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Unbiased risk estimation method for covariance estimation

Hélène Lescornel ∗, Jean-Michel Loubes†, Claudie Chabriac‡

Abstract

We consider a model selection estimator of the covariance of a random process. Using
the Unbiased Risk Estimation (URE) method, we build an estimator of the risk which allows
to select an estimator in a collection of model. Then, we present an oracle inequality which
ensures that the risk of the selected estimator is close to the risk of the oracle. Simulations
show the efficiency of this methodology.

Keywords: covariance estimation, model selection, URE method.

1 Introduction

Estimating the covariance function of stochastic processes is a fundamental issue in statistics
with many applications, ranging from geostatistics, financial series or epidemiology for instance
(we refer to [Ste99], [Jou77] or [Cre93] for general references). While parametric methods have
been extensively studied in the statistical literature (see [Cre93] for a review), nonparamet-
ric procedures have only recently received attention, see for instance [EPTA08, BBLMA10,
BBLLMA10, BBLA11] and references therein. One of the main difficulty in this framework is
to impose that the estimator is also a covariance function, preventing the direct use of usual
nonparametric statistical methods.

In this paper, we propose to construct a non parametric estimator of the covariance func-
tion of a stochastic process by using a model selection procedure based on the Unbiased Risk
Estimation (U.R.E.) method. We work under general assumptions on the process, that is, we
do not assume Gaussianity nor stationarity of the observations.

Consider a stochastic process (X (t))t∈T taking its values in R and indexed by T ⊂ R
d,

d ∈ N. We assume that E [X (t)] = 0 ∀t ∈ T and we aim at estimating its covariance function
σ (s, t) = E [X (s)X (t)] < ∞ for all t, s ∈ T . We assume we observe Xi (tj) where i ∈ {1 . . . n}
and t ∈ {1 . . . n}. Note that the observation points tj are fixed and that the Xi’s are independent
copies of the process X. Set set xi = (Xi (t1) , . . . ,Xi (tp)) ∀i ∈ {1 . . . n} and denote by Σ the
covariance matrix of these vectors.

Following the methodology presented in [BBLMA10], we approximate the process X by its
projection onto some finite dimensional model. For this, consider a countable set of functions
(gλ)λ∈Λ which may be for instance a basis of L2 (T ) and choose a collection of modelsM ⊂ P (Λ).
For m ⊂ M, a finite number of indices, the process can be approximated by

X (t) ≈
∑

λ∈m
aλgλ (t) .
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Such an approximation leads to an estimator of Σ depending on the collection of functions m,
denoted by Σ̂m. Our objective is to select in a data driven way, the best model, i.e the one close
to an oracle m0 defined as a minimizer of the quadratic risk, namely

m0 ∈ argmin
m∈M

R (m) = argmin
m∈M

E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

.

A model selection procedure will be performed using the U.R.E. method, which has been intro-
duced in [Ste81] and fully described in [Tsy04]. The idea is to find an estimator R̂ (m) of the
risk which is unbiased, and to select m̂ by minimizing this estimator. Hence, if R̂ is close to its
expectation, Σ̂m̂ will be an estimator with a small risk, nearly as the best quantity Σ̂m0

.

In this work, following the U.R.E. method, we build an estimator of the risk which allows
to select an estimator of the covariance function. Then, we present an oracle inequality for the
covariance estimator which ensures that the risk of the selected estimator is not too large with
respect to the risk of the oracle.

The paper is organized as follows. In Section 2 we present the statistical framework and
recall some useful algebraic tools for matrices. The following section, Section 3 is devoted to
the approximation of the process and the construction of the covariance estimator. Section 4 is
devoted to the U.R.E. method, and provides an oracle inequality. Some numerical experiments
are exposed in Section 5, while the proofs are postponed to the Appendix.

2 The statistical framework

Recall that we consider an R-valued stochastic process, X = (X (t))t∈T , where T is some subset
of Rd, d ∈ N. We assume that X has finite moments up to order 4 and zero mean. Our aim is
to study the covariance function of X denoted by σ (s, t) = E [X (s)X (t)].

