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Automatic prosodic variations modelling for

language and dialect discrimination
Jean-Luc Rouas

Abstract— This paper addresses the problem of modelling
prosody for language identification. The aim is to create a system
that can be used prior to any linguistic work to show if prosodic
differences among languages or dialects can be automatically
determined. In previous papers, we defined a prosodic unit, the
pseudo-syllable. Rhythmic modelling has proven the relevance of
the pseudo-syllable unit for automatic language identification. In
this paper, we propose to model the prosodic variations, that is
to say model sequences of prosodic units. This is achieved by the
separation of phrase and accentual components of intonation. We
propose an independent coding of those components on differ-
entiated scales of duration. Short-term and long-term language-
dependent sequences of labels are modelled by n-gram models.
The performance of the system is demonstrated by experiments
on read speech and evaluated by experiments on spontaneous
speech. Finally, an experiment is described on the discrimination
of Arabic dialects, for which there is a lack of linguistic studies,
notably on prosodic comparisons. We show that our system is able
to clearly identify the dialectal areas, leading to the hypothesis
that those dialects have prosodic differences.

Index Terms— Automatic language identification, prosody,
read and spontaneous speech

EDICS Category: SPE-MULT

I. INTRODUCTION

T
HE standard approach to automatic language identifica-

tion (ALI) considers a phonetic modelling as a front-end.

The resulting sequences of phonetic units are then decoded

according to language specific phonotactic grammars [1].

Other information sources can be useful to identify a

language however. Recent studies (see [2] for a review) reveal

that humans use different levels of perception to identify a

language. Three major kinds of features are employed: seg-

mental features (acoustic properties of phonemes), supraseg-

mental features (phonotactics and prosody) and high level fea-

tures (lexicon). Beside acoustics, phonetics and phonotactics,

prosody is one of the most promising features to be considered

for language identification, even if its extraction and modelling

are not a straightforward issue.

In the NIST 2003 Language Verification campaign, most

systems used acoustic modelling, using Gaussian Mixture

Models adapted from Universal Background Models (a tech-

nique derived from speaker verification [3]), and/or phono-

tactic modelling (Parallel Phone Recognition followed by

Language Modelling - PPRLM, see [1], [4]). While these

techniques gave the best results, systems using prosodic cues

have also been investigated, following research in speaker
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recognition [5], notably Adami’s system [6]. More recently,

systems using syllable-scale features have been under research,

although their aim is to model acoustic/phonotactic properties

of languages [7] or also prosodic cues [8].

Beside the use of prosody to improve the performances of

ALI systems, we believe that there is a real linguistic interest in

developing an automatic language identification system using

prosody and not requiring any a priori knowledge (e.g. manual

annotations). Hence, we will have the possibility of testing

if prosodically unstudied languages can be automatically dif-

ferentiated. The final aim of our studies is to automatically

describe prosodic language typologies.

In this paper, we will describe our prosodic-based lan-

guage identification system. In section II, we will recall the

main linguistic theories about differences among languages.

After reviewing the linguistic and perceptual elements that

demonstrate the interest of prosody modelling for language

identification, we will address the problem of modelling.

Indeed, modelling prosody is still an open problem, mostly

because of the suprasegmental nature of the prosodic features.

To address this problem, automatic extraction techniques of

sub-phonemic segments are used (section III). After an activity

detection and a vowel localisation, a prosodic syllable-like

unit adapted to language identification is characterised. Results

previously obtained by modelling prosodic features extracted

on this unit are briefly described at the end of section III.

We believe however that prosodic models should take into

account temporal fluctuations, as prosody perception is mostly

linked to variations (in duration, energy and pitch). That is why

we propose a prosody coding which enables to consider the

sequences of prosodic events in the same way as language

models are used to model phone sequences in the PPRLM

approach. The originality of our method lies in differentiating

phrase accent from local accent, and modelling them sepa-

rately. The method is described in section IV. The system is

firstly tested on databases with languages that have known

prosodic differences to assess the accuracy of the modelling.

