
Diet-ethic: Fair Scheduling of Optional Computations in

GridRPC Middleware

Frédéric Camillo, Eddy Caron, Ronan Guivarch, Aurélie Hurault, Cristian

Klein, Christian Pérez

To cite this version:

Frédéric Camillo, Eddy Caron, Ronan Guivarch, Aurélie Hurault, Cristian Klein, et al.. Diet-
ethic: Fair Scheduling of Optional Computations in GridRPC Middleware. [Research Report]
RR-7959, INRIA. 2012. <hal-00696104v2>

HAL Id: hal-00696104

https://hal.inria.fr/hal-00696104v2

Submitted on 18 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50539285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00696104v2

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
79

59
--

FR
+E

N
G

RESEARCH
REPORT
N° 7959
10 Mai 2012

Project-Team Avalon

DIET-ethic: Fair
Scheduling of Optional
Computations in
GridRPC Middleware
Frédéric CAMILLOb, Eddy CARONa, Ronan GUIVARCHb, Aurélie
HURAULTb, Cristian KLEINa, Christian PÉREZa

aLIP, UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668,
University of Lyon, France, firstname.lastname@inria.fr
bUniversity of Toulouse - INPT (ENSEEIHT) - IRIT, firstname.lastname@enseeiht.fr

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Diet-ethic: Fair Scheduling of Optional
Computations in GridRPC Middleware

Frédéric CAMILLOb, Eddy CARONa, Ronan GUIVARCHb,
Aurélie HURAULTb, Cristian KLEINa, Christian PÉREZa

aLIP, UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668,
University of Lyon, France, firstname.lastname@inria.fr

bUniversity of Toulouse - INPT (ENSEEIHT) - IRIT,
firstname.lastname@enseeiht.fr

Project-Team Avalon

Research Report n° 7959 — 10 Mai 2012 — 16 pages

Abstract: Most HPC platforms require users to submit a pre-determined number of computa-
tion requests (also called jobs). Unfortunately, this is cumbersome when some of the computations
are optional, i.e., they are not critical, but their completion would improve results. For example,
given a deadline, the number of requests to submit for a Monte Carlo experiment is difficult to
choose. The more requests are completed, the better the results are, however, submitting too many
might overload the platform. Conversely, submitting too few requests may leave resources unused
and misses an opportunity to improve the results.
This paper introduces and solves the problem of scheduling optional computations. An architecture
which auto-tunes the number of requests is proposed, then implemented in the DIET GridRPC
middleware. Real-life experiments show that several metrics are improved, such as user satisfaction,
fairness and the number of completed requests. Moreover, the solution is shown to be scalable.
Key-words: HPC; GridRPC; malleable applications; Grid’5000

Diet-ethic: Ordonnancement équitable des calculs optionnels
dans un intergiciel GridRPC

Résumé : La plupart des plate-formes HPC demandent à l’utilisateur de soumettre un nombre
pré-déterminé de requêtes de calcul (aussi appelées « job »). Malheureusement, cela n’est pas pertinent
quand une partie des calculs est optionnelle, c’est-à-dire, que l’exécution des requêtes n’est pas critique
pour l’utilisateur, mais que leur complétion pourrait améliorer les résultats. Par exemple, étant donnée
une date limite, le nombre de requêtes à soumettre pour une expérience Monte Carlo est difficile à choisir.
Plus il y a des requêtes qui sont exécutées, meilleures sont les résultats. Cependant, en soumettant trop
de requêtes, on risque de surcharger la plate-forme. À l’opposé, en ne soumettant pas assez de requêtes,
les ressources sont sous-exploitées alors qu’elles auraient pu être utilisées pour améliorer les résultats.

Cet article introduit et résout le problème d’ordonnancer des requêtes optionnelles. Une architecture
qui choisit automatiquement le nombre de requêtes est proposée puis implémentée dans l’intergiciel
GridRPC DIET. Les expériences faites sur de vraies plate-formes – telles que Grid’5000 – montrent
que plusieurs métriques peuvent être améliorées, telles que la satisfaction des utilisateurs, l’équité et le
nombre des requêtes exécutées. Enfin, la solution proposée passe à l’échelle.
Mots-clés : HPC; GridRPC; applications malleables; Grid’5000

Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Middleware 3

1 Introduction
High-Performance Computing (HPC) resources,
such as super-computers and clusters, are managed
by resource management systems, such as batch
schedulers [1]. In order for a user to do compu-
tations on such resources, she has to submit a pre-
determined number of requests (also called jobs).
For example, in order to execute a Parameter-
Sweep Application (PSA), users generally submit
one request for each of the parameters that are to
be explored. Otherwise, they can coalesce multiple
parameters in a single request, as done using the
pilot job abstraction [2]. After all requests have
completed, the user gathers the results and analy-
ses them.

Unfortunately, choosing the requests to submit
is cumbersome to do in advance for applications
which have optional computations, i.e., compu-
tations that are not critical to the user, but their
completion would improve results. For example,
a widely used method to test the numerical sta-
bility of complex simulations is sampling-based un-
certainty analysis [3], such as Monte Carlo exper-
iments. Applications range from aerospace engi-
neering to validating nuclear power plant design.
At its core, the method consists in varying input
parameters and studying the changes in the out-
put parameters. The larger the number of tested
input parameters, the better the quality of the re-
sults are. Hence, a typical user would like to test as
many parameters as possible before a given dead-
line.

To run such computation on an HPC platform,
the user would have to choose a number of re-
quests to submit. If too many requests are submit-
ted, then the resources are over-utilized, preventing
other scientists from completing their simulations
in due time. If too few requests are submitted, re-
sources might be left idle, thus, the user lost an op-
portunity to improve her results. Hence, the user
faces the difficulty of choosing the number of re-
quests to submit.

Given the current platforms, finding a solution
to this problem is difficult. An attempt at solving
it has been done in the context of Cloud comput-
ing. Amazon proposes spot instances [4], which are
virtual machine instances that can be terminated
whenever the Cloud manager chooses to. Spot in-
stances can be used to contain optional computa-

tions, as opposed to HPC instances [5] which con-
tain mandatory computations. But even such an
approach does not guarantee fairness. Intuitively,
there is no guarantee that the system balances re-
sources among the optional computations of each
user.

This paper introduces and solves a new schedul-
ing problem: fair scheduling of optional compu-
tations. Our contribution is three-fold: first, we
present a motivating example and formulate the
problem statement of this novel scheduling prob-
lem; second, we present a platform architecture
which efficiently solves this problem; third, we
evaluate our approach and show through real ex-
periments its feasibility using a production-level
GridRPC [6] middleware called Diet [7]. Results
show that user unhappiness can be reduced to
0 and that unfairness can be decreased by up to
150 times.

