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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50539748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00658811


A functional density-based nonparametric

approach for statistical calibration

Noslen Hernández1, Rolando J. Biscay2,3, Nathalie Villa-Vialaneix4,5, and
Isneri Talavera1

1 Advanced Technology Application Centre, CENATAV - Cuba
2 Institute of Mathematics, Physics and Cybernetics - Cuba

3 Departamento de Estad́ıstica de la Universisad de Valparáıso, CIMFAV - Chile
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5 IUT de Perpignan, Département STID, Carcassonne - France

Abstract. In this paper a new nonparametric functional method is in-
troduced for predicting a scalar random variable Y from a functional
random variable X. The resulting prediction has the form of a weighted
average of the training data set, where the weights are determined by
the conditional probability density of X given Y , which is assumed to be
Gaussian. In this way such a conditional probability density is incorpo-
rated as a key information into the estimator. Contrary to some previous
approaches, no assumption about the dimensionality of E(X|Y = y) is
required. The new proposal is computationally simple and easy to imple-
ment. Its performance is shown through its application to both simulated
and real data.

1 Introduction

The fast development of instrumental analysis equipment and modern measure-
ment devises provides huge amounts of data as high-resolution digitized func-
tions. As a consequence, Functional Data Analysis (FDA) has become a growing
research field. In the FDA setting, each individual is treated as a single entity de-
scribed by a continuous real-valued functions rather than by a finite-dimensional
vector: functional data (FD) are then supposed to have values in an infinite di-
mensional space, often particularized as a Hilbert space.

An extensive review of the methods developed for FD can be found in the
monograph of Ramsay and Silverman [1]. In the case of functional regression,
where one intends to estimate a random scalar variable Y from a functional
variable X taking values in a functional space X , earlier works were focused on
linear methods such as the functional linear model with scalar response [2–8] or
the functional Partial Least Squares [9]. More recently, the problem has also been
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addressed nonparametrically with smoothing kernel estimates [10], multilayer
perceptrons [11], and support vector regression [12, 13]. Another point of view
between these two approaches is to use a semi-parametric approach, such as
the SIR (Sliced Inverse Regression, [14]) that has been extended to functional
data in [15–17]. In this approach, the functional regression problem is addressed
through the opposite regression problem i.e., the estimation of E(X |Y = y), by
assuming that this quantity belongs a finite dimensional subspace of X .

In this paper, a similar approach is presented: we rely on the estimation of
the regression of X on Y to estimate the regression function γ(X) = E(Y |X)
but, contrary to the SIR approach, no assumption on the dimensionality of
E(X |Y = y) is required, and furthermore the specific form of the conditional
probability density of X given Y , which is assumed to be Gaussian, is incor-
porated as a key information into the estimator. A practical motivation to the
latter model arises from calibration problems in chemometrics, specifically in
spectroscopy, where some chemical variable (e.g., concentration) needs to be
predicted from a digitized function (e.g., spectra). In this setting, the spectral
function is the output of a physical data generation process in which the scalar
variable of interest (i.e, concentration) is the input, plus some random pertur-
bation due to the measurement procedure. The introduced method, which will
be referred to as functional Density-Based Nonparametric Regression (DBNR),
is computationally simple and easy to implement.

This paper is divided as follows. Section 2 presents the functional Density-
Based Nonparametric Regression method. Then, Sections 3 and 4 illustrate the
use of this approach in a simulation study and in a real-world problem coming
from chemometrics. Conclusions are given in Section 5.

2 Functional Density-Based Nonparametric Regression

2.1 Definition of DBNR in a general setting

Let (X,Y ) be a pair of random variables taking values in X ×R where (X , 〈., .〉)
is a Hilbert space. Suppose also that n i.i.d. realizations of (X,Y ) are given,
denoted by (xi, yi)i=1,...,n. The goal is to build, from (xi, yi)i, a way to predict
a new value for Y from a given (observed) value of X . This problem is usually
addressed by the estimation of the regression function γ(x) = E(Y |X = x).

The functional density-based nonparametric regression implicitly supposes
that the inverse model makes sense; this inverse model is:

X = F (Y ) + ǫ (1)

where ǫ is a random process (perturbation or noise) with zero mean, independent
of Y , and y → F (y) is a function from R into X . As was stated in Section 1,
this is a common background for calibration problems, amongs others.

Additionally, the following assumptions are made: first, it exists a probability
measure P0 on X (not depending on y) such that the conditional probability
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measure of X given Y = y, say P (·�y), has a density f (·�y) with respect to
P0:

P (A�y) =

∫

A

f (x�y)P0 (dx)

for any measurable set A in X . Furthermore, it is assumed that Y is a continuous
random variable, i.e., that its distribution has a density fY (y) (with respect to
the Lebesgue measure on R).