Let X1, ...Xn be independent copies of the process X, and assume that we observe these
copies at some determinist points t1, ..., tp in T . We set xi = (Xi (t1) , . . . ,Xi (tp))⊤, and denote
the empirical covariance of the data by

S =
1

n

n
∑

i=1

xix
⊤
i

with expectation Σ = (σ (tj , tk))16j,k6p
.

Hence, the observation model can be written, in a matrix regression framework, as

xix
⊤
i = Σ+ Ui ∈ R

p×p , 1 6 i 6 n (1)

Where Ui are i.i.d. error matrices with E [Ui] = 0.

We now recall some notations related to the study of matrices, which will be used in the
following.
Denote by St the subset composed of symmetric matrix in R

t×t.
For any matrix A = (aij) ∈ R

s×t, ‖A‖2 = tr
(

AA⊤) is the Frobenius norm of the matrix
which is associated to the inner scalar product 〈A,B〉 = tr

(

AB⊤).
A− ∈ R

t×s is a reflexive generalized inverse of A, that is, some matrix such as A−AA− = A
andAA−A = A−.

In the following, we will consider matrix data as a natural extension of the vectorial data,
with different correlation structure. For this, we introduce a natural linear transformation,
which converts any matrix into a column vector. The vectorization of a k × n matrix A =
(aij)1≤i≤k,1≤j≤n is the kn×1 column vector denoted by vec (A), obtained by stacking the columns
of the matrix A on top of one another. That is vec(A) = [a11, ..., ak1, a12, ..., ak2, ..., a1n, ..., akn]

⊤.
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If A =(aij)1≤i≤k,1≤j≤n is a k× n matrix and B =(bij)1≤i≤p,1≤j≤q is a p× q matrix, then the
Kronecker product of the two matrices, denoted by A⊗B, is the kp× nq block matrix

A⊗B =













a11B . . . a1nB
. . .
. . .
. . .

ak1B . . . aknB













.

For A, B and C some real matrices, we recall the following properties that will be useful in
our settings.

Proposition 2.1.

vec (ABC) =
(

C⊤ ⊗A
)

vec (B) (2)

‖A‖ = ‖vec (A)‖ = ‖vec (A)‖ℓ2 (3)

(A⊗B) (C ⊗D) = (AC)⊗ (BD) (4)

(A⊗B)⊤ = A⊤ ⊗B⊤ (5)

These identities can be found in [Seb08].

Let m ∈ M, and recall that to the finite set {gλ}λ∈m of functions gλ : T → R we associate
the n×|m| matrix G with entries gjλ = gλ (tj), j = 1, ..., n, λ ∈ m. Furthermore, for each t ∈ T ,

we write Gt = (gλ (t) , λ ∈ m)⊤. For k ∈ N, Sk denotes the linear subspace of Rk×k composed
of symmetric matrices. For G ∈Rn×|m|, S (G) is the linear subspace of Rn×n defined by

S (G) =
{

GΨG⊤ : Ψ ∈Sm

}

.

This set will be the natural projection space for the corresponding covariance estimator.

3 Model selection approach

The estimation procedure is a two step procedure. First we consider a functional expansion of
the process and approximate it by its projection onto some finite collection of functions. Then,
we construct a rule to pick out the best of these estimators among the collection of estimated,
based on the U.R.E. method.

In this section, we explain the construction of a projection based estimator for the covariance
of a process and point out its properties. More details can be found in [BBLMA10].

Consider a process X with an expansion on a set of functions (gλ)λ∈Λ of the following form

X (t) =
∑

λ∈Λ
aλgλ (t)

where Λ is a countable set, and (aλ)λ∈Λ are random coefficients in R of the process X.
This situation occurs in large number of cases. If we assume that the process takes its values

in L2 (T ) or an Hilbert space, a natural choice of the functions is given by the corresponding
Hilbert basis (gλ)λ∈Λ of L2 (T ). Alternatively, the Karhunen-Loeve expansion of the covariance
provides a natural basis. However, since it relies on the nature of the process X, this expansion
is usually unknown or require additional information on the process. We refer to [Adl90] for
more references on this expansion. Under other kind of regularity assumptions on the process,
for instance assuming that the paths of the process belong to some RKHS, other expansions can
be considered as in [CY10] for instance.
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Now consider the projection of the process onto a finite number of functions. For this, let
m be a finite subset of Λ and consider the corresponding approximation of the process in the
following form

X̃ (t) =
∑

λ∈m
aλgλ (t) (6)

We note Gm ∈ R
p×|m| where (Gm)jλ = gλ (tj) and am the random vector of R

|m| with
coefficients (aλ)λ∈m.

