such that

∑
E⊆V m(E) = 1.

Formally, a bba is a random set [25].1 We denote by MV the set of bba’s on 2V . A set E such that
m(E) > 0 is called a focal set. We denote by F the set of focal sets corresponding to bba m, and (m,F) a
belief structure. The value m(E) > 0 is the mass assigned to E. This value represents the probability that
the statement v ∈ E is a correct model of the available knowledge about v. It is the probability of knowing
only that v ∈ E. In opposition to the probability of A ⊂ V, P (A), that refers to the occurrence of an event
A, the quantity m(E) refers to the arrival of the message stating v ∈ E. Shafer [30] assumes m(∅) = 0, a
condition ruling out inconsistent information from the bba, while Smets [35] does not make this assumption,
m(∅) expressing the possibility of values outside V.

Given a bba m, belief, plausibility and commonality functions of an event E ⊆ V are, respectively,

bel(A) =
∑
∅6=E⊆A

m(E),

pl(A) =
∑

E:A∩E 6=∅

m(E) = 1− bel(Ec)−m(∅),

q(A) =
∑
E⊇A

m(E).

When a bba m is unnormalised, the implicability function of an event E ⊆ V is defined as

b(A) = bel(A) +m(∅) = 1− pl(Ac),

and it coincides with the belief function when m is normalised.
A belief function measures to what extent an event is directly supported by the available non-contradictory

information, while a plausibility function measures the maximal amount of evidence that could support a

1Note that there are two interpretations of random sets, one where the focal sets are conjunctions of elements viewed as
actual entities like regions in an area (Matheron [24]), and the other where they represent incomplete information about a
precise but unknown element. We adopt the latter view here, along with Shafer and Smets.
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given event. A commonality function measures the quantity of mass that may be re-allocated to a particular
set from its supersets. The commonality function increases when larger focal sets receive greater mass as-
signments, hence the greater the commonality degrees, the less informative is the belief function. It can be
shown [30] that any of the four representations, namely bbas, belief, plausibility and commonality functions
contains the same amount of information. That is, from the (complete) knowledge of any of them, all the
others can be retrieved by bijective transformations.

Note that in Shafer’s seminal work [30], extensively taken over by Smets in his Transferable Belief
Model [35], there are no references to any underlying probabilistic interpretation or framework. However,
when m(∅) = 0, a belief structure (m,F) can also be mathematically represented by a non-empty convex
set of probabilities [36] P(m,F) such that Bel(A) and Pl(A) are coherent probability bounds:

P(m,F) = {P |∀A ⊂ V, Bel(A) ≤ P (A) ≤ Pl(A)}.

Namely, Bel(A) = infP∈P(m,F)
P (A) and Pl(A) = supP∈P(m,F)

P (A). Classical probability distributions are
retrieved when only singletons receive positive masses. However for Walley as well as Smets there is no
“real” probabilistic model underlying the probability bounds. The interpretation of Shafer-style upper and
lower probabilities as an ill-known probabilistic model is closer to Dempster’s view [5]

2.2. Possibility distributions and contour functions

A possibility distribution [13,39] is a mapping π : V → [0, 1]. π is normalised when π(v) = 1 for at least
one element v ∈ V. It represents incomplete information about v, in the form of a fuzzy set of more or
less plausible values for v. Two dual functions (respectively the possibility and necessity function) can be
defined from π: Π(A) = supv∈A π(v) and N(A) = 1 − Π(Ac). Their characteristic properties are that, for
any pair A,B ⊆ V, we have:

Π(A ∪B) = max(Π(A),Π(B)); N(A ∩B) = min(N(A), N(B)).

A contour function of a belief structure (m,F) is defined as follows

Definition 2. The contour function πm of a belief structure (m,F) is a mapping π(m,F) : V → [0, 1] such
that, for any v ∈ V,

π(m,F)(v) =
∑
v∈E

m(E) = pl({v}) = q({v}),

with pl, q the plausibility and commonality functions2 of (m,F), respectively.

A belief structure (m,F) is called consonant when its focal sets are completely ordered with respect
to inclusion (that is, for any A,B ∈ F , we have either A ⊂ B or B ⊂ A). In this case, the plausibility
and belief functions have the characteristic properties of, respectively, possibility and necessity functions,
and the information contained in the consonant belief structure can be totally encoded by the possibility
distribution identical to the contour function π(m,F).

Conversely, any possibility distribution defines a unique consonant belief structure whose associated
plausibility (resp. belief) function is a possibility (resp. necessity) function. If π is a possibility distribution,
and if 0 = α0 ≤ α1 ≤ . . . ≤ . . . αM ≤ 1 is the (finite) set of distinct values assumed by π over V, then the
corresponding belief structure (mπ,Fπ) has, for i = 1, . . . ,M , the following M focal sets:{

Ei = {v ∈ X|π(v) ≥ αi}
mπ(Ei) = αi − αi−1,

(1)

with mπ(Ei) the mass given to Ei, i.e. π(v) =
∑
v∈Emπ(E).

For any belief structure (m,F), the contour function can be seen as a (possibly subnormalised) possibility
distribution, and is a trace of the whole belief structure (m,F) restricted to singletons. Except when (m,F)
is consonant, the contour function represents only part of the information contained in (m,F), and the
possibility measure Π(m,F) built from π(m,F) is an inner approximation to the belief function (Π(m,F) ≤ pl)
[16]. The contour function is therefore only a summary, easier to manipulate than the whole random set.

2Note that the equality between pl and q on singletons always holds.
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2.3. Inclusion and information orderings between belief functions

Inclusion relationships are natural tools to compare the informative contents of set-valued uncertainty
representations. Recall that a sure statement of the form v ∈ E can be represented by the belief structure
(m, {E}) such that m(E) = 1 or by the possibility distribution π(v) = 1 if v ∈ E, zero otherwise. Let
E1, E2 ⊆ V be two sets, (m1,F1), (m2,F2) the corresponding belief structures and π1, π2 the corresponding
possibility distributions. In this special case, the following expressions are equivalent:

• E1 ⊆ E2,

• ∀A ⊆ V, pl1(A) ≤ pl2(A),

• ∀A ⊆ V, b1(A) ≥ b2(A)

• ∀A ⊆ V, q1(A) ≤ q2(A),

• ∀v ∈ V, π1(v) ≤ π2(v).

When working with general belief structures, these inequalities are no longer equivalent [12], and they lead
to the definitions of so-called x-inclusions, with x ∈ {pl, bel, q, s, π}.
Definition 3 (pl-inclusion). A belief structure (m1,F1) defined on V is said to be pl-included in another
belief structure (m2,F2) defined on V if and only if, for all A ⊆ V,

pl1(A) ≤ pl2(A)

and this relation is denoted by (m1,F1) vpl (m2,F2) and by (m1,F1) @pl (m2,F2) if the above inequality is
strict for at least one event.

When m1 and m2 are normalised, we also have that (m1,F1) is pl-included in (m2,F2) if and only
if P(m1,F1) ⊆ P(m2,F2), thus the notion of pl-inclusion is in agreement with the interpretation of belief
functions as probability bounds. Note that, due to the duality relation between plausibility and belief
functions, pl-inclusion is equivalent to b-inclusion (and to bel-inclusion when bbas are normalised).

Definition 4 (q-inclusion). A belief structure (m1,F1) defined on V is said to be q-included in another
belief structure (m2,F2) defined on V if and only if, for all A ⊆ V,

q1(A) ≤ q2(A)

and this relation is denoted by (m1,F1) vq (m2,F2) and by (m1,F1) @q (m2,F2) if the above inequality is
strict for at least one event.

As the commonality function is greater when greater masses are given to larger sets, the notion of q-
inclusion also comes down to comparing informative contents, but neither does it imply nor is it implied by
the pl-inclusion [12]. Also, existing results tend to show that the notion of q-inclusion is more natural when
working within the TBM interpretation [10,18].

The next definition is the direct extension of set-inclusion to random sets:

Definition 5 (s-inclusion). A belief structure (m1,F1) defined on V with F1 = {E1, . . . , Eq} is said to be
s-included in another belief structure (m2,F2) defined on V with F2 = {E′1, . . . , E′p} if and only if there
exists a non-negative matrix G = [gij ] such that

for j = 1, . . . , p,

q∑
i=1

gij = 1,

gij > 0⇒ Ei ⊆ E′j ,

for i = 1, . . . , q,

p∑
j=1

m2(E′j)gij = m1(Ei).

This relation is denoted by (m1,F1) vs (m2,F2) and by (m1,F1) @s (m2,F2) if there is at least a pair i, j
such that gij > 0 and Ei ⊂ Ej.
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The term gij is the proportion of the focal set E′j that ”flows down” to focal set Ei. In other words,
(m1,F1) is s-included in (m2,F2) if the mass of any focal set E′j of (m2,F2) can be redistributed among
subsets of Ej in (m1,F1).

Definition 6 (π-inclusion). A belief structure (m1,F1) defined on V is said to be π-included in another
belief structure (m2,F2) defined on V if and only if, for all v ∈ V,

π(m1,F1)(v) ≤ π(m2,F2)(v)

and this relation is denoted (m1,F1) vπ (m2,F2) and by (m1,F1) @π (m2,F2) if the above inequality is
strict for at least one element.