These experiments are carried out on both read (section V)

and spontaneous (section VI) speech, using respectively the

MULTEXT [9] and OGI-MLTS [10] corpora. Then, a final

experiment is performed on Arabic dialects (section VII), for

which we investigate if prosodic differences between those

dialects can be automatically detected.

II. PROSODIC DIFFERENCES AMONG LANGUAGES

The system described in this paper aims at determining

to what extent languages are prosodically different. In this

section, we will describe what the rhythmic and intonational

properties of languages are and how humans perceive them.
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A. Rhythm

The rhythm of languages has been defined as an effect

involving the isochronous (that is to say at regular intervals)

recurrence of some type of speech unit [11]. Isochrony is de-

fined as the property of speech to organise itself in pieces equal

or equivalent in duration. Depending on the unit considered,

the isochrony theory classifies languages in three main sets:

• stress-timed languages (as English and German),

• syllable-timed languages (as French and Spanish),

• mora-timed languages (as Japanese).

Syllable-timed languages share the characteristic of hav-

ing regular intervals between syllables, while stress-timed

languages have regular intervals between stressed syllables,

and for mora-timed languages, successive mora are quasi

equivalent in terms of duration. This point of view was made

popular by Pike [12] and later by Abercrombie [13]. According

to them, distinction between stress-timed and syllable-timed

languages is strictly categorical, since languages cannot be

more or less stress or syllable-timed. Despite its popularity

among linguists, the rhythm class hypothesis is contradicted

by several experiments (notably by Roach [14] and Dauer

[15]). This forced some researchers (Beckman [16] for exam-

ple) to shift from “objective” to “subjective” isochrony. True

isochrony is described as a constraint, and the production of

isochronous units is perturbed by phonetic, phonologic and

grammatical rules of the languages. Some other researchers

have concluded that isochrony is mainly a perceptual phe-

nomenon (for example Lehiste [17]). Isochrony can then be

seen as a concept relative to speech perception.

The lack of an empirical proof of isochrony led Dauer

[15] to propose a new rhythmic classification system. From

her point of view, speakers do not try to keep equal inter-

stress or inter-syllabic intervals, but languages are more or less

stress or syllable-timed. Nespor [18] introduced the notion of

rhythmically intermediate languages, which share properties

associated with stress-timed languages and other associated

with syllable-timed languages. As an example, she cites Polish

– classed as stress-timed although it does not have vocalic

reduction – and Catalan – syllable-timed but having vocalic

reduction.

B. Intonation

Three main groups of languages can be characterised re-

garding their use of intonation:

• tone languages (as Mandarin Chinese),

• pitch-accent languages (as Japanese),

• stress-accent languages (as English and German).

According to Cummins [19], distinguishing languages using

fundamental frequency alone had a moderate success. The

explanation is twofold:

• On the one hand, we can imagine a discrimination based

on the use of lexical tone (Mandarin) or not (English), but

intermediate cases exist (Korean dialects) which are usu-

ally considered as representing transitory states between

languages of one class and those of another [20].

• On the other hand, phenomena linked to accents and

intonation are less easy to handle. There are multiple

theories on utterance intonation that do not agree. The

situation is made more complex by studies on the non-

linguistic uses of intonation, as for example to express

emotions. Several studies agree on a classification by

degrees rather than separate classes [21].

C. Perception

Over the last few decades, numerous experiments have

shown the human capability for language identification [2].

Three major kinds of cues help humans to identify languages:

1) Segmental cues (acoustic properties of phonemes and

their frequency of occurrence),

2) Supra-segmental cues (phonotactics, prosody),

3) High-level features (lexicon, morpho-syntax).

About prosodic features, several perceptual experiments try

to shed light on human abilities to distinguish languages

keeping only rhythmic or intonation properties. The method

is to degrade speech recordings by filtering or re-synthesis to

remove all segmental cues to the subjects whose task is to

identify the language. The subjects are either naive or trained

adults, infants or newborns, or even non-human primates. For

example, all the syllables are replaced by a unique syllable

“/sa/” in Ramus’ experiments [22]. In other cases, processing

of speech through a low-pass filter (cutoff frequency 400 Hz)

is used to degrade the speech signal [23]. Other authors [24]

propose different methods to degrade the speech signal in order

to keep only the desired information (intensity, intonation or

rhythm). From a general point of view, all those experiments

show the notable human capacity to identify to some extent

foreign languages after a short period of exposure.