Hence, we obtain that

x̃ =
(

X̃ (t1) , .., X̃ (tp)
)⊤

= Gmam

and
x̃x̃⊤ = Gmama⊤mG⊤

m.

Thus, approximating the process X by X̃ its projection onto the model m implies approx-
imating the covariance matrix Σ by GmΨG⊤

m Ψ ∈ R
|m|×|m| where Ψ = E

[

ama⊤m
]

is some
symmetric matrix. With previous definitions, that amounts to saying that we want to choose
an estimator in the subset S (Gm) for some subset m of Λ.

Assume that the subset m is fixed. The best approximation of Σ in S (Gm) for the Frobenius
norm is its projection denoted by Σm. But Σ is unknown, hence we can not determinate this
quantity. A natural idea is to study the projection of S on S (Gm). We denote this quantity by
Σ̂m.

Proposition 3.1 in [BBLMA10] gives an explicit form for these projections. We recall it for
sake of completeness.

Proposition 3.1. Let A in R
p×p and G ∈ R

p×|m|. The infimum

inf {‖A− Γ‖ ; Γ ∈ S (G)}

is achieved at

Γ̂ = G
(

G⊤G
)−

G⊤
(

A+A⊤

2

)

G
(

G⊤G
)−

G⊤

In particular, if A ∈ Sp, the projection of A on S (G) is ΠAΠ with the projection matrix Π =

G
(

G⊤G
)−

G⊤ ∈ R
p×p.

It amounts to saying that inf
{
∥

∥A−GΨG⊤∥
∥ ; Ψ ∈ S|m|

}

is reached at

Ψ̂ =
(

G⊤G
)−

G⊤
(

A+A⊤

2

)

G
(

G⊤G
)−

.

Remark 3.2. Thanks to the properties of the reflexive generalized inverse given in [Rao73], the
projection of a non-negative definite matrix A ∈ Sp on S (G) will be also a non-negative definite
matrix. Moreover, the matrix Π does not depend on the choice of the generalized inverse.

Thanks to this result, the projection of Σ on S (Gm) can be characterized as

Σm = ΠmΣΠm (7)

and the same for S (that is, our candidate for estimating Σ)

Σ̂m = ΠmSΠm (8)

where Πm = Gm

(

G⊤
mGm

)−
G⊤

m.

Hence, the estimator Σ̂m is a covariance matrix. Now, our aim is to choose the best subset
m among a collection of candidates.
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4 Model selection with the U.R.E. method

Let M be a finite collection of models m. In this section, we focus on picking the best model

among this collection by following the U.R.E. method. Since the law of
∥

∥

∥
Σ− Σ̂m

∥

∥

∥
is unknown,

we thus aim at finding an estimator of its expectation.
We consider that the best subset m is m0 defined by

m0 ∈ argmin
m∈M

E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

Then the oracle is defined as the best estimate knowing all the information, namely Σ̂m0
.

Set R(m) = E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

. First, we compute this quantity.

Proposition 4.1.

E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

= ‖Σ−ΠmΣΠm‖2 + tr ((Πm ⊗Πm)Φ)

n
(9)

where Φ = V ar
(

vec
(

xx⊤
))

.

Here we can note the similarity with the usual risk for standard estimation models. For
instance, assume that we observe a Gaussian model with observations a vector Y ∈ R

n such as

Y = θ + ǫξ ξ ∼ N (0, In)

where ǫ ∈ R and θ ∈ R
n is the unknown quantity to estimate, using the projection θ̂m of the

vector Y onto some subspace Sm. If the subspace dimension is denoted by Dm, the risk of a
such estimator is given by

E

[

∥

∥

∥
θ − θ̂m

∥

∥

∥

2
]

= ‖θm − θ‖2 + ǫ2Dm.

