
A comparison between dissimilarity SOM and kernel

SOM for clustering the vertices of a graph

Nathalie Villa-Vialaneix, Fabrice Rossi

To cite this version:

Nathalie Villa-Vialaneix, Fabrice Rossi. A comparison between dissimilarity SOM and kernel
SOM for clustering the vertices of a graph. WSOM’07 - Workshop on Self-Organizing Maps,
Sep 2007, Bielefeld, Germany. pp.WeP-1, 2007. <hal-00674189>

HAL Id: hal-00674189

https://hal.archives-ouvertes.fr/hal-00674189

Submitted on 26 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00674189


A comparison between dissimilarity SOM and kernel SOM for

clustering the vertices of a graph

Nathalie Villa(1) and Fabrice Rossi(2)

(1) Institut de Mathématiques de Toulouse, Université Toulouse III

118 route de Narbonne, 31062 Toulouse cedex 9, France
(2) Projet AxIS, INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, France

email: (1)nathalie.villa@math.ups-tlse.fr, (2)fabrice.rossi@inria.fr

Keywords: kernel SOM, dissimilarity, graph

Abstract— Flexible and efficient variants of the Self

Organizing Map algorithm have been proposed for non

vector data, including, for example, the dissimilarity SOM

(also called the Median SOM) and several kernelized ver-

sions of SOM. Although the first one is a generalization of

the batch version of the SOM algorithm to data described

by a dissimilarity measure, the various versions of the sec-

ond ones are stochastic SOM. We propose here to introduce

a batch version of the kernel SOM and to show how this one

is related to the dissimilarity SOM. Finally, an application

to the classification of the vertices of a graph is proposed

and the algorithms are tested and compared on a simulated

data set.

1 Introduction

Despite all its qualities, the original Self Organizing Map

(SOM, [13]) is restricted to vector data and cannot there-

fore be applied to dissimilarity data for which only pair-

wise dissimilarity measures are known, a much more gen-

eral setting that the vector one. This motivated the intro-

duction of modified version of the batch SOM adapted to

such data. Two closely related dissimilarity SOM were pro-

posed in 1996 [12, 1], both based on the generalization of

the definition of the mean or median to any dissimilarity

measure (hence the alternative name Median SOM). Fur-

ther variations and improvements of this model are pro-

posed in [11, 6, 8].

Another way to build a SOM on non vector data is to use

the kernelized version of the algorithm. Kernel methods

have become very popular in the past few years and numer-

ous learning algorithm (especially supervised ones) have

been “kernelized”: original data are mapped into an high

dimensional feature space by the way of a nonlinear feature

map. Both the high dimensional space and the feature map

are obtained implicitly from a kernel function. The idea is

that difficult problems can become linear ones while being

mapped nonlinearly into high dimensional spaces. Classi-

cal (often linear) algorithms are then applied in the feature

spaces and the chosen kernel is used to compute usual oper-

ations such as dot products or norms; this kernelization pro-

vides extensions of usual linear statistical tools into nonlin-

ear ones. This is the case, among others, for Support Vector

Machine (SVM, [20]) which corresponds to linear discrim-

ination or Kernel PCA ([17]) which is built on Principal

Component Analysis. More recently, kernelized version of

the SOM has been studied: [10] first proposes a kernelized

version of SOM that aims at optimizing the topographic

mapping. Then, [2, 16] present kernel SOM that applies to

the images of the original data by a mapping function; they

obtain improvements in classification performances of the

algorithm. [15, 23] also studied these algorithms: the first

one gives a comparison of various kernel SOM on several

data sets for classification purposes and the second proves

the equivalence between kernel SOM and self-organizing

mixture density network.