III. SEGMENTATION, VOWEL DETECTION AND

PSEUDO-SYLLABLES

The starting point of recent work on rhythm is the rhythm

description method proposed by Ramus in 1999 [22]. Follow-

ing him, others have proposed different and more complex

rhythm modelling methods (for example [11] and [25]). The

weak point in many of those approaches is that they have only

been applied after a manual segmentation of the speech signal.

Consequently, their performance has only been assessed on

relatively small corpora.

To overcome this limitation and to model the prosody

of languages automatically, we use automatic processing to

extract prosodic information. Three baseline procedures lead

to relevant consonant, vocalic and silence segment boundaries:

• Automatic speech segmentation leading to quasi-

stationary segments: This segmentation results from the

“Forward-Backward Divergence” (DFB) algorithm [26],

which is based on a statistical study of the signal in

the temporal framework. The segmentation achieves an

sub-phonemic segmentation where segments correspond

to steady or transient parts of phonemes.

• Vocal activity detection: The vocal activity detection is

based on a first order statistical analysis of the temporal

signal [27]. The activity detection algorithm detects the

less intense segments of the excerpt (in terms of energy)
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and the other segments are classified as Silence or Ac-

tivity according to an adaptive threshold.

• Vowel localisation: The vowel location algorithm is based

on a spectral analysis (see [27] for more details). The

fact that neither labelled data nor supervised learning

are necessary constitutes the main advantage of this

algorithm. The fact that no learning phase is necessary

allows the algorithm to be used on different languages,

even if no hand-labelled data is available. However, the

consequence is that the algorithm is not optimised for any

language even if it behaves correctly when compared to

other systems [28].

This front-end processing results in a segmentation into

vocalic, consonantal and silence segments. Labels “V”, “C”,

or “#” are used to qualify each segments (Figure 1).

Fig. 1. Result of the automatic segmentation, vowel location and vocal
activity detection on a French recording of the MULTEXT database. The
sentence is: “les choux avaient été entièrement devorés par les limaces”.
“#” labels are for non-activity segments, “V” are for vocalic segments, other
segments are labelled “C”. Word boundaries are displayed for illustration
purpose.

The syllable is a privileged unit for rhythm modelling. How-

ever, automatic extraction of syllables (in particular, boundary

detection) is a controversial operation that is still in debate

among phonologists: the pronunciation quality and the speech

rate are factors influencing directly the syllable segmentation

[29]. Furthermore, segmenting the speech signal in syllables

is a language-specific task [30]. No language-independent

algorithm can be easily applied.

We therefore used the notion of pseudo-syllable [31]. The

basic idea is to articulate the prosodic unit around primordial

elements of the syllables – vowels – and to gather the neigh-

bouring consonants around those nuclei. We have decided to

gather only the preceding consonants. This choice is explained

by the fact that syllable boundary detection is not an easy

task in a multilingual framework, and that the most frequent

syllables correspond to the consonant/vowel structure [15]. An

example of this segmentation is shown in Figure 2.

We showed in previous papers [31] that the pseudo-syllable

segmentation can be successfully used for language identi-

fication. Features characterising durations and fundamental

frequency variations are extracted from each pseudo-syllable

and are used to learn the parameters of Gaussian mixtures for

each language of the database.

With the duration features, the correct identification rate is

67% for the seven languages of the MULTEXT corpus. This

result is obtained using a mixture of 8 Gaussians. With the

Fig. 2. Pseudo-syllable segmentation performed for the sentence “les choux
avaient été entièrement dévorés par les limaces”. Consecutive “C” segments
are gathered until a “V” segment is found.

intonation features, the correct identification rate is 50%, using

a GMM with 8 components. A fusion of the results obtained

with both duration and intonation features allows to reach

70% correct. The confusions occur mainly across languages

belonging to the same groups evoked in linguistic theories.

