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Abstract

During the last 10 years, scientists performed significant advances in modelling
environmental dynamics. A wide range of new methodological approaches in geomatics — such
as neural networks, multi-agent systems or fuzzy logics — was developed. Despite these
progresses, the modelling softwares available have to be considered as experimental tools
rather than as improved procedures able to work for environmental management or decision
support. Particularly, the authors consider that a large number of publications suffer from lakes
in the validation of the model results.

This contribution describes three different modelling approaches applied to prospective
land cover prediction. The first one, a combined geomatic method, uses Markov chains for
temporal transition prediction while their spatial assignment is supervised manually by the
construction of suitability maps. Compared to this directed method, the two others may be
considered as semi automatic because both the polychotomous regression and the multilayer
perceptron only need to be optimized during a training step — the algorithms detect themselves
the spatial-temporal changes in land cover.

The authors describe the three methodological approaches and their practical
applications to two mountain studied areas: one in French Pyrenees, the second including a
large part of Sierra Nevada, Spain. The article focuses on the comparison of results. The main
result is that prediction scores are on the more high that land cover is persistent. They also
underline that the geomatic model is complementary to the statistical ones which perform higher
overall prediction rate but produce worse simulations when land cover changes are numerous.

Keywords: combined geomatic model, land cover dynamics, modelling, multilayer
perceptron, polychotomous regression, validation.

Resumen

En la dltima década desde el ambito cientifico se han producido avances significativos en
la modelizaciéon de dinamicas ambientales. Se han desarrollado una gran variedad de
aproximaciones metodoldgicas novedosas en el campo de la geomética, como las redes
neuronales, los sistemas multi-agente o la clasificacion borrosa (fuzzy). A pesar de este
progreso, los programas de modelizacién hoy disponibles deben ser considerados mas como
herramientas experimentales que como procedimientos validados capaces de funcionar en la
gestion medioambiental o en el proceso de ayuda a la decision. En particular, los autores



2 TITULO DEL LIBRO

consideran que un numero elevado de publicaciones adolecen de todo lo que concierne a la
validacion de los resultados de la modelizacion.

Esta contribucion describe tres aproximaciones metodolégicas diferentes aplicadas a la
prediccion prospectiva de los cambios de ocupacioén del suelo. El primer modelo, denominado
aqui modelo geomatico combinado, utiliza las cadenas de Markov para la prediccion de las
transiciones temporales aunque la asignacion espacial se ve asistida por la elaboracién de los
mapas de aptitud. En comparacién con este modelo asistido, los otros dos pueden ser
calificados como semi-automaticos ya que tanto el modelo lineal generalizado como el modelo
de redes neuronales multicapa necesitan sélo ser optimizados durante la fase de calibracion —
los algoritmos detectan ellos mismos las estructuras de cambios espacio-temporales de la
ocupacion del suelo-.

Los autores describen las tres metodologias y su puesta en funcionamiento en dos
zonas de montafa: una situada en los Pirineos franceses y otra que incluye parte de la
vertiente sur de Sierra Nevada, en Espaia. El articulo hace hincapié en la comparacién de los
resultados. Las principales conclusiones son que las tasas de prediccion son mejores cuando
la ocupacion del suelo es estable. Se destaca también la complementariedad de los modelos
semi-automaticos, que obtienen las tasas de prediccion mas elevadas, y del modelo geomatico
combinado, donde los resultados son mas realistas cuando los cambios de ocupacion del suelo
SON NUMErosos.

Palabras clave: dinamicas de la ocupacion del suelo, modelo geomatico combinado, modelo
lineal generalizado, modelizacion, redes neuronales multicapa, validacion.

Résumé

Durant les derniéres dix années, les scientifigues ont accompli des avancées
significatives dans la modélisation de dynamiques environnementales. Une grande variété
d’approches méthodologiques novatrices en géomatique comme les réseaux neuronaux, les
systemes multi-agents ou encore la logique floue ont été développées. Malgré ces progres, les
programmes de modélisation aujourd’hui disponibles doivent plutét étre considérés comme des
outils expérimentaux que comme des procédures validées capables de fonctionner en gestion
environnementale et dans l'aide a la décision. En particulier, les auteurs considérent qu’un
nombre élevé de publications souffre de manques en ce qui concerne la validation des résultats
de modélisation.

Cette contribution décrit trois approches modélisatrices différentes appliquées a la
prédiction prospective de changements d’'occupation du sol. Le premier modéle, appelé modéle
géomatique combiné, utilise des chaines de Markov pour la prédiction des transitions
temporelles tandis que leur affectation spatiale est assistée manuellement par des cartes
d’aptitude. Comparé a ce modeéle assisté, les deux autres peuvent étre qualifiés de semi-
automatiques car aussi bien le modéle linéaire généralisé que le modéle par réseau neuronal
multicouche nécessitent seulement une optimisation durant une phase de calibration — les
algorithmes détectent eux-mémes les structures de changements spatio-temporels de

I'occupation du sol.

Les auteurs décrivent les trois approches méthodologiques et leur mise en ceuvre sur
deux aires d’études montagnardes: I'une située dans les Pyrénées francgaises, I'autre qui inclut
une grande part de la Sierra Nevada en Espagne. L’article insiste sur la comparaison des
résultats. Les principaux résultats sont que les scores de prédiction sont d’autant meilleurs que
'occupation du sol est stable. lls soulignent aussi la complémentarité des modéles semi-
automatiques qui obtiennent des scores de prédiction plus élevés et du modéle géomatique
combiné dont les résultats sont plus réalistes lorsque I'occupation du sol change beaucoup.

Mots clefs: dynamiques d’occupation du sol, modéle géomatique combiné, modeéle linéaire
généralisé, modélisation, perceptron multi-couches, validation.

1. Introduction

This paper focuses on the comparison of the results of three modelling approaches
applied to land cover prediction in Mediterranean mountains. The studied areas are located in
French Eastern Pyrenees (Garrotxes) and the south side of Sierra Nevada in Spain (Alta



Alpujarra Granadina). The methodological approaches used for modelling the land cover are a
combined geomatic model, based on Markov chain analysis, fuzzy logic and a cellular
automaton, a linear parametric model (polychotomous regression modelling) and a neural
network (multilayer perceptron).