In this work, we present a batch kernel SOM algorithm

and show how this algorithm can be seen as a particular ver-

sion of the dissimilarity SOM (section 2). We target specif-

ically non vector data, more precisely vertices of a graph

for which kernels can be used to define global proximi-

ties based on the graph structure itself (section 3.1). Ker-

nel SOM provides in this context an unsupervised classi-

fication algorithm that is able to cluster the vertices of a

graph into homogeneous proximity groups. This applica-

tion is of a great interest as graphs arise naturally in many

settings, especially in studies of social networks such as

World Wide Web, scientific network, P2P network ([3]) or

medieval peasant community ([4, 22]). We finally propose

to explore and compare the efficiency of these algorithms

to this kind of problems on a simulated example (section

3.2).

2 A link between kernel SOM and

Dissimilarity SOM

In the following, we consider n input data, x1, . . . , xn

from an arbitrary input space, G. In this section, we present

self-organizing algorithms using kernels, i.e. functions k :
G × G → R such that are symmetric (k(x, x′) = k(x′, x))



and positive (for all m ∈ N, all x1, . . . , xm ∈ G and all

α1, . . . , αm ∈ R,
∑m

i=1 αiαjk(xi, xj) ≥ 0).

These functions are dot products of a mapping func-

tion, φ, which is often nonlinear. More precisely, it exists

an Hilbert space, (H, 〈., .〉), called a Reproducing Kernel

Hilbert Space (RKHS), and a mapping function φ : G → H
such that k(x, x′) = 〈φ(x), φ(x′)〉. Then, algorithms that

use the input data by the way of their norms or dot products

are easily kernelized using the images by φ of the original

data set: φ and H are not explicitely known as the opera-

tions are defined by the way of the kernel function.

2.1 On-line kernel SOM

A kernel SOM based on the k-means algorithm has been

first proposed by [16]. The input data of this algorithm are

the images by φ of x1, . . . , xn and, as in the original SOM,

they are mapped into a low dimensional grid made of M
neurons, {1, . . . ,M}, which are related to each others by a

neighborhood relationship, h. Each neuron j is represented

by a prototype in the feature space H, pj , which is a linear

combination of {φ(x1), . . . , φ(xn)}: pj =
∑n

i=1 γjiφ(xi).
This leads to the following algorithm:

Algorithm 1: On-line kernel SOM

(1) For all j = 1, . . . ,M and all i = 1, . . . , n, initialize γ0
ji

randomly in R;

(2) For l = 1, . . . , L, do

(3) assignment step: xl is assigned to the neuron,

f l(xl) which has the closest prototype:

f
l(xl) = arg min

j=1,...,M
‖φ(xl)− p

l−1
j ‖

(4) representation step: for all j = 1, . . . ,M , the pro-

totype pj is recomputed: for all i = 1 . . . , n,

γ
l
ji = γ

l−1
ji + α(l)h(f l(xl), j)

(

δil − γ
l−1
ji

)

End for.

where step (3) leads to the minimization of
∑n

i,i′=1 γ
l−1
ji γl−1

ji′ k(xi, xi′) − 2
∑n

i=1 γ
l−1
ji k(xi, xl). As

shown in [23], the kernel SOM can be seen as a result of

minimizing the energy E =
∑n

j=1 h(f(x), j)‖φ(x)− pj‖
2

stochastically.

Another version of the kernel SOM is also proposed by

[2]: it uses prototypes chosen in the original set and then

computes the algorithm with the images by φ of this pro-

totype. It comes from the minimization of the following

energy E =
∑n

j=1 h(f(x), j)‖φ(x)− φ(pj)‖
2.

2.2 Dissimilarity SOM with dissimilarities

based on kernels

Dissimilarity SOM ([11, 6, 8]) is a generalization of the

batch version of SOM to data described by a dissimilar-

ity measure. We assume given, for all i, i′ = 1, . . . , n, a

measure δ(xi, xi′), that is symmetric (δ(x, x′) = δ(x′, x)),
positive (δ(x, x′) ≥ 0) and such that δ(x, x) = 0. The

Dissimilarity SOM proceeds as follows:

Algorithm 2: Dissimilarity SOM

(1) For all j = 1, . . . ,M , initialize p0j randomly to one of the

element of the data set {x1, . . . , xn};

(2) For l = 1, . . . , L, do

(3) assignment step: for all i = 1, . . . , n, xi is assigned

to the neuron, f l(xi) which has the closest prototype:

f
l(xi) = arg min

j=1,...,M
δ(xi, p

l−1
j )

(4) representation step: for all j = 1, . . . ,M , the pro-

totype pj is recomputed:

p
l
j = arg min

x∈(x
i′
)
i′=1,...,n

n
∑

i=1

h(f l(xi), j)δ(xi, x)

End for.