The remaining of the paper is organized as fol-
lows: Section 2 presents a motivating use-case,
which is then formalized into a problem statement
in Section 3. Section 4 describes an architecture
which solves the stated problem, and which is eval-
uated in Section 5. Section 6 compares our ap-
proach with related work. Section 7 concludes the
paper.

2 A Motivating Use-case
This section briefly presents the Grid-TLSE
project and a motivating use-case called multiple
threshold pivoting.

The main goal of the Grid-TLSE project [8] is
to design an expert site that provides easy access
to many direct solvers for sparse linear systems, al-
lowing their comparative analysis. The site assists
users in choosing the right solver for their prob-
lems, appropriate values for the control parameters
of the selected solver and the best computer archi-
tecture. Grid-TLSE also serves as a testbed for
experts in sparse linear algebra. A computational
Grid is used to execute all the runs arising from
user requests, which is accessed using GridRPC.
The Grid-TLSE project has started in 2002 years
and is currently being used by 157 users.

Let us detail how direct solvers work. Solving
a linear system of the form Ax = b usually con-
sists of three steps: analyse, factorisation and solve.

RR n° 7959

4 F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez

 0

 1

 2

 3

0 0.01
0.17

0.33
0.5

0.67
0.83

1
 1

 1.1

 1.2

 1.3

B
ac

k
w

ar
d
 e

rr
o
r

(1
0

-1
2
)

R
el

at
iv

e
ex

ec
u
ti

o
n
 t

im
e

Threshold pivoting parameter

5
0
.6

5
0
.0

Backward error
Execution time

Figure 1: Example of the results output by a direct
solver; backward error is defined as ||b−Ax||/||b||

During the factorisation step of an asymmetric ma-
trix, the matrices L and U are computed such that
LU = A. In order to preserve the numerical stabil-
ity (e.g., avoiding the division by a small number)
pivoting can take place. One way to select the pivot
is to choose a diagonal entry according to a given
threshold. The selection of the threshold is impor-
tant and for some values, the result of the solution
of the linear system can be very bad (see Figure 1).

An often requested feature is to allow a user to
run as many factorizations as possible, with differ-
ent thresholds, until a given deadline is reached.
If the deadline is too tight or resources are highly
loaded, the system should test at least 3 thresholds,
for example. In other words, the user needs to sub-
mit a few mandatory requests, which need to
be solved whether the deadline is due or not, and
a large number of optional requests, which the
user would like to have computed, but are not as
useful as to wait for their completion past the dead-
line.

Using GridRPC, it is difficult to choose the num-
ber of optional requests to submit to the platform.
Obviously, if too few requests are submitted, the
number of tested thresholds is suboptimal. If too
many are submitted, the optional requests of other
users might not have a chance at getting executing,
which would be unfair. Even worse, the platform
might be so overloaded that the other users might
need to wait past their deadlines for the comple-
tion of the mandatory requests, which makes them
unhappy.

3 Problem Statement
This section formalizes the problem. First, the re-
source and user models are described. Second, the
metrics that the system has to optimize are defined.

3.1 Resource Model

Let the platform be composed of nR resources,
which are homogeneous (a computation request has
the same execution time on any resource), static
(resources are neither added nor removed during
execution) and reliable (resources do not fail).

This model is somewhat simple but still applica-
ble in many cases. For example, it fairly well ap-
proximates production-level multi-cluster systems
such as the Decrypthon grid [9]. Nevertheless,
these assumptions will be relaxed in future work.

3.2 User/Application Model

Let the platform be used by nU users. A user i

enters the system at time t
(i)
0 (which is not known

in advance) and needs to solve at least n
(i)
min (also

called mandatory requests) and at most n
(i)
max

requests (including mandatory and optional re-
quests).

The user sets a “tentative” deadline d(i) which
acts as follows. If at time d(i) all mandatory re-
quests are completed, the remaining optional re-
quests are cancelled and the user exits the sys-
tem. Otherwise, the user waits until all mandatory
requests are completed, even if this means wait-
ing past the deadline. In the latter case, optional
computations can still be executed until the last
mandatory request finishes. In other words, the
hard deadline is equal to the maximum between
the user-provided deadline and the last completion
time of the mandatory requests.

To completely characterize the workload, the ex-
ecution times need to be modeled. We consider
that the requests of user i are homogeneous, hav-
ing the same execution time T (i). This is a rea-
sonable approximation for the targeted use-cases
(Figure 1), as well as many parameter-sweep ap-
plications [10]. However, execution times are not
known in advance.

Inria

Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Middleware 5

3.3 Metrics
To evaluate how well a system deals with a work-
load, the following metrics are of interest: the num-
ber of unhappy users, unfairness and the number
of completed requests.

The number of unhappy users is the number
of users who did not complete their mandatory re-
quests before their deadline d(i). These users had to
wait additionally, after the tentative, user-provided
deadline. Ideally, the number of unhappy users
should be 0, provided the workload permits such
a solution.

Before defining fairness, let us introduce some
helper notations. For each user i, the amount of
deserved resources r

(i)
deserved (i.e., the amount the

system should allocate the user) is computed as fol-
lows. The time is divided into time-slots, such that,
during each time-slot j of start-time S(j) and end-
time E(j), the set of users inside the system U (j) is
constant:

U (j) =
{
i :

(
t
(i)
0 ≤ S(j)

)
∧
(
E(j) ≤ d(i)

)}
The resource area (number of resources times du-
ration) available during that time-slot is divided
equally among the among users in U (j):

r
(i)
deserved =

∑
j:i∈U(j)

nR ·
(
E(j) − S(j)

)
#U (j)

Next, for each user i, the satisfaction s(i) is defined
as the amount of resources the system allocated her
r
(i)
allocated over the amount of resource she deserved
r
(i)
deserved. A satisfaction 0 ≤ s(i) < 1 means that

the user i was allocated fewer resources than de-
served, while s(i) > 1 means that the user i was
allocated more resources than deserved. Ideally,
the satisfaction of all users should be 1, i.e., they
are allocated as many resources as deserved.

Having all prerequisites, let unfairness be de-
fined as the difference between the maximum and
the minimum among the user satisfactions:

unfairness = max
i

s(i) − min
i

s(i)

We refrained from defining unfairness as an aver-
age, for the same reasons as stated in [11]: users
tend to be more sensitive to fairness than to perfor-
mance, thus, the former should be more like a law

Figure 2: Diet-ethic architecture

or a guarantee that the system is heavily penalized
for breaking. Ideally, unfairness should equal 0.