The notion of π-inclusion is the extension to general belief structures of the notion of specificity between
possibility distributions (a possibility distribution π1 is more specific, or included in another possibility
distribution π2 if π1 ≤ π2).

Since notions of inclusion allow to compare informative contents, we will also say, when (m1,F1) vx
(m2,F2) ((m1,F1) @x (m2,F2)) with x ∈ {pl, q, s, π}, that (m1,F1) is (strictly) more x-committed than
(m2,F2). The following implications hold between these notions of inclusion [12]:

(m1,F1) vs (m2,F2)⇒
{

(m1,F1) vpl (m2,F2)
(m1,F1) vq (m2,F2)

}
⇒ (m1,F1) vπ (m2,F2). (2)

As classical inclusion does with crisp sets, each of these notions induces a partial ordering between elements
of MV . Note that the relation vπ only induces a partial pre-order (i.e., we can have (m1,F1) vπ (m2,F2)
and (m2,F2) vπ (m1,F1) with (m1,F1) 6= (m2,F2)), while the others induce partial orders (i.e., they are
antisymmetric). This is due to the fact that the notion of π-inclusion is based on the contour function that
does not, in general, contain all the information contained in a belief structure. Note that, since notions of
pl, q and s-inclusion are antisymmetric, we also have

(m1,F1) @s (m2,F2)⇒
{

(m1,F1) @pl (m2,F2)
(m1,F1) @q (m2,F2)

(3)

The following example illustrates the fact that π-inclusion not being antisymmetric, we can have strict q-
inclusion and pl-inclusion in opposite directions while having equality for these two functions on singletons.
In fact, it is obvious that

(m1,F1) @pl (m2,F2) and (m2,F2) @q (m1,F1) imply π(m1,F1) = π(m2,F2). (4)

Example 1. Consider the two belief structures (m1,F1), (m2,F2) on the domain V = {v1, v2, v3}

(m1,F1) (m2,F2)
Focal sets Mass Focal sets Mass
E11 = {v2} 0.5 E21 = {v2, v3} 0.5

E12 = {v1, v2, v3} 0.5 E22 = {v1, v2} 0.5

These two random sets have the same contour function, while (m1,F1) @pl (m2,F2) and (m2,F2) @q
(m1,F1). And π(m1,F1) = π(m2,F2).

Finally, we can prove the following result:

Proposition 1. (m1,F1) @s (m2,F2)⇒ (m1,F1) @π (m2,F2).

Proof. Note that as (m1,F1) @s (m2,F2), m1(Ei) =
∑
j:Ei⊆Fj

gijm2(Fj) where
∑
j:Ei⊆Fj

gij = 1, since gij
is the proportion of m1(Ei) flowing to Fj . Now,

π1(v) =
∑
v∈Ei

m1(Ei) =
∑
v∈Ei

m1(Ei)
∑

j:Ei⊆Fj

gij =
∑

i,j:v∈Ei⊆Fj

m1(Ei)gij
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Likewise

π2(v) =
∑
v∈Fj

m2(Fj) =
∑
j:v∈Fj

∑
i:Ei⊆Fj

gijm1(Ei) =
∑

i,j:v∈Fj ,Ei⊆Fj

m1(Ei)gij

=
∑

i,j:v∈Ei⊆Fj

m1(Ei)gij +
∑

i,j:v∈Fj\Ei,Ei⊆Fj

m1(Ei)gij

= π1(v) +
∑

i,j:v∈Fj\Ei,Ei⊆Fj

m1(Ei)gij

The second term is positive, due to (m1,F1) @s (m2,F2),∃i, jEi ⊆ Fj , v ∈ Fj \ Ei with gij > 0.

If belief structures are consonant, then all above x-inclusions reduce to the same definition (that is,
π-inclusion).

Recently, Denoeux [8] has introduced yet other information orderings between belief functions, namely
the w-inclusion and v-inclusion, based on Smets canonical decomposition [33]. They also induce partial
orders between belief functions. Given a belief structure (m,F) for which m(V) 6= 0, the w-transform
assigns the value w(A) ∈ (0,+∞) to each subset A ⊆ V, such that

w(A) =
∏
B⊇A

q(B)C(B)−C(A)+1 (5)

with C(E) the cardinality of set E. A belief structure (m1,F1) is said to be w-included in another belief
structure (m2,F2) if w1(A) ≤ w2(A) for any A ⊆ V. This is a stronger notion than the s-inclusion: If a bba
is less w-committed than another one, then it is a specialisation thereof.

When (m,F) is normalised, consonant and has π for contour function, if we note πk = π(vk) with a
ranking of elements V = {v1, . . . , vK} such that 1 = π1 ≥ π2 ≥ . . . ≥ πK , and Ak = {v1, . . . , vk}, its
w-transform is

w(A) =

{ πk+1

πk
, A = Ak, 1 ≤ k < K,

1, otherwise.

We will not consider these orderings here, for the reason that the notion of w-inclusion does not reduce to
the notion of π-inclusion when considering only consonant random sets, as the next example shows.

Example 2. Consider the two possibility distributions π1, π2 on space V = {v1, v2, v3, v4} summarized in
the following table

π1
v1 v2 v3 v4
0.1 0.5 0.6 1

π2
v1 v2 v3 v4

0.15 0.8 1 1

we do have π1 < π2 but w1({v1, v2}) = 5/6 > w2({v1, v2}) = 8/10 and w1({v1, v2, v3}) = 6/10 < w2({v1, v2, v3}) =
1, hence the corresponding random sets are w-incomparable. The intuition justifying the idea that (according
to w-inclusion) π1 is not more informative than π2 in this example remains unclear as of now.

As all these notions induce partial orders between belief structures, it is sometimes desirable (for example,
when one has to select a single least-specific belief structure among a set of such structures) to use additional
criteria inducing complete ordering between belief structures. One such criterion, that is used in other
approaches to the cautious merging of belief function [10,18], is the expected cardinality of a belief structure
(m,F), that we denote by C(m,F) and whose value is

C(m,F) =
∑
E∈F

m(E)C(E).
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It is also equal to the cardinality of the contour function π(m,F) [16], that is

C(m,F) =
∑
v∈V

π(m,F)(v). (6)

We use the same notation for set cardinalities and belief structure expected cardinalities, since equation (6)
reduces to C(m,F) = C(E) if m(E) = 1. Note that other information measures exist [2, 22], but since our
aim is to generalize idempotent merging coming from possibility theory, expected cardinality appears to be
the best choice, due to the relation between the expected cardinality and the contour function (Equality (6)).
We can thus define the notion of cardinality-based specificity:

Definition 7 (C-specificity). A belief structure (m1,F1) defined on V is said to be more C-specific than
another belief structure (m2,F2) defined on V if and only if we have the inequality

C(m1,F1) ≤ C(m2,F2)

and this relation is denoted by (m1,F1) vC (m2,F2) and by (m1,F1) @C (m2,F2) if the above inequality is
strict.

The following lemma also indicates that the pre-order between belief structures induced by C-specificity
is in agreement (and therefore coherent) with the other inclusion notions used in this paper.

Lemma 1. Let (m1,F1),(m2,F2) be two random sets. Then, the following implications holds:

I (m1,F1) @π (m2,F2)⇒ (m1,F1) @C (m2,F2)

II (m1,F1) @s (m2,F2)⇒ (m1,F1) @C (m2,F2)

III (m1,F1) @pl (m2,F2)⇒ (m1,F1) vC (m2,F2)

IV (m1,F1) @q (m2,F2)⇒ (m1,F1) vC (m2,F2)

Proof. I Immediate, since π(m1,F1) < π(m2,F2) implies the same strict inequality between C(m1,F1) and
C(m2,F2) (see Eq. (6))

II From Proposition 1 strict s-inclusion implies strict π-inclusion. Then simply use the previous item.

III The implication is immediate, given Eq (6) and the fact that pl1 ≤ pl2. Example 3 indicates that two
strictly pl-included belief structures can have equal cardinality.

IV Immediate, with the same arguments applied to q-inclusion.

2.4. Conjunctive merging and least commitment

Let (m1,F1), (m2,F2) be two normalised belief structures defined on V, supplied by two, not necessarily
independent, sources (e.g., two experts potentially sharing some common opinions, two physical models
based on similar equations). We define a belief structure (m∩,F∩) resulting from a conjunctive merging of
(m1,F1), (m2,F2) as the result of the following procedure [10]:

1. A joint mass (we use boldface m to tell joint mass and classical mass structures apart) distribution
m is built on V2, having focal sets of the form E × F where E ∈ F1, F ∈ F2 and preserving m1,m2

as marginals. It means that

∀E ∈ F1, m1(E) =
∑
F∈F2

m(E,F ), (7)

∀F ∈ F2, m2(F ) =
∑
E∈F1

m(E,F ).