Under these assumptions, the regression function is:

γ (x) =

∫
R
f (x�y) fY (y) ydy

fX (x)
, where fX (x) =

∫

R

f (x�y) fY (y) dy.

Hence, given an estimate f̂ (x�y) of f (x�y), the following estimate of γ (x) can
be constructed from the previous equation:

γ̂ (x) =

∑n

i=1
f̂ (x�yi) yi

f̂X (x)
, where f̂X (x) =

n∑

i=1

f̂ (x�yi) . (2)

2.2 Specification in the Gaussian case

The general estimation scheme given in Equation (2) will be here specified for
the case in which P (·�y) is a Gaussian measure on X = L2[0, 1] for each y ∈ R.
P (·�y) is then supposed to have a mean function µ (·�y) ∈ X (which is then
equal to F (y)(·) according to Equation (1)) and a covariance operator r (not
depending on y), which is a Hilbert-Schmidt operator on the space X . Then,
there exists an eigenvalue decomposition of r, (ϕj , λj)j≥1 such that (λj)j is
a decreasing series of positive real numbers, (ϕj)j take values in X and r =∑

j λjϕj ⊗ ϕj where ϕj ⊗ ϕj(h) = 〈ϕj , h〉ϕj for any h ∈ X .
Denote by P0 the Gaussian measure on X with zero mean and covariance

operator r. Assume the following usual regularity condition holds: for each y ∈ R,

∞∑

j=1

µ2

j (y)

λj

< ∞, with µj (y) = 〈µ (·�y) , ϕj〉 .

Then, P (·�y) and P0 are equivalent Gaussian measures, and the density f (·�y)
has the explicit form:

f (x�y) = exp





∞∑

j=1

µj (y)

λj

(
xj −

µj (y)

2

)
 ,

where xj = 〈x, ϕj〉 for all j ≥ 1. This leads to the following estimation scheme
for f (x�y):

1. Obtain an estimate µ̂ (·�y) of t → µ (t�y) for all y ∈ R. This may be carried
out trough any standard nonparametric regression from R to R, based on
the learning set (yi, xi (t))i=1,...,n; e.g., a smoothing kernel method.
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2. Obtain estimates (ϕ̂j , λ̂j)j of the eigenfunctions and eigenvalues (ϕj , λj)j
of the covariance r on the basis of the empirical covariance of the residuals
xi − µ̂ (·�yi), i = 1,...,n. Only the first p eigenvalues and eigenfunctions are
estimated, where p = p(n) is a given integer, smaller than n.

3. Estimate f (x�y) by

f̂ (x�y) = exp





p∑

j=1

µ̂j (y)

λ̂j

(
x̂j −

µ̂j (y)

2

)
 (3)

where µ̂j (y) = 〈µ̂ (·�y) , ϕ̂j〉 and x̂j = 〈x, ϕ̂j〉.
Finally, substituting (3) into (2) leads to an estimate γ̂ (x) of γ (x). Under

some technical assumptions the consistency of the DBNR method can be proved:
limn→∞ γ̂(x) =P γ(x).

3 A simulation study

The feasibility and the performance of the introduced nonparametric functional
regression method are first explored through a simulation study. For comparison,
results obtained by the functional Nadaraya-Watson kernel (NWK) estimator
[10] are also shown.

3.1 Data generation

The data were simulated in the following way: values for the real random variable,
Y , were drawn from a uniform distribution in the interval [0, 10]. Then, X was
generated by 4 different models or settings:

M1 X = Y e1 + 2Y e2 + 3Y e5 + 4Y e10 + ǫ

M2 X = (exp(Y )/ exp(10))e1 + (Y 2/100)e2 + (Y 3/1000)e5 + log(Y + 1)e10 + ǫ

M3 X = sin(Y )e1 + log(Y + 1)e5 + ǫ

M4 X = α exp
(
Y
10
e1
)
+ ǫ

where (ei)i≥1 is the trigonometric basis of X = L2([0, 1]) (i.e., e2k−1 =√
2 cos(2πkt), and e2k =

√
2 sin(2πkt)), and ǫ a Gaussian process independent of

Y with zero mean and covariance operator Γe =
∑

j≥1

1

j
ej ⊗ ej . More precisely,

ǫ was simulated by using a truncation of Γe, Γe(s, t) ≃ ∑q
j=1

1

j
ej(t)ej(s) with

q = 500.