Identifying stress-timed languages (English, German and

hypothetically Mandarin) versus syllable-timed languages

(French, Italian and Spanish) versus mora-timed languages

(Japanese), accuracy is 91% correct using both duration and

intonation models.

Nevertheless, the statistical models (Gaussian Mixture Mod-

els) we use to model pseudo-syllabic features are intrinsically

static models. This does not fit with the perceptive reality of

prosody which is continue, dynamic and supra-segmental. We

must use different models to take the temporal variations into

account.

IV. MODELLING PROSODIC VARIATIONS

Following Adami’s work [6], we used the features computed

on each pseudo-syllable to label the fundamental frequency

and energy trajectories. Two models are used to separate

the long-term and short-term components of prosody. The

long-term component characterises prosodic movements over

several pseudo-syllables while the short-term component rep-

resents prosodic movements inside a pseudo-syllable. An

overview of the system is displayed in Figure 3. Fundamental

frequency and energy are extracted from the signal using the

SNACK Sound toolkit [32].

A. Fundamental frequency coding

The fundamental frequency processing is divided into two

phases, representing the phrase accentuation and the local

accentuation, as in Fujisaki’s work [33]:

1) Baseline computing & coding: The baseline extraction

consists in finding all the local minima of the F0 contour, and

linking them. Then, the baseline is labelled in terms of U(p),

D(own) and #(silence or unvoiced).

To find local minima, the sound file is automatically divided

into “sentences,” defined here as intervals between silent

segments of duration over 250 ms. The linear regression of

the F0 curve is then computed on each sentence. Then each

part of the curve under the linear regression is used to find a

unique minima (Figure 4).
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Fig. 3. Description of the system.

Fig. 4. Finding local minima for the sentence “les choux avaient été
entièrement dévorés par les limaces”. Local minima under the linear
regression are displayed as a big dot.

Successive minima are linked by linear approximation. An

example of a resulting baseline curve is displayed in Figure 5.

The slope of the regression is used to label the baseline. We

use one label per pseudo-syllable. Labels are ’U’ for a positive

slope and ’D’ for a negative slope. Unvoiced pseudo-syllables

(less than 70% voiced in duration) are labelled ’#’. In this

example, the label sequence corresponding to the sentence is:

U.U.U.U.D.D.D.D.D.D.#

2) Residue approximation & coding: The baseline is sub-

tracted from the original contour. The resulting curve is called

residue (Figure 6). This residue is then approximated for

each segment by a linear regression. The slope of the linear

regression is used to label the F0 movement on the unit,

according to three available labels (Up, Down and Silence).

The example sentence is labelled in the following way:

D.D.#.#.#.#.#.D.D.U.D.D.D.D.U.U.D.-

U.#.#.D.D.U.D.U.D.D.U.D.#.#.#.#.#.#

B. Energy coding

The energy curve is approximated by linear regressions

for each considered units (sub-phonemic segments or pseudo-

Fig. 5. Extraction of the baseline for the sentence “les choux avaient été
entièrement dévorés par les limaces”. Previously found local minima are
linked with a straight line.

Fig. 6. Approximation of the residue for the sentence “les choux avaient
été entièrement dévorés par les limaces”. The residue is approximated by
a linear regression for each segment.

syllables) (Figure 7). The process is the same as the one used

for the residue coding. As there is no segment with no energy,

only two labels are used: Up and Down. In this example, the

sequence of labels is:

U.D.D.U.U.U.D.U.D.U.D.U.U.D.U.D.D.-

D.U.U.U.D.D.U.D.U.D.D.D.U.U.D.D.D.D

Fig. 7. Approximation of the energy for the sentence “les choux avaient
été entièrement dévorés par les limaces”. The energy is approximated by a
linear regression for each segment.

