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Abstract. Certifying critical systems requires very precise specifications and ability to ver-
ify each development step. However, proofreading and test based verification are usually
not exhaustive and as systems get more complex, their coverage is less and less adequate.
Use of models allows early verification, validation and automated building of “correct by
construction” systems. Our work targets formal specification and verification of model trans-
formations. Such techniques provide significantly higher confidence of correctness and can
even reach exhaustiveness. In this paper, we rely on common model driven engineering tech-
niques to allow common engineers to write these specifications and to conduct verification.
We propose to use a simple transformation model for specifying the expected relation between
the source and target models after the transformation. The source and target metamodels
are extended with a traceability model that defines a set of links that must exist after the
transformation and whose correctness is specified as OCL constraints.

1 Introduction

Software is playing an increasing role in all domains, including safety critical domains such as
avionics, railway, nuclear energy or medicine, besides more traditional domains. It is well known
that all these systems are becoming more and more complex. Model Driven Engineering (MDE)
is one of the techniques that has been applied quite successfully for designing complex software
systems. Splitting a system into layers and abstracting different system properties into respective
models makes large systems manageable. In an iterative or V-like development process high-level
system requirements and initial coarse models are refined until the requirements and models are
precise enough to be implemented. In many cases, software code can be largely or fully automatically
generated from low-level models. On the other hand, modelling languages have often (but not
always) clearly defined syntax and semantics. This makes a model a formal specification analysable
by formal mathematically based methods. Besides complexity, in critical embedded systems there
is also a related strong concern regarding safety for the end-users and the environment. A critical
software system cannot be released and embedded without complying fully with the certification of
its corresponding domain, for example DO-178C in the avionics, ISO26262 in the automotive and
ECSS for space systems. Most of these are process-oriented, requiring that every stage of the software
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development needs to be verified and verifiable. The exact means for achieving these goals are usually
left open and are up to the party seeking certification or qualification. An important aspect in these
normative guidelines is the need for clear separation between specification, implementation and
verification. Splitting these concerns to separate tasks that can be allocated to independent parties
(a requirement for highly critical systems) helps to eliminate both specification and implementation
flaws. Most commonly the final implementation is verified against the low level requirements via
extensive testing. If the low-level requirements are in a form of human language, then the respective
testsuites must be first manually created and their conformance and coverage of the requirements
must be separately shown. If however, the requirements are in a formal language, then automatic
verification or test generation can be applied. Ideally, the implementation can be even automatically
generated from the requirement specification, as for example in the COMPCERT compiler project
from Leroy [13] that is currently being experimented for flight control software by one of the authors
[8]. This approach was experimented in the GeneAuto project where this experiment also takes
place by one of the authors [10]. However, the proof assistant technologies it relies on is costly
and requires expert users that are currently not available in the software engineering industry that
implements development tools for safety critical systems.

The use cases of transforming computer data differ largely in size and complexity ranging, for
example, from transforming a configuration table to another configuration table upto translating
a general purpose programming language to assembly code. While verifying the compilation of
traditional programming languages to lower level languages has been studied a lot and there exist
many good techniques, the studies of Domain Specific Language (DSL) transformation, model
transformation and code generation is much less established. This is largely due to the fact that
each case is somewhat unique - developed according to a particular need, the languages are likely
to change over time and moreover, there might not be a clear formal specification of the respective
languages and a suitable semantics must be chosen during the specification of the transformation.
Often the semantic gap between the source and target languages of such transformations is also
larger than in traditional program compilation. The approach we present here is a lightweight
syntactic-structural way to specify the transformations in the Model Driven Engineering (MDE)
fashion as model transformations and specify the details of the transformation relations using Object
Constraint Language (OCL) constraints. Our approach has several similarities with the ones in [15]
and [4], but has an important methodological difference - we are making the links between the source
and target models explicit and part of the transformation specification. Our approach is a gray-box
approach, which has several advantages when dealing with complex transformations.

The paper proceeds as follows. We will first present a model transformation case study that
is based on the GeneAuto embedded code generator in Section 2. We will then give a high-level
overview of the proposed transformation specification and verification scheme in Sections 3 and 4.
In Section 5 we will formalise the specification of the transformation used in the case study and
in Section 6 we describe an experimental setup that implements the whole approach. In Section 7
we explain how some routine part of the specification can be automated and in Section 8 comment
some possible extensions of the approach.