Based on former publications (Paegelow et al, 2002, 2003, 2004; Paegelow, 2003;
Paegelow and Camacho, 2003, 2004) informing on results of only one model or applied to one
data set, we intend here to cross the obtained results with the aim to undertake an in-depth
comparison. In author’s mind, this validation step is important for two reasons. First, it permits to
evaluate the degree of performance of any model. Only a meticulous validation may help to
better understand the analyzed dynamic process and to line out the limits and the abilities of the
modelling approach. Often, this aspect is neglected in scientific articles. Then, a discussion of
combined results and validation indices is useful to know the advantages and weak points of
each model in order to aggregate them into a better model.

We undertake prospective land cover modelling with a thin spatial resolution (grid cells
have a length of about 20 m) and temporal intervals (that are about one to two decades). This
means extrapolation over space and time in the context of complex social and environmental
systems. In this framework, the main problems are a nonlinear behaviour, a high number of
relevant criteria but a low number of available dates. Moreover, we remark various inertia of
land cover subject to human activities and to natural factors spread out in space.

Basically land cover modelling means time interpolation or extrapolation when the modelling
exceeds the known period. Prospective modelling is the prediction of a future state. Tools for
time modelling only appeared in GIS during the last years and should be considered as
interesting and experimental algorithms rather than improved and operational tools for decision
support. At the same time the social supply for decision support and modelling tools is
increasing quickly so as to be able to help different management tasks like risk prevention, land
planning and environmental management.

Among methodological approaches for prospective modelling of high resolution land
cover data, we distinguish between automatic and supervised models. We call automatic a
model that analyzes the relationships among the training data (i.e. land cover training maps and
land cover relevant criteria also coming from the training period) in order to carry out a spatio-
temporal simulated map at a close date. In the case of a supervised model, a specialist has to
give some information about the suitability of spatial location and time transition. The results of
this thematic analysis assist the modelling process which leads to an approach similar to
decision support. In practice, many models, like our geomatic approach, mix automatic and
directed aspects. The presented model uses an automatic (markovian) procedure to compute
time transition probabilities but a geographic directed analysis to establish the land cover
suitability used for spatial assignment of predicted time transitions. In this context, we can cite
various methods based on fuzzy logic (Zadeh, 1988) often used in the context of GIS
(Mezzadri-Centeno, 1998) or on remote sensing data (Selleron and Mezzadri-Centeno, 2002).
Other models are almost totally automatic with a supervising of the optimisation some
parameters. This is the case of statistical approaches by neural networks (Bishop, 1995; Parlitz
and Merkwirth, 2000), particularly perceptron with one or more hidden layers. During the
training phase of the model, the weights of the perceptron are chosen to minimize the quadratic
error on the training data set. These neural multilayer networks are able to approach with a
chosen precision any smooth function (universal approximation) (Hornik, 1993). Generalized
linear models are another interesting approach based on a special case of the logistic
regression, the polychotomous regression, where the qualitative predicted variable may have
more than two values (Koopersberg et al, 1997). The polychotomous regression needs also a
training phase to be optimized: the Newton-Raphson algorithm is generally used to perform this
optimization.
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2. Test areas and data sets

2.1. Test areas

To minimize the influence of a specific data set, we analyzed two test areas: Garrotxes (French
Eastern Pyrenees) and Alta Alpujarra Granadina (Spain, Andalusia, Sierra Nevada) (Paegelow
and Camacho, 2003).

European mountain areas are affected by a deep social and economic reorganization which
leads to major changes in the landscape. In French Pyrenees, the maximum of human activity
and population density corresponds to the beginning of the 19" century. In the French studied
area, changes began around 1850 with the decline of the traditional agro pastoral economy and
an important rural exodus. Cropland was transformed into pastures and later, often became
colonized by forests again. The Andalusian site had the same decrease but also a more
substantial economic reorganization.

Garrotxes (Figure 1) is a 8~750 ha catchment area located in the western part of the
department of Eastern Pyrenees (France). The difference of height between the main summit at
the north extremity (Madrés, 2469m) and the confluence of the Cabrils on the south east border
of the map (650 m) is important. On the right side, characterized by a ponderous
geomorphologic relief based on granite, the space has a fast dynamic vegetation: almost all
earlier terrace cultivations and coniferous forests (Pinus uncinata) are situated here. The left
bank forms a large, steep and south facing side on schist used as pasture. At the demographic
maximum (1820/30) all natural resources were used intensively. In 1826, 25% of the whole area
was developed as crop terraces (Napoleon cadastre of 1826). The population pulled down from
1832 inhabitants in 1826 to about 90 inhabitants today. Crop terraces were transformed to
pastures and became, later, bushes or forests. Actually the crops are completely marginal and
the near future depends on the intensity of pastoral activities and on the management from
which the extent of spontaneous forest spreading depend (Métailié and Paegelow, 2004).

Alta Alpujarra Granadina (34 500 ha) forms the western part of the south side of Sierra Nevada
(Spain); a region with a characteristic landscape (Camacho et al, 2002a, 2002b, 2002c;
Camacho, 2003) for which historical evolution is documented up from the 15™ century (Garcia,
1999). The latitudinal shift to the Pyrenees is made off partially by the important difference of
height (2 900 m). The southern limit (600 m) is close to Guadelfeo, a river separating the
studied area from Contraviesa. The northern limit is made by the highest summits of the Iberian
Peninsula: Mulhacen (3 479 m) and Veleta (3 396 m). During the past 40 years, the population
pulled down from 4 200 to 1 200 today. The proximity to urban centres (Granada, Alméria or
Malaga) explains the great development of rural tourism.

The maximal use of natural resources occurred at the end of the 19" century followed by
a progressive decrease of agriculture. It only stopped during the 1940s (period of economic
autarky). Up from the beginning of the 1960s the rural exodus became general in Spanish
mountains with a successive desertion of non irrigated land and irrigated land located at high
altitudes. This process is followed by a (semi) desertion of irrigated lands which are located at a
lower level. The transformation of croplands into fallow lands leads to a landscape
homogenization. In the regional context, Alta Alpujarra Granadina is a significant example of
this intensive process of desertion.