Finally, the number of completed requests
is a performance-oriented metric, computed as the
sum of all the requests (mandatory and optional)
belonging to any user that have completed.

To sum up, we aim at finding a system, which
minimizes the number of unhappy users, minimizes
unfairness and maximizes the number of completed
requests, in this order. Note that, the three pre-
sented metrics can only be computed a posteriori,
after all users exited the system.

4 Diet-ethic
In this section, the Diet-ethic platform for fair
scheduling of optional computations is presented.
First, the architecture is described in an abstract,
implementation-independent manner. Second, our
implementation of Diet-ethic in the production-
level Diet GridRPC middleware is detailed.

4.1 Diet-ethic Extension
Diet-ethic is an extension over a client-server ar-
chitecture. The clients (representing the users of
the system) are resource consumers that gener-
ate computational requests, while the servers are
resource providers, doing computations on behalf
of the clients. Clients and servers are connected
through a middleware, that implements a discov-
ery mechanism.

Before describing Diet-ethic, let us highlight
some design choices. First, we chose to keep the
server-side scheduling algorithm simple and make
servers unaware of the deadlines of the users. This
choice has been taken so that clients, which are un-
der the control of the user, be able to evolve their
scheduling algorithms separately from the function-

RR n° 7959

6 F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez

ality offered by the server. For example, a fu-
ture version of Diet-ethic might schedule work-
flows containing optional computations, without
having to change the servers.

Second, the number of requests stored in the
platform have to be minimized. This is important,
since, for the targeted use-cases, any user could
alone fill the whole platform with her optional re-
quests. Therefore, having a system in which all
users submit all their requests to the system would
clearly not scale.

Let us now describe the Diet-ethic architecture
consisting of a server-side queuing module and a
client-side request dispatcher (Figure 2), that are
described in the next sections.

4.1.1 Server-side Queuing Module

When a request arrives at a server, it is not im-
mediately solved, but is added to a local queue.
The queue is regularly checked to determine which
requests should be started, cancelled (erased from
the queue) or killed (prematurely terminated after
it has been started). The queued requests are or-
dered as follows:

1. mandatory requests have priority over optional
requests; this ensures that the number of un-
happy users is minimized;

2. started requests have priority; otherwise re-
sources might be wasted as requests are killed
and computations completed so-far are lost.
In the end, this improves the number of com-
pleted requests, paying a small price on fair-
ness;

3. mandatory requests are order by submit
time, i.e., the First-Come-First-Serve (FCFS)
scheduling strategy is used; this allows users
who arrived first in the system to get a better
chance at completing their mandatory requests
before the deadline, thus decreasing the num-
ber of unhappy users;

4. requests of users who had the fewest allocated
resources so far have priority: this ensures
server-local fairness;

5. for users having the same amount of allocated
resources (such is the case when users enter the
system as the same time) a request is randomly
chosen. This ensures global fairness, as each
server most likely choses to execute the request
of a different client.

If a request gets to the front of the queue it is
started. Otherwise, if sorting moves a request from
the front of the queue, it is killed. For example,
if a user submits a mandatory request to a server
which is currently executing an optional request,
the latter is killed. Requests can be cancelled on
the client’s demand.

4.1.2 Client-side Request Dispatcher

On the client-side, a custom request dispatcher is
required. It works in three phases: setup, monitor-
ing and cleanup.

The setup phase starts with a resource discov-
ery, asking the middleware to return at most n

(i)
max

servers. Next, mandatory requests are dispatched
to discovered servers–currently in round-robin. Fi-
nally, one optional request is submitted to each dis-
covered server.

In the monitoring phase, the client enters an
event-loop. It stays in this phase until all manda-
tory requests are completed and the deadline has
not expired. When an optional request is com-
pleted, the client submits a new optional request
to the server which executed the former request.
As a result, as long as the user is in the system,
provided n

(i)
max is large enough, each server has at

least one optional request in the queue, ready to be
executed.

Finally, in the cleanup phase, the client cancels
all requests that have been submitted but not yet
completed. Note that, this phase is entered when
all mandatory requests have been completed, thus,
only optional requests need not be cancelled.

Having describe the architecture, let us pass on
to implementing it in an existing GridRPC middle-
ware.

4.2 Diet Middleware Architecture
Let us first describe the Diet GridRPC middleware
architecture, which we have extended for optional
computation support.

To simplify access to HPC resources, various pro-
gramming models have been proposed. One of
them is the GridRPC API [6], which has been stan-
dardized inside the Open Grid Forum (OGF) [12].
At its core, it extends the familiar Remote Proce-
dure Call (RPC) paradigm to Grid environments.
Hence, the end-users’ client-server applications can

Inria

Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Middleware 7

Figure 3: Diet architecture

be easily ported to Grids, with minimal effort.
GridRPC offers mechanisms to make synchronous
and asynchronous calls to a service. For the asyn-
chronous case, clients can wait in a blocking or non-
blocking mode for the completion of a given call
to complete. Being based on a client-server model,
testing Diet-ethic in this context seemed a natural
choice.

Let us present how GridRPC is implemented in
Diet [7]. The Diet component architecture is hi-
erarchically structured for improved scalability as
illustrated in Figure 3. The Diet toolkit is im-
plemented in CORBA [13] and thus benefits from
the many standardized, stable services provided by
freely-available and high performance CORBA im-
plementations.

The Diet framework has several elements. A
Client is an application that uses the Diet infras-
tructure to solve problems using a GridRPC ap-
proach. A SeD (Server Daemon) acts as the
service provider, exporting functionality through
a standardized computational service interface; a
single SeD can offer any number of computational
services.

The third element of the Diet architecture,
agents, facilitate the service location and invoca-
tion interactions of clients and SeDs. Collectively,
a hierarchy of agents provides higher-level services
such as scheduling and data management. These
services are made scalable by distributing them
across a hierarchy of agents composed of a Master
Agent (MA) and several Local Agents (LA).

A typical Diet interaction goes as follows:
(1) First, the client enters the system and sends
a discovery message with some information regard-

ing the request to be computed to the master agent.
(2) Next, the message is propagated from the mas-
ter agent to the SeD through local agents. The
message eventually reaches all SeDs, (3) which re-
ply with an estimation vector: a set of values
describing how fit they are for solving this partic-
ular request. Depending on the implementation of
a service, an estimation vector might contain in-
formation such as CPU power, amount of RAM,
estimated completion time of the request, number
of queued requests, etc. (4) At each level of the
agent hierarchy the estimation vectors are aggre-
gated, so that the master agent only has to deal
with a small amount of them. (5) Finally, one or
more estimation vectors are returned to the client,
which chooses a suitable SeD. (6) The request with
all the data necessary to solve the problem is sent
directly from the client to the SeD.