C. Duration coding

Duration labels are computed only for the sub-phonemic

segment units. The labels are assigned considering the mean

duration of each kind of segment (vocalic, consonantic or

silence). If the segment to label is a vocalic segment with a

duration above the mean vocalic segments duration computed

on the learning part of the corpus, it is labelled “l” (long), If
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the current vocalic segment duration is below the mean, the

“s” (short) label is then used. The duration labels generated

on the example sentence are:

s.l.s.s.s.s.s.s.s.s.l.s.l.s.s.l.s.-

s.s.s.l.s.l.s.s.s.s.l.s.s.s.s.s.s.s

D. Modelling

To model the prosodic variations, we use classical n-gram

language modelling provided by the SRI language modelling

toolkit [34]. For each system – long- and short-term – each

language is modelled by a n-gram model during the learning

procedure. During the test phase, the most likely language is

picked according to the model which provides the maximum

likelihood. For the long-term models, this modelling is applied

at the pseudo-syllable level and n-grams are learnt using

baseline labels, eventually combined with energy labels coded

at the pseudo-syllable scale. The short-term models are learnt

using the sub-phonemic segmentation, and using the residue

labels, optionally combined with energy and duration labels.

For each segment, the label is then composed of three symbols.

For the example sentence, we have:

DUs.DDl.#Ds.#Us.#Us.#Us.#Ds.DUs.-

DDs.UUs.DDl.DUs.DUl.DDs.UUs.UDl.-

DDs.UDs.#Us.#Us.DUl.DDs.UDl.DUs.-

UDs.DUs.DDs.UDl.DDs.#Us.#Us.#Ds.-

#Ds.#Ds.#Ds

Several lengths for the n-gram models have been tested

(from 3- to 5-grams), but as the best results are obtained with

3-grams, only the results obtained using 3-grams models are

displayed.

V. EXPERIMENTS ON READ SPEECH

The first experiments are made on the MULTEXT corpus [9]

(a subset of EUROM1), which contains 5 languages (English,

French, German, Italian and Spanish), and 10 speakers per

language, balanced between male and female. We have 10

20-second files per speaker. This baseline corpus has been

extended with recordings of Japanese speakers [35]. Mandarin

Chinese recordings are also added to the original corpus,

thanks to Komatsu [24].

The three theoretical rhythmic classes are represented in this

corpus : English, German and Mandarin Chinese are stress-

timed languages; French, Italian and Spanish are syllable-

timed languages, and Japanese is a mora-timed language.

Moreover, Mandarin Chinese is a tone language and Japanese

is a pitch-accent language.

For the learning phase, we used 8 speakers (4 for Japanese),

and 2 (one male and one female) were used for the tests. We

have 80 learning files per language (≈ 26 minutes) and 20

test files per language (≈ 6 minutes) – except for French (19

files) – resulting in a total of 139 test files.

A. Long-term modelling

The sequences of labels computed on each pseudo-syllable

are modelled by n-gram models. We investigated different

combinations of labels to see which features are more useful

(Table I). The best performance is obtained using only the

baseline labels. With these labels, the correct identification

rate is 50%. The confusion matrix is drawn in Table II

with identified languages in columns and references in rows

(confidence intervals are provided in the legend). Table II show

that French, Spanish and German are clearly identified.

TABLE I

EXPERIMENTS WITH LONG-TERM LABELS (139 FILES)

Features # Labels Model % correct

Baseline 3 3-grams 50.3% ± 8.3

Energy 3 3-grams 26.6% ± 7.4

Baseline + Energy 9 3-grams 29.4% ± 7.6

TABLE II

LONG TERM PROSODIC MODEL (CORRECT=50.3 ± 8.2% (70/139 FILES)).

RESULTS ARE DISPLAYED AS PERCENTAGES.

ref\id Eng Ger Man Fre Ita Spa Jap

Eng 25 - - 35 5 20 15

Ger 5 85 - 5 - - 5

Man 5 5 10 5 25 25 25

Fre - - - 69 5 26 -

Ita 5 - 15 5 40 20 15

Spa - - - - 15 80 5

Jap 5 10 - 5 15 20 45

B. Short-term modelling

The sequences of labels computed on each sub-phonemic

segment are also modelled by n-gram models. Contributions

of different features are shown in Table III. The best results are

obtained using the combination of residue, energy and duration

labels. The identification rate is 80%.

Detailed results using this configuration are displayed in

Table IV. These results allow us to hypothesise that the most

characteristic prosodic elements of languages are not pseudo-

syllable sequences but sequences of elements constituting

them.