As shown in step (4), the purpose is to choose prototypes

in the data set that minimize the generalized energy

E =
∑M

j=1

∑n
i=1 h(f(xi), j)δ(xi, pj).

[6, 8] propose variants of this algorithm: the first one

allows the use of several prototypes for a single neuron and

the second describes a faster version of the algorithm.

In [22], a dissimilarity based on a kernel is described: it

is designed for the clustering of the vertices of a graph. To

construct their dissimilarity, the authors take advantage of

the fact that the kernel can be interpreted as a norm; then

computing the distance induced by this norm leads to the

definition of a dissimilarity measure on {x1, . . . , xn}:

δmed(x, x
′) = ‖φ(x)− φ(x′)‖ (1)

=
√

k(x, x) + k(x′, x′)− 2k(x, x′).

We can also define a variant of this dissimilarity measure

by, for all x, x′ in G,

δmean(x, x
′) = ‖φ(x)− φ(x′)‖2 (2)

= k(x, x) + k(x′, x′)− 2k(x, x′).

We now show that the dissimilarity SOM based on this

last measure can be seen as a particular case of a batch

version of the kernel SOM.

2.3 Batch kernel SOM

Replacing the value of the dissimilarity (2) in the represen-

tation step of the Dissimilarity SOM algorithm leads to the

following equation:

plj = arg min
x∈(xi′ )i′=1,...,n

n
∑

i=1

h(f l(xi), j)‖φ(xi)− φ(x)‖2.

In this equation, the prototypes are the images by φ of

some vertices; if we now allow the prototypes to be



linear combinations of {φ(xi)}i=1,...,n as in the kernel

SOM (section 2.1), the previous equation becomes plj =
∑n

i′=1 γ
l
ji′φ(xi′) where

γl
j = arg min

γ∈Rn

n
∑

i=1

h(f l(xi), j)‖φ(xi)−

n
∑

i′=1

γi′φ(xi′)‖
2.

(3)

Equation (3) has a simple solution:

pj =

∑n
i=1 h(f

l(xi), j)φ(xi)
∑n

i=1 h(f
l(xi), j)

(4)

which is the weighted mean of the (φ(xi))i. As a conse-

quence, equation (3) is the representation step of a batch

SOM computed in the feature space H. We will call this

algorithm kernel batch SOM:

Algorithm 3: Kernel batch SOM

(1) For all j = 1, . . . ,M and all i = 1, . . . , n, initialize γ0
ji

randomly in R;

(2) For l = 1, . . . , L, do

(3) assignment step: for all i = 1, . . . , n, xi is assigned

to the neuron, f l(xi) which has the closest prototype:

f
l(xi) = arg min

j=1,...,M
‖φ(xi)− p

l−1
j ‖

(4) representation step: for all j = 1, . . . ,M , the pro-

totype pj is recomputed:

γ
l
j = arg min

γ∈Rn

n
∑

i=1

h(f l(xi), j)‖φ(xi)−
n
∑

i′=1

γi′φ(xi′)‖
2

End for.

where, as shown in (4), the representation step simply

reduces to

γl
ji =

h(f l(xi), j)
∑n

i′=1 h(f
l(xi′ , j))

.