Let us highlight where scheduling decisions are
taken. First, SeDs decide what values to put in
an estimation vector. This way, a SeD can make
itself more or less preferred for solving a problem.
Second, agents throughout the hierarchy aggregate
and filter SeDs based on these estimation vectors.
For example, only the top 10 least loaded SeDs
are returned to the parent agent, thus leaving out
overloaded SeDs. Third, clients receive estimation
vectors from several SeDs, out of which they may
choose a SeD.

To sum up, Diet already implements many pre-
requisites, such as service calls, scalable scheduling
and data management. This allowed us to imple-
ment Diet-ethic with minimal effort.

4.3 Optional Computation Requests
in Diet

Besides the addition of a request dispatcher and a
queuing module, the following changes had to be
made to implement Diet-ethic on top of Diet.

First, three extensions to the GridRPC API
have been needed. (1) The grpc_discover
function allows clients to discover servers in
the system. The function accepts two pa-
rameters: the name of the service and the
maximum number of servers to return. (2)
The grpc_function_handle_set_optional func-
tion allows clients to declare a request as op-
tional. (3) The grpc_wait_any_until function
has been implemented, which is an extension to

RR n° 7959

8 F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez

grpc_wait_any allowing a client to specify a time-
out. The function block until either a GridRPC
request completes or the timeout expires, similarly
to the POSIX™ select or poll system calls.

Second, the client-server communication proto-
col had to been extended, so that each request is
tagged with the user it belongs to. This is neces-
sary information allowing servers to ensure fairness
among different users. The current implementation
assumes that users are honest and do not attempt
to falsify their identity. A future implementation
will include authentication, thus making sure that
requests can be securely associated with a user.

Thus, we obtained a production-ready implemen-
tation which we shall use to evaluate the Diet-ethic
architecture in the following section.

5 Evaluation
This section evaluates the proposed architecture.
First, we show the gains that can be made with
Diet-ethic by comparing it to a standard system
which has not been designed to support optional
computations. Second, we show that the architec-
ture is scalable. We would like to highlight that
all experiments have been done on a real plat-
form. Finally, we discuss the benefits that can be
observed by an end-user.

5.1 Gains of Supporting Optional
Computations

Let us consider increasingly complex scenarios and
make a comparative analysis between Diet-ethic
and a system without optional computation sup-
port. To this end, we used the Diet middleware
as it was before our contribution: the SeDs serve
incoming requests using the FCFS policy, without
distinguishing mandatory from optional requests.
On the client-side, we implemented the following
behaviour. When a client i enters the system it
has to blindly choose n

(i)
submit, a number between

n
(i)
min and n

(i)
max, representing the number of re-

quests to submit. First, it submits n(i)
min mandatory

and n
(i)
submit−n

(i)
min optional requests (in this order).

Then, it waits for the mandatory requests to finish.
If the deadline has not expired, it sleeps until the
deadline is reached. Finally, it gathers the results

of all completed requests and cancels the remaining
optional requests submitted to the system. To sim-
plify the analysis of the results, all clients “guess”
the same value nsubmit. For briefness, this system
shall be call the legacy system.

Before detailing the scenarios, let us present the
common methodology. The platform consists of
1 MA and nR = 10 SeDs. The SeDs only imple-
ment a sleep service, i.e., the service itself consumes
no CPU nor network bandwidth. The platform is
used by nU = 10 identical clients with their param-
eters chosen as follows: in order to make experi-
ments as useful as possible, but at the same time
reduce the time it takes to complete them, we have
chosen to “compress” the time: 8hours are normal-
ized to 100 s. Therefore, we set the execution time
T (i) = 1 s and the deadlines d(i) = 100 s. These val-
ues are large enough compared to the time it takes
to take scheduling decisions, yet small enough so
that the time of experiments be reasonable. Next,
we set the number of mandatory requests n(i)

min = 3

and the number of total requests n
(i)
max = 1000.

These parameters have been chosen so that the fol-
lowing conditions be met:

• there is a solution which makes all users happy;
• each user can generate enough optional com-

putations to fill all resources.

The above conditions are the ones in which our sys-
tem is the most interesting to be studied. Other-
wise, if the number of mandatory computations is
too high, the platform has no choice but to schedule
them in a FCFS fashion, being forced to make some
users unhappy. Also, if the number of optional re-
quests is too low, its fairness properties cannot be
highlighted.

The metrics we are interested in are those pre-
sented in Section 3.3. All measurements have been
done at least 10 times and, since we found devia-
tions to be small, we chose to make graphs more
readable by only plotting the median.

The systems are compared in 5 different, increas-
ingly complex scenarios, which are described in de-
tail in the next sections.

5.1.1 Night-time Simultaneous Submis-
sions

Let us start with a simple scenario. Users want to
do computations during the night, so that their re-

Inria

Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Middleware 9

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 200 400 600 800 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 4: Results: night-time simultaneous submis-
sions scenario

sults are ready in the morning and can be analysed
during the workday. Effectively, users enter the
computation platform in the evening, just before
leaving work and have a tentative deadline for the
next morning, when they arrive at work. In our ex-
periments, we can model them by setting the same
arrival-time t

(i)
0 = 0 and deadline d(i) = 100 for all

users.
Figure 4 shows that Diet-ethic managed to find

a solution with no unhappy users, with good (al-
most ideal) fairness, while maximizing the number
of completed requests. Regarding the legacy sys-
tem, one observes that, if nsubmit is small, the re-
sources are not filled with computation requests,
thus, the number of completed requests is subopti-
mal. However, if nsubmit is high enough, on aver-
age, the legacy system behaves fairly well. This is
due to an experiment artifact that, since all users
enter the system at precisely the same moment of
time, their requests favorably interleave, therefore,
the FCFS policy is mostly finding the optimal so-
lution: all mandatory requests are started first, fol-
lowed by the optional requests.

5.1.2 Night-time Consecutive Submissions

However, in production systems, users never enter
the platform at exactly the same time. In fact,
the time the users enter the system might be quite
different: some people leave work earlier, others
later. Their deadlines are about the same, since
those who leave work earlier, often come earlier the
next day. To model this scenario, we insert a very
small inter-arrival gap t

(i)
0 = i ·0.1 s and keep d(i) =

100 s.

