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Automated Synthesis of a Finite Complexity

Ordering for Saturation

Yannick Chevalier 1 Mounira Kourjieh 2

1 IRIT, Université de Toulouse, France
2 LORIA-CNRS, Nancy, France

Abstract. We present in this paper a new procedure to saturate a set
of clauses with respect to a well-founded ordering on ground atoms such
that A ≺ B implies V arA ⊆ Var(B) for every atoms A and B. This con-
dition is satisfied by any atom ordering compatible with a lexicographic,
recursive, or multiset path ordering on terms. Our saturation procedure
is based on a priori ordered resolution and its main novelty is the on-the-
fly construction of a finite complexity atom ordering. In contrast with
the usual redundancy, we give a new redundancy notion and we prove
that during the saturation a non-redundant inference by a priori ordered
resolution is also an inference by a posteriori ordered resolution. We also
prove that if a set S of clauses is saturated with respect to an atom
ordering as described above then the problem of whether a clause C is
entailed from S is decidable.

1 Introduction

Resolution is an inference rule introduced by Robinson [14] for theorem proving
in first-order logic. It consists in saturating a theory presented by a finite set
of disjunctions, called clauses, with all its consequences. Since the seminal work
of Robinson, lot of efforts have been devoted to finding strategies that limit the
possible inferences but still are complete for refutation. The correctness of reso-
lution implies the correctness of these strategies. Among these we note selected
resolution [3] and ordered resolution [2] which are correct and refutationally com-
plete. The later being a special case of [7]. Later, it was proved in [4] that if a set
S of clauses is saturated by ordered resolution (with some additional hypotheses
discussed in this paper) then deciding whether a clause C is a consequence of S
is decidable. We present in this paper a weakening of the hypotheses assumed
in [4] that also enjoys this decidability property. In [4], it is proved that satu-
rated sets of clauses are order local, and thus if each atom has a finite number of
smaller atoms then the ground entailment problem is decidable. Orders having
this property are said to be of finite complexity.

We present in this paper a variant of the standard saturation procedure
that builds during saturation an atom rewriting system. This rewriting system
defines a partial ordering on ground atoms that has a finite complexity. Under
our redundancy notion, we prove that the saturation of a set S of clauses implies
its locality (as in [4]) with respect to the ordering based on the atom rewriting



system. As a consequence, if a set S of clauses is saturated with respect to an
atom ordering as described above then the problem of whether a clause C is
entailed from S is decidable. Finally we prove that the conditions imposed on
the atom ordering are satisfied by all atom ordering compatible with a well-
founded, monotone, and subterm term ordering, i.e., most of the standard term
orderings.

Outline of this paper. In Section 2, we present the basic notions that we will use
later in the paper, in Section 3 we present some of the decidability results for the
ground entailment problem given in the literature, in Section 4 we present our
definitions of atom rewriting system, locality and redundancy, in Section 5 we
give our saturation procedure, in Section 6 we give our decidability result, and
in Section 7 we show how our result extends the results presented in Section 3.

2 Formal setting

2.1 Basic notions

Syntax. We assume that we have an infinite set of variables X , an infinite set of
constant symbols C, a set of predicate symbols P and a set of function symbols
F . We associate the function arity to function symbols and predicate symbols,
arity : F∪P → N. The arity of a function symbol (respectively predicate symbol)
indicates the number of arguments that the function symbol (respectively the
predicate symbol) expects. We define the set of terms T (F ,X ) as follows: X , C ⊆
T (F ,X ), and for each function symbol f ∈ F with arity n ≥ 0, for each terms
t1, . . . , tn ∈ T (F ,X ), we have f(t1, . . . , tn) ∈ T (F ,X ). We denote by Var(t) the
set of variables occurring in the term t, and a term t is said to be ground if
Var(t) = ∅. We define subterms of a term t, denoted Sub(t), as follows: if t is
a constant or a variable then Sub(t) = {t}, if t = f(t1, . . . , tn) then Sub(t) =
{t} ∪

⋃
i∈{1,...,n} Sub(ti). We denote by t[s] a term t containing s as subterm.

We define atoms as follows: if I is a predicate symbol in P with arity n ≥ 0
and t1, . . . , tn are terms in T (F ,X ) then I(t1, . . . , tn) is an atom. A literal L is
either A or ¬A where A is an atom and ¬ denotes the negation. The literal L is
a positive literal in the first case, and a negative literal in the second. We denote
by Var(A) the set of variables occurring in the atom A and an atom A is said to
be ground if Var(A) = ∅.