A sample of size nL = 300 was simulated for training and a sample of size
nT = 200 for testing. Figure 1 gives examples of X obtained for model M3 for
three different values of y and of the underlying (non noisy) function, F (y)(·). In
this example, the simulated data have a high level of noise so that the regression
estimation is a rather hard statistical task.
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3.2 Simulation results

To apply the DBNR method, the discretized functions X were approximated by
a continuous function using a functional basis expansion. Specifically, the data
were approximated using 128 B-spline basis functions of order 4, as it is shown
in Figure 1. The conditional mean µ(·/y) was estimated by a kernel smoothing
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Fig. 1. True function, F (y)(·) (smooth continuous line), simulated data, X, (gray rough
line) and approximation of X using B-splines (rough black line) in M3 for three dif-
ferent values of y

in which the bandwidth parameter h was selected by 10-fold cross-validation
minimizing the mean squared error (MSE) criterion. A similar procedure was
used to select the parameter p (number of eigenvalues and eigenfunctions used
in (3)).

Finally, DBNR performance was compared with those obtained by the func-
tional NWK estimate with two kinds of metrics for the kernel: the usual L2-norm
and the PCA based semi-metric norm (see [10] for further details about these
methods). The resulting root mean squared errors (RMSE) are presented in Ta-
ble 1. The results show that DBNR is a good alternative to common NWK

Table 1. RMSE for all the methods and all generating models

Model FGIR NWK (PCA) NWK (L2)

M1 0.08 0.10 0.09
M2 1.47 1.60 1.77
M3 1.79 1.79 2.00
M4 0.94 2.16 1.91

methods. Indeed, DBNR outperforms NWK methods in all the the cases con-
sidered in this simulation study that includes both linear (M1) and nonlinear
(M2−M4) models.
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Figures 2 and 3 show how the method performs for each step of the estimation
scheme (described in Section 2.2) for the model M3. In particular, Figure 2 gives
the result of the first step by displaying the true value and the estimate of F (y)(·)
for various values of y (top) and the true value and the estimate of F (·)(t) for
various values of t (bottom). The results are very satisfactory given the fact that
the data have a high level of noise (which is stressed on in the bottom of the
figure): a minor estimation problem appears at the boundaries of F (·)(t), which
is a known drawback of the kernel smoothing method. Also, those estimates are
smoother than the estimates of F (y)(·): this can be explained by the fact that
the kernel estimator is used regarding y and not regarding t, but this aspect can
be improved in the future.
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Fig. 2. True value (discontinuous lines) and estimate (continuous lines) of F (y)(·) for
various values of y (top) and true value and estimate of F (·)(t) for various values of t
(bottom) in model M3. The dots (bottom) are the simulated data, X(t).

Figure 3 shows the results of the steps 2-3 of the estimation scheme: the
estimated eigendecomposition of r is compared to the true one and finally, the
predicted value for Y are compared to the true ones, both on training and test
sets. The estimation of the eigendecomposition is, once again very satisfactory
given the high level of noise, and the comparison between training and test sets
show that the method does not overfit the data.
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Fig. 3. Model M3: (a-c)True (dashed line) and estimated eigenfunctions (continuous
line), (d) true and estimated eigenvalues and (d-e) predicted vs. true Y values for
training and test sets.

4 A study of Tecator dataset

DBNR was also tested on a benchmark data set for functional data: the Teca-
tor dataset6. It consists in spectrometric data from the food industry. Each of
the 215 observations is the near infrared absorbance spectrum of a meat sam-
ple recorded on a Tecator Infratec Food and Feed Analyzer. Each spectrum is
sampled at 100 wavelengths uniformly spaced in the range 850–1050 nm. The
composition of each meat sample is determined by analytic chemistry, so per-
centages of moisture, fat and protein are associated in this way to each spectrum.
This problem is more challenging than the one presented in Section 3 where the
data were generated to fulfill exactly the conditions of the DBNR model.

The whole data set was randomly split 100 times into training and test sets of
almost the same size. The splits were randomly built such that also the training
and test set were equally represented over the whole range of fat content.

Table 2 reports the mean of the MSE (and its standard deviation) over the
100 divisions both for DBNR and NWK methods.

Table 2. Prediction results on Tecator dataset

Model DBNR NWK (PCA) NWK (L2)

MSE 1.91 (0.41) 9.1 (2.1) 8.9 (2.1)

6 Data are available on statlib at http://lib.stat.cmu.edu/datasets/tecator; see [18].
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Results obtained on Tecator by DBNR are the best in the sense of minimum
MSE among all the methods. In [10] results based on the use of a semi-metric
involving the second order derivatives (which is known to be useful for this data
set) were also reported. A MSE of 3.5 was also obtained, which is still larger
than the use of DBNR without derivative information.

5 Conclusions

A new functional nonparametric regression approach has been introduced mo-
tivated by the calibration problems in chemometrics. The new method, named
functional density-based nonparametric regression (DBNR) was fully described
under a Gaussian assumption for the distribution of X given Y but it could be
extended to other kinds of distributions. The simulation study and the applica-
tion of DBNR to a real data set have shown that DBNR performs well and out-
performs functional NWK regression methods. Thus, DBNR can be considered
a promising alternative to existing functional regression methods, particularly
appealing for calibration problems.
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