2. Each joint mass m(E,F ) is allocated to the subset E ∩ F in the final belief structure m∩.
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We call a merging rule satisfying these two conditions conjunctive3, and denote by M12 the set of
conjunctively merged belief structures. This approach to defining conjunctive rules appears intuitive [2, 11,
19], and is well in agreement with Dempster’s seminal work, since a joint mass m(E,F ) can be interpreted
as a joint probability expressing a particular dependence structure between the sources. The marginal
equations express the idea that the information provided by each source can be retrieved from the richer
information that includes a representation of their mutual dependence. Once this principle is granted, the
combination rule extends the set-theoretic conjunction because we assign the joint mass to the conjunction
of focal sets.4 Not every belief structure (m∩,F∩) obtained by conjunctive merging is normalised (i.e., one
may get m(∅) 6= 0). In this paper, unless stated otherwise, we do not assume that a conjunctively merged
belief structure has to be normalised. Not requiring normalization means that we may admit that a belief
structure can be self-contradictory to a certain extent, reflecting the level of conflict between sources. We
also do not renormalise such belief structures, because, after renormalisation, they would no longer satisfy
Eq. (7)5. Moreover, renormalisation is usually not required when working with possibility distributions.

By construction, a belief structure (m∩,F∩) on V obtained by a conjunctive merging rule is a speciali-
sation of both (m1,F1) and (m2,F2), andM12 is a subset of all belief structures that are specialisations of
both (m1,F1) and (m2,F2), that is

M12 ⊆ {m ∈MV |i = 1, 2, m vs mi},

with the inclusion being usually strict6. There are three possible situations for the content of set M12:

1. M12 only contains normalised belief functions. It means that ∀E ∈ F1, F ∈ F2, E ∩ F 6= ∅. The two
bbas are said to be logically consistent.

2. M12 contains both subnormalised and normalised bbas. It means that ∃E,F,E ∩F = ∅ and that the
marginal-preservation Equations (7) have solutions which allocate zero mass m(E,F ) to such E × F .
The two bbas are said to be non-conflicting.

3. M12 contains only subnormalised belief functions. This situation is equivalent to having P(m1,F1) ∩
P(m2,F2) = ∅. The two bbas are said to be conflicting.

Chateauneuf [4] has shown that being non-conflicting or logically consistent is a sufficient and necessary
condition for P(m1,F1) ∩ P(m2,F2) to be non-empty, and that for each subset A ⊆ V, the lower probability
P (A) of P(m1,F1) ∩ P(m2,F2) is equal to the least belief degree bel(A) on A induced by all normalised belief
structures inM12. On the contrary, case 1 is a stronger form of logical consistency: it means that whatever
the meaning of the message v ∈ E conveyed by one source is, it is logically consistent with the meaning of
the message v ∈ F supplied by the other source. Case 2 corresponds to a form of probabilistic consistency.
The conjunctive rule consisting in allocating positive joint mass only to non-empty sets of the form E ∩ F
presupposes sources are reliable, hence cannot contradict each other, which means m(E,F ) = 0 whenever
E ∩ F = ∅. But then the dependence between the sources is not known, which leaves several possible joint
mass functions.

When sources are considered as mutually independent, the TBM conjunctive rule consists of merging
belief structures insideM12, using the product of masses (i.e., m(E,F ) = m1(E) ·m2(F ) in Equations (7))
for the joint mass. This assumption may sound especially natural in the case of logically consistent bbas;
indeed the result of merging by the TBM conjunctive rule of combination is then normalised. In case 2,

3A disjunctive merging rule can be defined likewise, changing ∩ into ∪.
4There are other ways of defining conjunctive merging, such as Denoeux’s w-rule [8], but these rules are not based on

bbas (only on the weight function w). How to reinterpret them in terms of the above two-stepped process has not yet been
investigated (as far as we know).

5This is the reason why Dempster rule of conditioning is criticized by subjectivists in imprecise probability theory as being
incoherent. In fact, renormalisation corresponds to a belief revision step, wich precisely consists in breaking away from previous
beliefs.

6Suppose, for example, the marginals are empty belief structures m1(V) = m2(V) = 1. The set of specialisation of both of
them contains every possible belief structure, while only the empty one can be reached by the conjunctive merging defined in
this paper as only (m∩,F∩) = (m1,F1) = (m2,F2) is then possible.
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m∩(∅) > 0 measures the level of conflict between the sources, the assumption of their reliability being all the
more questionable as m∩(∅) is large. Renormalising m∩ like Shafer [30] suggests comes down to restoring
the assumption that sources are reliable, and considering the apparent conflict as a kind of noise one has to
get rid of. Merging then leads to correcting the available information rather than just exploiting it.

When sources cannot be considered as independent and the dependence structure between them is not
well-known, a common practice is to use the principle of least-commitment to build the merged belief
structure. That is, to adopt a cautious attitude. Let us denote by Mvx12 the set of all maximal elements
insideM12 with respect to x-inclusion order, with x ∈ {s, pl, q, π,C}. The least-commitment principle then

often consists in choosing a given type of x-inclusion and picking a particular element insideMvx12 according
to a number of desired additional properties. Interestingly, applying the principle of least-commitment
implies that the corresponding conjunctive rule is idempotent [8]. Indeed, if m1 = m2 = m, the least
x-specific belief function in M12 obviously has mass function m, whatever x.

2.5. The minimum rule of possibility theory

If π1, π2 denote two possibility distributions, the standard conjunctive idempotent merging between these
two distributions is the pointwise minimum [14]:

π1∧2(v) = min(π1(v), π2(v)),∀v ∈ V.

It can also be seen as the most cautious result, as the minimum is the most conservative of all t-norms [21].
Let (m1,F1), (m2,F2) be normalised consonant belief structures corresponding to possibility distributions

π1, π2. In this case, it is known [19] that the consonant belief structure corresponding to min(π1, π2) lies
inside M12. It assumes some dependency between focal sets. Let 0 = α0 ≤ α1 ≤ . . . ≤ αM = 1 be the
distinct values taken by both π1, π2 over V, then min(π1, π2) corresponds to the conjunctively merged belief
structure (m1∧2,F1∧2) that, for i = 1, . . . ,M , has focal sets{

Ei = Ei,1 ∩ Ei,2,
m1∧2(Ei) = αi − αi−1,

(8)

with Ei,j = {v|πj(v) ≥ αi}.
Smets and colleagues [17,18], have shown the following result:

Proposition 2. The least q-committed belief structure inM12 is unique. It is the consonant belief structure
whose contour function is min(π1, π2) (i.e., Mvq12 is reduced to this belief structure).

Proof. To see it, just notice that for consonant belief structures with contour function π, the commonality
function is of the form Q(A) = minv∈A π(v). So Q1∧2 = min(Q1, Q2) is the commonality function of the
unique consonant belief structure with contour function min(π1, π2). If a belief structure (m,F) is such
that Q ≤ Q1 and Q ≤ Q2, where (m1,F1) and (m2,F2) are consonant, Q ≤ min(Q1, Q2) so that the
least q-committed belief structure in M12 is the consonant belief structure (m1∧2,F1∧2) with commonality

function min(Q1, Q2). So, Mvq12 = {(m1∧2,F1∧2)}.

This consonant merged belief structure is thus least π-committed inside M12, and it is also one of the
s-least committed inside M12 (i.e., it is among the elements of Mvs12 ). The next example, which completes

Example 1, indicates that, when merging consonant belief structures, none of Mvs12 or Mvπ12 is necessarily
reduced to a single element.

Example 3. Consider the possibility distributions π,ρ, expressed as belief structures (mπ,Fπ), (mρ,Fρ).

(mπ,Fπ) (mρ,Fρ)
Focal sets Mass Focal sets Mass

E1 = {v0, v1, v2} 0.5 F1 = {v2, v3} 0.5
E2 = {v0, v1, v2, v3} 0.5 F2 = {v1, v2, v3, v4} 0.5
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The two belief structures (m1,F1), (m2,F2) of Example 1 can be obtained by conjunctively merging these
two marginal belief structures. Namely, (m1,F1) = {(E1 ∩ F1, 0.5), (E2 ∩ F2, 0.5)} is the consonant belief
structure corresponding to min(π, ρ), while the non-consonant (m2,F2) = {(E1∩F2, 0.5), (E2∩F1, 0.5)} has
the same contour function. None of these two belief structures is s-included in the other, while we do have
(m2,F2) @q (m1,F1).

Note that the consonant merged belief structure obtained using the minimum rule on consonant belief
structures may be subnormalised, except when there is at least one element v in V such that π1(v) = π2(v) =
1 (that is, (m1,F1), (m2,F2) are logically consistent).

Since idempotence is a natural property to satisfy when cautiously merging multiple sources of informa-
tion, it is natural to link idempotent rules coming from other frameworks to the merging of belief structures.
Chateauneuf [4] has already explored the links between belief structures and the intersection of the corre-
sponding probability sets. In the rest of the paper, we explore the links between the conjunctive merging
of belief structure defined above and the minimum rule of possibility theory, investigating under which
conditions the latter can be extended to belief structures.