A clause (or full clause) is defined by a set of literals
{¬A1, . . . ,¬Am, B1, . . . , Bn}. It may also be viewed as a formula of the
form Γ → ∆ where Γ = {A1, . . . , Am} and ∆ = {B1, . . . , Bn}; Γ represents the
antecedent of the clause and ∆ its succedent. We denote Atoms(C) the set of
atoms occurring in the clause C. A clause is ground if all its atoms are ground.
A clause Γ → ∆ is Horn when ∆ is a singleton or empty, and unit when it
has only one literal. A clause Γ → ∆ is positive when it has only a succedent,
i.e. Γ = ∅ and is negative when it has only an antecedent, i.e. ∆ = ∅. We
write Γ1, Γ2 to indicate the union of the two sets Γ1 and Γ2 and usually omit
braces. For example, we write Γ,A or A,Γ for the union of {A} and Γ or write



A1, . . . , Am → B1, . . . , Bn for {A1, . . . , Am} → {B1, . . . , Bn}. We also make
more simplifications, for example we write A to denote the positive unit clause
∅ → A, and ¬A to denote the negative unit clause A → ∅. Let C be a clause,
we denote by ¬C the set of unit clauses ¬L with L a literal in C; For example,
¬C = {A1, . . . , Am,¬B1, . . . ,¬Bn} when C = A1, . . . , Am → B1, . . . , Bn. We
say that a term t occurs in an atom A if A is of the form I(. . . , u, . . .) with t a
subterm of u and t occurs in a clause if it occurs in an atom of the clause.

Substitutions and unifiers. A substitution σ is a partial function from variables
X to terms T (F ,X ) such that Supp(σ) = {x|σ(x) 6= x} is a finite set and
Supp(σ) ∩ V ar(Ran(σ)) = ∅ with Ran(σ) = {σ(x)|x ∈ Supp(σ)}. We denote
by V ar(σ) the set V ar(Ran(σ)). A substitution σ with Supp(σ) = ∅ is called
the empty substitution or the identity substitution. A substitution σ is said to
be ground if V ar(σ) = ∅, that is Ran(σ) is a set of ground terms. A renaming
ρ is an injective substitution such that Ran(ρ) ⊆ X . A substitution σ is more
general than a substitution τ , and we note σ ≤ τ , if there exists a substitution
θ such that σθ = τ . Equivalent substitutions, i.e. substitutions σ and τ such
that σ ≤ τ and τ ≤ σ are said to be equal up to renaming since in that case
the substitution θ is a bijective mapping from variables to variables. If M is an
expression (i.e. a term, an atom, a clause, or a set of such objects) and σ is a
substitution, then Mσ is obtained by applying σ to M as usually defined; We
say that Mσ is an instance of M and if Mσ is ground we say that σ is grounding
M .

A substitution σ is said to be a unifier of two elements (i.e. terms or atoms)
e1, e2 if e1σ = e2σ. We denote Unif(e1, e2) the set of unifiers of the two elements
e1 and e2. It is well-known that whenever the set Unif(e1, e2) is not empty it
has a unique minimal element up to renaming. This minimal element is called
the most general unifier of e1 and e2, and is denoted mgu(e1, e2).

Orderings. A (strict) ordering ≻ on a set of elements E is a transitive and
irreflexive binary relation on E. The ordering ≻ is said to be:

– total if for any two different elements e, e′ ∈ E, we have either e ≻ e′ or
e′ ≻ e;

– well-founded if there is no infinite descending chain e ≻ e1 ≻ . . . for any
element e in E;

– monotone if e ≻ e′ then eσ ≻ e′σ for any elements e, e′ in E and any
substitution σ.

Any ordering ≻ on a set of elements E can be extended to an ordering ≻set

on finite sets over E as follows: if η1 and η2 are two finite sets over E, we have
η1 ≻set η2 if (i) η1 6= η2 and (ii) for every e ∈ η2 \ η1 then there is e′ ∈ η1 \ η2
such that e′ ≻ e. Given a set η1, a smaller set η2 is obtained by replacing an
element in η1 by a (possibly empty) finite set of strictly smaller elements. We
call an element e maximal (respectively strictly maximal) with respect to a set
η of elements if for any element e′ ∈ η we have e′ 6≻ e (respectively e′ 6� e). If



the ordering ≻ is total (respectively well-founded and monotone), so is its set
extension.

We denote by an atom ordering ≻a (respectively term ordering ≻t) any
arbitrary ordering on atoms (respectively on terms). We extend an atom ordering
≻a to a clause ordering as follows: we identify clauses with the sets of their
respective atoms, and we order the clauses with respect to the sets of their
respective atoms using the ordering ≻a

set. For example, the clauses A1, A2 →
B and A1 → B are identified respectively with the following sets of atoms
{A1, A2, B} and {A1, B}; The second set is strictly smaller than the first one
with respect to the ordering ≻a

set, and hence the second clause is strictly smaller
than the first one.

In the remainder of this paper, we assume that the atom ordering ≻a

is monotone, well-founded, and is such that A ≺a B implies Var(A) ⊆
Var(B) for every atoms A and B.