We thus recognize the same kind of decomposition with a bias term and with tr((Πm⊗Πm)Φ)
n

playing the role of the variance term Dm/n with ǫ = 1/
√
n. Hence it is natural to extend the

Unbiased Risk Estimation procedure of previous Gaussian model to the matrix model obtained
by the vectorization of Model (1).

Now, we present an estimator of the risk. We assume n > 3, and we set :

γ̂2m =
1

n− 1

n
∑

i=1

∥

∥

∥
Πmxix

⊤
i Πm − Σ̂m

∥

∥

∥

2

Proposition 4.2.

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
+2 γ̂2

m

n
+C is an unbiased estimator of the risk, where C does not

depend on m. More precisely :

E

[

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
+ 2

γ̂2m
n

]

= E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

+
tr (Φ)

n

Note that the constant tr(Φ)
n

is unknown but does not depend onm. So in the URE procedure,

minimizing
∥

∥

∥
S − Σ̂m

∥

∥

∥

2
+2 γ̂2

m

n
with respect tom is equivalent to minimizing

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
+2 γ̂2

m

n
+C

which is unbiased.
Then we can define the estimator Σ̂ of Σ by

Σ̂ = Πm̂SΠm̂ = Σ̂m̂

with m̂ ∈ argmin
m∈M

(

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
+ 2

γ̂2m
n

)

The next theorem establishes an oracle inequality for this estimator.
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Theorem 4.3. For all A > 0, we have :

E

[

∥

∥

∥
Σ̃− Σ

∥

∥

∥

2
]

6
(

1 +A−1
)

inf
m∈M

E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

+
tr (Φ)

n
(4 +A)

Hence we have obtained a model selection procedure which enables to recover the best
covariance model among a given collection. This method works without strong assumptions
on the process, in particular stationarity is not assumed, but at the expend of necessary i.i.d
observations of the process at the same points.
We point out that this study requires a large number of replications n with respect to the number
of observation points p. Actually our method is not designed to tackle the problem of covariance
estimation in the high dimensional case p >> n. This topic has received a growing attention
over the past years and we refer to [BL08] and references therein for a survey.

The proof of these results are using the vectorization of the matrices involved here. That is
why we must deal with the matrix Φ = var

(

vec
(

xx⊤
))

. It is postponed to the appendix.

5 Numerical examples

In this section we illustrate the behaviour of the covariance estimator Σ̂ with programs imple-
mented using SCILAB. We aim at knowing if our procedure leads to choose the best model,
that is the model minimizing the risk.

Recall that n is the number of copies of the process and p is the number of points where
we observe these copies. Here, we consider the case where T = [0; 1] and Λ is a subset of N.
For sake of simplicity, we identify m and the set 1, . . . ,m. Moreover, the points (tj)16j6p

are
equi-spaced in [0; 1].

For a given process X, we must start by the choice of the functions of its expansion. Their
knowledge is needed for the matrix Gm. Indeed, (Gm)jλ = gλ (tj).

The method is the following: First, we simulate a sample for p and n given. Second, for m
between 1 to some integer M , we compute the unbiased risk estimator related to the model m.
Finally, we pick out a m̂ minimizing this estimator and we compute Σ̂.

For each example, we plot the curve of the risk function and give its minimum m0. We plot
also the curve of the function of the risk estimator and give its minimum m̂. Finally we compare
the true covariance and the estimator.

Example 1

Here we work with the numerical examples of [BBLMA10]. We choose the Fourier basis func-
tions:

gλ(t) =











1√
p
si λ = 1√

2 1√
p
cos(2π λ

2 t) si λ est pair√
2 1√

p
sin(2π λ−1

2 t) si λ est impair

And we study the following process :

X(t) =

m⋆

∑

λ=1

aλgλ(t)

where aλ are independent Gaussian variables with mean zero and variance V (aλ). Let D(V )
the diagonal matrix in m⋆ ×m⋆ such as D(V )λλ = V (aλ). Then we have

Σ = Gm⋆D(V )G⊤
m⋆

6



Here are the results for V (aλ) = 1 ∀ λ. We choose m⋆ = 35 = p, n = 50, M = 31. Here
it can be shown that the minimum of the risk is achieved at n

2 − 1, so in this setting we have
m0 = 24. Here the minimum of the estimator is the same : m̂ = 24.