Fig. 1. Location of the studied areas: Garrotxes (top) and Alta Alpujarra Granadina
(bottom)



2.2. Data sets

The GIS data base includes several maps with available land cover layers and relevant
environmental and social factors (elevation, slope, orientation, accessibility cost maps,
hydrographs, geomorphology, administrative limits and informations about management status
of particular areas such as public forests or pasture management).

Land cover layers come from many sources (Napoleon cadastre, aerial photographs and
manual maps on the French site; aerial photographs, thematic maps and manual maps in
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Spain) and illustrate the historical evolution as early as possible: 6 land cover maps in
Garrotxes (1826, 1942, 1962, 1980, 1989, 2000), 4 in Alta Alpujarra (1957, 1974, 1987, 2001).
The land cover maps of Garrotxes come from various sources and have various land cover
layers: the first land cover map (1826), which has been built from the Napoleon cadastre, allows
distinguishing forest, pasture, grassland, agriculture and urban use. First aerial photographs
(1942) permit to insert a category between pasture and forest: scrubs. The land cover map of
1962 has the same layers, while the scale and quality of later aerial photographs allows
distinguishing deciduous from coniferous forests and broom lands from grass-based pastures
(1980, 1989, and 2000). For modelling, we use only the latest three dates; earlier land cover
reflects social and economic conditions to far from actual reality.

The Spanish land cover maps contain various levels of details. For this work, we used a
simplified version with the same caption for all dates.

Land cover changes during the studied period are dramatic as shown in Figures 2 and 3.
In Garrotxes we can notice that crops (terrace cultivating), that used to take up 25% of the area
in 1826, have almost disappeared in the early 1980s. They first became pastures and then
scrubs and forests. In Alta Alpujarra Granadina, the cultivated lands pulled down from 21.9 % of
the area in 1957 to 7.1 % today. The irrigated land decreased from 14.6 % to 5.8 % of the area
but proportionally increased from 66.7% to 81.7% of the overall agricultural activities. Because
the vegetal growth is very slow, the fallows became one of the major land cover of the area.
Another important evolution is that coniferous forests increased twofold on high elevation sides.



Fig. 2: Net quantity changes for land cover in Garrotxes (France): 1826 — 2000

Fig. 3: Net quantity changes for land cover in Alta Alpujarra Granadina (Spain): 1957 — 2001 (data for Mosaic of
cropland and fallows are not available in 1974)
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3. Methodology and practical application to the data sets

3.1. Models

Three different models were applied to the two data sets. They have common features:
maps have been set at almost equidistant dates and the list of all possible transitions is finite
and related to the land cover captions. Each tested model uses exactly the same data (two
earlier land cover maps and several relevant criteria) to train the model (calibration). The
prospective simulation is made for the latest known land cover state which is unknown by the
models and only used for validation.

The first method, called combined geomatic model, is based on available GIS software
modules. Time transition probabilities result from Markov chain analysis but the spatial
assignment of the simulated land cover is assisted by a set of suitability maps, one for each
land cover which expresses geographic knowledge and is performed manually by an expert.

In order to propose automatic alternatives to the GIS, two approaches have been
adapted to estimate the evolution of the land cover: the first one, the polychotomous regression
modelling, is a generalized linear model with estimation based on the maximum log-likelihood
method. The second one, the multilayer perceptron, is a popular method which has recently
proved its great efficiency to solve various types of problems.

The idea is to confront a parametric linear model with a nonparametric one to provide a
collection of automatic statistical methods for geographers. They both have concurrent
advantages that have to be taken into account when choosing one of them: the polychotomous
regression modelling is faster to train than multilayer perceptrons, especially in high dimensional
spaces and does not suffer from the existence of local minima. On the contrary, multilayer
perceptrons can provide nonparametric solutions and then, they are more flexible; Both
methods are easy to implement, even for non statisticians, through the pre-made softwares (for
example, “Neural Network” Toolbox for neural networks with Matlab).

3.1.1. Combined geomatic model

Construction of a knowledge base — multi criteria evaluation (MCE)

The knowledge about former dynamics is essential for attempting to predict the future evolution
or to build prospective scenarios. Therefore each model has to be supplied with the values of
the initial conditions (calibration). For this step, we used the two training land cover maps used
to perform time transition probabilities and criteria which are correlated to land cover. Statistical
procedures (logistic regression, PCA) helped us to choose the criteria which are relevant. We
only used easily available data in order to provide a model that can be generalized.

The criteria were split up into Boolean constraints (a specific land cover is allowed or not)
and factors which express the level of suitability for each land cover; this level depends of the
localization of the pixel. The constraints simply masked some areas of the map while the factors
were weighted in order to permit a tradeoff between each others. The result of this multi criteria
evaluation is a set of suitability maps showing terrain suitability for each land cover. These
maps assist the spatial assignment of time transition probabilities performed by Markov chain
analysis.

Computing time transition probabilities — Markov chain analysis (MCA)

To perform land cover extrapolation, we used a Markov chain analysis (MCA), a discrete
process for which values at instance t; depend on values at instances t, (Markov chain of order
1). The prediction was given as an estimation of the transition probabilities.

MCA produced a transition matrix which contains the probability that each land cover will
change to each other land cover: we can then deduce the number of pixels expected to change.
The algorithm also generated conditional probability maps for each land cover after a specified
number of time units.



Spatial assignment of predicted land cover probabilities — multi objective evaluation
(MOE) and cellular automaton (CA)

The integrating step, combining knowledge about likely spatial distribution (MCE), time
transition probabilities (MCA) as well as multi-objective land allocation, was performed by multi
objective evaluation (MOE) using the amount of expected changes and MCE results. The land
cover prediction procedure finally added spatial contiguity constraints. The cellular automaton
(CA) is based on a standard contiguity filter (5 x 5) to down-weight the suitability of the pixels
that are distant from existing instances of the land cover type under consideration. The
algorithm is iterative so as to match with time distances between t.; - t; and between t; - t.;.