TABLE III

EXPERIMENTS WITH SHORT-TERM LABELS (139 FILES)

Features # labels Model % correct

Duration 2 3-grams 39.6% ± 7.9

Residue 3 3-grams 52.5% ± 8.2

Energy 3 3-grams 56.8% ± 8.3

Residue+Energy+Duration 18 3-grams 79.8% ± 6.6

TABLE IV

SHORT TERM PROSODIC MODEL (CORRECT=79.8 ± 6.6% (111/139

FILES)). RESULTS ARE DISPLAYED AS PERCENTAGES.

ref\id Eng Ger Man Fre Ita Spa Jap

Eng 65 - 15 - 10 10 -

Ger - 95 5 - - - -

Man - 20 80 - - - -

Fre - - - 90 5 5 -

Ita 10 - - - 85 5 -

Spa - - - - 45 55 -

Jap - - - - 10 - 90
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C. Merging long and short-term components

The merging of the two systems described previously is

addressed. The merging technique is a simple addition of

the log-likelihoods. The identification rate obtained with this

method is 83%, which is considerably better than the 70%

obtained with static modelling (section III).

TABLE V

MERGING OF SHORT AND LONG-TERM MODELS (CORRECT=83.5 ± 6.1%

(116/139 FILES)). RESULTS ARE DISPLAYED AS PERCENTAGES.

ref\id Eng Ger Man Fre Ita Spa Jap

Eng 70 - 15 - 5 10 -

Ger - 95 5 - - - -

Man - - 100 - - - -

Fre - - - 95 5 - -

Ita 10 - - - 80 5 5

Spa - - - - 45 55 -

Jap - - - - 10 - 90

Despite the poor performance of the long-term model,

merging the long and short term results allows to improve

the identification rate. Results show that most languages are

well identified.

The language classes evoked in section II have an influence

on the correct identification rates: Mandarin (i.e. the only tone

language of the corpus) is the most clearly identified language.

Japanese, the only mora-timed language, and the only pitch-

accent language in our corpus, is also well identified. The main

confusions are between Italian and Spanish, both belonging

to the syllable-timed and stress-accent groups. Considering

rhythmic classes (represented in different strength of grey

in the matrix), we can see that most confusions are within

languages of the same rhythmic family.

Consequently, a rhythmic classes identification experiment

was performed using the same data with the fusion of the short

and long-term models. English, German and Mandarin are part

of the stress-timed group; French, Italian and Spanish are in

the syllable-timed group, and Japanese constitutes in itself the

mora-timed group. The rhythmic classes identification rate is

94% (Table VI).

TABLE VI

RHYTHM CLASSES IDENTIFICATION TASK (CORRECT=93.5 ± 4.1%

(130/139 FILES)). RESULTS ARE DISPLAYED AS PERCENTAGES.

reference\identified Stress-timed Syllable-timed Mora-timed

Stress-timed 90 10 -

Syllable-timed 2 98 -

Mora-timed 10 - 90

On this data, our system manages well to classify languages

according to their prosodic properties.

VI. EXPERIMENTS ON SPONTANEOUS SPEECH

The same experiments have been made on a spontaneous

speech corpus, the OGI Multilingual Telephone Speech Cor-

pus (OGI-MLTS) corpus [10]. This corpus is composed of

telephone speech recorded in ten languages: English, Farsi,

French, German, Japanese, Korean, Mandarin, Spanish, Tamil

and Vietnamese. Experiments are made on 6 languages (En-

glish, French, German, Japanese, Mandarin and Spanish) using

spontaneous speech utterances of 45 seconds each, one file per

speaker. The data organization is displayed in Table VII.

TABLE VII

DATA ORGANISATION SUMMARY - OGI

Learning part Test part
Language # files Duration (s.) # files Duration (s.)