3. The Strong Idempotent Contour Function Merging Principle (SICFMP)

Now, let us consider two general random sets (m1,F1), (m2,F2) and their respective contour functions
π(m1,F1), π(m2,F2). First notice the following property:

Proposition 3 (s-covering). Let (m1,F1), (m2,F2) be two belief structures. Then, the following inequality
holds for any v ∈ V:

max
(m,F)∈M12

π(m,F)(v) ≤ min(π(m1,F1)(v), π(m2,F2)(v)). (9)

Proof. Since any element (m,F) in M12 is s-included in (m1,F1) and (m2,F2), and s-inclusion implies π-
inclusion (Equation (2)), π(m,F)(v) ≤ min(π(m1,F1)(v), π(m2,F2)(v)), for any x ∈ V and any (m,F) ∈ M12.
Since this is true for all elements of M12, this is enough to prove (9).

It is known [26] that the same inequality holds for sets of probabilities, since, given two such sets P1,P2,
their respective upper probabilities P 1, P 2, their intersection P1∩P2 and the induced upper probability P 12,
we have, for all events A ⊆ V, P 12(A) ≤ min(P 1(A), P 2(A))7. To extend the idempotent rule of possibility
theory to the non-consonant case, it makes sense to require that inequality (9) become an equality.

Definition 8 (Strong idempotent contour function merging principle (SICFMP)). Let (m1,F1), (m2,F2)
be two belief structures and M12 the set of conjunctively merged belief structures. Then, an element
(m1∧2,F1∧2) in M12 is said to satisfy the strong idempotent contour function merging principle if, for
any v ∈ V,

π(m1∧2,F1∧2)(v) = min(π(m1,F1)(v), π(m2,F2)(v)), (10)

π(m1∧2,F1∧2) being the contour function of (m1∧2,F1∧2).

That is, we require that the selected merged belief structure should have a contour function equal to
the minimum of the two marginal contour functions. Note that the minimum rule is retrieved if both
(m1,F1), (m2,F2) are consonant.

Let us first assume that the SICFMP can be satisfied when combining two belief structures. In this case,
a merging rule satisfying the SICFMP also satisfies idempotence.

Proposition 4 (idempotence). Let (m1,F1) = (m2,F2) = (m,F) be two identical belief structures. Then,
the unique element in M12 satisfying Equation (10) is

(m1∧2,F1∧2) = (m,F).

7Note that the present situation is a bit different, since merging of probability sets does not allow for subnormalised belief
structures, while we do allow for such belief structures here.
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Proof. That (m,F) is a solution of Equation (10) is immediate, since for any v ∈ V we have pl1({v}) =
pl2({v}) = pl({v}). We must now show that any other belief structure in M12 is not a solution to (10).
Consider a belief structure (m′ ,F′) that is a specialization of (m,F) and is not (m,F). Then (m′ ,F′) @s
(m,F). Hence by Proposition 1, (m′ ,F′) @π (m,F), hence the contour function of (m′ ,F′) cannot be
expressed by Equation (10).

The SICFMP is therefore a sufficient condition to ensure that a merging rule is idempotent. It also
satisfies the following stronger property.

Proposition 5 (s-coherence). Let (m1,F1) be strictly s-included in (m2,F2), that is (m1,F1) @s (m2,F2).
Then, the unique element in M12 satisfying Equation (10) is

(m1∧2,F1∧2) = (m1,F1).

Proof. If (m1,F1) @s (m2,F2), this means that pl1({v}) ≤ pl2({v}) for all v ∈ V, with a strict inequality
for at least one element. Second, if (m1,F1) @s (m2,F2), then (m1,F1) is a specialisation both of itself and
(m2,F2), hence it is in M12. Consequently, it is a solution of Equation (10). To show that it is the unique
solution inside M12, we can advocate a similar argument as in the previous proof.

This indicates that satisfying the SICFMP is coherent with the notion of specialisation, that is the
notion of inclusion that looks the most sensible when extending possibilistic inclusion to the belief function
framework. The next example shows that Proposition 5 does not extend to the notions of pl- and q-inclusions.

Example 4. The two belief structures in Example 1 have the same contour function but one of them is
strictly pl-included in the other and the other is strictly q-included in the first (and they are s-incomparable).
Clearly, there are two (consonant) s-least committed belief structures resulting from conjunctive merging in
M12, the one obtained as {(E11 ∩E21, 0.5), (E12 ∩E22, 0.5)} = {({v2}, 0.5), ({v1, v2}, 0.5)} and the other as
{(E11 ∩ E22, 0.5), (E12 ∩ E21, 0.5)} = {({v2}, 0.5), ({v2, v3}, 0.5)}. None of them satisfies the SICFMP nor
is equal to any of the marginal belief structures.

We now proceed to show that satisfying the SICFMP is too demanding for general belief functions.
Actually, general necessary and sufficient conditions under which the merged bba has a contour function
satisfying the SICFMP were found by Dubois and Prade [15]. Namely let (m,F) ∈M12, and let m(Ei, Fj)
be the joint mass obtained in the first merging step. The contour function of (m,F) is such that

π(m,F)(v) =
∑

v∈Ei∩Fj

m(Ei, Fj) = π(m1,F1)(v)−
∑

v∈Ei∩F c
j

m(Ei, Fj).

Hence
min(π(m1,F1)(v), π(m2,F2)(v)) = π(m,F)(v) + min(

∑
v∈Ei∩F c

j

m(Ei, Fj),
∑

v∈Ec
i∩Fj

m(Ei, Fj)).

So, the minimum rule is recovered if and only if ∀v ∈ V, one of
∑
v∈Ei∩F c

j
m(Ei, Fj) or

∑
v∈Ec

i∩Fj
m(Ei, Fj) is

equal to 0. For each v ∈ V, it comes down to enforcing m(Ei, Fj) = 0 either for all i, j such that v ∈ Ei∩F cj ,
or for all i, j such that v ∈ Eci ∩ Fj .

Example 5. Let V = {a, b, c}. Define
(m1,F1) : m1({a}) = 0.2; m1({a, b}) = 0.1; m1({a, c}) = 0.3; m1({b, c}) = 0.3; m1({a, b, c}) = 0.1.
(m2,F2) : m2({a}) = 0.3; m2({a, b}) = 0.4; m2({a, b, c}) = 0.3.

We can decide to let m(Ei, Fj) = 0 for a, b ∈ Ei ∩ F cj and c ∈ Eci ∩ Fj. Then, for b, it enforces
m({a, b}, {a}) = m({b, c}, {a}) = m({a, b, c}, {a}) = 0, for c, m({a}, {a, b, c}) = m({b, c}, {a, b, c}) = 0, but
it creates no such constraint for a (as it is present in every focal element of m2). The following joint mass
provides a solution to the marginal equations (where entries 0b, 0c are enforced by the SICFMP):
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m(Ei, Fj) {a} {a, b} {a, b, c}
{a} 0.1 0.1 0c
{a, b} 0b 0.1 0c
{a, c} 0.2 0 0.1
{b, c} 0b 0.2 0.1
{a, b, c} 0b 0 0.1

It is easy to check that the SICFMP holds.

As there is a choice between two options for each element v of V there are at most 2C(V) possible sets of
constraints of the form m(Ei, Fj) = 0 on top of marginal constraints, so as to define a belief structure. Not
all of these problems will have solutions, and even less if we restrict to normalised resulting belief structures
(enforcing moreover m(Ei, Fj) = 0 whenever Ei, Fj = ∅).

Also, verifying that the problem has a solution is difficult to check in practice. However, there may be
specific cases where the problem always have solutions. This is why, in the following, we separately consider
the cases of logically consistent (situation 1), non-conflicting (situation 2) or conflicting (situation 3) marginal
belief structures, as well as require the conjunctively merged belief structure to be normalised or not. Let us
first explore the most specific case, that is the one where marginal belief structures are logically consistent
(note that, in this case, all conjunctively merged belief structures are normalised). The next example
indicates that the SICFMP cannot always be satisfied in this restrictive case.

Example 6. Let us consider again the two belief structures (m1,F1), (m2,F2) of Example 1 as our marginal
belief structures. They are logically consistent, and if there is a belief structure (m1∧2,F1∧2) in M12 that
can satisfy SICFMP, this belief structure should have the contour function of both (m1,F1) and (m2,F2):

pl1∧2(v1) = 0.5 pl1∧2(v2) = 1 pl1∧2(v3) = 0.5,

hence its expected cardinality C(m1∧2,F1∧2) should be equal to 2.
As expected cardinality is a linear function, as well as the constraints described by Eq. (7), we can easily

search for the maximal expected cardinality that a conjunctively merged belief structure can attain, given its
marginals. The linear programming problem corresponding to our example is

maxm1∩2({v2}) + 2.m1∩2({v2, v3}) +m1∩2({v2}) + 2.m1∩2({v1, v2})

under the constraints (maginalisation, normalisation):
m1∩2({v2}) +m1∩2({v2, v3}) = 0.5
m1∩2({v2}) +m1∩2({v1, v2}) = 0.5
m1∩2({v2}) +m1∩2({v2}) = 0.5

m1∩2({v2, v3}) +m1∩2({v1, v2}) = 0.5
m1∩2({v2}) +m1∩2({v2, v3}) +m1∩2({v2}) +m1∩2({v1, v2}) = 1

The maximal value of expected cardinality in the above problem is 1.5, and is given, for example, by
m1∩2({v2, v3}) = 0.5, m1∩2({v2}) = 0.5. This maximal expected cardinality is less than the expected cardi-
nality that a conjunctively merged belief structure satisfying the SICFMP should reach.