Here are the results for V (aλ) = 0.0475 + 0.95λ ∀ λ, and m⋆ = 35 = p, n = 60, M = 34.
Here the figures show that m0 = m̂ = 18.

Example 2

Now we test our estimator with the process studied in [CY10].

We consider the functions

gλ(t) = cos(λπt)

And the process X studied is :

X(t) =

m⋆

∑

λ=1

aλζλgλ(t)

where aλ are i.i.d. random variables following the uniform law on
[

−
√
3;
√
3
]

and ζλ = (−1)λ+1

λ2 .
If D is the diagonal matrix with entries Dλλ = 1

λ4 , as before we have that

Σ = Gm⋆DG⊤
m⋆

Here we choose m⋆ = 50, n = 1000, p = 40 and M = 20. We found m0 = 4 = m̂.
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Example 3

Here we consider the case of the brownian bridge with its Karhunen Loeve expansion. Indeed,
this expansion

X(t) =
∑

λ>1

Zλ

√
νλgλ(t)

is computed in [SW86], p.213-215 : νλ =
(

1
λπ

)2
, and gλ(t) =

√
2 sin(λπt).

The covariance function of the brownian bridge is K(s, t) = s(1− t) for s 6 t. Simulate the
sample is the same as simulate n gaussian vectors of covariance matrix Σ = (K(ti, tj))16i,j6p.
Here n = 100, p = 35 and M = 20. We found m0 = 5 = m̂.
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Note that for the first and the last example,the size of the sample is not so large. However,
for each of the simulated examples, the covariance estimator shows good performances. Indeed,
the procedure introduced in this paper leads each time to the selection of the best model, in the
sense that the chosen model minimizes the risk.

6 Appendix

Recall that Σm = ΠmΣΠm, Σ̂m = ΠmSΠm and

γ̂2m =
1

n− 1

n
∑

i=1

∥

∥

∥
Πmxix

⊤
i Πm − Σ̂m

∥

∥

∥

2

We start by proving the proposition 4.1.

Proof. Using the orthogonality, we have

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
= ‖Σ− Σm‖2 +

∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2

With the proposition 2.1 we deduce

∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2
=

∥

∥

∥
vec(Σm − Σ̂m)

∥

∥

∥

2
=

∥

∥

∥

(

Π⊤
m ⊗Πm

)

vec (Σ− S)
∥

∥

∥

2

Since Πm is a projection matrix,

∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2
= tr

(

(Πm ⊗Πm) vec (Σ− S) vec (Σ− S)⊤
)

Hence

E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

= ‖Σ− Σm‖2 + E

[

tr
(

(Πm ⊗Πm) vec (Σ− S) vec (Σ− S)⊤
)]

9



= ‖Σ−Σm‖2 + tr
(

(Πm ⊗Πm)E
[

vec (Σ− S) vec (Σ− S)⊤
])

= ‖Σ− Σm‖2 +
tr

(

(Πm ⊗Πm)E
[

vec
(

Σ− xx⊤
)

vec
(

Σ− xx⊤
)⊤])

n

Proof of Proposition 4.2.

Proof. We start by the proof of the following lemma

Lemma 6.1. γ̂2m is an unbiased estimator of tr ((Πm ⊗Πm)Φ).

Proof. We deduce from the proposition 2.1 and the fact that Πm is a projection matrix that:

(n− 1)E
[

γ̂2m
]

=

n
∑

i=1

E

[

∥

∥

∥
vec

(

Πmxix
⊤
i Πm

)

− vec
(

Σ̂m

)
∥

∥

∥

2
]

=

n
∑

i=1

E

[

∥

∥

∥
(Πm ⊗Πm)

(

vec
(

xix
⊤
i

)

− vec (S)
)
∥

∥

∥

2
]

=

n
∑

i=1

E

[

tr

(

(Πm ⊗Πm)
(

vec
(

xix
⊤
i

)

− vec (S)
)(

vec
(

xix
⊤
i

)

− vec (S)
)⊤

(Πm ⊗Πm)⊤
)]