2.2 Resolution

The resolution is an inference rule introduced by Robinson [14]; It is one of the
most successful methods for automated proof search in first-order logic. We say
that a set S of clauses is unsatisfiable if there is no Herbrand interpretation
satisfying it, and satisfiable otherwise. Given a set S of clauses and a ground
clause C, S |= C means that C is true in every Herbrand model of S; It is easy
to see that S |= C iff S ∪ ¬C is unsatisfiable. A proof by refutation of S |= C
consists in proving that S∪¬C is unsatisfiable. The resolution has been proved in
[14] to be correct and complete for refutation. The correctness of the resolution
means that the empty clause (i.e. a contradiction) can not be derived from any
satisfiable set of clauses, and the completeness means that the empty clause can
be derived from any unsatisfiable set of clauses.

The resolution is described by the two inference rules given in Fig. 1. The
clause (Γ, Γ ′ → ∆,∆′)α of the resolution rule is called the resolvent of the
premises (Γ → ∆,A and A′, Γ ′ → ∆′) or the conclusion of the inference, and
the atom Aα is called the resolved atom. In the factoring rule, the clause (Γ →
∆,A)α is called the factor of the premise (Γ → ∆,A,A′) or the conclusion of
the inference, and the atom Aα is called the factored atom.

Γ → ∆,A A′, Γ ′ → ∆′

(Γ, Γ ′ → ∆,∆′)α

where α = mgu(A,A′).

(a) Resolution rule.

Γ → ∆,A,A′

(Γ → ∆,A)α

where α = mgu(A,A′).

(b) Factoring rule.

Fig. 1: Standard resolution and factoring rules



Ordered resolution. Since the seminal work of Robinson [14] lot of efforts have
been devoted to finding strategies that limit the possible inferences but still
are complete for refutation and correct; The correctness of these strategies is
obtained from the correctness of the resolution. Among these strategies, there
is the ordered resolution [1] which is used in this paper and will be presented in
this paragraph.

The ordered resolution makes use of an atom ordering ≻a and is described
by two inference rules: ordered factoring rule and ordered resolution rule. We
distinguish two types of ordered resolution: the posteriori ordered resolution and
the priori ordered resolution.

Γ → ∆,A A′, Γ ′ → ∆′

(Γ, Γ ′ → ∆,∆′)α

where α = mgu(A,A′), Aα is strictly
maximal with respect to Γα, ∆α for
≻a, and Aα is maximal with respect to
Γ ′α, ∆′α for ≻a.

(a) Posteriori ordered resolution rule.

Γ → ∆,A,A′

(Γ → ∆,A)α

where α = mgu(A,A′), Aα is strictly
maximal with respect to Γα for ≻a,
and maximal with respect to ∆α for
≻a.

(b) Posteriori ordered factoring rule.

Γ → ∆,A A′, Γ ′ → ∆′

(Γ, Γ ′ → ∆,∆′)α

where α = mgu(A,A′), A is maximal
with respect to Γ, ∆ for ≻a, and A′ is
maximal with respect to Γ ′, ∆′ for ≻a.

(c) Priori ordered resolution rule.

Γ → ∆,A,A′

(Γ → ∆,A)α

where α = mgu(A,A′), A is maximal
with respect to Γ and ∆ for ≻a.

(d) Priori ordered factoring rule.

Fig. 2: Posteriori and priori ordered resolution and factoring rules.

Remarks.

1. The posteriori ordered resolution is actually the ordered resolution intro-
duced in [1] and the priori ordered resolution is related to the selected res-
olution which is widely studied in the literature [9].

2. We remark that the two types of ordered resolution coincide on ground
clauses, but not on non-ground clauses: let us consider the following two
clauses C = I(b, y) → I(x, y) and D = I(a, b) → ∅ and the ordering:
I(a, b) ≺a I(b, b). We have σ = {x 7→ a, y 7→ b} is the most general uni-
fier of I(x, y) and I(a, b). We remark that I(a, b) is maximal with respect to
∅, I(x, y) and I(b, y) are not comparable and hence I(x, y) is maximal with
respect to I(b, y). This implies that the priori ordered resolution inference
rule can be applied to the clauses C and D but not the posteriori ordered in-
ference rule since I(x, y)σ = I(a, b) ≺a I(b, b). We remark that in the case of
monotone atom ordering as we consider in this paper, the posteriori ordered
resolution is included in the priori ordered resolution.



In spite of this difference between priori and posteriori ordered resolution, we
introduce a redundancy notion such that every non-redundant priori ordered
resolution inference is a posteriori ordered resolution inference (see Lemma 4).

It is well-known that the posteriori ordered resolution and the priori ordered
resolution are correct and complete [14, 1].

Ground entailment problem. The ground entailment problem studied in this pa-
per is defined as follow:

Given a set S of clauses, the ground entailment problem for S is defined
as follows:

Input: a ground clause C.
Output: ”entailed” if and only if S |= C.

3 Decidable fragments of first order logic

It is known that the ground entailment problem for Horn clauses and full clauses
sets is undecidable in general. Here, we mention decidability results for some
fragments.

3.1 McAllester’s result

In [11], D. McAllester was interested by Horn clauses. He first defined the sub-
term locality as follows: a set S of Horn clauses is subterm local if for every
ground Horn clause C, we have S |= C if and only if C is entailed from a set of
ground instances of clauses in S in which each term is a subterm of a ground
term in S or in C. It is proved in [11] that if a set S of Horn clauses is finite and
subterm local then its ground entailment problem is decidable.