This counter-example indicates that, when the conjunctively merged belief structure has to be normalised,
the SICFMP cannot be always satisfied. The two next examples indicate that the SICFMP cannot always
be satisfied independently of whether the marginal belief structures are conflicting or not.

Example 7. Let us consider the space V = {v1, v2, v3} and the two non-conflicting (but not logically con-
sistent) marginal belief structures (m1,F1), (m2,F2) summarized in the table below.

Set {v1} {v2} {v3} {v1, v2} {v1, v3} {v2, v3} V
m1 0.3 0 0 0 0 0.4 0.3
m2 0.2 0.1 0.1 0.2 0.2 0.1 0.1
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````````````Situation

Constraints
Consonance m1∩2(∅) = 0 unconstrained

Logically consistent
√

× ×
Non-conflicting

√
× ×

Conflicting
√

N.A. ×

Table 1: Satisfiability of SICFMP given (m1,F1), (m2,F2).
√

: always satisfiable. ×: not always satisfiable. N.A.: Not
Applicable

Their contour functions and their minimum are summarized in the next table.

Element vi ∈ V π1(vi) π2(vi) min(π1, π2)
v1 0.6 0.7 0.6
v2 0.7 0.5 0.5
v3 0.7 0.5 0.5

The expected cardinality of min(π1, π2) is 1.6. However, solving the linear program computing the maxi-
mal expected cardinality of the elements ofM12 gives 1.5 as solution (consider, for example, the conjunctively
merged belief structure such that m({v1}) = 0.3, m({v2}) = m({v1, v3}) = 0.2, m({v3}) = m({v2, v3}) =
m(V) = 0.1). Therefore, there is no element in M12 satisfying the SICFMP for this example.

Example 8. Let us then consider the two conflicting random sets (m1,F1), (m2,F2) summarised below.

(m1,F1) (m2,F2)
Focal sets Mass Focal sets Mass
E11 = {v2} 0.5 E21 = {v1v2, v3} 0.5
E12 = {v3} 0.5 E22 = {v1} 0.5

Their contour functions and their minimum are summarized in the next table.

Element vi ∈ X π1(vi) π2(vi) min(π1, π2)
v1 0 1 0
v2 0.5 0.5 0.5
v3 0.5 0.5 0.5

This time, the expected cardinality of min(π1, π2) is 1, while the maximum expected cardinality reachable
by an element of M12 is 0.5 (by distributing m2({v1v2, v3}) to either v2 or v3.

Table 1 summarizes in which cases the SICFMP can always be satisfied. Results in this section indicates
that the SICFMP, even if it extends the cautious merging of possibility distributions to belief structures,
is too strong a requirement to be satisfied in general. A possible alternative is to search for subsets of
conjunctively merged belief structures jointly satisfying the idempotent contour function merging principle,
thus working with sets of belief functions rather than with a single one. This goes in the same line as
proposals made by other authors in order to deal with situations where dependencies between, or exact
features of, belief structures are not precisely known [1, 6, 37]. Such an alternative is explored in the next
section.

4. The Weak Idempotent Contour Function Merging Principle (WICFMP)

In this section, we still assume that we start from marginal belief structures coming from sources whose
dependencies are ill-known. While we still require the result of their conjunctive merging to coincide on
singletons with the minimum of the contour functions π1, π2, we no longer require that the result of the
merging be a single belief structure.
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Definition 9 (WICFMP). Consider two belief structures (m1,F1), (m2,F2) and M12 the set of conjunc-
tively merged belief structures. Then, a subset M ⊆ M12 is said to satisfy the weak idempotent contour
function merging principle if, for any v ∈ V,

max
(m,F)∈M

πm(v) = min(πm1
(v), πm2

(v)), (11)

The subsetM is sufficient to extend the cautious merging of possibility theory to the framework of belief
functions. The selection of joint masses m in the above definition can be seen as describing different possible
dependence structures between the two marginals. Note that any merged belief structure that satisfies the
SICFMP also satisfies the WICFMP. In the following, we look for subsets of M12 that always satisfy the
WICFMP.

4.1. Subsets of normalised merged belief functions

A first subset of conjunctively merged belief structures that is interesting to explore is the one containing
only normalised merged belief structures inM12 (that is, all (m,F) ∈M12 such that m(∅) = 0). Given the
link between this set and the intersection of induced probability sets P1, P2, we will denote it by MP1∩P2

.
Note that linear programming techniques can be used to check that a subset of merged belief functions

satisfies the WICFMP, as long as constraints imposed on belief structures in the subset are linear. A linear
program can then be written for each v ∈ V, to check whether Eq. (11) is satisfied.

As considering a subset of conjunctively merged belief structures is less constraining than selecting only
one of them, there will be some cases for which the SICFMP cannot be satisfied, while the WICFMP will
be, even if we restrict ourselves to normalised belief structures. For instance, it is impossible to satisfy the
SICFMP by merging the belief functions of Example 1 but the two consonant belief structures of Example 4
obtained from this merging jointly satisfy the WICFMP. Nevertheless, the next example shows that there
are cases where the WICFMP cannot be satisfied even when we consider the subset MP1∩P2

on belief
structures that are logically inconsistent but non-conflicting.

Example 9. Consider the two marginal belief structure (m1,F1), (m2,F2) on V = {v1, v2, v3} such that

m1({v1}) = 0.5; m1({v1, v2, v3}) = 0.5,

m2({v1, v2}) = 0.5; m2({v3}) = 0.5.

The minimum of contour functions πmin = min(π1, π2) is given by πmin(vi) = 0.5 for i = 1, 2, 3. The only
merged bba m12 to be in MP1∩P2 is

m12({v1}) = 0.5; m12({v3}) = 0.5,

for which π12(v2) = 0 < 0.5.

Another interesting aspect of the above example is that the element v2 is considered as impossible by
the intersection of sets of probabilities, while both sources consider v2 as somewhat possible. It indicates
that requiring a normalised result by ensuring probabilistic consistency (or coherence in the sense of Walley,
i.e., m(∅) = 0) while conjunctively merging uncertain information can be, in some situations, questioned,
and a partially inconsistent result be preferred so as to preserve the apparent agreement between sources
regarding the plausibility of some values.

4.2. Subsets of s-least committed merged belief structures

Another possible solution is to consider a subset coherent with the least commitment principle. That is,
given two belief structures (m1,F1), (m2,F2), we consider the subsets Mvx12 , with x ∈ {s, pl, q, π}. Recall
that

Mvx12 = {(m,F) ∈M12| 6 ∃(m,F)
′ ∈M12, (m,F) @x (m,F)

′}.

The following proposition shows that the subset of s-least committed belief structures inM12 always satisfies
the WICFMP.
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Proposition 6. Let (m1,F1), (m2,F2) be two marginal belief structures on V. Then, the subset Mvs12

satisfies the WICFMP, in the sense that

max
(m,F)∈Mvs

12

π(m,F)(v) = min(π1(v), π2(v)),

with π1, π2, π(m,F) the contour functions of, respectively, (m1,F1), (m2,F2), (m,F).

Proof. To prove this proposition, we will simply show that for any v ∈ V there is at least one merged belief
structure (mv,Fv) inM12 such that π(mv,Fv)(v) = min(π1(v), π2(v)). If this is true, then, either this merged

belief structure is s-least committed, and the problem is solved, or there is a belief structure (mv,Fv)′ s-less

committed than (mv,Fv) inM12. There is at least one s-least committed element (i.e., an element ofMvs12 )
among such s-less committed belief structures (mv,Fv)′. However, any belief structure (mv,Fv)′ is such
that

min(π1(v), π2(v)) ≥ π(mv,Fv)
′(v) ≥ π(mv,Fv)(v) = min(π1(v), π2(v)),

the first inequality following from Proposition 3 and the second from the definition of s-inclusion, the third
equality holding by assumption.

We now have to prove that it is possible to build a merged belief structure (mv,Fv) for any given
v ∈ V such that π(mv,Fv)(v) = min(π1(v), π2(v)). Without loss of generality, consider that, for v, π1(v) =∑
v∈Em1(E) ≤

∑
v∈E′ m2(E′) = π2(v). It is then always possible to transfer part of the masses m2(E′), v ∈

E′ ∈ F2 to subsets E ∩ E′ containing v, so as to ensure
∑
v∈E∩E′ mv(E × E′) =

∑
E∈Fv,1

m1(E), while

respecting Eq. (7). The same reasoning can be applied for all v ∈ V to finish the proof.

Note that the proof of Proposition 6 also indicates that, in all cases, one can always satisfy the WICFMP
by choosing a set of at most n = C(V) merged belief structures, each of them equal to the minimum of the
marginal contour functions for one element v ∈ V. However, ”best” strategies to choose them remain to be
defined. Another interesting result follows from Proposition 6.

Corollary 1. Let (m1,F1), (m2,F2) be two marginal belief structures on V. Then, the subsets Mvx12 for
x = {pl, q, π} satisfy the WICFMP, in the sense that

max
(m,F)∈Mvx

12

π(m,F)(v) = min(π1(v), π2(v)),

with π1, π2, π(m,F) the contour functions of, respectively, (m1,F1), (m2,F2), (m,F).