3.1.2. Polychotomous regression modelling

When we wish to predict a categorical response given a random vector, a useful model is the
multiple logistic regression (or polychotomous regression) (Lai and Wong, 2001). A smooth
version of this kind of method can be found in Kooperberg et al. (Koopersberg et al, 1997).
Applications of these statistical techniques to several situations such as medicine or phoneme
recognition can be found in these two papers. Their good behaviour, both on theoretical and
practical grounds, has been emphasized. In our case, the predictors are both categorical and
scalar and then we have the derived model below:

Let us note, fork =1, ..., K,

W TLl ey 0

where Cy,...,Ci are the different values of the land cover, cii(t) is the value of land cover for pixel

(1j) at time t and Xj(t) is the vector of social factors as well as values of land cover in the
neighbourhood of pixel (i,j) at time t-1. Then, we get the following expression

epr(Ck|Xl.,j(t))

> epo(CIX (1)

Now, to estimate these conditional probabilities, we use the parametric approach to the
polychotomous regression problem that is the linear model

K p
9( ng,j(m:ak-l_zcev, [t=1) Z/=1 Bk][t;/C,]+ Zr=1 Yie \{/

J 3)

P(c,,(t)=C,|X ,(t)=

I

(2)

where Vi(t —1) are the values of the land cover in the neighbourhood of the pixel (i, j) on the
previous date t =1 and (Y'; j), are the values of the environment variables. Let us call 3 = (ay, ...,

Ok, B11 5wy Bio B2y« B2 o Bictgor Y115 -0 Yo -0 Yiet,1s -+ Yie1,p), the parameters of the
model to be estimated. We have to notice that we have o, = 0, By, = O0forall1 =1, ..., K, and vy,
=0forallr=1, ..., p. We now have to estimate the vector of parameters 8. For this, we use a

penalized likelihood estimator which is performed on the training sample. Let us write the
penalized log-likelihood function for model (3). It is given by

Lio)=Ma)-e X, Yo i

where the log-likelihood function is
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N n n
6):Iog(Hn:1 P (c"X' >)). 5

In this ex ressmn Ps(c | X" ) is the value of the probability given by (2) and (3) for the
observations (X ) and the value d of the parameter. In expression (5), € is a penalization
parameter and for k 1, ..., K,

u ch@ };ﬂa X).

Our penalized likelihood estimator € satisfies:

/\

=argmax __,l ().

ser’ e

where M =K2+(K -1) * p - 1denotes the number of parameters to be estimated.

As pointed out by Kooperberg et al. (1997), in the context of smooth polychotomous
regression without the penalty term, the maximization of the log-likelihood function / &) can lead

to infinite coefficients By. In our model, it may be the case, for example, when, for fixed k, the
value of the predictor is equal to zero for all (i,j). Actually, this “pathological” case can not really
occur in practice but for classes k with a few number of members, the value of the predictor is
low and then a numerical instability happens when maximizing the log-likelihood. Then, the form

of the penalty based on the difference between the value 8,(&| X" for class k and the mean

over all the classes has the aim of preventing this instability by forcing e¢(§k| X™ to be not too
far from the mean. On another side, for reasonable values of €, we can expect that the penalty
term does not affect so much the estimation of parameters while it guarantees numerical
stability. Finally, numerical maximization of the penalized log-likelihood function is achieved by a
Newton—Raphson algorithm.

3.1.3. Multilayer perceptron

Neural networks have a great adaptability to any statistical problems and especially to
overcome the difficulties of nonlinear problems even if the predictors are highly correlated; thus
it is not surprising to find them used in the chronological series prediction Bishop, 1995; Parlitz
and Merkwirth, 2000; Lai and Wong, 2001). The main interest of neural networks is their ability
to approximate almost any function with the desired precision (universal approximation) (see,
for instance, Hornik, 1991).

Here, we propose to estimate the function P(c;(f|=CiXi(t))in (1) in the form of a multilayer

perceptron y with one hidden layer (Figure 4). This multilayer perceptron is a function from R?
to R that can be written, for all x in R" ,as

=3 Wl x W+

where g, in N is the number of neurons on the hidden layer, (w\")x1, ..., Q2

(respectively, (W?)e1,....q2; (Wio™)iet,...q2) are in RY (resp.R) and are called weights and bias,
and where g, the activation function, is a sigmoid; for example, g(x) = 1/ (1+e™).

Then, the output of the multilayer perceptron is a smooth function (here it is indefinitely
continuous and derivable) of its input. This property ensures that



Fig. 4: Multilayer perceptron with one hidden layer

the neural network took into account the spatial aspect of the data set, since two neighbouring
pixels have “close” values for their predictor variables.

To determine the optimal value for weights w = ((Wi“))i, (Wi(2>)i, (Wi,0(1> )), we minimized the
quadratic error on the training sample, as it is usual: for all k= 1,..., K, we chose

K
Kk ,
W, =argmn _ w4>zk: 1

(6)
where c™and the categorical data in X™ are written on a disjunctive form. This can be
performed by classical numerical methods of the first or second order (such as gradient
descent, conjugate gradients, etc.) but faces local minima problems. We explain in section 3.2.2

how we overcame this difficulty. Finally, White (White, 1989) gives many results that ensure the
convergence of the optimal empirical parameters to the optimal theoretical parameters.

3.2. Practical application to the data sets

The three models use exactly the same data.

Calibration / training period or dates

The models were calibrated by two or three earlier land cover maps (1980 and 1989 for
French Pyrenees; 1957, 1974 and 1989 for Spanish Sierra Nevada) and related maps of
relevant criteria. The last known land cover map is unknown to the models and has been used
for the comparison of the models.

3.2.1. Combined geomatic model

This model was implemented with GIS functions available in Idrisi Kilimanjaro software.

MCE step
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In order to assist spatial assignment of transition probabilities, we performed a list of
constraints: some of them are common to any land cover like stability of developed areas
(villages); others are specific to any land covers (e.g. elevation limits the forests, distance to
roads the crops, accessibility level the grassland and public woods are forbidden in pasture).
These constraints are expressed in a binary form which allows, or not, a given land cover to be
predicted. Another sort of criteria is factors which express the local degree of suitability for each
land cover. Figure 5 gives the six original factors selected for the French area and the
technique to convert them into suitability levels. The list is short for two reasons: first, we want
to perform a simple model which may be implemented easily. Then, getting high resolution data
can be hard.