2 Case study: Verifying transformations in the GeneAuto code
generator

GeneAuto3 is an open code generator project for transforming a set of high-level graphical mod-
elling languages to selected common textual programming languages (see [20, 11, 19, 1] that describe
the evolution of the toolset in the last 6 years). It currently supports subsets of Simulink, Stateflow
and Scicos as input and C and Ada language as output. It is intended to be used and certified for
critical embedded systems. That‘s why its design follows a clear modular MDE approach allowing
to independently verify different transformation phases. After the initial importing step transfor-
mations are carried out as a sequence of refinements of intermediate models, as displayed on Figure
1.

Simulink 

Scicos 

Ada 

C 

Stateflow 

Import Convert Print 

… 

Fig. 1. Model transformation chain in the GeneAuto code generator.

Altogether there are about 50-60 transformation passes in the tool depending on the configu-
ration. Some of them are rather small and simple structure preserving transformations, but others
are rather complex or change significantly the model structure. For practical purposes collections of
transformations are combined into independent executables called elementary tools. An elementary
tool reads its input model from a file and writes the output model to another file. The low-level tool
requirements or transformation specification is written with respect to these observable interme-
diate models. However, often these are a result of several successive transformations and verifying
the structural correspondence between the input and output models is non-trivial. Here, explicit
transformation links provided by the transformation tool can be very helpful, as shown by the next
example. Currently, the specification for most of the elementary tools in GeneAuto have been
specified in the English language, with a notable exception of the Block Sequencer tool that has
been specified and implemented in the Coq proof assistant [10]. The natural language requirements
are of course incomplete, ambiguous and not directly verifiable. In our case study we have for-
malised some of these requirements in such a way that the specification can be directly used for
transformation verification according to the scheme described in Section 3. We will look at some
transformations done by a tool called Functional Model Pre-Processor (FMPreProcessor), which
handles normalising and refinement of Simulink and Scicos block diagrams. The tool is executed
right after importing a user model (a diagram). At this point there is only rather basic information
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known about the model. Figure 2 shows a section of the simplified GASystemModel metamodel
with the relevant concepts.

Signal

Block

blockType : EString

Port

SystemBlock

Outport Inport

emf

dstPort 1srcPort 1

signals
0..*

inPorts 0..*outPorts0..*

blocks

0..*

Fig. 2. A fragment of the simplified GASystemModel metamodel

The FMPreProcessor tool performs several quite simple transformations. Some of these are:

– Replaces subsystems (hierarchical blocks) that have corresponding library equivalents by library
blocks

– Flattens virtual subsystems
– Matches and replaces primitive blocks with library blocks
– Removes Goto-From block pairs
– Determines the execution priorities of concurrent blocks based on their graphical position

As a concrete example we will look at removing Goto-From block pairs. Goto-From blocks (see
Figure 3) are a way in a Simulink diagram to avoid visual clutter and split signals to sections. The
GeneAuto tool removes such block pairs during the model preprocessing. A matching Goto-From
pair is deleted, the endpoint of the first signal is moved to the endpoint of the second signal and
the second signal is also deleted.

Verifying the correctness of this transformation is easy, provided that this is the only transforma-
tion. However, if transformations add up, even repetitive applications of the same transformation,
like on figure 3, where the endpoint of the signal from From1 to Goto2 is also removed, then it will
be much harder to verify the transformation’s correctness. Such analysis would have to determine in
the source model the whole flow path from the block In1 to the first block that will not be removed.
It would have to know a lot more about the model and transformation semantics. On the other
hand, if the transformation tool maintains a link relating each port to a port in a target model,
then a property like the correctness of a Goto-From removal can be specified and verified with a
few simple OCL rules. What all the transformation tools has to do to allow it, is to store that after
the first transformation:



Out1

1

In1

1

Out1

1

Goto2

[B]

Goto1

[A]

From2

[B]

From1

[A]

In1
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Fig. 3. Simulink diagram with chained Goto-From blocks before the normalizing trans-
formation (above) and after it (below)

1. Goto1, From1 and s2 were replaced by s1
2. The port corresponding to the input port of Goto1 is now the input port of Goto2

And after the second transformation:

1. Goto1, From1 and s2 were replaced by s1
2. The port corresponding to the input port of Goto1 is now the input port of Out1
3. Goto2, From2 and s3 were replaced by s1
4. The port corresponding to the input port of Goto2 is now the input port of Out1.