Proof. Given the implications between notions of inclusions of belief structures, any element in Mvx12 with

x = {pl, q, π} is also inMvs12 . However, there are some elements ofMvs12 that are not inMvx12 . What we have
to do is to show that, if one element is suppressed, then this element is of no use to satisfy Proposition 6.
Let us consider two such elements m1, m2 inMvs12 (i.e., they are s-incomparable) and such that m1 @x m2,

hence m1 is not present in Mvx12 . However, for any x ∈ {pl, q, π}, we do have (see Lemma 1)

m1 vx m2 ⇒ π1 ≤ π2,

with π1, π2 the contour functions of m1, m2. π1 ≤ π2 ensures that m1 is of no use when taking the maximum
of all contour functions to satisfy the WICFMP.

Corollary 2. Let (m1,F1), (m2,F2) be two marginal belief structures on V. Then, if any of the subsets

Mvx12 with x = {s, pl, q, π} is reduced to a singleton (mx,Fx), then this element satisfies the SICFMP.

This is, for instance, the case with Mvq12 when both (m1,F1), (m2,F2) are consonant. As for SICFMP,
Table 2 summarises for which subset of merged belief structures the WICFMP is always satisfiable.

However Corollary 1 is not valid for expected cardinality as shown by the following counterexample:

Example 10. Consider the same marginal belief structures as in Example 8, except that the element v3 is
replaced by {v3, v4}, as summarized in the next table.
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XXXXXXXXXXSituation

Subset MP1∩P2
Mvs12 Mvpl12 Mvq12 Mvπ12

Logically consistent
√ √ √ √ √

Non-conflicting ×
√ √ √ √

Conflicting N.A.
√ √ √ √

Table 2: Satisfiability of WICFMP given (m1,F1), (m2,F2).
√

: always satisfiable. ×: not satisfiable in general. N.A.: Not
Applicable

(m1,F1) (m2,F2)
Focal sets Mass Focal sets Mass
E11 = {v2} 0.5 E21 = {v1v2, v3, v4} 0.5

E12 = {v3, v4} 0.5 E22 = {v1} 0.5

The two possible idempotently merged belief structures allocate 0.5, respectively to {v3, v4} or {v2} and both
remain s-least specific. The former has a greater expected cardinality, and is the unique element having
maximal expected cardinality, but it does not satisfy the WICFMP.

In fact, suppose that, by construction, there are two distinct least committed merged bba’s m,m′ in
the sense of the π-ordering within M12, if any. They have contour functions π and π′ that are such
that ∃v1 6= v2 ∈ V, π(v1) > π′(v1) and π′(v2) > π(v2). Assume they are also C-least specific so that
C(m) =

∑
v∈V π(v) = C(m′) =

∑
v∈V π

′(v). Suppose V is changed into another frame of discernment W ,
a refinement of V where v1 is changed into a subset V1 and v2 into a subset V2 disjoint from V1. Then,
marginal mass functions m1 and m2 on V canonically induce mass functions on W , changing focal elements
in 2V into their expansions in 2W , turning vi into Vi. Clearly, the two distinct least committed merged
bba’s m,m′ in the sense of the π-ordering become two distinct least committed merged bba’s mW ,m

′
W on

W . Now their expected cardinalities are

C(mW ) =
∑

v∈V \{v1,v2}

π(v) + C(V1)π(v1) + C(V2)π(v2)

and
C(m′W ) =

∑
v∈V \{v1,v2}

π′(v) + C(V1)π′(v1) + C(V2)π′(v2).

In general, C(mW ) 6= C(m′W ) so only one of them will be C-least specific. As a consequence, the C-least
specific belief functions in M12 will not even satisfy the WICFMP.

5. A general method for constructing idempotent merging rules

We now suggest a constructive method to generate all merged belief structures that satisfy the marginal
constraints (7). From this method, we can induce guidelines as to how general bbas should be combined
to result in an idempotent merging rule and a C-least specific bba. We start from a work of Dubois and
Yager [19], where they show the existence of lot of idempotent rules that combine two bbas by using the
concept of commensurate bbas.

5.1. Commensurate bba’s

In the following, we slightly generalize the notion of bba and consider it as a relation between the power
set of V and [0, 1]. In other words, a generalized bba may assign several weights to the same subset of V.

Definition 10. Let m be a bba with focal sets {E1, . . . , En} and associated weights {m1, . . . ,mn}. A split
of m is a bba m′ with focal sets {A′1, . . . , A′n′} and associated weights {m′1, . . . ,m′n′} s.t.

∑
A′

j=Ei
m′j = mi
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In other words, a split is a new bba where the original weight given to a focal set is separated in smaller
weights given to the same focal set, with the sum of weights given to a specific focal set being constant.
Two generalized bbas m1,m2 are said to be equivalent if pl1(E) = pl2(E) and bel1(E) = bel2(E) ∀E ⊆ V.
If m1 and m2 are equivalent, it means that they are splits of the same regular bba [19]. In the following, a
bba should be understood as a generalized one.

Definition 11. Let m1, m2 be two bbas with respective focal sets {E1, . . . , En}, {F1, . . . , Fk} and associated
weights {m1

1, . . . ,m
n
1}, {m1

2, . . . ,m
k
2}. Then, m1 and m2 are said to be commensurate if k = n and there is

a permutation σ of {1, . . . , n} s.t. mj
1 = m

σ(i)
2 ,∀i = 1, . . . , n.

Two bbas are commensurate if their distribution of weights over focal sets can be described by the same
vector of numbers. In [19], Dubois and Yager propose an algorithm, given a prescribed ranking of focal sets
on each side, that makes any two bbas commensurate by successive splitting. Based on this algorithm, they
provide an idempotent rule

⊕
that allows to merge any two bbas. This merging rule is conjunctive and the

result depends on the ranking of focal sets used in the commensuration algorithm, summarized as follows:

• Let m1, m2 be two bbas and {E1, . . . , En}, {F1, . . . , Fk} the two sets of ordered focal sets with weights
{m1

1, . . . ,m
n
1}, {m1

2, . . . ,m
k
2}

• By successive splitting of each bbas (m1, m2), build two generalised bbas {R1
1, . . . , R

l
1} and {R1

2, . . . , R
l
2}

with weights {m1
R1
, . . . ,ml

R1
}, {m1

R2
, . . . ,ml

R2
} s.t. mi

R1
= mi

R2
and

∑
Ri

1=Ej
mi
R1

= mj
1,
∑
Ri

2=Fj
mi
R2

=

mj
2.

• Algorithm results in two commensurate generalised bbas mR1
, mR2

that are, respectively, equivalent
to the original bbas m1, m2.

Once this commensuration is done, the conjunctive rule
⊕

proposed by Dubois and Yager defines a
merged bba m12 ∈ M12 with focal sets {Ri1⊕

2 = Ri1 ∩ Ri2, i = 1, . . . , l} and associated weights {mi
R1

⊕
2

=

mi
R1

= mi
R2
, i = 1 . . . , l}. The whole procedure is illustrated by the following example.

Example 11. Commensuration

l mRl Rl1 Rl2 Rl1
⊕

2

m1 m2 1 .5 E1 F1 E1 ∩ F1

E1 .5 F1 .6 2 .1 E2 F1 E2 ∩ F1

E2 .3 F2 .2 → 3 .2 E2 F2 E2 ∩ F2

E3 .2 F3 .1 4 .1 E3 F3 E3 ∩ F3

F4 .1 5 .1 E3 F4 E3 ∩ F4

From this example, it is easy to see that the final result crucially depends of the chosen rankings of
the focal sets of m1 and m2. In fact, it can be shown that any conjunctively merged bba in M12 can be
produced in this way.

Definition 12. Two commensurate generalised bbas are said to be equi-commensurate if each of their focal
sets has the same weight.

Any two bbas m1, m2 can be made equi-commensurate. In our example, bbas can be made equi-
commensurate by splitting the first line into five similar lines of weight 0.1 and the third line into two similar
lines of weight 0.1. Every line then has weight 0.1, and applying Dubois and Yager’s rule to these bbas
yields a bba equivalent to the one obtained before equi-commensuration. Combining two equi-commensurate
bbas {R1

1, . . . , R
l
1}, {R1

2, . . . , R
l
2} by Dubois and Yager rule results in a bba s.t. every focal element in

{R1
1
⊕

2, . . . , R
l
1
⊕

2} has equal weight mR1
⊕

2
(0.1 in our example). The resulting bba is still in M12.

Proposition 7. Any merged bba in M12 can be approached as close as possible by means of Dubois and
Yager rule using appropriate commensurate bbas equivalent to m1 and m2 and the two appropriate rankings
of focal sets.
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Proof. We first assume masses (of marginal and merged bbas) are rational numbers that have an arbitrary
finite number of decimals. Let m ∈ M12 be the merged bba we want to reach by using Dubois and
Yager’s rule. Let m(Ei, Fj) be the mass allocated to Ei ∩ Fj in m. It is of the form k12(Ei, Fj) × 10−n

where k12, n are integers. By successive splitting followed by a reordering of elements Rj1, we can always
reach m. For instance, let kR be equal to the greatest common divisor of all values k12(Ei, Fj). Then,
k12(Ei, Fj) = qij × kR, for an integer qij . Then, it suffices to re-order elements Rk1 by a re-ordering σ s.t.

for qij of them, Rk1 = Ei and R
σ(k)
2 = Fj . Then, by applying Dubois and Yager’s rule, we obtain the result

m. Rational numbers being dense in reals, this means that we can always get as close as we want to any
merged bba by considering a sufficiently large number of decimals.