 0

 200

 400

 600

 800

 1000

 200 400 600 800 1000
 0

 1

 2

 3

 4

 5

 6

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 5: Results: night-time consecutive submis-
sions scenario

Figure 5 shows that, unless all users guess the
ideal solution (that of each user submitting exactly
nideal = 100 requests), the legacy system either
does not manage to optimize the number of com-
pleted requests (if nsubmit < nideal) or makes users
unhappy (if nsubmit > nideal). The latter happens
because the FCFS policy fills resources with op-
tional requests of users who arrived early in the
system. Therefore, the mandatory requests of users
who arrive later start later and can be delayed past
the tentative deadline. A similar observation ap-
plies to fairness: the FCFS policy favors users who
enter the system early, instead of trying to balance
requests equally among them.

In contrast, since Diet-ethic distinguishes
mandatory and optional requests, it makes sure
that mandatory requests have priority over optional
ones. Also, instead of favoring users who arrive
early, resources are allocated equally among the op-
tional requests of the users. In the end, Diet-ethic
improves fairness up to 150 times and behaves as if
all users chose the ideal number of requests to sub-
mit, but without requiring the users to guess this
value.

5.1.3 Day-time Submissions with Regular
Arrivals

Let us pass on to a different scenario: day-time sub-
missions. During the day, the users to not enter the
system during a short time interval, but are sepa-
rated by significant inter-arrival times. To start, we
study a simpler scenario, in which the inter-arrival
time between consecutive clients is constant.

To model this, we took the previous scenario and

RR n° 7959

10 F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 200 400 600 800 1000
 0

 1

 2

 3

 4

 5

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 6: Results: day-time scenario with regular
arrivals

set t
(i)
0 = i · 10 s. Except arrival times, all other ex-

perimental parameters are kept the same. When
contrasting the two scenarios, the main difference
is that, in the previous one all clients have entered
the system before the mandatory requests of the
first client are completed. In contrast, in the cur-
rent scenario, mandatory requests of a client are al-
ready completed by the time the next client arrives
in the system. One could say that the previous
scenario resembles an off-line scheduling problem
(i.e., all requests are known in advance, decisions
can be taken in advance), whereas the current sce-
nario resembles an on-line scheduling problem (i.e.,
the system needs to adapt to arriving requests).

Figure 6 shows the results for this scenario. One
can observe that the legacy system behaves best
for nsubmit = 190. No users are unhappy, unfair-
ness is low and the number of completed requests
is the highest, even when compared to Diet-ethic.
The latter happens because, when a new client
enters the system, Diet-ethic immediately starts
its mandatory requests, killing optional request if
necessary. The so-far done computations are not
completed, thus reducing the number of completed
requests. Nevertheless, one observes that Diet-
ethic’s solution has a lower (near-ideal) unfairness
and the number of completed requests stays com-
petitive to the legacy system (1842 vs. 1890: ≈
-2.5%).

However, on a real platform guessing the best
number of requests n(i)

submit each client i should sub-
mit is difficult, as it depends on a number of factors,
such as the number of resources, arrivals and re-
quirements of other users. Some of this information
is unknown at the time a client enters the system.

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 200 400 600 800 1000
 0

 2

 4

 6

 8

 10

 12

 14

 16

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 7: Results: day-time scenario with irregular
arrivals

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 200 400 600 800 1000
 0

 2

 4

 6

 8

 10

 12

 14

 16

#
 c

o
m

p
le

te
d

 r
eq

u
es

ts
 (

●
)

Number of submitted requests (nsubmit)

DIET-ethic Legacy system

#
 u

n
h

ap
p

y
 u

se
rs

 (
▲

)

U
n

fa
ir

n
es

s
(■

)

Figure 8: Results: irregular arrivals and random
execution times

When looking at the results for nsubmit 6= 190, one
observes that the legacy system is outperformed
by Diet-ethic. As in previous scenarios, if fewer
requests are submitted, then the number of com-
pleted requests is suboptimal. Deviating in the
other direction, if too many requests are submit-
ted then unfairness increases.

Interestingly, as the number of submitted re-
quests increases, the number of completed re-
quests slightly decreases. This happens because, in-
creasing nsubmit also increases the probability that
clients launched earlier still have executing requests
in the system by the time their deadline is reached.
These requests are killed, thus are not completed.

In contrast, Diet-ethic auto-tunes itself and
finds a good solution, without requiring the user
to guess a good number of requests to submit.

Inria

Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Middleware 11

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
P

U
 u

sa
g

e
(%

)

Experiment time (s)

Client machine
MA machine
SeD machine

Figure 9: System overhead: CPU usage for sleep
requests

5.1.4 Other Day-time Scenarios

In order to make sure that the proposed system is
well-behaved in more realistic cases, let us present
two more scenarios.

First, we drop the assumption that the inter-
arrival time between consecutive clients is constant.
Instead, the arrivals are assumed to obey the well-
known and widely recognized diurnal cycle [14]. To
model this, we took the polynomial P proposed
in [15], scaled its input to the [0, 100] seconds inter-
val and used the output value as follows: at each
second t, the probability of launching a new client
is P (t)/10. The division by 10 was made so as to
keep the number of clients in the system of the same
order-of-magnitude as in the other scenarios.

Second, we give each client a different execu-
tion time, by choosing T (i) uniform randomly in
[0.75, 2]. Requests generated by the same client are
still homogeneous. The arrivals are considered to
obey the diurnal cycles as in the above paragraph.

For both of these scenarios (figures 7 and 8), the
same observations can be made as in previous sec-
tions. There is a value of nsubmit in which the
legacy system behaves well, however, this value is
difficult to compute a priori in a real system. In
contrast, Diet-ethic auto-tunes itself and manages
to minimize the number of unhappy users, mini-
mize unfairness and maximize the number of com-
pleted requests.

5.2 Scalability
In order to assess the scalability of our solution and
measure the overhead, we have designed the follow-
ing experiment. We reserved the whole Lyon site
on the Grid’5000 experimental platform [16] (Ta-

Table 1: Grid’5000 deployment for scalability ex-
periment

Cluster # nodes Configuration
capricorne 2 2×AMD Opteron 246 @ 2.0GHz
sagittaire 69 2×AMD Opteron 250 @ 2.4GHz

Table 2: Results of scalability experiment
Unhappy users 0 ideally 0
Unfairness 0.70 ideally 0
Number of completed requests 13605 out of 13800

ble 1). The set of nodes has been divided into three:
1 client node, 1 MA node and 69 SeD nodes.

Experiments has been done as follows: first,
1 MA has been deployed on the MA node. Sec-
ond, SeDs have been deployed on each core of the
bi-processor SeD nodes, totalling nR = 2 × 69 =
138SeDs. Finally, on the client node, nU = 100
client have been launched simultaneously with the
parameters: n

(i)
min = 3, n(i)

max = 10000, d(i) = 100,
T (i) = 1. As a reference, traces from the Grid
Workload Archive [17] contains less that 100 users
per day.