3 Metamodel based transformation specification with explicit relation
links

3.1 A posteriori transformation verification

To prove that an implementation of a program or model transformation (a transformation tool)
matches its specification there are broadly two approaches. First, one could verify once and for all,
that the implementation is correct for any possible input, as for example in [13]. This approach
is naturally preferable, when possible. However, in some cases an alternative approach of verifying
the correctness of the transformation a posteriori on a transformation instance level can be more
feasible. This idea is not new. The approach and a term Translation Validation was proposed by A.
Pnueli in [16]. The approach suggests that a program transformation phase should be followed by
a verification phase, which independently from the transformation tool, verifies that the semantics
of the source and target programs are the same. It further suggests that the transformation tool
could provide hints to the verifier tool to help build the relation between the source and target
programs more efficiently, but these should not affect the logical outcome of the verification phase.
This approach generally has the obvious drawback of having to perform the verification after each
transformation instance, when compared to the approach of a verified transformation tool. However,
its main advantage is a simpler specification of the properties of interest and a simpler verification
tool. Hence, the approach can be of advantage, when the requirements for the transformation tool
are complex and evolving, as is often the case for realistic compilers or domain specific program
transformers. Also, verifying the correctness of the verifier itself can be simpler in this case.



3.2 Metamodel based transformation specification

In the context of MDE the manipulated artefacts are models. The type of models is usually re-
ferred to as a metamodel: a model that defines the concepts of an instance model. This relation is
purely syntactical. The Meta-Object Facility (MOF)4 OMG standard defines a formal four-layered
(M0..M3) metamodelling architecture. For example, the metamodel of the widely used Unified Mod-
eling Language (UML) is a M2 MOF model. Similarly, all domain specific languages can also be
expressed as MOF models. The core of MOF allows only expressing simple structural properties,
like associations between elements, containment, cardinality etc.

The Object Constraints Language (OCL)5 is a standard declarative first order constraint and
query language, which can be used to refine MOF models. For instance, one can specify structural
invariants, definitions and pre-post contracts of abstract MOF operations in the OCL language.
Model transformations can also be specified as models and transformation constraints as correctness
properties of the transformation model. Figure 4 presents the high-level view of our approach.
Both, the transformation input and output models are expected to conform to their respective
metamodels. These metamodels consist of a basic structural specification with possibly additional
OCL constraints. The input and output metamodels can be the same or different. The first kind
of transformation is also known as a refinement or endogenous transformation and the second one
as exogenous.

Output 
Specification 

Source 
MetaModel 

(MOF+OCL)

Transformation 
Specification

Target 
MetaModel 

(MOF+OCL)

Relation 
MetaModel 

MetaModel 
(MOF+OCL)

Input 
Specification 

references references

Source Target 

model 
conforms to conforms to

conforms to

includes includesincludes

Fig. 4. High level view of the model transformation specification

The transformation metamodel contains three essential parts: source, target and a transforma-
tion relation. The transformation relation is a set of explicit links between elements in the source

4 http://www.omg.org/mof
5 http://www.omg.org/spec/OCL/2.2



and target model. These explicit links play a key role in our approach. These links must be explicitly
given along with the transformation instance to allow feasible verification of the correctness of the
transformation. In our approach these links are part of the specification and it is the responsibility of
the transformation performer, be it a tool or even human, to provide these links. Such an approach
is also called a gray-box approach: we require some information from the transformation performer,
but we don’t need to know all the details of the implementation. The number and kinds of links that
must be specified is transformation specific and somewhat open. The relation metamodel defines
the structure of the links and the properties they must satisfy and the transformation metamodel
defines, which links must exist.

3.3 Checking the correctness of the transformation

In this setting, the correctness of the transformation instance can be simply verified by checking
first, that the target model conforms to the target metamodel and its constraints (conformance of
the source model to its metamodel and constraints can be assumed and is likely to be at least partly
verified during the transformation phase), that the transformation model structurally conforms to
the transformation metamodel, that all the required translation links exist and finally that all links
satisfy the respective constraints. These checks can be carried out using any standard metamodelling
framework and an OCL checker. Figure 5 displays a high-level view of such a workflow.