5.2. A property of C-least committed merging

Although Example 10 and the associated comment in the previous section show that maximising expected
cardinality is not enough to respect the WICFMP, we see at least two reasons why it is interesting to study
C-least specific bbas and to retain this criterion to pick a single conjunctively merged belief structure:

• expected cardinality has a simple relation with contour functions, as Eq. (6) shows,

• if there is a merged belief structure in M12 satisfying the SCFMP, then it will be C-least specific. As
finding C-least specific belief functions can be done by solving a unique linear program, searching for
merged belief structures maximising the expected cardinality can be seen as an easy way to check that
two marginal belief structures satisfy the SCFMP.

Let us now show that, in order to maximise cardinality by using commensurate bbas, chosen rankings
should be extensions of the partial ordering induced by inclusion (i.e., Ei < Ej if Ei ⊂ Ej ), which is the
central notion of consonant bbas. This is due to the following result:

Lemma 2. Let A,B,C,D be four sets s.t. A ⊆ B and C ⊆ D. Then, we have the following inequality

C(A ∩D) + C(B ∩ C) ≤ C(A ∩ C) + C(B ∩D) (12)

Proof. From the assumption, the inequality C((B \A) ∩ C) ≤ C((B \A) ∩D) holds. Then consider the
following equivalent inequalities:

C((B \A) ∩ C) + C(A ∩ C) ≤ C(A ∩ C) + C((B \A) ∩D)

C(B ∩ C) ≤ C(A ∩ C) + C((B \A) ∩D)

C(A ∩D) + C(B ∩ C) ≤ C(A ∩ C) + C(A ∩D) + C((B \A) ∩D)

C(A ∩D) + C(B ∩ C) ≤ C(A ∩ C) + C(B ∩D)

hence the inequality (12) is true.

When using equi-commensurate bbas, masses in the formula of expected cardinality can be factorized,
and expected cardinality then becomes

C(mmR1
⊕

2
,FmR1

⊕
2
) = mR1

⊕
2

l∑
i=1

C(Ri1
⊕

2) = mR1
⊕

2

l∑
i=1

C(Ri1 ∩Ri2),

where mR1
⊕

2
is the smallest interval length enabling mass equi-commensuration. We are now ready to

prove the following proposition

Proposition 8. If m ∈ M12 is C-least specific, there exists an idempotent conjunctive merging rule
∧

constructing m by the commensuration method, s.t. focal sets are ranked on each side in agreement with the
partial order of inclusion.
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Proof. Suppose m̂12 ∈ M12 is minimally committed for expected cardinality. It can be obtained by com-
mensuration. Let mR1 ,mR2 be the two equi-commensurate bbas with n elements each derived from the two
original bbas m1,m2. Suppose that the rankings used display four focal sets Ri1, R

j
1, R

i
2, R

j
2, i < j, such that

Ri1 ⊃ Rj1 and Ri2 ⊆ Rj2. By Lemma 2, C(Rj1 ∩R
j
2) + C(Ri1 ∩Ri2) ≤ C(Rj1 ∩Ri2) + C(Ri1 ∩R

j
2). Hence, if we

permute focal sets Ri1, R
j
1 before applying Dubois and Yager’s merging rule, we end up with a merged bba

mR′
1
⊕

2
s.t. C(mR1

⊕
2
,FR1

⊕
2
) ≤ C(mR′

1
⊕

2
,FR′

1
⊕

2
). Such a permutation can be done (iteratively) for any

collection of focal sets satisfying Lemma 2 conditions, each time increasing expected cardinality. If there
are no such collection, then the ranking of focal sets of mR1 ,mR2 is in agreement with the partial order of
inclusion. Since any merged bba can be reached by splitting m1,m2 and by inducing the proper ranking
of focal sets of the resulting bbas mR1

,mR2
, any merged bba m̂12 ∈ M12 maximizing expected cardinality

can be reached by Dubois and Yager’s rule, using rankings of focal sets in accordance with the inclusion
ordering.

However, ranking focal sets in accordance with inclusion is neither sufficient nor the only way of maxi-
mizing expected cardinality when merging two given bbas, as shown by the following examples.

Example 12. Let m1,m2 be two bbas of the space V = {v1, v2, v3}. Let m1(E1 = {v1, v2}) = 0.5,m1(E2 =
{v1, v2, v3}) = 0.5 be the two focal sets of m1 and m2(F1 = {v1, v2}) = 0.2,m2(F2 = {v2}) = 0.3,m2(F3 =
{v1, v2, v3}) = 0.5 be the focal sets of m2. The following table shows the result of Dubois and Yager’s merging
rule after commensuration:

l mRl Rl1 Rl2 Rl1
⊕

2

1 .2 E1 F1 E1 ∩ F1 = {v1, v2}
2 .3 E1 F2 E1 ∩ F2 = {v2}
3 .5 E2 F3 E2 ∩ F3 = {v1, v2, v3}

Although focal sets Fi are not ordered by inclusion (F1 ⊃ F2), the result maximizes expected cardinality
(the result is m2, which is a specialization of m1). This shows that the technique based on proposition 8 is
not necessary. Nevertheless, the same result is obtained by using order F2, F1, F3, as any C-least specific
bbas can be by the technique based on Proposition 8.

Now, consider the same bba m1 and another bba m2 s.t. m2(F1 = {v2}) = 0.3, m2(F2 = {v2, v3}) = 0.3,
m2(F3 = {v1, v2}) = 0.1, m2(F4 = {v1, v2, v3}) = 0.3. m2 is no longer a specialization of m1, and the
ranking F1, F2, F3, F4 is one of the two possible extensions of the partial order induced by inclusion. The
result of Dubois and Yager’s rule gives us:

l mRl Rl1 Rl2 Rl1
⊕

2

1 .2 E1 F1 E1 ∩ F1 = {v2}
2 .3 E1 F2 E1 ∩ F2 = {v2}
3 .1 E2 F2 E2 ∩ F2 = {v2, v3}
4 .1 E2 F3 E2 ∩ F3 = {v1, v2}
5 .3 E2 F4 E1 ∩ F4 = {v1, v2, v3}

and the expected cardinality of the merged bba is 1.8. If, instead of the ranking F1, F2, F3, F4, we choose
the order F1, F3, F2, F4 (i.e., the other extension of the partial order induced by inclusion), applying Dubois
and Yager’s rule gives us a merged bba of expected cardinality 2.0, which is greater than the previous one.
Hence, we see that proposition 8 is not sufficient in general to reach maximal cardinality. Thus, proposition 8
gives us guidelines for combining belief functions so as to maximise cardinality, but further conditions should
be stated to select the proper total orderings of focal sets.

Finally it is clear that any conjunctive merging rule that ranks focal sets in agreement with the inclusion
ordering prior to commensuration is an extension of the minimum rule of possibility theory : the latter can
be precisely obtained by following this method, since in the consonant case the inclusion ordering is linear.
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6. Related Works

We can distinguish three main kinds of alternative approaches in the literature that deal with combination
of belief functions when independence (or distinctness) between sources cannot be assumed:

• the first and most common one consists in selecting, among the belief functions in M12, one of the
least-committed one according to one of the ordering considered in Section 2.3, possibly requiring the
rule to satisfy additional properties. Denoeux [8] and Cattaneo [2] proposals, as well as our proposition
of maximising expected cardinality, fall into this category;

• the second one consists in studying how cautious and idempotent rules originating from other un-
certainty theories can be adapted to the belief function setting. Chateauneuf [4] has studied how
intersection of sets of probabilities inducing belief functions could be interpreted in terms of bba,
while studying the extension of the minimum possibilistic rule was the central topic of this paper.
This approach has been already discussed in previous sections;

• the third one, investigated by Smets [32] and more recently by Kallel et al. [20], consists in identifying
the precise dependence structure between sources and then to combine the marginal belief structures
accordingly. This approach is quite different from the two others, in which one the dependence structure
is considered to be ill-known.

6.1. Minimizing conflict

When two bbas are not logically consistent (i.e., there are focal elements Ei,Fj for which Ei ∩Fj = ∅), a
conjunctively merged bba that maximizes expected cardinality may not, in general, minimize conflict (i.e.,
m ∈M12 s.t. m(∅) is minimal). This is illustrated by the following example:

Example 13. Consider the two following possibility distributions π1,π2, expressed as belief structures m1,m2

π1 = m1 π2 = m2

Focal sets Mass Focal sets Mass
{v1, v2} 0.5 {v4} 0.5

{v0, v1, v2, v3, v4} 0.5 {v2, v3, v4, v5, v6} 0.5

And the following table shows the result of applying the minimum possibilistic rule (thus maximising ex-
pected cardinality or selecting the q-least committed bba in M12) and the unnormalised Dempster rule of
combination

Min(π1, π2) unnormalised Dempster’s rule
Focal sets Mass Focal sets Mass Focal sets Mass
{v2, v3, v4} 0.5 {v2} 0.25 {v2, v3, v4} 0.25

∅ 0.5 {v4} 0.25 ∅ 0.25

With Dempster rule, conflict value is 0.25 and expected cardinality is 1.25, while with the minimum, the
conflict value is 0.5 and expected cardinality is 1.5.