Total Mean Total Mean

English 89 2456.69 27.60 18 878.09 48.78

French 88 2438.94 27.71 15 692.29 46.15

German 88 2469.20 28.05 19 909.64 47.87

Japanese 90 2492.78 27.69 19 884.72 46.56

Mandarin 75 1952.62 26.03 18 805.66 44.75

Spanish 88 2553.12 29.01 13 618.14 47.55

Overall 518 14363.30 27.73 102 4788.57 46.94

The tests here are made using the same tuning as for the read

speech experiments – same features used (baseline labels for

the long-term model, and the combination of residue, energy

and duration labels for the short-term model), same n-gram

configuration (3-grams). Results are displayed in Tables VIII

and IX for the long and short-term models respectively.

The long-term model only manages to reach performances

slightly better than chance (on a six-way classification, the

chance level is ≈ 16%).

The short-term model achieves a performance of 40% of

correct identifications. The best recognised languages are En-

glish (55%) and Japanese (53%). We can observe that German

is mainly confused with English.

The performances of the system for the rhythm classes

identification task is given in Table X.

TABLE VIII

LONG TERM PROSODIC MODELS (CORRECT=20.6 ± 8.0% (21/102

FILES)). RESULTS ARE DISPLAYED AS PERCENTAGES.

ref\id Eng Ger Man Fre Spa Jap

Eng 33 27 6 28 - 6

Ger 26 11 16 21 16 10

Man 28 - 11 17 5 39

Fre 20 20 7 20 20 13

Spa 15 7 8 8 31 31

Jap 26 16 5 16 16 21

TABLE IX

SHORT TERM PROSODIC MODELS (CORRECT=40.2 ± 9.5% (41/102

FILES)). RESULTS ARE DISPLAYED AS PERCENTAGES.

ref\id Eng Ger Man Fre Spa Jap

Eng 55 17 6 5 17 -

Ger 42 37 - 11 10 -

Man 17 33 33 11 - 6

Fre 33 33 - 20 14 -

Spa 38 - - 16 38 8

Jap 10 10 - 11 16 53

The global identification rate is 69%. The identification

rates for each class are respectively 85% for the stress-timed

languages, 46% for the syllable-timed languages and 53%

for the mora-timed language. As expected from language
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TABLE X

RHYTHM CLASSES IDENTIFICATION TASK (CORRECT=68.6 ± 9.1%

(70/102 FILES)). RESULTS ARE DISPLAYED AS PERCENTAGES.

reference\identified Stress-timed Syllable-timed Mora-timed

Stress-timed 85 11 4

Syllable-timed 50 46 4

Mora-timed 16 31 53

identification results, syllable-timed languages are the least

recognised. The identification mistakes are made principally

on the French language, responsible for 10 errors – that is to

say 66% of the syllable-timed languages identification error.

This may be explained by the different varieties of French

(Canadian and European) encountered in the corpus.

It is however quite difficult to directly transpose our ap-

proach, designed on read speech, to spontaneous speech. The

main reason may be the intrinsic variability of the spontaneous

data. This variability can be linked to the great variations of

speech rate observed within each language (see [36] for a study

of automatic speech rate estimation on read and spontaneous

speech). Figure 8 displays the accumulated number of vow-

els per second for the English parts of the MULTEXT and

OGI-MLTS corpus. Spontaneous speech leads to much more

variation in terms of number of vowels per second than read

speech. The Table XI shows the standard deviations of the

speech rate approximation on spontaneous and read speech

for different languages (45 s. spontaneous speech utterances

of the OGI-MLTS corpus and 20 s. read utterances from the

MULTEXT corpus). These standard deviation values show that

there is a much greater dispersion of spontaneous speech

rate within each language than for read speech. These intra-

language variations can explain why our models achieve a poor

performance on the test part of the corpus.

Fig. 8. (a) Number of detected vowels as a function of time on English
read speech, (b) Number of detected vowels as a function of time on English
spontaneous speech

TABLE XI

STANDARD DEVIATIONS OF SPEECH RATE (ESTIMATION) FOR DIFFERENT

LANGUAGES ON READ AND SPONTANEOUS SPEECH

Lang. Eng Fre Ger Ita Jap Man Spa All

Read 0.36 0.35 0.37 0.56 0.42 0.49 0.40 0.50

Spont. 0.77 0.93 0.80 n.d. 0.98 0.77 0.81 0.85

VII. EXPERIMENTS ON ARABIC DIALECTS

We believe nonetheless that our system can be applied,

at least on groups of languages, to investigate if the groups

considered can be automatically distinguished prosodically.