3.2 Basin and Ganzinger results

In [4], D. Basin and H. Ganzinger generalized McAllester’s result by allowing
monotone, total, well-founded ordering over terms, and full (not Horn) clauses.
To this end, they introduced several notions and we recall next some of them.
A set of clauses S is said to be order local with respect to a term ordering ≻t if
for every ground clause C, we have S |= C if and only if C is entailed from a set
of ground instances of clauses in S in which each term is smaller than or equal
to some term in C. It is proved in [4] that if a set S of clauses is saturated up to
redundancy by posteriori ordered resolution for a total, monotone, well-founded
atom ordering then S is order local.

A term ordering ≻t is said to be of complexity f, g, whenever for each clause
of size n (the size of a term is the number of nodes in its tree representation
and the size of a clause is the sum of sizes of its terms) there exists O(f(n))
terms that are smaller than or equal to a term in the clause, and that they may



be enumerated in time g(n). D. Basin and H. Ganzinger obtained the following
decidability results:

1. If S is a set of (full) clauses that is order local with respect to a term ordering
≻t of complexity f, g then the ground entailment problem for S is decidable.

2. If S is a set of (full) clauses saturated up to redundancy by posteriori ordered
resolution with respect to a complete well-founded atom ordering, and if, for
each clause in S, each of its maximal atoms contains all the variables of the
clause, then the ground entailment problem for S is decidable.

3. However, if the restriction on the variables in maximal atoms (the condition
in the previous point) is removed, the ground entailment problem becomes
undecidable in general.

We prove in this paper that it is possible to partially remove the condition on
variables mentioned above while keeping the decidability of the ground entail-
ment problem. More precisely: we prove in Theorem 1 the decidability of the
ground entailment problem for S when S is a finite saturated set of clauses with
respect to an atom ordering which is well-founded, monotone and such that
A ≺a B implies Var(A) ⊆ Var(B) for every atoms A and B.

The next three sections are devoted to this result.

4 Locality and redundancy

We introduce an atom rewriting system to model a new ordering relation between
atoms. Our goal is to restrict the atom ordering ≺a to an ordering ≺R such that
each atom has only a finite number of predecessors.

Definition 1. (Rewriting system on atoms.) Given an atom ordering ≻a, we
define a rewriting system R on atoms as a set of rules L → R where L and R
are two atoms with L �a R.

We give next some definitions that we use later in this section.

Definition 2. Let A and B be two atoms, C be a clause and R a rewriting
system on atoms. We have:

– A ↓R= {B such that A →∗
R B}, i.e. A ↓R denotes the set of atoms reachable

from A when applying rules in R.

– C ↓R= {A ↓R such that A is an atom in C }.
– A ↓R−= A ↓R \{A}.
– C ↓R−= {A ↓R− such that A is an atom in C }.
– A ≺R B whenever A ∈ B ↓R− .

Lemma 1. Let A and B be two distinct atoms. We have that A →R B implies
A≻aB; And A ≺R B implies A ≺a B and Var(A) ⊆ Var(B).



Proof. Let A and B be two distinct atoms such that A →R B, then there exists a
rule L → R ∈ R, a substitution σ such that A = Lσ and B = Rσ. By definition
of R, we have L �a R and then, by monotonicity of ≻a, Lσ = A �a Rσ = B.
Since A and B are different, we conclude that A ≻a B. Now we assume that
A ≺R B, this implies that A ∈ B ↓R− , and hence B →∗

R A. Since A 6= B we
then have B≻aA. Since A ≺a B implies Var(A) ⊆ Var(B) (by hypothesis on the
ordering ≻a), we then have A ≺R B implies Var(A) ⊆ Var(B).

Lemma 2. Let R be a finite rewriting system on atoms. If A is a ground atom
then the set A ↓R is finite.

Proof. Let A be a ground atom. By Lemma 1, we have A ↓R is a set of ground
atoms. Consider that graph G = (A ↓R, V ) where (D,D′) ∈ V if and only if
D 6= D′ and D →R D′. By Definition 2, (D,D′) ∈ V implies D ≻R D′. Thus
G is acyclic. Since R is finite and Var(R) ⊆ Var(L) for every rule L → R ∈ R,
each node has a finite number of direct successor nodes. By König′s lemma, if
the graph G is infinite it has an infinite path. The atoms on this infinite path
form an infinite strictly decreasing sequence of atoms A ≻a A1 ≻a A2 ≻a . . .
which contradicts the well-foundness of ≻a. We then conclude that the graph G
is finite, and hence is the set A ↓R.

Definition 3. (Rewriting system based on a set of clauses) Let S be a set of
clauses. The rewriting system R(S) based on S is a rewriting system on atoms
defined by the set of rewriting rules L → R such that L and R are two atoms of
C with C ∈ S and L �a R.

We remark that when S is finite R(S) is also finite, and S ⊆ S′ implies R(S) ⊆
R(S′).