Source 
model 

Transformation 

Target 
model 

Link 
relation 

Transfor- 
mation 

Validation tool 
(OCL Checker)

Transformation 
Specification 

Error 
model 

realizes

… 

… 

OK 

Fig. 5. High-level view of model transformation and verification

Structural correspondence verification of a transformation requires relating and element-wise
comparing of elements in source and target models. The main difficulty relies in matching the
corresponding elements. If the transformation is simple and structure preserving, then establishing
the structural correspondence relation is straightforward and can be even automated [5, 4, 15, 14].
However, if transformations are more complex or combined, then this correspondence is much harder
to establish, resulting in complex and computationally expensive verification criteria. An example



is given in Section 2. Explicit transformation links, on the other hand, make it trivial to identify
the related elements. It is also not necessary for all elements of source and target models to be
explicitly linked. Generally, it is only required that the explicit relation is given for elements, where
the location of the translated elements in the target model doesn’t follow directly from the relative
location of the source elements in the source model. This is also shown in Section 2.

Such an implementation can be used for early testing of the requirements and be replaced
with a different one when needed. An important additional property of our approach is that: the
transformation specification does not need to be complete to be usable. It can initially only address
the parts whose verification is of primary concern and other parts can be specified as needed.

3.4 About executable specification

It must be noted that technologically this approach has some common points with an ”executable
specification” approach. In its MDE version, the source and target specifications are also given by
metamodels. The transformation specification too follows a certain metamodel : the metamodel of
the transformation language (for example, QVT6, ATL7). But differently from ours, the transfor-
mation model is the transformation specification and is executed with respect to a given source
model to produce the target model. This approach might be good for some transformations. Espe-
cially, when the transformation can be specified declaratively. However, complex transformations
are hard to represent purely declaratively. Secondly, such a transformation scheme might not satisfy
the performance or other non-functional requirements that can be met in a custom transformation
implementation. Thirdly, verifying the correctness of a generic model transformation engine is gen-
erally more complex than verifying an OCL checker. Finally, this approach alone does not answer
the required separation of concerns and independence between specification, implementation and
verification described in Section 1.

But on the other hand, since our approach presented above makes no assumptions of the trans-
formation implementation technology, the “executable specification” can be treated as a realisation
of the basic transformation specification and it can benefit from the source and target metamodel
specifications. The only additional requirement is that besides the output model it must also pro-
duce the required explicit transformation links.

3.5 Interpretation of the verification result

The transformation implementation might not be perfect. If the verification passes for a specific
transformation run, the output is known to satisfy the specified properties. If the verification fails,
one has either the option to fix the transformation tool or the output. For large and complex
applications fixing a bug might be a lengthy process and/or not under the control of the user
of the tool. In some cases it might be possible to correct the output instead. If the verification
then succeeds, the user has a verified output with similar guarantees as in the first case. Finally, a
failure in the verification phase islikely to give messages that are understandable to the user. This
is because the verification checks only structural properties of the source and target model and is
able to immediately point the user to a violated rule in the OCL language and particular source
and target elements. The OCL language is understandable by common engineers and there is no
reference to intermediate data that has been built by the verification tools, only to the source and
target models.

6 http://www.omg.org/spec/QVT/1.0
7 http://eclipse.org/atl



4 Transformation Metamodel

To perform model-based specification and verification of the transformation, we express the trans-
formation of interest also as a model. Figure 6 shows our metamodel of the transformation model.
This model has three main parts: references to source and target models and the relation links.
The links refer to some elements in the source and target models and we expect the transformation
tool to provide them. For convenient specification and verification of completness properties we also
use backlinks from model elements to links. However, these backlinks can be built automatically
during the verification phase. To simplify the model transformation constraints, we have introduced
an attribute inSrcModel and an inverse derived attribute inTgtModel to the GenerciModelElement
class.

TransformationModel

GenericModel

GenericLink
GenericModelElement

inSrcModel : EBoolean

inTgtModel : EBoolean

LinkModel

src1 tgt1 links
1

elements
0..*

src 1..*

tgt
1..*

srcLinks

0..*

links 0..*

tgtLinks 0..*

Fig. 6. Transformation Metamodel

A valid transformation model needs to comply with the transformation metamodel and a set
of additional OCL constraints. Some of these constraints just specify the basic consistency of a
transformation model. For example, to ensure the correctness of the relation links, we define the
following OCL constraints (represented partially, the OCL keyword inv defines an invariant and
the keyword context specifies, for which class the constraint applies to).

context GenericModelElement
inv s r c h a s o n l y s r c l i n k s : inSrcModel

implies tgtLinks−>isEmpty ( )
inv t g t h a s o n l y t g t l i n k s : inTgtModel

implies s rcLinks−>isEmpty ( )
inv s r c l i n k s s t a r t f r o m s r c : . . .
inv t g t l i n k s e n d i n t g t : . . .



context GenericLink
inv s r c e l e m s a l l d e f i n e d : . . .
inv t g t e l e m s a l l d e f i n e d : . . .