Besides the metrics presented in Section 3.3, we
measure the CPU utilization on the client node, the
MA node and one of the SeD nodes. On the client
node, we have been careful to filter out CPU usage
due to process creation and destruction. The SeDs
implement a simple “sleep” service, which does not
do any computations. Therefore, the measured
CPU usage represents the overhead our system
incurs for managing computational requests.

The metrics can be found in Table 2. They show
that there are no unhappy users and that unfair-
ness is low. Also, the number of completed re-
quests is 13605, which, compared to the maximum
of 13800 requests that could have been completed
by 138SeDs in the 100 s deadline, represents 98.6%.
Hence, we conclude that the system managed to op-
timize the targeted metrics, even under stress con-
ditions.

Let us now take a deeper look at the behaviour
of the system and study the CPU usage overhead
during the experiments (Figure 9). First, let us ob-
serve that the measured CPU usage before launch-
ing the clients and after the clients finished is be-
low 1%, thus indicating a low measurement noise.

RR n° 7959

12 F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez

Next, one can clearly distinguish the three phases
of the clients (Section 4.1.2): setup, monitoring and
cleanup.

The setup phase takes about 13 s from t = 0 to
t = 13. During this phase the CPU usage on the
client node is somewhat high, due to all clients si-
multaneously discovering SeDs, then submitting re-
quests to all of them. Discovery is handled by the
MA, on which one observes a peak in CPU usage.
On the SeD node, the CPU usage is negligible, be-
ing less than 3%.

During the monitoring phase, which lasts from
t = 13 to t = 100, one observes that the CPU usage
stays relatively low on all nodes. The most stressed
is the client node, as the client applications have to
submit 138 requests/s to keep SeDs busy. The MA
is idling, since it is not participating in this phase,
while the CPU usage on the SeD node is negligible.

Finally, during the cleanup phase, the CPU usage
on the client node tops at 100%, as cancellation
requests are sent by all clients, simultaneously to
all SeDs. Again, the MA is idling, while the CPU
usage on the SeD node is still fairly low (< 5%).

Note that the scalability experiment is extreme.
The clients arrive simultaneously, which is unlikely
in real systems and the execution time is short (1 s).
For comparison, the average job inter-arrival time
on the LCG grid is 5 s, whereas the average run-
time is 2.5 h [17].

To sum up, the CPU usage on the SeD nodes is
negligible when a sleep service is used. This means
that our system involves low overhead and that
SeDs can perform useful computations. The CPU
usage on the client node is high during the setup
and cleanup phase, nevertheless it managed to gen-
erate enough requests, so as to keep SeDs busy.
The MA did not prove to be a bottleneck in these
experiments.

5.3 End-User Perspective
Now that we evaluated Diet-ethic with a synthetic
“sleep” service, we return to the motivating ap-
plication (Section 2) and discuss the advantages
that an average end-user observes. We have im-
plemented a working prototype in order to test an
initial version of Diet-ethic against Grid-TLSE.

Let us briefly describe what changes were nec-
essary. Grid-TLSE is composed of an upper
layer ALTO, responsible for interpreting high-level

user requests and aggregating results, and a lower
layer BASSO, responsible for communicating with
a GridRPC middleware and performing computa-
tions. ALTO had to be extended so as to accept
a variable number of results for every request sent
to BASSO. Previously, ALTO was coded so as to
accept a pre-computed number of results for each
request, which is no longer true, since the number
of completed requests (and, as a consequence, the
number results returned to ALTO) depends on the
status of the platform. As to BASSO, the behavior
described in Section 4.1.2 has been implemented.

Previously, when a user wanted to solve a linear
system, she had to choose the number of thresholds
to test. This was done using a combination of trial-
and-error and guesswork. The user had to know ap-
proximately the number of available resources and
the time a solve takes. If the user overestimated the
number of thresholds, she would manually cancel
the computations. Conversely, the user underesti-
mated, she would have to manually relaunch the
computations with a new set of thresholds.

In contrast, thanks to our contribution, a work-
ing prototype showed that the user only has to
specify the minimum and the maximum number of
thresholds to test, and a deadline. The system au-
tomatically tests as many thresholds as to respect
the constraints imposed by the users.

6 Related Work
This section reviews related work from areas of real-
time systems and malleable applications.

6.1 Real-time Systems
A system is considered real-time if it needs to
guarantee a certain response time, i.e., there are
tasks that need to be completed before a given
deadline. Based on their constraints, real-time sys-
tems can either be hard, i.e., missing a deadline
leads to system failure, or soft, some deadlines can
be missed. Furthermore, the generation of the tasks
can be either sporadic, i.e., the arrival time of
tasks is not known in advance, or periodic.

For each case, various algorithms have been pro-
posed. For example, Earliest Deadline First (EDF)
is an algorithm for hard real-time systems with spo-
radic tasks. The next task to be executed is the one

Inria

Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Middleware 13

that is closest to its deadline. It has been shown [18]
that under certain conditions, EDF is optimal: if
there exists such a solution, EDF always find a
schedule so that all of the tasks meet their dead-
lines. However, EDF is considered to be expensive
to compute, so more efficient ways of computing a
schedule have been studied. If tasks are periodic,
one can pre-compute an efficient schedule by simu-
lating the behavior of EDF for a certain period of
time. Moreover, having information about all fu-
ture tasks allows to find a schedule that is not only
valid, but also fair [19].

This article shares many concepts with the cited
works, such as guaranteeing deadlines and improv-
ing fairness. However, one of our base assumptions
is that there are not enough resources to execute
all tasks in the given deadlines. The question is
then which tasks to sacrifice, in order to keep users
satisfied.

Let us now review the field of soft real-time
scheduling. The (m, k)-firm deadlines problem [20]
consists in finding a schedule in a real-time system
with periodic tasks, so that at least m out of k
consecutive tasks meet their deadline. Various al-
gorithms have been proposed that basically divide
the tasks into mandatory and optional [21].

Our problem shares some vocabulary (manda-
tory and optional), but differs in several ways.
First, arriving tasks are not periodic. In fact, both
their arrival-time and their execution-time are un-
known to the platform. Second, it is the user who
decides which tasks are to be considered mandatory
and which are to be considered optional. Third,
the deadline is considered for a group of tasks (i.e.,
those belonging to the same user) and not for every
task individually. Therefore, the solutions brought
by cited works are not directly applicable to our
problem statement.