Like in the on-line version, the assignment is run by di-

rectly using the kernel without explicitly defining φ and

H: in fact, and all x ∈ {xi, . . . , xn}, it leads to the mini-

mization on j ∈ {1, . . . ,M} of
∑n

i,i′=1 γjiγji′k(xi, xi′)−

2
∑n

i=1 γjik(x, xi). Then, the kernel batch SOM is simply

a batch kernel SOM performed in a relevant space so it

shares its consistancy properties [7].

Finally, we conclude that the dissimilarity SOM de-

scribed in section 2.2 can be seen as the restriction of a

kernel batch SOM to the case where the prototypes are ele-

ments of the original data set. Formally, dissimilarity SOM

is the batch kernel SOM for which the feature space is not

Hilbertian but discrete.

3 Application to graphs

The fact that the prototypes are defined in the feature space

H from the original data {x1, . . . , xn} allows to apply the

algorithms described in section 2 to a wide variety of data,

as long as a kernel can be defined on the original set G
(for which no vector structure is needed). In particular, this

algorithm can be used to cluster the vertices of a weighted

graph into homogeneous proximity groups using the graph

structure only, without any assumption on the vertices set.

The problem of clustering the vertices of a graph is of a

great interest, for instance as a tool for understanding the

organization of social networks ([3]). This approach has

already been tested for the dissimilarity SOM on a graph

extracted from a medieval database ([22]).

We use in the rest of the paper the following notations.

The dataset {x1, . . . , xn} consists in the vertices of a graph

G, with a set of edges in E. Each edge (xi, xi′) has a

positive weight wi,i′ (with wi,i′ = 0 ⇔ (xi, xi′) /∈ E).

Weights are assumed to be symmetric (wi,i′ = wi′,i).

We call di the degree of the vertex xi given by di =
∑n

i′=1 wi,i′ .

3.1 The Laplacian and related kernels

In [19], the authors investigate a family of kernels based on

regularization of the Laplacian matrix. The Laplacian of

the graph is the positive matrix L = (Li,i′)i,i′=1,...,n such

that

Li,i′ =

{

−wi,i′ if i 6= i′

di if i = i′

(see [5, 14] for a comprehensive review of the properties

of this matrix). In particular, [19] shows how this discrete

Laplacian can be derived from the usual Laplacian defined

on continuous spaces. Applying regularization functions to

the Laplacian, we obtain a family of matrices including

• Regularized Laplacian: for β > 0, Kβ = (In +
βL)−1;

• and Diffusion matrix: for β > 0, Kβ = e−βL;

These matrices are easy to compute for graphs having a few

hundred of vertices via an eigenvalue decomposition: their

eigensystem is deduced by applying the regularizing func-

tions to the eigenvalues of the Laplacian (the eigenvectors

are the same). Moreover, these matrices can be interpreted

as regularizing matrices because the norm they induced pe-

nalizes more the vectors that vary a lot over close vertices.

The way this penalization is taken into account depends on

the regularizing function applied to the Laplacian matrix.

Using these regularizing matrices, we can define associ-

ated kernel by kβ(xi, xi′) = Kβ
ii′ . Moreover, the diffusion

kernels (see also [14]) can be interpreted as the quantity of

energy accumulated after a given time in a vertex if energy

is injected at time 0 in the other vertex and if the diffusion

is done along the edges. It has then become very popular to

summarize both the global structure and the local proxim-

ities of a graph (see [21, 18] for applications in computa-

tional biology). In [9], the authors investigate the distances

induced by kernels of this type in order to rank the vertices

of a weighted graph; they compare them to each others and



show their good performances compared to standard meth-

ods.

3.2 Simulations

In order to test the 3 algorithms presented in section 2 for

clustering the vertices of a graph, we simulated 50 graphs

having a structure close to the ones described in [4, 22]. We

made them as follow:

• We built 5 complete sub-graphs (Ci)i=1,...,5 (cliques)

having (ni)i=1,...,5 vertices where ni are generated

from a Poisson distribution with parameter 50;

• For all i = 1, . . . , 5, we generated li random links

between Ci and vertices of the other cliques: li
is generated from a uniform distribution on the set

{1, . . . , 100ni}. Finally, multiple links are removed;

thus the simulated graphs are “non-weighted” (i.e.

wi,i′ ∈ {0, 1}).