Other constraints are transformation specific and are specified in either the context of the
respective model elements or the relation links. We use a following general pattern: for source and
target metamodel elements we specify as class invariants which links they must have and for links
we specify as class invariants the respective transformation’s correctness properties. This will be
illustrated by an example in Section 5.

5 Correctness of the Goto-From elimination transformation

To specify the correctness of the Goto-From elimination described in Section 2 we define a specific
link class GotoFrom2SignalLink. In the transformation specifiction we also refer to another link
class Port2PortLink, which keeps track of the transformation of the port. This ability to refer
and navigate through links in the transformation specification makes writing precise and directly
verifyable specifications very convenient - we can refer to the image of any transformed element in the
target model by following the link. This allows to specify a complex transformation compositionally
and verify multiple transformations with one pass.

The main OCL rules that check the correctness of a Goto-From pair elimination are given below.
Notice the getTgtPort operation used in the gotoTagCheck that navigates from a port of a source
model block to a corresponding port in the target model. The target port, as explained in Section
2, might not be in the same relative location as the original.

context Block
inv Goto block has GotoFromLink :

type = ’ Goto ’ implies s rcLinks−>one (
oc l I sKindOf ( GotoFrom2SignalLink ) )

inv From block has GotoFromLink :
type = ’From ’ implies s rcLinks−>one (

oc l I sKindOf ( GotoFrom2SignalLink ) )
inv Goto block inSrcMode l on ly :

type = ’ Goto ’ implies inSrcModel
inv From block inSrcModel only :

type = ’From ’ implies inSrcModel

context GotoFrom2SignalLink
inv s i g S t a r t T r a n s f :

s rcGotoSig . s r cPort . getTgtPort = t g t S i g . s r cPort
inv s igEndTransf :

srcFromSig . dstPort . getTgtPort = t g t S i g . dstPort
inv gotoTagCheck :

srcGotoBlock . getParamValue ( ’ GotoTag ’ ) =
srcFromBlock . getParamValue ( ’ GotoTag ’ )



6 Experimental verification infrastructure

Our experimental verification framework has been written in Java using standard components from
the Eclipse Modeling Framework (EMF8) for model handling and OCL checking. However, the
approach is general and only requires capabilities to read MOF compliant models and execute
OCL queries. The transformation tool that we use in our case study, FMPreProcessor, has also
been implemented in Java, however, this is again not a restriction, since it is only required from
the transformation tool to input and output MOF compliant models and output also the required
link information relation as a MOF compliant model.

The transformation workflow using the GeneAuto toolset starts by either the SimulinkIm-
porter or ScicosImporter tool that transforms a user model to an intermediate model SM1 in the
GeneAuto System Model Language (GASystemModel). This model is read by the FMPreProces-
sor tool, which transforms it to SM2 and outputs also the required links. The SM2 model is in turn
read by the next tool in the transformation chain.

The verification workflow begins with a small tool called TransformationBuilder that reads the
input and output models and links, and converts them to a Transformation Model. This tool also
builds the backlinks described in Section 4. Alternatively, the Transformation Model could be also
built by the transformation tool, but then one must additionally verify that the source part of
the Transformation Model exactly corresponds to the original source model of the transformation
(SM1, in our example), as the Transformation Model was built by the tool we are verifying and we
should not trust it. The Transformation Model is then fed to an OCLChecker tool along with a set
of OCL files. The OCLChecker processes the OCL files one-by-one and checks the constraints in it
with respect to the relevant elements in its input model (the Transformation Model). It produces
as output either the result “Success” or an Error Model containing information about the failed
constraints and references to concrete model elements that violated them.