We now deviate from the traditional notion of refutational proof and define
instead the notion of local dag proof. Informally, a refutational proof of S ∪ ¬C
for a set S of clauses and a clause C is a tree where leaves are labeled by ground
instances of clauses in {S ∪ ¬C}, internal nodes are labeled by the conclusion
of the resolution applied to the antecedent nodes, and the root is labeled by
the empty clause. In the dag proof we introduce an ordering on the nodes such
that the leaves are minimal and the root is maximal with respect to this new
ordering.

Definition 4. (Dag proofs) Given a set S of clauses, a clause C and an ordered
finite set of ground clauses (T,<T ). We call (T,<T ) a dag proof of S ∪ ¬C if:

1. for any clause t ∈ T , we have either t is a ground instance of a clause in
S ∪ ¬C, or there exists t1, t2 ∈ T with t1, t2 <T t and t is the conclusion of
the resolution applied to t1 and t2.

2. T contains the empty clause.

When such (T,<T ) exists, we write S ⊢ C. In a dag proof, each minimal clause
with respect to the ordering <T is called a leave.



Definition 5. (Local dag proofs) Given a set S of clauses, a clause C, an or-
dered finite set of ground clauses (T,<T ) and a set A of ground atoms. We call
(T,<T ) a A-local dag proof of S ∪ ¬C if (T,<T ) is a dag proof of S ∪ ¬C and
Atoms(T ) ⊆ A. When such (T,<T ) and A exist, we write S ⊢A C.

Lemma 3. Given a finite set S of clauses, a ground clause C and a finite rewrit-
ing system on atoms R, we can decide whether S ⊢C↓R

C.

Proof. R is finite, and C is ground, this implies that C ↓R is finite and ground
(Lemma 2). For each C ↓R local dag proof of S ∪ ¬C, leaves are in a finite
set of ground clauses, and the set of these leaves is unsatisfiable. The problem
consisting is determining whether a finite set of ground clauses is unsatisfiable is
decidable, and hence we can decide whether there exists a C ↓R local dag proof
of S ∪ ¬C.

We define a notion of redundancy that identifies clauses and inferences that
are not needed for performing the saturation procedure.

Definition 6. (Redundancy) Let R be a finite rewriting system on atoms, a
ground clause C is called R-redundant in a set S of clauses if S ⊢C↓R

C, a
non-ground clause C is called R-redundant in a set S of clauses if all its ground
instances are R-redundant in S, and an inference C′, C”  C by ordered res-
olution is called R-redundant in the set S of clauses if (1) one of the premises
(C′ and C”) is R-redundant in S, or else if (2) S ⊢C↓R

C.

Note that under this definition of redundancy, if a clause C in S is subsumed by
a clause C′ in S then C is R-redundant in S.
Using this notion of redundancy, we show next how to relate a priori and a
posteriori ordered resolution rules.

Lemma 4. Let C1 = Γ1 → ∆1, A1 and C2 = A2, Γ2 → ∆2 be two clauses,
C1, C2  C be an inference by priori ordered resolution with A1σ the resolved
atom, and R = R(C1σ)∪R(C2σ). Then either this inference is R-redundant in
{C1, C2} or is an inference by posteriori ordered resolution.

Proof. We have C1 = Γ1 → ∆1, A1, C2 = A2, Γ2 → ∆2, and C1, C2  C with
C = Γ1σ, Γ2σ → ∆1σ,∆2σ be an inference by priori ordered resolution. We
assume that C1, C2  C is not an inference by posteriori ordered resolution.
Then either A1σ is not strictly maximal for ≻a in the set of atoms of C1σ, or
A1σ is not maximal for ≻a in the set of atoms of C2σ. This implies that there
is an atom B in C with A1σ �a B. Let j be such that B ∈ Atoms(Cjσ). Cjσ
contains A1σ and B with A1σ �a B. This implies that B → A1σ ∈ R(Cjσ),
and hence A1σσS,C ∈ Atoms(CσS,C) ↓R with S = {C1, C2}. We then have
C1, C2 ⊢CσS,C↓R

C, and hence the inference C1, C2  C is R-redundant in
{C1, C2}.



5 Saturation

Definition 7. (Saturated set of clauses) Let R be a rewriting system on atoms.
We say that a set S of clauses is R-saturated up to redundancy by ordered res-
olution if (1) any inference by priori ordered resolution from premises in S is
R-redundant in S, (2) R(S) ⊆ R, and (3) for each priori ordered resolution
inference C1, C2  C with C1, C2 ∈ S, if the resolved atom Aσ is not strictly
maximal in C1σ or not maximal in C2σ then R({C1σ,C2σ}) ⊆ R.

We present now a procedure that, providing it terminates, constructs from a
finite set S of clauses a pair (S′,R) such that S′ is a finite set of clauses, R is
a rewriting system on atoms, and for every ground clause C, we have S |= C iff
S′ ⊢C↓R

C.