A simplified version of these types of graphs is shown in

Figure 1: we restricted the mean of xi to 5 and li is gener-

ated from a uniform distribution on {1, . . . , 10ni} in order

to make the visualization possible.

Figure 1: Example of a simulated graph: the vertices of the

5 cliques are represented by different labels (+ � * x o)

Algorithms 1 to 3 were tested on these graphs by using

the diffusion kernel and the dissimilarities (equations (1)

and (2)) built from it. The grid chosen is a 3×3 rectangular

grid for which the central neuron has a neighborhood of

size 2, as illustrated in Figure 2.

We ran all the algorithms until the stabilization is ob-

tained, which leads to:

• 500 iterations for the on-line kernel SOM (algorithm

1);

• 20 iterations for the dissimilarity SOM with both dis-

similarities (algorithm 2);

• 10 iterations for the batch SOM (algorithm 3).

Then, to avoid the influence of the initialization step, the

algorithms were initialized randomly 10 times. For each

graph and each algorithm, the best classification, which

Figure 2: SOM grid used (dark gray is the 1-neighborhood

and light gray the 2-neighborhood of the central neuron)

minimizes the energy of the final grid, is kept. The compu-

tational burden of the algorithms is summarize in Table 1:

it gives the total running time for 50 graphs and 10 initial-

izations per graph. Batch kernel SOM is the fastest whereas

Algorithm on-line k-SOM d-SOM batch k-SOM

Time (min) 260 80 20

Table 1: Computation times

the on-line kernel SOM is very slow because it needs a high

number of iterations to stabilize. For the batch kernel SOM,

we initialize the prototypes with random elements of the

data set (as in the dissimilarity SOM) in order to obtain a

good convergence of the algorithm.

Finally, we tested three parameters for the diffusion ker-

nel (β = 0.1, β = 0.05 and β = 0.01). Higher parameters

were not tested because we had numerical instabilities in

the computation of the dissimilarities for some of the 50

graphs. In order to compare the classifications obtained by

the different algorithms, we computed the following crite-

ria:

• the mean energy (except for the dissimilarity SOM

with dissimilarity (1) which does not have a compa-

rable energy). Notice also that the energies computed

for different values of β can also not be compared;

• the standard deviation of the energy;

• the mean number of classes found by the algorithm;

• after having associated each neuron of the grid to one

of the cliques by a majority vote law, the mean pour-

centage of good classified vertices (vertices assigned

to a neuron associated to its clique);

• the number of links divided by the number of possible

links between 2 vertices assigned to 2 neurons having

distance 1 (or 2, 3, 4) between them on the grid.

The results are summarized in Tables 2 to 5 and an example

of a classification obtained for the batch kernel SOM for the

graph represented in Figure 1 is given in Figure 3.

First of all, we see that the quality of the classification

heavily depends on the choice of β. For this application,

performances decrease with β, with very bad performances

for all the algorithms with the parameter β = 0.01.



β = 0.1 β = 0.05 β = 0.01
Mean energy 0.10 3.21 196

Sd of energy 0.40 4.7 39

Mean nb of classes 8.04 8.92 9

Mean % of 79.84 78.28 39.72

good classif.

% of links for 54.5 58.4 51.3

1-neighborhood

% of links for 39.1 40.0 48.0

2-neighborhood

% of links for 34.9 33.1 45.6

3-neighborhood

% of links for 24.2 28.9 43.8

4-neighborhood

Table 2: Performance criteria for the on-line kernel SOM

β = 0.1 β = 0.05 β = 0.01
Mean energy NA NA NA

Sd of energy NA NA NA

Mean nb of classes 9 9 9

Mean % of 77.34 40.49 29.56

good classif.