Elevation, slope and aspect are important physical factors. The accessibility to roads and
villages is a cost factor expressing the time needed to access any place. In the studied areas,
the transport is exclusively road based and people live in grouped residential areas. The
accessibility map results from a cost distance analysis where the usual distance is weighted by
the quality of roads. The proximity to existing land cover features is the distance (average and
standard variation) of each land cover to borders of land cover of the same type during the
training period. It takes into account border dynamics and spontaneous appearances (which are
not induced by borders). This factor is important in rural and mountain areas where forest
spreading is a widespread process. The probability for each change was worked out by cross
tabulation of observed land cover dynamics into the training period.

Fig. 5: Factors used and involved techniques to process suitability

Factor Technique to process suitability
Elevation
Slope Manual recoding based on significant (99 % and 99.9 %
A ¢ level) differences between real and theoretic distribution
spec

Accessibility to roads and villages (cost distance)

Probability for land cover change Stretching of observed transitions during t4 — to

Proximity to existing land cover features (distance) Fuzzy function based on observed distance parameters
for border and spontaneous appearances

Because each factor was expressed in its own unit, they had to be standardized: the
original values (degrees, meters, per cent) were re-scaled into suitability values on a common
scale reaching from 0 (lowest suitability) to 255 (best suitability). This standardization was
processed on different ways: for each land cover, the suitability of elevation, slope, aspect and
accessibility was carried out by analyzing the statistical significance of the spatial dependency
versus a null hypothesis. Non significant differences (less than a level of 99 %) mean an
average suitability (128). For smaller significant levels, the suitability is also smaller and vice
versa.

Once standardized, the factors were weighted using Saaty matrix (Saaty, 1977). This
matrix contains the correlation of each pair of factors and a weight was deduced from it by
eigenvalue decomposition.

Finally, Ordered Weighted Averaging (OWA) (Yager, 1988) allowed the choice of a risk
and of tradeoff levels. “Tradeoff’ means the possibility to compensate a low suitability score of
one factor by a high suitability score of another factor. A tradeoff level is related to a risk level
(see Figure 6) which goes from And (risk adverse) to Or (maximum risk). The fuzzy axis of risk
levels is called andness. Finally, the number of order weights is equal to the number of factors
and the weights sum to 1. Order weights are calculated for each pixel and the first order weight
is assigned to the factor with the lowest weighted suitability. The last order weight is assigned to
the highest suitability among the weighted factors for the given pixel.



Authors chose a strategy which may be considered as having low risk and a tradeoff
illustrated in Figure 6. The results of multi-criteria evaluation with ordered weighted averaging
(MCE-OWA) are expressed as a land cover suitability map one for each caption.

Fig. 6: Space of decision strategy and chosen approach into MCE-OWA. Order weights
used: 0.45, 0.20, 0.15, 0.10, 0.07, 0.03

Time transition probabilities
The prediction was performed by a Markov function from the two calibration dates .
Spatial allocation of predicted land cover probabilities

MOE and a cellular automaton are included in the CA_Markov module. For more details
about practical application of the geomatic model, see Paegelow and Camacho (2005).

3.2.2. Polychotomous regression modelling and multilayer perceptron

In order to compare the two automatic approaches, we applied the same methodology:
first we determined the optimal parameters for each approach (training step, see below) and
then, we used the land cover maps to predict the last one and we finally compared this
simulated maps to the real one (validation step, cf. section 5).

As usual in statistical methods, there is two steps in the training stage: the estimation
step and the validation step.

The estimation step consists in estimating the parameters of the models (either for the
polychotomous regression or the neural network).

The validation step allows us to choose, for both methodologies, the best neighbourhood, for
polychotomous regression, the penalization parameter and, for neural network, the number
of neurons on the hidden layer. We only considered square shaped neighbourhood so, here,
choosing a neighbourhood is equivalent to determine its size.

For the Sierra Nevada, we saw that large areas are stable, thus we only used the pixels
for which one neighbour, at least, has a different land cover. These pixels are called “frontier
pixels”; the others were considered as stable (Figure 7). For the generalized linear model, we
used the whole frontier pixels of the 1957/1974 maps for the estimation set and the whole
1974/1987 maps for the validation set. We then constructed the estimated 2001 map from the
1987 one. For the multilayer perceptron, we reduced the training set size in order not to have
huge computational times when minimizing the loss function. Then, estimation and validation
data sets were chosen randomly in the frontier pixels of the 1957/1974 and 1974/1987 maps.
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Fig. 7: Frontier pixels (order 4) for the 1957 map (Alta Alpujarra Granadina)

For the Garrotxes data set, due to the fact that we only had got 3 maps and much less
pixels, we had to use the 1980/1990 maps for the estimation step (only their frontier pixels for
the MLP) and the whole 1990/2000 ones for the validation step. This led to a biased estimate
when constructing the 2000 map from the 1990 map but, as our purpose is to compare two
models and not to make significant the error rate, we do not consider this bias as important.

Polychotomous regression modelling

» The estimation step produces the estimated parameter vector ”ﬁ of the parameters 0 of
model (3) for a given neighbourhood and a penalization parameter €. This step was repeated for
various values concerning both neighbourhood and penalization parameter.

. Validation step: Once given an estimated parameter  vector
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At each pixel (i ,j) for the predicted map on date {, we affected the most probable land
cover type, namely the &, which maximizes
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Programs were made using R program (R Development Core Team, 2005) and are
available on request.

Multilayer perceptron

We used a neural network with one hidden layer having g, neurons (where g, is a
parameter to be calibrated). The inputs of the multilayer perceptron were:

For the time series, the disjunctive form of the value of the pixel;

For the spatial aspect, the weighted frequency of each type of land cover in the
neighbourhood of the pixel;

The environmental variables.

The output was the estimation of the probabilities (1). The estimation was also made in
two stages:

[1] The estimation step produces the estimated weights as described in (6) for a given number
of neurons (g;) and a given neighbourhood. For this step, the neural network was trained
with an early stopping procedure which allows stopping the optimization algorithm when the
validation error (calculated on a part of the data set) is starting to increase (Bishop, 1995).
This step was repeated for various values of both neighbourhood and qp.