Preferably, the formal specification exists before a transformation is implemented. However, it
is possible also to refine the specification and apply the presented approach at a later phase. In our
case study the FMPreProcessor tool already existed, when carrying out the study. We made small
non-intrusive modifications in the tool to record and output the relation links. If the requirement to
maintain the transformation links had existed beforehand, it would have cost no additional effort
at this stage. Additionally, we have implemented an interface between the presented verification
toolchain and the existing GeneAuto testsuite enabling to run the verification automatically on
a large number of models. We plan to extend this study to specify and verify a larger part of
GeneAuto in this style. The material related to the experiment can be found at http://toom.

perso.enseeiht.fr/verification.

7 Automating specification of refinement transformations

In refinement transformations the source and target metamodels (languages) are the same. Such
transformations have significant practical importance. For instance, in the GeneAuto embedded
code generator that we use in our case study there are about 50-60 model transformation phases, but
there are only two intermediate languages and the majority of the transformations are endogenous.

Endogenous transformations change only a part of the model and one also needs to specify
that the ”other parts” do not change. This can be a rather tedious task to do manually for large

8 http://www.eclipse.org/modeling/emf



metamodels. However, it can be partly automated. It is relatively easy to generate the specification
of an identity transformation. Then the specification can be manually refined to take into account
the required changes in the model. For instance, ATL can be used to generate a part of the relation
metamodel and the respective OCL constraints based on the source metamodel. We have partly
used this in our case study.

8 Perspectives

As we target this work to be used in the modeling community and in an industrial context, we plan
to extend it on other transformations in order to test for the scalability of the approach both in
size and practical complexity. For the moment it’s difficult to measure the difficulty to write the
full specification of a code generator like Geneauto without proceeding to further investigations.
The practical complexity must also be addressed by describing a taxonomy of transformations
constraints adapted to model transformations specification.

We also plan to address the verification of the specification itself by developing a methodology
for combining the syntactic transformation specification with additional semantics-based analysis
to show the soundness and completeness of the transformation specification with respect to the
semantics of the source and target languages. By verifying the conservation of the semantic prop-
erties by the application of the transformation we may be able to prove the soundness of the whole
transformation independently of the implementation language.

9 Related works

Many authors target the verification of model transformations or code generation with various
purposes and technologies (see [6] for a compiler verification bibliography). We restricted this com-
parison to the closest ones: the use of model driven engineering technologies for the specification
and verification of model transformation using the translation validation method. The main specific
aspects of our proposal are that: a) we target qualification with respect to certification standards;
b) thus we must consider the global process including independent specification, implementation
and verification activities; c) we rely on OMG standards for the specification and do not enforce any
technology on the implementation; d) we target only structural properties and propose to handle
semantic aspects using more appropriate technologies for the specification validation in a separate
phase done by different people than the one that implement the transformation; and e) we must be
able to handle industrial size models.

Many proposals rely on the use of formal methods and targets both structural and semantics
issues. Based on the feedbacks from the industrial partners in the GeneAuto project, we have
chosen to focus on structural properties in order to ease the use of our proposal by classical software
engineering team in the industry and its acceptation by certification authorities. Semantics issues
will be handled at the specification validation phase by specialists. On the structural properties
side, declarative languages based on rewriting rules have been the subject of many proposals based
on model checking technologies (see Varro et al. [17]) or rewriting technologies like concluence or
termination checking (see Taentzer et al. [9, 12, 7]). However, these technologies do not scale well
to industrial size models.

Cariou et al. have proposed in [5] to specify model transformation using pre and post conditions
on the source and target metamodel expressed using OCL constraints. This work was improved



in [4] and experimented on another use case in [3]. The key difference is that they propose to
build the transformation model automatically based on the available information in the source and
target models. The implementation can thus be a black-box one. However, if the metamodels do
not contain the appropriate information, it might not be possible to build the mandatory links, or
it might be very costly for industrial size models. The use of explicit traceability links through the
transformation model allows to alleviate that risk at the cost of enforcing the transformation to
build the links. However, this kind of links are already mandatory for the development of certified
systems. Thus, they do not increase the costs.