% of links for 48.6 45.4 52.5

1-neighborhood

% of links for 42.0 45.5 55.8

2-neighborhood

% of links for 38.0 48.1 57.1

3-neighborhood

% of links for 34.8 51.5 57.0

4-neighborhood

Table 3: Performance criteria for the dissimilarity SOM

(dissimilarity (1))

Then, we can also remark that the performances highly

depend on the graph: the standard deviation of the energy

is high compared to its mean. In fact, 5 graphs always ob-

tained very bad performances and removing them divides

the standard deviation by 20.

Comparing the algorithms to each others, we see that the

batch kernel SOM seems to find the best clustering for the

vertices of the graph: this is the one for which the mean

number of classes found by the algorithm is the closest to

the number of cliques (5). It has also the best pourcentage

of good classified vertices and the smallest number of links

for all neighborhoods, proving that the vertices classified

in the same cluster are also frequently in the same clique.

Then comes the on-line kernel SOM that suffers from a

long computational time and finally, the dissimilarity SOM

with slightly better performances for the dissimilarity (2).

Comparing the first three Tables, we can say that the perfor-

mance gain of the on-line kernel SOM is really poor com-

pared to the computational time differences between the

algorithms. Moreover, interpretation of the clusters mean-

β = 0.1 β = 0.05 β = 0.01
Mean energy 0.13 3.99 300

Sd of energy 0.55 7.3 65

Mean nb of classes 9 9 9

Mean % of 77.89 40.69 29.77

good classif.

% of links for 49.6 45.0 52.3

1-neighborhood

% of links for 41.7 45.7 55.8

2-neighborhood

% of links for 36.9 48.0 56.8

3-neighborhood

% of links for 34.0 51.0 58.8

4-neighborhood

Table 4: Performance criteria for the dissimilarity SOM

(dissimilarity (2))

β = 0.1 β = 0.05 β = 0.01
Mean energy 0.10 3.00 172

Sd of energy 0.38 4.45 35

Mean nb of classes 6.56 7.56 9

Mean % of 94.34 92.72 32.81

good classif.

% of links for 44.9 48.0 47.6

1-neighborhood

% of links for 37.8 37.6 46.6

2-neighborhood

% of links for 29.1 32.3 48.8

3-neighborhood

% of links for 28.6 28.5 46.4

4-neighborhood

Table 5: Performance criteria for batch kernel SOM

ing can take benefit of the fact that prototypes are elements

of the data set. On the contrary, dissimilarity SOM totally

fails in decreasing the number of relevant classes (the mean

number of clusters in the final classification is always the

biggest possible, 9); this leads to a bigger number of links

between two distinct neurons than in the both versions of

kernel SOM.

4 Conclusions

We show in this paper that the dissimilarity SOM used with

a kernel based dissimilarity is a particular case of a batch

kernel SOM. This leads us to the definition of a batch un-

supervised algorithm for clustering the vertices of a graph.

The simulations made on randomly generated graphs prove

that this batch version of kernel SOM is both efficient and

fast. The dissimilarity SOM, which is more restricted, is

less efficient but still have good performances and produces

prototypes that are more easily interpretable. We also em-

phasized the importance of a good choice of the parameter



Figure 3: Example of a classification obtained for the batch

kernel SOM on graph represented in Figure 1

of the kernel, a problem for which an automatic solution

would be very useful in practice.

Acknowledgements
This project is supported by “ANR Non Thématique

2005 : Graphes-Comp”. The authors also want to thank

the anonymous referees for their helpful comments.

References

[1] C. Ambroise and G. Govaert. Analyzing dissimilarity

matrices via Kohonen maps. In Proceedings of 5th

Conference of the International Federation of Classi-

fication Societies (IFCS 1996), volume 2, pages 96–

99, Kobe (Japan), March 1996.

[2] P. Andras. Kernel-Kohonen networks. International

Journal of Neural Systems, 12:117–135, 2002.

[3] S. Bornholdt and H.G. Schuster. Handbook of Graphs

and Networks - From the Genome to the Internet.