=

n
∑

i=1

tr

(

(Πm ⊗Πm)E

[

(

vec
(

xix
⊤
i

)

− vec (S)
)(

vec
(

xix
⊤
i

)

− vec (S)
)⊤

])

But if (vi)16i6n, are some i.i.d. vectors with covariance matrix V and mean v̄ = 1
n

∑n
i=1 vi,

we have

E

[

(vi − v̄) (vi − v̄)⊤
]

=
1

n2

n
∑

j,k=1

E

[

(vi − vk) (vi − vj)
⊤
]

=
1

n2

n
∑

j,k=1
j,k 6=i

E

[

(vi − vk) (vi − vj)
⊤
]

=
1

n2

{

(n− 1)E
[

(v1 − v2) (v1 − v2)
⊤
]

+ (n− 2) (n− 1)E
[

(v1 − v2) (v1 − v3)
⊤
]}

=
1

n2
{(n− 1) 2V + (n− 2) (n− 1)V }

=
1

n2
((n− 1)nV )

Hence

E

[

(vi − v̄) (vi − v̄)⊤
]

=
1

n
((n− 1)V )

this identity gives

(n− 1)E
[

γ̂2m
]

=
n
∑

i=1

tr

(

(Πm ⊗Πm)
1

n
((n− 1)Φ)

)

Finally

E
[

γ̂2m
]

= tr ((Πm ⊗Πm) Φ)

10



Now, it remains to show that

E

[

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
]

= ‖Σ−ΠmΣΠm‖2 − tr ((Πm ⊗Πm) Φ)

n
+

tr (Φ)

n

We have that

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
= ‖S − Σ‖2 + 2

〈

S −Σ,Σ− Σ̂m

〉

+
∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2

And using the orthogonality we deduce that

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
= ‖S − Σ‖2 + 2

〈

S − Σ,Σ− Σ̂m

〉

+ ‖Σ− Σm‖2 +
∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2

For the same reason :
〈

S − Σ,Σ− Σ̂m

〉

= 〈S − Σ,Σ−Σm〉+
〈

S − Σ,Σm − Σ̂m

〉

= 〈S − Σ,Σ− Σm〉 −
∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2

And because the expectation of S is equal to Σ we obtain that

E

[

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
]

= ‖Σ− Σm‖2 + E

[

‖S − Σ‖2
]

− E

[

∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2
]

First

E

[

‖S − Σ‖2
]

=
1

n2
E





n
∑

i,j=1

〈

xix
⊤
i −Σ, xjx

⊤
j − Σ

〉



 =
1

n
E

[

∥

∥

∥
xx⊤ − Σ

∥

∥

∥

2
]

And with the properties of the Frobenius norm

E

[

∥

∥

∥
xx⊤ − Σ

∥

∥

∥

2
]

= E

[

∥

∥

∥
vec

(

xx⊤ − Σ
)
∥

∥

∥

2
]

= tr

(

E

[

(

vec
(

xx⊤
)

− vec (Σ)
)(

vec
(

xx⊤
)

− vec (Σ)
)⊤

])

then we derive that

E

[

∥

∥

∥
xx⊤ − Σ

∥

∥

∥

2
]

= tr (Φ)

Thus

E

[

‖S − Σ‖2
]

=
tr (Φ)

n
(10)

Second

E

[

∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2
]

=
1

n2
E





n
∑

i,j=1

〈

Πm

(

xix
⊤
i − Σ

)

Πm,Πm

(

xjx
⊤
j − Σ

)

Πm

〉





=
1

n
E

[〈

Πm

(

xx⊤ − Σ
)

Πm,Πm

(

xx⊤ − Σ
)

Πm

〉]

=
1

n
E

[

∥

∥

∥
Πm

(

xx⊤ −Σ
)

Πm

∥

∥

∥

2
]

And using the proposition 2.1 and the specificity of Πm, we obtain that

E

[

∥

∥

∥
Πm

(

xx⊤ − Σ
)

Πm

∥

∥

∥

2
]

= E

[

∥

∥

∥
vec

(

Πm

(

xx⊤ −Σ
)

Πm

)∥

∥

∥

2
]