Narayanan et al. first proposed in [14] to use translation validation for verifying the correctness
of model transformation. They focus on the verification method and rely on the cross-links created
as part of the the transformation in the GReAT9 language much in the same manner as the
traceability links from the transformation model in our proposal. Their proposal could be applied
to most of the declarative transformation languages that enforce the use of explicit or implicit
links between source and targets in order to execute the transformations, e.g. the QVT/Relational
standard, Atlas Transformation Language (ATL10) or Triple Graph Grammar [18] based tools like
Fujaba11 or Moflon12, . . . . However, these links are most of the time implementation links that
appear each time a transformation rule is applied. Thus, either the rules are written in order
to ease the implementation and you usually get much more links than needed, or you introduce
constraints on the way you can implement the transformation in order to produce exactly the links
needed for the verification. This last case is sometime not possible as the links are also needed for
the internal management of the transformation. This work also focus on semantics verification that
is significantly more complex and cannot usually be handled by common software engineers.

Büttner et al. have proposed recently in [2] to rely on the links inside the transformation model in
order to ease the verification of transformation. They propose to extract the links from declarative
transformation languages taking ATL as use case and then implement verification activities as
OCL constraints on the extracted model. The verification approach is very close to our proposal.
However, as the links are derived from the transformation implementation, the drawbacks stated
in the previous paragraph still apply.

Narayanan et al. have also proposed something very similar to our proposal in [15]. They ad-
vocate to focus on structural properties, to specify the transformation as relations between the
source and target metamodels and then to extract these links from the cross-links used for the
implementation of the transformation with the GReaT language. There is a potential drawback
if the structures of the source and target metamodels are very different. It might be required to
build the transformation using several intermediate models as it is usually the case with declarative
languages. Then it might get complicated to retrieve the specification link that is a composition of
many implementation links. The transitive closure of a transformation rule is already a complex
case: should it be translated to a single specification link, to all the intermediate links, to only the
implementation links ? We enforce the implementation to build exactly the right links that must
be precisely described in the specification. This introduces a cost on the implementation side but
it also relieves the implementation team from the constraint of using a declarative transformation
language. Morevover, as in our approach it is possible to reference the links in the transforma-

9 http://repo.isis.vanderbilt.edu/tools/get_tool?GReAT
10 http://eclipse.org/atl
11 http://www.fujaba.de
12 http://www.moflon.org



tion specification, complex and composed transformations can be specified and implemented more
flexibly.

10 Conclusion

We have described a pragmatic approach for specifying and verifying model transformations using
standard modelling techniques, explicit specification of a subset of the transformation relation and
OCL for specifying the transformation’s correctness properties. Such an approach is well suited to
the development process of complex and critical software. It promotes early formalization of the
system’s requirements and supports a separation of concerns between the domain specialist, who
specifies the initial requirements, implementor of the transformation and a verifier. Verification of
the implementation with respect to the specification is performed automatically using an OCL
checker. However, the specification itself can be further verified by a verification specialist, who
can independently verify the soundness and consistency of the specification by formal techniques,
e.g. theorem proving. The last step is facilitated by the fact that the requirements have already
been specified in a formal language (MOF with OCL). On the other hand, the transformation
specification does not need to be complete to be usable, thus allowing to verify some properties of
a transformation specification and implementation already at a very early stage.

On a high-level, the proposed approach is similar to the Translation Validation technique [16].
This has, on one hand, the obvious drawback of having to perform verification after each transfor-
mation instance. However, it has also advantages, when the transformation specification is complex
and subject to evolvement, as in many realistic tools. The fact that in our case the specification
is expressed strucutrally and using standard modelling techniques, makes the approach applicable
also in an industrial context by industrial engineers. In a certified/qualified context it is also very
important to be able to feasibly vertify the verification toolchain itself. This is facilitated by the
fact that our approach makes use of a rather lightweight toolchain and standard components.

We have developed an experimental verification framework for testing our approach using Java
and components from the EMF framework. We have formalised the transformation specification
of some of the transformations from the GeneAuto embedded code generator and verified their
correctness using the scheme proposed here. This experiment has been integrated in the GeneAuto
nightly built testing framework. We plan to extend this work to other transformations in order to
test the scalability of the approach both in size and practical complexity. We plan also to develop
a methodology for combining the syntactic transformation specification with additional semantics-
based analysis to show the soundness and completeness of the transformation specification with
respect to the semantics of the source and target languages.
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l’Automobile, http://www.sia.fr (2010)

20. Toom, A., Naks, T., Pantel, M., Gandriau, M., Wati, I.: Gene-auto - an automatic code generator
for a safe subset of simulink-stateflow and scicos. In: European symposium on Real Time Systems
(ERTS), Toulouse, 29/01/08-01/02/08. p. (electronic medium). Société des Ingénieurs de l’Automobile,
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