Input:

A finite set S of clauses.
Initialization:

Let (S1,R1) = (S,R(S)), and i = 1.
Transformation step:

We construct the pair (Si+1,Ri+1) from the pair (Si,Ri) as follows: Let
C1, C2  C be an inference by ordered resolution with C1, C2 ∈ Si, and Aσ

the resolved atom; One of the following three cases will be applied:
– Non-maximality: If Aσ is not strictly maximal for ≻a in the atoms

of C1σ or not maximal for ≻a in the atoms of C2σ then Si+1 = Si,
Ri+1 = Ri ∪ R({C1σ,C2σ}), and i = i+ 1;

– Redundancy: Otherwise, if Si ⊢C↓Ri
C then Si+1 = Si, Ri+1 = Ri, and

i = i+ 1;
– Discovery: Otherwise a new clause useful for establishing local proofs

has been discovered, and hence Si+1 = Si ∪ {C}, Ri+1 = Ri ∪ R(C),
and i = i+ 1.

Iteration:

We repeat the Transformation step until a fixed point is reached.

Returns (Si,Ri).

Fig. 3: Saturation procedure

Definition 8. The saturation procedure is called fair when every possible infer-
ence by priori ordered resolution has been performed.

From now on, we only consider fair saturation procedure and we may omit the
word ”fair” for simplicity.
We prove next that the saturation procedure actually constructs a saturated set
of clauses.

Proposition 1. Let S be a finite set of clauses and (S′,R) be the output of the
saturation procedure. S′ is R-saturated.



Proof. Let S be a finite set of clauses such that the saturation procedure ter-
minates and outputs (S′,R). By the initialization and discovery cases of the
saturation, we have R(S′) ⊆ R, and by the non-maximality case of the satu-
ration procedure we have R({C1σ,C2σ}) ⊆ R for each C1, C2 ∈ S′ on which
priori ordered resolution is possible but not posteriori ordered resolution. Now,
we prove that any inference by ordered resolution from premises in S′ is R-
redundant in S′. Let C1, C2  C be an inference by ordered resolution with
C1, C2 ∈ S′. Since the saturation is fair, this inference has been considered dur-
ing the computation of (S′,R), and falls into one of the following cases: the
redundancy, the non-maximality, the discovery. By contradiction, assume that
C1, C2  C is not R-redundant in S′, then we fall in one of the two other cases:

non-maximality: the resolved atom Aσ is not strictly maximal in the atoms
of C. Therefore C1, C2  C is not an inference by posteriori ordered res-
olution, and by construction R(C1σ) ∪ R(C2σ) ⊆ R. Furthermore, Lemma
4 implies that the inference is R(C1σ) ∪R(C2σ)-redundant, and hence it is
R-redundant, which contradicts our assumption of non-redundancy.

discovery: this case implies that C ∈ S′, and then it is trivial that the inference
is R-redundant in S′, which contradicts our assumption of non-redundancy.

As a consequence every inference between two clauses of S′ must be R-
redundant. We finally conclude that S′ is R-saturated.

6 Decidability of the ground entailment problem

We consider in this section a finite set S of clauses, and a finite rewriting system
R on atoms such that S is R-saturated.

Proposition 2. Let C be a ground clause. We have that S |= C implies S ⊢C↓R

C.

Proof. Let R be a finite rewrite system on atoms, S be a finite set of clauses
which is R-saturated, and C be a ground clause such that S |= C. Let Π be a
set of DAG proofs of S ∪ ¬C. Since the resolution is complete and correct, we
have Π 6= ∅. For every π ∈ Π , let δ(π) = Atoms(π) ↓R \Atoms(C) ↓R be the
distance from π to a local dag proof (if δ(π) = ∅ then π is a local dag proof).

Let π ∈ Π be such that δ(π) is minimal, and let us prove that δ(π) = ∅. By
contradiction, assume that δ(π) 6= ∅ and let A be a maximal atom in δ(π) for
the ordering ≺a. By Lemma 1, we have that B →R B′ implies that B �a B′ and
hence A is an atom of π. We prove in the next claim that A must be maximal
with respect to the atoms of π for the ordering ≺R.

Claim 1. The atom A is maximal in Atoms(π) for the ordering ≺R.

Proof of the claim. By contradiction if this were not the case there would exist
an atom B ∈ Atoms(π) with B 6= A, A ≺R B, and hence A ≺a B (Lemma
1). Since A is maximal in δ(π) for the ordering ≺a, we would have that B
is not in Atoms(π) ↓R \Atoms(C) ↓R, and thus B ∈ Atoms(C) ↓R. Since
A ≺a B, we have that A ∈ Atoms(C) ↓R, which contradicts A ∈ δ(π).



Let Leaves+A be the set of leaves of π that contain the atom A, and Leaves−A
be the set of leaves that do not contain A. The correctness and completeness of
the resolution implies that the set of clauses Leaves+A ∪ Leaves−A is unsatisfiable.

Claim 2. Each clause CA ∈ Leaves+A is an instance with a substitution σ of a
clause Cs

A ∈ S with every atom As satisfying Asσ = A is maximal for ≻a.