[2] Validation step: once an estimation of the optimal weights was given, we chose g, and the
size of neighbourhood, as for the previous model. Moreover, in order to escape the local
minima during the training step, we trained the perceptrons many times for each value of
neighbourhood and of g, with various training sets; the “best” perceptron was then chosen
according to the minimization of the validation error among both the values of the
parameters (size of the neighbourhood and q,) and the optimization procedure results.

Programs were made using Matlab (Neural Networks Toolbox, see Beale and Demuth,
1998) and are also available on request.

4. Results

We applied the three models previously described and obtained simulated land cover
mapsat 2000 for the Garrotxes. We found similar maps for the three methodologies and these
maps are also close to reality (Figure 8). The overall good prediction rates are about 73 — 74 %
(Figure 10).

For the Spanish test area, the results (Figure 9) are closer to reality but also less easily
interpretable. The comparison with real land cover in 2001 shows an overall prediction rate of
78.9 % for the combined geomatic model and about 90 % for the two semi-automatic models
(91 % for the polychotomous regression model; 88.7 % for the multilayer perceptron model)
(Figure 11).

Fig. 8: Predicted land cover by combined geomatic model, polychotomous regression model and multilayer
perceptron model for Garrotxes in 2000 and real land cover
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Fig. 9: Predicted land cover by combined geomatic model, polychotomous regression model and multilayer
perceptron model for Alta Alpujarra Granadina in 2001 and real land cover

Fig. 10: Misclassification rates for the Garrotxes

Land cover Frequency Combined Polychotomous Multilayer

geomatic model  regression model perceptron
model

types in the area error rate error rate error rate
Coniferous forest 40.9% 11.4% 11.9% 10.6%
Deciduous forest 11.7% 55.3% 51.7% 45.8%
Scrubs 15.1% 51.9% 57.1% 54.5%
Broom lands 216% 17.1% 14.4% 16.2%
Grass pasture 5.7% 54.4% 59.2% 59.4%
Grassland 4.8% 30.4% 25.6% 19.3%

Overall 27.2% 27.2% 25.7%
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Figure 11: Misclassification rates for the Alta Alpujarra Granadina

Land cover Frequency Combined Polychotomous Multilayer
geomatic model  regression model perceptron
model
types in the area error rate error rate error rate
Deciduous forests 10.9 % 14.3% 3.5% 2.6 %
Scrubs 33.0% 15.2% 3.1% 1.4 %
Pasture 20.8 % 12.5% 0.6 % 0 %
Coniferous refor. 92 % 1.9% 3.5% 16.3%
Fallows 18.8 % 46.8% 32.5% 41.4 %
Irrigated cropland 5.8 % 38.9% 8.9 % 6.8 %
Overall 21.1% 9.0 % 11.3%

The simulation results are always closer to reality for the Alta Alpujarra Granadina as for
the Garrotxes. Land cover of the Spanish test area is also more persistent in time. In Garrotxes,
75.5 % of the area was persistent during the training period (1980 — 1989), 72 % between 1989
and 2000. The Spanish area stability is about 90.4 % during the training period (1957 — 1987)
and concerns 83.9 % of the area between the last date and the previous one (1987 — 2001).

The results show also similar misclassification rates of the three models in the French test
area but misclassification rates of the combined geomatic model are higher as those performed
by the polychotomous regression model and the multilayer perceptron model in the Spanish test
area. We think that this difference of prediction performances is related to higher persistence
rate for the Alta Alpujarra Granadina (Ferraty et al, 2005, Villa et al, 2006). This will be
discussed in chapter 5.

Another interesting result is that, the amount of predicted land cover (sum of pixels
predicted without location) matches well with the reality and this for all land cover values and all
models. Therefore, Figure 12 shows the worst cases (the highest overall misclassification rates
obtained by the combined geomatic model compared to reality for the Garrotxes).

Fig. 12: Matrix comparing real land cover in 2000 (rows) to land cover predicted by the
combined geomatic model in 2000 (columns) in Garrotxes. Data are expressed in per
cent of the total area.

Garrotxes Predicted land cover in 2000 %
Sum of
Conife-rous Deci-duous Broom Grass real land
forest forest Scrubs lands pastures  Grass-land Agricul-ture Urban cover
Coniferous forest ~ 35.81 0.12 347 0.63 0.43 0.47 0.00 0.00 40.93
Deciduous forest 1.19 6.45 2.92 0.58 0.32 0.23 0.00 0.00 11.69
Real IandScrubs 2.28 1.26 6.87 1.70 1.82 113 0.01 0.00 15.08
cover Broom lands 0.32 0.40 1.68 18.00 1.12 0.09 0.00 0.00 21.61
2000 %
Grass pastures 0.21 0.08 0.44 2.64 2.29 0.00 0.00 0.00 5.66
Grassland 0.55 0.02 0.75 0.01 0.27 3.19 0.01 0.00 4.80
Agriculture 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Urban 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.230 0.23
Sum of predicted land
cover 40.37 8.33 16.13 23.56 6.24 5.12 0.03 0.23 100.00

Figure 12 also shows that the model fits better to reality for the land cover values
covering large areas like coniferous forests and broom lands. The prediction rate is lower for
land cover values covering little areas and gets close to zero for crops that cover only 0.007 %



of the area (16 pixels). On the contrary, developed areas (urban) corresponds, by definition
(constrained area), to reality. The confusion matrix for the Alta Alpujarra Granadina confirms the
observed trends based upon the French study area.

5. Validation and discussion of results

The performed results do not intend to predict future reality but they can help us to better
understand environmental and social complex changes in time and space. Therefore the
interpretation must be done carefully; the land cover modelling means simulation showing what
could be reality. It is a scenario in the framework of a decision support. Nevertheless, an
accurate interpretation may be useful to improve the prediction rate. On both areas, good
predictions are about % of the whole area. In the following discussion, we will focus on the
misclassified areas in order to understand the lakes in modelling and to improve future
simulations. At this point, it is important to say that each model is affected by random noise.
Random phenomenoms like forest fires and wind falls in Garrotxes, seem impossible to model
correctly, even if they are not significant (less than 2 % of the whole area). In the Spanish area,
the same is caused by coniferous reforestation: an artificial reforestation leads to an important
change of macro conditions which can not be predicted by earlier data.