We carried out experiments with different Arabic dialects to

show how the features described in this paper help to classify

them.

The corpus ARABER has been recorded at the Dynamique

du Langage Laboratory in Lyon, France. It consists of semi-

spontaneous recordings (comments on an image book) from

40 speakers from Maghreb, Middle-East and an intermediate

area (Tunisia, Egypt). The mean duration for each speaker’s

recording is 5 minutes, in 40 files of 7.6 seconds. All the

data have been used both for learning and testing, via a cross-

validation procedure.

The quality of the recordings made this corpus interesting

because it is intermediate between the studio-recorded read

speech corpus MULTEXT and the telephone spontaneous

speech of the OGI corpus.

As research on the prosody of Arabic dialects is emerg-

ing, very few observations are available to hypothesise how

much they differ. At this point, Arabic dialects are classified

according to inter-comprehension between speakers, resulting

in 3 main areas: Occidental (Moroccan, Algerian), Interme-

diate (Tunisian, Egyptian) and Oriental (Lebanese, Jordanian,

Syrian). The aim of this study is to see, with an ALI system

that does not require any kind of annotation, if it is possible to

identify the hypothesised dialectal areas using only prosody.

The prosodic ALI system – using the combination of the

long and short-term models – has been applied to this corpus

without any tuning procedure: same features (baseline labels

for the long term model and the combination of residue, energy

and duration features for the short-term model), same n-gram

configuration. Experiments are made according to a cross-

validation procedure applied on each speaker: learning is done

using all speakers except one who is used for the test. This is

repeated until all speakers have been used for the test. Results

of the cross-validation tests are displayed in Table XII.

TABLE XII

ARABIC DIALECTAL AREAS IDENTIFICATION (CORRECT= 98.0 ± 0.6%

(1563/1592 FILES). RESULTS ARE DISPLAYED AS PERCENTAGES.

identified\reference Occidental Intermediate Oriental

Occidental 99.5 - 0.5

Intermediate 1.8 96.0 2.2

Oriental 1.0 0.3 98.7

The system performs very well on this data, which shows

that prosodic differences may be important between the hy-

pothesised dialectal areas of Arabic. Further studies are needed

in order to identify the exact prosodic differences between

dialectal areas, and if there are differences among dialects of

a same area.

VIII. CONCLUSIONS AND PERSPECTIVES

Experiments on read speech show that our system is able to

automatically identify languages using prosody alone. Differ-

ences between languages seem more characterised by micro-

prosodic events (short term) than macro-prosodic ones. The

experiments show that variations of fundamental frequency,

energy and segment duration that occur within a syllable
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are more characteristic. The dynamic modelling allows to

reach 83% of correct identification on a seven language

discrimination task. Results tend to confirm the existence of

automatically identifiable rhythmic classes (accuracies above

90% for rhythm class identification).

Considering spontaneous speech, accuracies are lower. This

can be partly explained by the greater inter-speaker variability

due to the number of different prosodic realizations allowed by

spontaneous speech, especially in terms of changes in speech

rate. The results remain however interesting for the language

class identification experiment.

An applicative example has been shown with the experi-

ments on Arabic dialects, where the speech quality is inter-

mediate between read and spontaneous. This experiment has

shown that there exist some automatically detectable prosodic

differences between hypothesised dialectal areas of Arabic. A

careful study with the help of linguists is needed in order to

define precisely what are those differences and where they

appear. The next experiment will be to test if the dialects can

be automatically clustered using our system.

The main advantage of our prosodic ALI system lies in the

fact it does not require any manual annotations (especially

phonetic annotations which are very time-consuming). Hence,

the system can be directly applied to unknown data, and be

used to evaluate if the prosodic differences between languages

or dialects can be automatically detected. Using this system

can help linguists to verify that further investigation is needed,

leading to new collaborations between the automatic process-

ing and the linguistic communities.
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