Proof of the claim. By definition of Leaves+A, CA is either a ground instance
of a clause in S or a clause in ¬C. Since A is not an atom occurring in C the
later case is excluded. Thus there exists a clause Cs

A ∈ S, an atom As ∈ Cs
A,

and a substitution σ such that Asσ = A and Cs
Aσ = CA. Finally if As is not

maximal for ≻a in Cs
A and R(S) ⊆ R then it is not maximal for ≺R in Cs

A

and thus by monotonicity, A is not maximal for ≺R in the atoms of CA. This
contradicts the fact that A is maximal for ≺R among the atoms occurring in
π.

Thus every resolution on A between two clauses C,C′ in Leaves+A is a ground
instance with substitution σ of a priori ordered resolution between two clauses
Cs, C′s in S. In π, Leaves+A are the unique leaves containing A; Furthermore, A is
maximal in each clause of Leaves+A for the ordering ≻a by Claim 2. This implies
that we can first eliminate all the occurrences of the atom A by application
of the priori ordered resolution on Leaves+A, and let Leaves′ be the obtained
set of clauses after performing all possible resolutions on A in Leaves+A. The
unsatisfiability of Leaves+A ∪ Leaves−A implies that unsatisfiability of Leaves′ ∪
Leaves−A. We prove next that we can construct a new DAG proof π′ of S ∪ ¬C
with δ(π′) ≺set

a δ(π).
Let C = Γ → ∆,A, C′ = A,Γ ′ → ∆′ be two clauses in Leaves+A, and let

C′′ be the result of the resolution on C and C′. By definition of Leaves′, we
have C′′ ∈ Leaves′. Let Cs and C′s be two clauses on S such that: C = Csσ,
C′ = C′sσ, As ∈ Atoms(Cs) with As maximal in Cs for ≻a and A = Asσ, A′s ∈
Atoms(C′s) with A′s maximal in C′s for ≻a and A = A′sσ. Wlog, assume that
ordered factorization has been applied to Cs and C′s so that there is one-to-one
mapping between atoms of Cs (respectively C′s) and atoms of C (respectively
atoms of C′). The priori ordered resolution can then be applied to Cs and C′s

with θ the most general unifier of As and A′s, and C′′s is the obtained clause.
Since S is R-saturated, this inference is saturated and then one of the two
following cases holds:

1. C′′s ∈ S: C′′ is then a ground instance of a clause in S. In this case we
let S(C′′) = {C′′}. We remark that Atoms(C′′) = Atoms(C ∪ C′) \ {A} ⊆
Atoms(π) \ {A}.

2. C′′s /∈ S: by the saturation procedure, we have two cases:
(a) Non-maximality: the inference Cs, C′s

 C′′s is not an inference by
posteriori ordered resolution, and hence by Lemma 4, the inference
is R(Csθ ∪ C′sθ)-redundant in {Cs, C′s}, and then R-redundant in
{Cs, C′s}. By definition of the redundancy, we then have S ⊢C′′↓R

C′′.
We then let S(C′′) be a set ground instances of clauses of S whose atoms



are in C′′ ↓R that entails C′′. We remark that Atoms(S(C′′)) ⊆ C′′ ↓R⊆
(Atoms(π) \A) ↓R.

(b) Redundancy: C′′s is R-redundant in S, and then by Definition 6,
all ground instances of C′′s are R-redundant in S. This implies that
S ⊢C′′↓R

C′′. We let S(C′′) be a set ground instances of clauses
of S whose atoms are in C′′ ↓R that entails C′′. We remark that
Atoms(S(C′′)) ⊆ C′′ ↓R⊆ Atoms(π) \A ↓R.

The unsatisfiability of Leaves+A ∪ Leaves−A implies the unsatisfiability of
Leaves−A ∪

⋃
C′′∈Leaves′

S(C′′), and hence there is a DAG proof π′ of Leaves−A ∪⋃
C′′∈Leaves′

S(C′′), which is also a DAG proof of S ∪ ¬C. We prove next that
δ(π′) ≺set

a δ(π).

δ(π′) = Atoms(π′) ↓R \Atoms(C) ↓R

= [Atoms(Leaves−A) ∪
⋃

C′′∈Leaves′

Atoms(S(C′′))] ↓R \Atoms(C) ↓R

⊆ (Atoms(π) \A ∪Atoms(Leaves′)) ↓R \Atoms(C) ↓R

⊆ (Atoms(π) ↓R \A) \Atoms(C) ↓R (maximality of A in Atoms(π))

= (Atoms(π) ↓R \Atoms(C) ↓R) \A

= δ(π) \A.

Since A ∈ δ(π) and is maximal, we then have δ(π′) ≺set
a δ(π), and hence, there

is a DAG proof π′ of S ∪ ¬C with δ(π′) strictly smaller than δ(π) and that
contradicts the minimality of δ(π). We conclude that δ(π) = ∅, and hence we
have S ⊢C↓R

C.