In order to analyze the residues of simulated land cover, we introduced a kind of
“distance” between the simulated and the real land covers (prediction failures). The Garrotxes
land cover is described as qualitative data but may be put on a landscape rank scale which
goes from dense areas (1: forests) to open landscape corresponding to more intensive use (6:
agriculture). Therefore, we grouped deciduous and coniferous forests. By this way, we defined a
difference between two land cover values. A negative distance means a predicted landscape,
“opening”, while positive values express a predicted landscape, “closing” (that did not happen).
The prediction failures occur outside stable areas which are concentrated along the western
and southern limits of the studied area (public forests) and on the left bank (large pastures).

Data of Figure 13 show a contingency table of the model and the importance of the
misclassification. Alimost the half of false predicted area corresponds to a prediction failure of
only one land cover category. In other words, half of residues are very close to reality on a
thematic point of view. The most important misclassified areas (three or more ranks) are due to
random phenomenoms.

Fig. 13: Prediction residues (%) according to the distances between real and sim land
cover, Garrotxes. (Data for correct prediction differ from those mentioned earlier because
the two forest categories were grouped.)

Combined
geomatic Polychotomous Multilayer
model regression model  perceptron model
Correct prediction 74.16 74.27 75.62
1 difference 17.36 17.23 16.47
2 differences 4.29 4.67 423
3 differences 2.92 2.43 2.51
4 differences 1.28 1.40 117

In Alta Alpujarra, the vegetation dynamics is slower and, consequently the land cover
values are more static and can not be ranked on the same way.

Then, let us describe the accuracy of the localization of each land cover:this can be
expressed by a fuzzy logic based comparison between real and simulat land cover. Unlike a
pixel by pixel comparison, fuzzy logic comparison allows a small error in localization. Fuzzy
validation does only improve the overall good prediction rates of about 2 % for all models and
the two data sets. This small gain may be explained by the qualitative nature of land cover. By
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deeply observing Figures 8 and 9, we can notice that one important factor for misclassifying is
the layered representation of land cover. Inside each land cover type, any variability exist, but
this fact is not included into the data base. This may be illustrated by an example on Garrotxes:
Figure 8 shows in the south eastern part a large oblong area predicted as scrubs (same land
cover as in 1980 and 1989). In reality, this area changed into a deciduous forest by a natural
dynamic; this emphasizes a general problem when handling with qualitative data: the intra-
class variability. In this case, scrubs became higher and higher and, at the same time, the
floristic composition changed and Quercus ilex got the upper hand.

Another way to analyze model behaviour and results consists in intersecting simulated
land cover maps. This was done for the Garrotxes: as shown in Figure 14, the correct predicted
area obtained by intersection of the three simulated maps is about 66.5 %. This means a high
consistency between the three models; individual prediction rates of each model are about 73 to
75 %. It is not surprising that these good predictions are higher on persistent and large areas
like coniferous forests. The following columns show the good prediction rates obtained by the
intersection of two model results (for pixels that are incorrectly predicted by the last model) or
the good prediction rate of a single model (for pixels that are incorrectly predicted by the two
other models).

Fig. 14: Prediction rates (%) of simulated land cover by crossing simulated results, Garrotxes. CGM = combined
geomatic model; MPM = multilayer perceptron model; PRM = polychotomous regression model. Cropland that
is less than 0.01 % of area is not represented.

Correct prediction Every 2 models 1 model

performed by model | MPM+ | CGM+ | CGM+ CGM MPM PRM None
PRM PRM MPM

Coniferous forest 85.35 1.65 0.40 0.68 0.96 1.75 0.76 8.53
Deciduous forest 46.26 0.90 0.57 3.1 4.98 3.93 0.50 39.75
Scrubs 32.38 5.92 2.64 2.50 7.75 3.89 1.03 43.89
Broom lands 76.98 4.99 2.45 0.74 2.82 0.70 0.93 10.39
Grass pasture 26.30 7.63 3.27 2.24 7.71 291 2.32 47.62
Grassland 59.14 11.64 1.66 4.70 1.06 5.26 1.99 14.55
TOTAL 66.49 3.75 1.42 1.54 3.23 2.33 0.92 20.32

Figure 14 shows that the intersection of the two semi-automatic models have the most
important good prediction rate other the couples of models (3.75 %). The intersection of each
one with the combined geomatic model is less efficient. This means higher consistency between
the polychotomous regression model and the multilayer perceptron model. On the other hand,
Figure 14 also proves that the most important good prediction rate for a single model is made
by the combined geomatic model (3.23 %). This means that the combined geomatic model and
the two semi automatic models are complementary to each others.

In order to better understand the differences between the two semi-automatic models
against the combined geomatic model, it is useful to analyze prediction rates according to land
cover changes. We already said that prediction rate is better on the Spanish area, particularly
when land cover is simulated by a semi-automatic model. This may appear poor compared to
Null model (land cover persistence), but it is interesting to notice that the annual land cover
change rate during the training period is different from the change rate between the two last
dates. This average annual rate decreased moderately in Garrotxes (from 2.7 % to 2.5 %) but
increased in Alta Alpujarra Granadina (from 0.3 % to 0.95 %).

The previous remarks seem to prove that the good prediction rates are related to the
number and the velocity of land cover changes. Therefore we calculated LUCC budgets
between the last two maps.

Fig. 15: Garrotxes real LUCC-budget 1989-2000 and 1989-2000 LUCC-budgets for
simulated land cover in 2000.