6.2 Malleable Applications
An application is said to be malleable if it can
change its resource usage as requested by the sched-
uler [22]. This can be done in order to improve re-
source utilization or decrease response times [23].
How to write malleable applications [24, 25] and
how to add scheduler support for them [26, 27, 28]
has been extensively studied.

Our solution can be considered yet another
scheduling problem that is addressed using mal-

leability. However, all of the cited works aim at
using malleability to improve some kind of met-
ric, but, in the end, the computations that are
executed are always the same, no matter how re-
sources are allocated to the applications. In con-
trast, to our knowledge, we are the first to propose
for a malleable application to adapt to the state of
the resources by also changing the computations it
does. If many resources are available, the applica-
tion produces more accurate results, whereas if few
resources are available, the application guarantees
at least a minimum accuracy.

Parameter-sweep applications are one of the
most common classes of malleable applications [10].
They consist of many sequential tasks, which are
relatively short when compared to the execution-
time of the whole application. On one hand, this
is an advantage, since the scheduling granularity is
relatively small, allowing much freedom. For exam-
ple, a task can be killed and restarted later, possi-
bly on another resource, without losing significant
computations. On the other hand, due to the small
granularity, one has to take extra precautions not
to overload the system.

To solve the above issue, the DIRAC workload
management system [29] proposes a solution based
on the pilot job abstraction. Pilot jobs are con-
tainer jobs that, instead of executing an actual task,
launch a daemon. Once the job starts and the dae-
mon is running, the latter connects to a centralized
agent and requests tasks to execute. In DIRAC, the
tasks are put in a central queue and the scheduling
event is initiated by resource availability. One can
say that computation requests are pulled by the re-
sources from the centralized agent. This is in con-
trast to traditional usage of HPC platform (e.g.,
imposed by batch schedulers), in which jobs are
pushed to resources. DIRAC’s approach leads to
a natural load balancing where each resource gets
the workload matching its actual capacity. In a
push approach this is usually achieved by ranking
resources based on their capacity, which requires
complex calculations and a reliable information sys-
tem.

Our contribution borrows some concepts both
from push and pull scheduling. Mandatory requests
are pushed from clients to resources, whereas op-
tional requests are pulled by resources from clients.
The former allows clients to dispatch mandatory
requests to the most fitting resources, whereas the

RR n° 7959

14 F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez

latter allows to reduce the strain on the platform
and produce a natural load balancing as done by
DIRAC.

Two aspects differentiate Diet-ethic from
DIRAC. First, a limited number of computation
requests is stored on the platform, the rest being
generated on-the-fly by the clients. In contrast,
DIRAC requires all computational requests to be
submitted to a centralized agent. Our design choice
is necessary to ensure the scalability of the system,
since it is possible that only a small percentage of
optional requests are actually executed, thus, stor-
ing them all centrally would overload the system.
Second, DIRAC takes most scheduling decisions in
a centralized agent. In contrast, in Diet-ethic,
each client and each server contributes to taking
scheduling decisions. This can be considered an
advantage, since the two entities can evolve their
scheduling algorithms separately. For example, a
user wanting to implement a different scheduling
algorithm can change the client application, with-
out having to wait for a platform upgrade.

7 Conclusion
This paper presented Diet-ethic a platform ar-
chitecture to efficiently support optional compu-
tations. It can easily be implemented in any
GridRPC middleware, such as GridSolve [30] or
Ninf [31]. Evaluation has been done using an im-
plementation on top of the production-level Diet
middleware. Real-life experiments showed that sev-
eral metrics can be improved, for example user un-
happiness can be reduced to 0 and unfairness can
be decreased up to 150 times. Finally, the archi-
tecture was shown to be scalable.

As future work we propose improving the
scheduling of mandatory requests by reallocating
them to better suited servers [32], instead of map-
ping them at submittal as currently done. Schedul-
ing of optional computations could be improved
by using preemption [33]. Different window sizes
would have to be tested to find the best schedul-
ing.

Acknowledgments
This work is supported by the French ANR COOP
project, n◦ANR-09-COSI-001 (http://coop.gforge.

inria.fr). Experiments were carried out using the
Grid’5000 experimental testbed, being developed un-
der the INRIA ALADDIN development action with
support from CNRS, RENATER and several Univer-
sities as well as other funding bodies (https://www.
grid5000.fr). Special thanks to Gilles Fedak for his
insightful comments.

References
[1] D. G. Feitelson, L. Rudolph, and

U. Schwiegelshohn, “Parallel job scheduling -
a status report,” in JSSPP, ser. Lecture Notes in
Computer Science, D. G. Feitelson, L. Rudolph,
and U. Schwiegelshohn, Eds., vol. 3277. Springer,
2004, pp. 1–16.

[2] E. Caron, V. Garonne, and A. Tsaregorodtsev,
“Definition, modelling and simulation of a grid
computing scheduling system for high throughput
computing,” Future Generation Computer Sys-
tems, vol. 23, no. Issue 8, pp. 968–976, November
2007, iSSN:0167-739X.

[3] J. Helton, J. Johnson, C. Sallaberry, and C. Stor-
lie, “Survey of sampling-based methods for uncer-
tainty and sensitivity analysis,” Reliability Engi-
neering & System Safety, vol. 91, no. 10-11, pp.
1175–1209, Oct. 2006.

[4] “Amazon ec2 spot instances.” [Online]. Available:
http://aws.amazon.com/ec2/spot-instances/

[5] “High performance computing (HPC) on Amazon
web services.” [Online]. Available: http://aws.
amazon.com/hpc-applications/

[6] K. Seymour, H. Nakada, S. Matsuoka, J. Don-
garra, C. Lee, and H. Casanova, “Overview
of GridRPC: A remote procedure call API for
grid computing,” in Grid Computing - GRID
2002, Third International Workshop, ser. LNCS,
M. Parashar, Ed., vol. 2536. Baltimore, MD,
USA,: Springer, Nov. 2002, pp. 274–278.

[7] E. Caron and F. Desprez, “DIET: A scalable tool-
box to build network enabled servers on the grid,”
International Journal of High Performance Com-
puting Applications, vol. 20, no. 3, pp. 335–352,
2006.

[8] P. R. Amestoy, I. S. Duff, L. Giraud, J.-Y.
L’Excellent, and C. Puglisi, “Grid-TLSE: A web
site for experimenting with sparse direct solvers
on a computational grid,” in SIAM Conference on
Parallel Processing for Scientific Computing, 2004.