Proposition 3. Let C be a ground clause. We have that S ⊢C↓R
C implies

S |= C.

Proof. Let C be a ground clause such that S ⊢C↓R
C. This implies that there is

a DAG proof of S ∪ ¬C, and hence by correctness of the resolution, S ∪ ¬C is
unsatisfiable, and hence S |= C.

Proposition 4. Let R be a finite rewriting system on atoms, and S be an R-
saturated set of clauses. The ground entailment problem for S is decidable.

Proof. Let C be an arbitrary ground clause, the ground entailment problem for
S is decidable if and only if S |= C is decidable. By the propositions 2 and 3, we
have that S |= C if and only if S ⊢C↓R

C. By Lemma 3, S ⊢C↓R
C is decidable.

We conclude that S |= C is decidable, and hence the ground entailment problem
is decidable.

From the previous lemmas and propositions, we obviously deduce the follow-
ing theorem which is the main result of the paper.



Theorem 1. Let ≻a be a well-founded, monotone atom ordering such that A ≺a

B implies Var(A) ⊆ Var(B) for every atoms A and B. Let S be a set of clauses
such that the saturation on S terminates using the atom ordering ≻a. Then the
ground entailment problem for S is decidable.

7 Comparison with existing works

This paper is meant to be an extension of [4] to more general orderings and it
relies on a priori instead of a posteriori ordered resolution used in [4]. Though
various settings are considered in [4], a common trait is that the atom ordering
≺a and the term ordering ≺t satisfy the following:

– the term ordering ≺t is well-founded and total on ground terms;
– the atom ordering ≺a is compatible with the term ordering ≺t, i.e.

A(s1, . . . , sm) ≺a B(t1, . . . , tn) whenever for any 1 ≤ j ≤ m there exists
1 ≤ i ≤ n such that sj ≺t ti;

– the atom ordering ≺a is monotone;
– every term t has only a finite number of smaller terms for ≺t.

We prove below that such orderings also satisfy our criteria when the underlying
term ordering is subterm (i.e. u[t] ≻ t for every terms u and t), which is the case
for term orderings such as KBO, LPO, RPO, etc.

Proposition 5. If there exists an infinite number of terms and if the term
ordering ≺t is subterm then under the above conditions A ≺a B implies
Var(A) ⊆ Var(B).

Proof. Assume there exists a term t such that there does not exist t′ with t ≺t

t′. Since the ordering is total on ground terms for every term t′ 6= t we have
t′ ≺t t. Since there exists an infinite number of ground terms this contradicts
the assumption that every term has only a finite number of terms smaller than
itself. Thus for every term t there exists a term t′ with t ≺t t

′.
Now let A and B be two atoms, and assume Var(A) 6⊆ Var(B). Let σ be

a substitution grounding B, i.e., Bσ = b(s1, . . . , sm). Wlog assume that s1 is
maximal among the s1, . . . , sm for the term ordering ≺t. Let t be a term greater
than s1. Let us extend σ on Var(A) \Var(B) by a substitution τ mapping every
x ∈ Var(A) \ Var(B) to t. Since there is at least one occurrence of one such
x in A, and since the ordering is subterm, there exists a term t′ in Aστ that
contains t as a subterm. Since the ordering is subterm this implies t ≺t t

′. Since
the ordering on ground atoms is compatible with the ordering on ground terms
this implies Bσ ≺a Aστ . Thus Var(A) 6⊆ Var(B) implies A 6≺a B.

Finally the assumptions employed in [4] to derive complexity results imply
that the number of atoms smaller than a given ground atom of size n is in
O(f(n)) and such atoms may be enumerated in time O(g(n)) for two computable
functions f and g. Since we do not assume the same finiteness property we cannot
directly state complexity results. However we note that there is a lot of works



on the complexity analysis of term rewriting systems. While these works aim at
bounding the maximal length of a derivation, we believe that it could still be
useful to provide theoretic upper bounds on the number of atoms smaller than
the atoms in a fixed set C for the constructed ordering ≺R.

8 Conclusion

We have presented in this paper an extension of a classical result by Basin and
Ganzinger [4]. The relaxation of the hypothesis on the ordering lead to a further
extension for resolution modulo an equational theory [8, 13, 15]. We note that
the redundancy notion introduced in [1] is based on an ordering of clauses as
multisets of literals. A drawback of the saturation procedure presented in this
paper is that clauses are seen as sets of literals; Thus we cannot apply as is
their result of combination of saturation with subsumption. We plan to prove in
future works that it is possible to add to our saturation procedure a backward
subsumption rule while preserving the construction of the finite complexity atom
ordering.

We believe the technique employed can be extended to add a reflectivity
or transitivity axiom to an already saturated theory. Also, we thank Chris
Lynch [10] for having pointed to us (by giving a counter-example) that the
method cannot be extended as is to superposition. Finally we believe that a
consequence of our proof is that saturated theories are complete for contextual
deduction [5, 12], which may help in the resolution of [6], though further work is
needed to confirm this conjecture.
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