Real land cover changes Combined geomatic model




Abs value

Total of net Abs value of

Gain Loss change Swap change Gain Loss Total change Swap net change
Coniferous forest 5.92 3.60 9.53 7.21 232 243 0.68 3.11 1.35 1.76
Deciduous forest 6.20 0.51 6.71 1.01 5.70 240 0.08 247 0.15 232
Scrubs 8.25 8.92 17.18 16.51 0.67 3.87 3.49 7.36 6.98 0.38
Broom land 4.34 6.17 10.51 8.68 1.83 3.35 3.21 6.56 6.43 0.13
Grass pasture 2.39 6.18 8.57 479 3.79 0.62 3.81 4.43 1.23 3.20
Grassland 0.83 244 327 1.66 1.61 0.27 1.56 1.82 0.53 1.29
Agriculture 0.01 0.13 0.14 0.01 0.12 0.00 0.11 0.11 0.00 0.11
Total 27.95 27.95 27.95 19.93 8.02 12.93 12.93 12.93 8.34 4.59

Polychotomous regression model Multilayer perceptron model

Abs value
Total of net Abs value of

Gain Loss change Swap change Gain Loss Total change Swap net change
Coniferous forest 2.76 0.21 2.96 0.41 2.55 2.84 0.09 2.93 0.18 2.75
Deciduous forest 0.48 0.19 0.66 0.37 0.29 1.30 0.07 1.37 0.14 1.23
Scrubs 0.53 1.70 223 1.06 1.17 1.50 312 4.62 3.01 1.61
Broom land 297 0.53 3.50 1.06 244 287 1.25 413 2.51 1.62
Grass pasture 0.37 3.62 4.00 0.75 3.25 0.23 3.65 3.88 0.47 3.41
Grassland 0.17 0.91 1.08 0.34 0.74 0.21 0.66 0.88 0.43 0.45
Agriculture 0.01 0.13 0.14 0.01 0.12 0.00 0.13 0.13 0.00 0.13
Total 7.28 7.28 7.28 2.00 5.28 8.97 8.97 8.97 3.36 5.60

The LUCC-budget for Garrotxes (Figure 15) shows an important total change (about 28
%) those swap part (20 %) is much more significant as its net change (8 %). In comparison to
this real LUCC-budget, those performed by real land cover in 1989 but simulated land cover in
2000 are systematically lower; particularly, polychotomous regression and multilayer perceptron
simulated land cover pull down land cover dynamics. Only the combined geomatic model leads
to a proportion of “swap / net” changes close to the real ones. However the total amount of
change is only half of the real one.

So, all of the models, but particularly the two semi-automatic models, simulate
persistence and underestimate land cover changes. The following tables underline this
observation. Figure 16 shows the correct prediction rate of each model depending on the
number of land cover changes over three dates (1974, 1987 and 2001) for the Spanish test
area.

Fig.16: Correct prediction scores obtained by the three models in Alta Alpujarra
Granadina depending on the number of land cover changes between 1974 — 1987 - 2001:
persistence (86.89 %); one land cover change (12.83 %); two land cover changes (0.28 %).

Land cover changes \ Number of land cover changes
Model Persistence 1 change 2 changes
86.89 % 12.83 % 0.28%
Combined geomatic 83.9% 61.5% 22.2%

model
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Polychotomous 98.0 % 45.6 % 1.5%
regression model
Multilayer perceptron 96.0 % 41.6 % 2.0%
model

Figure 16 proves that land cover is simulated almost perfectly by each of the two semi-
automatic models on areas with land cover persistence. The combined geomatic model is
clearly less efficient when land cover does not change. It is areas for which land cover becomes
different. The more land cover changes are numerous, the better the combined geomatic model
predictions are. On the other hand, changes are so rare that predicting them is very difficult.

Fig.17: Prediction rates (%) of simulated land cover by crossing simulated results,
Garrotxes, depending on the number of land cover changes between 1980 — 1989 - 2000:
persistence (58.87 %); 1 land cover change (30.16 %); two land cover changes (10.97 %).

CGM = combined geomatic model; MPM = multilayer perceptron model; PRM =
polychotomous regression model.

Correct prediction Every 2 models 1 model
performed by models | MPM+ | CGM+ | CGM+ CGM MPM PRM None
PRM PRM MPM
Persistence - 58.87 93.50 2.89 0.96 0.79 0.47 0.50 0.32 0.57
1 change — 30.16 35.28 5.89 2.16 1.97 6.12 4.36 1.31 42.92
2 changes — 10.97 9.51 247 1.85 4.29 9.79 6.44 3.05 62.61

Figure 17 shows the correct prediction rates of the models applied to Garrotxes
depending on the number of land cover changes. It confirms the trends observed on the
Spanish test area. First, we can see that the persistence over only two decades is significantly
smaller (less than 60 %) than in Spain (about 87 % over 27 years). We observe that less than 1
% of the whole area has two changes in Andalusia, whereas about 11 % of the French
Pyrenees is concerned with a double change of land cover. Data in figure 17 show that
persistence is easy to predict. Intersecting the three maps, 93.5 % of the studied area is
correctly predicted by every models. The better prediction rate for couples of models is obtained
by the two semi-automatic models (2.89 % - in bold).These common correct prediction scores
pull down on area with land cover dynamics. Nethertheless, the combined geomatic model is
the most efficient on area with land cover changes.

6. Conclusion and outlook

The authors underline that the three applied models perform very similarly. The total
prediction scores are as better as the land cover is persistent. By intersecting model outputs,
performing LUCC-budgets and comparing simulated land cover depending on land cover
changes, we highlighted the proximity of the two semi automatic models compared to the
combined geomatic model. This last one may be seen as a manual or directed model. It clearly
appears that chaining semi automatic and manual supervised modelling steps can improve the
simulations. Polychotomous regression and multilayer perceptron models work better if land
cover is persistent. On the contrary, the combined geomatic model is closer to reality when land
cover changes.

We also focused on some limiting criteria. First, qualitative land cover data do not take
into account the variability inside one land cover type. This implicates that we need more
training data. Another limiting point is the small number of training dates. The training step is
performed with only two land cover maps and few criteria able to explain land cover changes.

The authors emphasize the fact that the models are based on a small number of data that
are easily available so the application of the methodologies described in this paper to other
areas should be easy to perform. To improve prospective land cover modelling, the authors
apply the models to other areas characterized by high speed land cover changes (tropical
deforestation) based on remote sensing data. Handling with various data sources and land




cover dynamics may contribute to better know about the the ability of generalization of our
modelling approaches. It would also be helpful to consider intra-class variance by using semi-
quantitative land cover data (covering rates) and to confront the models to other methodological
approaches and available software.
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