Provided one considers that minimizing the conflict is as desirable as finding a least-committed way of
merging the information, this can problematic. A possible alternative is then to find m ∈ M12 that is
least-committed among those for which m(∅) is minimal. This problem was studied by Cattaneo in [2].
Cattaneo proposes to find the merged bba m ∈M12 that maximizes the following function:

F (m) = m(∅)f(0) + (1−m(∅))
∑
A 6=∅

m(A)f(|A|) (13)

with f s.t. f(0) ≤ −|V| and f(n) = log2 n for all n > 2. In the above equation, m(∅)f(0) can be seen
as a penalty given to the evaluation of the merged belief when conflict appears, while the second part of
the right-hand side of equation (13) is equivalent to expected cardinality where |A| is replaced by log2(|A|)
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(more generally, we can replace |A| by any non-decreasing function f(|A|) from N to R). A similar strategy
(penalizing the appearance of conflict) could thus be adopted, along with expected cardinality (or with any
function f(|A|)).

Now, the claim that a cautious conjunctive rule should give a merged bba where the conflict is minimized
is questionable. This is shown by our small example 13, where minimizing the conflict, by assigning zero
mass to empty intersections while respecting the marginals, produces the bba m({v2}) = 0.5,m({v4}) = 0.5,
which is the only probability distribution distribution in Pm1∩Pm2 . Indeed, this bba is the most precise result
possible, and its informational content is clearly more precise (i.e., less cautious) than the bba corresponding
to min(π1, π2).

6.2. Least commitment based on the weight function

Given weight functions w1, w2 originating from m1,m2 and computed with Eq.(5), Denoeux proposes to
apply the following cautious rule to weight functions:

w12(A) = min(w1(A), w2(A)),∀A 6= V.

and he shows that it produces the weight function of the least w-committed merged bba among those that
are more w-committed than both marginals m1 and m2. Note that our approach only requires the result to
be more s-committed than m1 and m2. which is a weaker condition than to be more w-committed. Now, let
us compare Denoeux’s rule vs. the maximisation of expected cardinality to the following example (Example
2 of [7]).

Example 14. : Consider V = {a, b, c}, m1 defined by m1({a, b}) = 0.3, m1({b, c}) = 0.5, m1(V) = 0.2; m2

defined by m2({b}) = 0.3, m2({b, c}) = 0.4, m2(V) = 0.3. Results of both rules are given in the following
table

Denoeux’s rule (mD) Max. Exp. Card. rule (mC)
Focal Sets Mass Focal Sets Mass Focal Sets Mass Focal Sets Mass
{b} 0.6 {b, c} 0.2 {b} 0.3 V 0.2
{a, b} 0.12 V 0.08 {b, c} 0.5

In this example, our conjunctive cautious rule yields a merged bba mC that is s-less committed (and
hence has a greater expected cardinality) than mD obtained with Denoeux’s rule (note that mD 6∈ M12,
i.e., it is not a conjunctive merging rule obtained by the two-stepped procedure of Sec. 2). Nevertheless, the
merged bba obtained by maximizing expected cardinality is not comparable in the sense of the w-ordering
with any of the three other bbas (m1,m2,m

D), nor does it fulfil Denoeux’s condition of being more w-
committed than m1 and m2. The cautious w-merging of possibility distributions does not reduce to the
minimum rule either. Thus, the two approaches are at odds. As it seems, using the w-ordering allows to
easily find a unique least-committed element. See [8] for a more detailed discussion on these issues.

In his paper, Denoeux generalizes both the TBM conjunctive rule and his cautious rule with triangular
norms [21]. However, the set of non-dogmatic belief functions equipped with the TBM conjunctive rule
forms a group, as is the product of positive w-numbers. So the relevant setting for generalizing the product
of weight functions seems to be the one of uninorms [38], that is, non-decreasing semi-group operations on
the unit interval whose identity lies strictly between 0 and 1. But the minimum is not a uninorm on the
positive real line. It is the greatest t-norm on [0, 1], in particular, greater than product, and this property is
in agreement with minimal commitment of contour functions. But the minimum rule no longer dominates
the product on the positive real line, so that the bridge between Denoeux’s idempotent rule and the idea of
minimal commitment is not obvious beyond the w-ordering. See [27,28] for developments along these lines.

6.3. Identifying dependency structures

The last approach consists in identifying the existing dependency structure between the two sources,
that is to construct the precise joint structure (see Eq.(7)) to be used in the conjunctive merging of belief
functions. In his proposal, Smets [32] considers that, given two marginal bbas m1,m2, their dependence
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structure (that he calls correlation) can be represented as a bba m0 representing the corpus of common
knowledge shared by m1 and m2.

Provided one also knows the joint conjunctive belief structure underlying m1, m2, say m1∧2, the com-
monality function q0 of the bba m0 representing the dependency structure is given, for any event A ⊆ V, by
the following formula:

q0(A) =
q1(A)q2(A)

q1∧2(A)
, (14)

with q1, q2, q1∧2 the commonality functions of, respectively, m1, m2 and m1∧2. As emphasized by Smets,
constructing m0 without knowing m1∧2 would require an ”in-depth comparison of the origin of the pieces
of evidence that have induced m1 and m2”.

Recently, Kallel et al. [20] have proposed an approach to computing the bba m0 from the sole knowledge
of m1 and m2. In order to do so, they propose to replace the bba m1∧2 in Eq. 14 respectively by the
bba given by Denoeux’s cautious rule when m1,m2 are not consonant and by the result of the minimum
possibilistic rule when they are consonant (recall that this is the q-least committed).

From a theoretical point of view, this proposition is questionable: indeed, if no evidence is available,
even if choosing a least-committed bba as the proper unknown joint conjunctive belief structure sounds
natural, exploiting the correlation information computed from this assumption in further computations is
debatable. And, at the theoretical level, switching from a q-least committed solution to a w-least committed
joint structure according to whether the information is consonant or not is not consistent with the fact that
the w-ordering based idempotent rule is not in agreement with possibility theory.

A more (theoretically) convincing approach to measure source dependency and identify a parametrised
conjunctive rule from it is given by Quost et al. [29], who propose to use correlation and distance measures,
similarly to what is done in statistics when measuring data correlations. The drawback of this approach is
that it requires data from which the dependence can be inferred. It cannot be applied to situations where
such data are unavailable e.g., different experts providing information.

7. Conclusion

In this paper, we have studied the link between the idempotent minimum rule, used in possibility
theory to cautiously merge possibility distributions, and the more general framework of belief structures, by
trying to extend the minimum rule to the latter. In order to achieve such an extension, we have proposed
two principles, respectively the strong and weak idempotent contour function merging principles. These
principles require that the contour function of the belief structure after merging be equal to the minimum
of the original contour functions. Our results indicate that the strong version of this principle cannot be
always satisfied by the resulting selected least committed belief structure. However it is relatively easy to
satisfy the weaker version of the idempotent contour function merging principle, provided that the result of
the merging could be a set of belief structures. In the latter case, restricting to least π-committed merged
belief structures appears to be a good solution.

At the theoretical level, it becomes clear that there is no canonical idempotent merging rule in the non-
consonant case, and that further assumptions on the dependence structure between sources are needed to
select the proper combination mode if a single merged belief structure is to be selected. These results tend
to confirm the claim that sets of belief structures should be used in place of a single one, particularly when
dependencies are ill-known. This is in agreement with similar treatments done with precise probabilities
when dependencies between variables are not known [37]. Section 4.1 also indicates that restricting ourselves
to normalised merged belief functions may be too restrictive if we want to comply with the minimum rule.
This indicates that requiring coherence is also perhaps too strong a requirement in some situations. This is
in agreement with the Transferable Belief Model [35] and the open world assumption, where subnormalised
belief structures are authorised.

From a practical standpoint, our results are incomplete, as they do not lead to an easy-to-use cautious
merging rule extending the idempotent possibilistic rule. Nevertheless the paper provides clear guidelines
in the form of additional zero-mass constraints on the joint belief structures needed if the merging process
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is to satisfy the minimum rule. However, there is a need for computational methods that generate sets of
x-least committed belief functions with x ∈ {s, p, q, π}. The commensuration method exploiting the partial
inclusion order of focal elements, and the suitable use of the zero-mass constraints may be helpful to alleviate
the computational burden. It is easier to obtain the subset of least committed merged bbas with maximal
expected cardinality, as they are easy to compute by linear programming, even if they do not always jointly
satisfy the WICFMP. However there is a need to develop practical methods that allow us to retrieve the set
of x-least committed merged bbas (with x ∈ {s, p, q, π}) from the information provided by the marginals
m1,m2. A solution could come from the exploration of geometrical properties of the set M12 of results of
conjunctive combinations. As this set happens to be a convex polytope, it would be worth characterising
the nature of its extreme points, notably in terms of x-least commitment.
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