[9] N. Bard, R. Bolze, E. Caron, F. Desprez, M. Hey-
mann, A. Friedrich, L. Moulinier, N. H. Nguyen,

Inria

http://coop.gforge.inria.fr
http://coop.gforge.inria.fr
https://www.grid5000.fr
https://www.grid5000.fr
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/hpc-applications/
http://aws.amazon.com/hpc-applications/

Diet-ethic: Fair Scheduling of Optional Computations in GridRPC Middleware 15

O. Poch, and T. Toursel, “Décrypthon grid - grid
resources dedicated to neuromuscular disorders,”
Studies in Health Technology and Informatics, vol.
159, pp. 124–133, 2010.

[10] O. O. Sonmez, B. Grundeken, H. H. Mohamed,
A. Iosup, and D. H. J. Epema, “Scheduling strate-
gies for cycle scavenging in multicluster grid sys-
tems,” in CCGRID, 2009, pp. 12–19.

[11] Y. Yuan, G. Yang, Y. Wu, and W. Zheng, “PV-
EASY: a strict fairness guaranteed and prediction
enabled scheduler in parallel job scheduling,” in
Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Comput-
ing, ser. HPDC ’10. New York, NY, USA: ACM,
2010, pp. 240–251.

[12] “Open grid forum.” [Online]. Available: http:
//www.ogf.org/

[13] Object Management Group, “Common object
request broker architecture (CORBA/IIOP) –
version 3.2,” Specification, Nov. 2011. [Online].
Available: http://www.omg.org/spec/CORBA/3.
2/

[14] D. G. Feitelson, Workload Modeling for Computer
Systems Performance Evaluation, version 0.34 ed.,
2011. [Online]. Available: http://www.cs.huji.ac.
il/~feit/wlmod/

[15] M. Calzarossa and G. Serazzi, “A characterization
of the variation in time of workload arrival pat-
terns,” IEEE Trans. Comput., vol. C-34, no. 2,
pp. 156–162, Feb 1985.

[16] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. De-
sprez, E. Jeannot, Y. Jégou, S. Lantéri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, P. Primet,
B. Quetier, O. Richard, E.-G. Talbi, and I. Touche,
“Grid’5000: a large scale and highly reconfig-
urable experimental grid testbed.” International
Journal of High Performance Computing Applica-
tions, vol. 20, no. 4, pp. 481–494, Nov. 2006.

[17] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu,
L. Wolters, and D. H. J. Epema, “The grid work-
loads archive,” Future Generation Comp. Syst.,
vol. 24, no. 7, pp. 672–686, 2008.

[18] M. L. Dertouzos, “Control robotics: The pro-
cedural control of physical processes,” in IFIP
Congress, 1974, pp. 807–813.

[19] S. K. Baruah, “Fairness in periodic real-time
scheduling,” in IEEE Real-Time Systems Sympo-
sium, 1995, pp. 200–209.

[20] P. Ramanathan and M. Hamdaoui, “A dynamic
priority assignment technique for streams with (m,
k)-firm deadlines,” IEEE Trans. Comput., vol. 44,
no. 12, pp. 1443–1451, Dec. 1995.

[21] G. Quan and X. Hu, “Enhanced fixed-priority
scheduling with (m,k)-firm guarantee,” in Proceed-
ings of the 21st IEEE conference on Real-time sys-
tems symposium, ser. RTSS’10. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 79–88.

[22] D. G. Feitelson and L. Rudolph, “Towards conver-
gence in job schedulers for parallel supercomput-
ers,” in JSSPP, 1996.

[23] J. Hungershofer, “On the combined scheduling of
malleable and rigid jobs,” in SBAC-PAD, 2004, pp.
206–213.

[24] K. El Maghraoui, T. J. Desell et al., “Dynamic
malleability in iterative MPI applications,” in CC-
GRID, 2007, pp. 591–598.

[25] J. Buisson, F. André et al., “A framework for
dynamic adaptation of parallel components,” in
PARCO, 2005, pp. 65–72.

[26] J. Buisson, O. Sonmez, H. Mohamed, W. Lam-
mers, and D. Epema, “Scheduling malleable appli-
cations in multicluster systems,” CoreGRID, Tech.
Rep. TR-0092, 2007.

[27] M. C. Cera, Y. Georgiou, O. Richard, N. Mail-
lard et al., “Supporting malleability in parallel ar-
chitectures with dynamic CPUSETs mapping and
dynamic MPI,” in ICDCN, 2010.

[28] R. Sudarsan and C. J. Ribbens, “ReSHAPE: A
framework for dynamic resizing and scheduling of
homogeneous applications in a parallel environ-
ment,” CoRR, vol. abs/cs/0703137, 2007.

[29] A. Casajus, R. Graciani, S. Paterson, A. Tsare-
gorodtsev, and the LHCb DIRAC Team, “DIRAC
pilot framework and the DIRAC workload man-
agement system,” Journal of Physics: Conference
Series, vol. 219, no. 6, 2010.

[30] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and
J. Dongarra, “Recent developments in GridSolve,”
IJHPCA, vol. 20, no. 1, pp. 131–141, 2006.

[31] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura,
and S. Matsuoka, “Ninf-g: A reference implemen-
tation of rpc-based programming middleware for
grid computing,” J. Grid Comput., vol. 1, no. 1,
pp. 41–51, 2003.

[32] Y. Caniou, G. Charrier, and F. Desprez, “Anal-
ysis of Tasks Reallocation in a Dedicated Grid
Environment,” in IEEE International Conference
on Cluster Computing 2010 (Cluster 2010), Her-
aklion, Crete, Greece, September 20-24 2010, pp.
284–291.

[33] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and
Z. Gu, “Online optimization for scheduling pre-
emptable tasks on IaaS cloud systems,” Journal of

RR n° 7959

http://www.ogf.org/
http://www.ogf.org/
http://www.omg.org/spec/CORBA/3.2/
http://www.omg.org/spec/CORBA/3.2/
http://www.cs.huji.ac.il/~feit/wlmod/
http://www.cs.huji.ac.il/~feit/wlmod/

16 F. Camillo, E. Caron, R. Guivarch, A. Hurault, C. Klein, C. Pérez

Parallel and Distributed Computing, vol. 72, no. 5,
pp. 666–677, May 2012.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	A Motivating Use-case
	Problem Statement
	Resource Model
	User/Application Model
	Metrics

	Diet-ethic
	Diet-ethic Extension
	Server-side Queuing Module
	Client-side Request Dispatcher

	Diet Middleware Architecture
	Optional Computation Requests in Diet

	Evaluation
	Gains of Supporting Optional Computations
	Night-time Simultaneous Submissions
	Night-time Consecutive Submissions
	Day-time Submissions with Regular Arrivals
	Other Day-time Scenarios

	Scalability
	End-User Perspective

	Related Work
	Real-time Systems
	Malleable Applications

	Conclusion