Wiley-VCH, Berlin, 2002.

[4] R. Boulet and B. Jouve. Partitionnement d’un réseau

de sociabilité à fort coefficient de clustering. In 7èmes

Journées Francophones “Extraction et Gestion des

Connaissances”, pages 569–574, 2007.

[5] F. Chung. Spectral Graph Theory. Number 92 in

CBMS Regional Conference Series in Mathematics.

American Mathematical Society, 1997.

[6] B. Conan-Guez, F. Rossi, and A. El Golli. Fast

algorithm and implementation of dissimilarity self-

organizing maps. Neural Networks, 19(6-7):855–863,

2006.

[7] M. Cottrell, B. Hammer, A. Hasenfuss, and T. Vill-

mann. Batch and median neural gas. Neural Net-

works, 19:762–771, 2006.

[8] A. El Golli, F. Rossi, B. Conan-Guez, and

Y. Lechevallier. Une adaptation des cartes auto-

organisatrices pour des données décrites par un

tableau de dissimilarités. Revue de Statistique Ap-

pliquée, LIV(3):33–64, 2006.

[9] F. Fouss, L. Yen, A. Pirotte, and M. Saerens. An ex-

perimental investigation of graph kernels on a collab-

orative recommendation task. In IEEE International

Conference on Data Mining (ICDM), pages 863–868,

2006.

[10] T. Graepel, M. Burger, and K. Obermayer. Self-

organizing maps: generalizations and new optimiza-

tion techniques. Neurocomputing, 21:173–190, 1998.

[11] T. Kohohen and P.J. Somervuo. Self-Organizing maps

of symbol strings. Neurocomputing, 21:19–30, 1998.

[12] T. Kohonen. Self-organizing maps of symbol strings.

Technical report a42, Laboratory of computer and in-

formation science, Helsinki University of technoligy,

Finland, 1996.

[13] T. Kohonen. Self-Organizing Maps, 3rd Edition, vol-

ume 30. Springer, Berlin, Heidelberg, New York,

2001.

[14] R.I. Kondor and J. Lafferty. Diffusion kernels on

graphs and other discrete structures. In Proceed-

ings of the 19th International Conference on Machine

Learning, pages 315–322, 2002.

[15] K.W. Lau, H. Yin, and S. Hubbard. Kernel self-

organising maps for classification. Neurocomputing,

69:2033–2040, 2006.

[16] D. Mac Donald and C. Fyfe. The kernel self organ-

ising map. In Proceedings of 4th International Con-

ference on knowledge-based intelligence engineering

systems and applied technologies, pages 317–320,

2000.

[17] B. Schölkopf, A. Smola, and K.R. Müller. Nonlinear

component analysis as a kernel eigenvalue problem.

Neural Computation, 10:1299–1319, 1998.

[18] B. Schölkopf, K. Tsuda, and J.P. Vert. Kernel methods

in computational biology. MIT Press, London, 2004.

[19] A.J. Smola and R. Kondor. Kernels and regulariza-

tion on graphs. In M. Warmuth and B. Schölkopf,

editors, Proceedings of the Conference on Learning

Theory (COLT) and Kernel Workshop, Lecture Notes

in Computer Science, pages 144–158, 2003.

[20] V. Vapnik. The Nature of Statistical Learning Theory.

Springer Verlag, New York, USA, 1995.

[21] J.P. Vert and M. Kanehisa. Extracting active pathways

from gene expression data. Bioinformatics, 19:238ii–

244ii, 2003.

[22] N. Villa and R. Boulet. Clustering a medieval social

network by SOM using a kernel based distance mea-

sure. In M. Verleysen, editor, XVth European Sym-

posium on Artificial Neural Networks, Computational

Intelligence and Machine Learning (ESANN), pages

31–36, Bruges, Belgium, 2007. d-side publications.

[23] H. Yin. On the equivalence between kernel self-

organising maps and self-organising map mixture

density networks. Neural Networks, 19:780–784,

2006.