11



= E

[

∥

∥

∥
Πm ⊗Πm

(

vec
(

xx⊤ − Σ
))∥

∥

∥

2
]

= E

[

tr

(

Πm ⊗Πm

(

vec
(

xx⊤ − Σ
)(

vec
(

xx⊤ − Σ
))⊤

(Πm ⊗Πm)⊤
))]

= E

[

tr

(

(Πm ⊗Πm)
(

vec
(

xx⊤ − Σ
))(

vec
(

xx⊤ − Σ
))⊤

)]

Hence

E

[

∥

∥

∥
Πm

(

xx⊤ − Σ
)

Πm

∥

∥

∥

2
]

= tr ((Πm ⊗Πm)Φ)

And we obtain

E

[

∥

∥

∥
Σm − Σ̂m

∥

∥

∥

2
]

=
tr ((Πm ⊗Πm) Φ)

n
(11)

Finally, we have

E

[

∥

∥

∥
S − Σ̂m

∥

∥

∥

2
]

= ‖Σ− Σm‖2 − tr ((Πm ⊗Πm)Φ)

n
+

tr (Φ)

n

Proof of Proposition 4.3.

Proof. As γ̂2
m

n
> 0, we have:

E

[

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
]

6 E

[

∥

∥

∥
Σ̂− S

∥

∥

∥

2
+ 2

γ̂2m̂
n

]

+ 2E
[〈

Σ̂− S, S − Σ
〉]

+ E

[

‖S − Σ‖2
]

Let m0 ∈ argmin
m∈M

E

[

∥

∥

∥
Σ− Σ̂m

∥

∥

∥

2
]

an oracle. By definition of m̂,

∥

∥

∥
S − Σ̂m̂

∥

∥

∥

2
+ 2

γ̂2m̂
n

6

∥

∥

∥
S − Σ̂m0

∥

∥

∥

2
+ 2

γ̂2m0

n

Then

E

[

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
]

6 E

[

∥

∥

∥
S − Σ̂m0

∥

∥

∥

2
+ 2

γ̂2m0

n

]

+ E

[

‖S − Σ‖2
]

+ 2E
[〈

Σ̂− S, S −Σ
〉]

we derive from the previous proposition and (10)

E

[

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
]

6 E

[

∥

∥

∥
Σ− Σ̂m0

∥

∥

∥

2
]

+ 2
tr (Φ)

n
+ 2E

[〈

Σ̂− S, S − Σ
〉]

Moreover by the Cauchy-Schwarz inequality we have that

〈

Σ̂− S, S − Σ
〉

6

∥

∥

∥
Σ̂− S

∥

∥

∥
‖S − Σ‖

And using again this inequality

E

[〈

Σ̂− S, S − Σ
〉]

6

√

E

[

∥

∥

∥
Σ̂− S

∥

∥

∥

2
]
√

E

[

‖S − Σ‖2
]

6

√

E

[

∥

∥

∥
Σ̂− S

∥

∥

∥

2
+ 2

γ̂2m̂
n

]

√

tr (Φ)

n

12



For the same reasons as before we obtain

E

[〈

Σ̂− S, S − Σ
〉]

6

√

E

[

∥

∥

∥
Σ− Σ̂m0

∥

∥

∥

2
]

+
tr (Φ)

n

√

tr (Φ)

n

6
tr (Φ)

n
+

√

E

[

∥

∥

∥
Σ− Σ̂m0

∥

∥

∥

2
]

√

tr (Φ)

n

Thus

E

[

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
]

6 E

[

∥

∥

∥
Σ− Σ̂m0

∥

∥

∥

2
]

+ 4
tr (Φ)

n
+ 2

√

E

[

∥

∥

∥
S − Σ̂m0

∥

∥

∥

2
]

√

tr (Φ)

n

With the following inequality which holds ∀a, b ∈ R et ∀A > 0

2ab 6
a2

A
+Ab2

We obtain for all A > 0:

E

[

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
]

6 E

[

∥

∥

∥
Σ− Σ̂m0

∥

∥

∥

2
]

(

1 +A−1
)

+
tr (Φ)

n
(4 +A)

The definition of m0 gives the result.
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