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Abstract 

This study sought to assess the consequences of technological changes in vehicle 

routing interfaces for planners’ constraint processing during route selection. We began by 

developing a model of domain constraints for the generic vehicle routing problem, in order to 

characterize planners’ constraint processing and assess the visibility of constraints on different 

routing interfaces. An experiment featuring vehicle routing problems was then designed to 

test interfaces reflecting technological changes, including automation leading to simplified 

interfaces and the display of multiple routes computed by algorithms. Twelve participants 

who had worked for a small transport company for nine months were exposed to all these 

interfaces. Mental workload, performance and decision-making times were measured. Results 

revealed that automation decreases mental workload and decision times, attributable to the 

abridged (vs. unabridged) display of constraints on the interface. Results also showed that the 

perceptual (vs. analytical) display of routes greatly decreases decision times and enhances 

performances.  

Keywords: vehicle routing, automation, decision support, planning, interface, domain, 

constraints, intentional systems. 
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1. Introduction 

The vehicle routing problem (VRP) embraces a class of complex problems consisting 

in determining an optimum route (chiefly by minimizing the total journey cost) for a set of 

customers who are subject to side constraints such as time windows and vehicle capacity. The 

VRP applies to the situation faced by postal organizations, which have to route a fleet of 

vehicles based in multiple depots to a set of customers with specific time windows for 

delivery (e.g., Hollis, Forbes, & Douglas, 2006). It also refers to intra-city transport 

companies providing dial-a-ride services using a heterogeneous fleet (e.g., minibuses) when 

booking is done either in advance or in real time (e.g., Rahimi & Dessouky, 2001). 

In field studies, planners appear to play a crucial role, taking the large set of 

constraints into account and adapting to changes in the domain (Jackson et al., 2004; 

Sanderson, 1989). At the same time, the integration of transportation technologies is gradually 

changing the nature of these decision-making processes, in that vehicle routing interfaces now 

combine human planners and technologies. For instance, the introduction of global 

positioning systems (GPS), electronic data interchange (EDI) and geographic information 

systems (GIS) means that planners can now monitor vehicles more easily, on computer-based 

road maps. Then there are ‘intelligent’ transportation systems, which are designed to support 

decisions by means of powerful algorithms (Crainic, Gendreau, & Potvin, 2009). These new 

technologies are changing the way that routes are planned. More specifically, transport 

companies are shifting their focus away from stand-alone planners to planners supported by 

multiple technological systems.  

We believe that these technological changes have at least two implications for routing 

interfaces and the allocation of routing tasks to vehicle planners. (1) The handling of the 

routing problem’s physical constraints (e.g., computing distances between depots and 
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vehicles) is now fully automated, leaving planners to concentrate on the functional aspects of 

the problem instead. However, if the interface only displays the problem’s functional 

constraints, this can lead to poorer performances whenever the planner is called upon to 

handle a physical constraint that is not processed by the automated system (Couclelis, 2003). 

(2) Algorithms now generate multiple solutions, and in state-of-the-art interfaces, planners are 

allocated the task of selecting the most relevant one. This approach has long been criticized in 

industrial planning because it involves examining all the solutions in turn, which creates a 

very high workload (Sanderson, 1989; Schakel, 1976). This is certainly not without 

consequences for vehicle routing interfaces. 

The present paper seeks to address these two significant implications of technological 

changes in terms of mental workload, performance and time taken to make decisions. We 

focus on the routing problem (i.e., selection of an initial solution), where the interface plays 

an important role, rather than on the real-time re-planning of vehicles, which tends to revolve 

around communication with drivers (Ng et al., 1995). We begin by discussing constraint 

processing and the importance of modeling the work domain in order to assess planners’ 

constraint processing. We then describe an experiment that was designed to assess the 

implications of technological changes for routing. More specifically, we compared an 

interface providing all the constraints (both physical and functional; “unabridged”) with an 

interface focusing solely on high-level constraints (functional constraints only; “abridged”). 

We then compared two interfaces allowing for the successive comparison of solutions 

(analytical processing of constraints) with a third interface enabling users to compare all the 

solutions at the same time (perceptual processing). Finally, we discuss the importance of 

taking planners’ constraint processing into account when introducing technological changes. 
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2. Domain constraints in vehicle routing problems 

2.1. PLANNERS’ CONSTRAINT PROCESSING IN ROUTE SELECTION 

Transportation technologies are rapidly moving toward greater automation. At one 

extreme, decisions related to route selection have now become fully automated. Taxi 

dispatching is a typical example of such a system. In taxi dispatching, a group of call-takers 

answer incoming calls and enter customers’ locations into a database. A routing algorithm 

automatically selects the most appropriate vehicle according to different sets of constraints 

(available capacity, driver’s work schedule, distance from the pickup point, and so on). 

Optimization criteria are well known and usually consist in minimizing time and distance to 

the pickup point. The taxi driver then receives a notification and either accepts or declines to 

pick up the customer. 

In most routing situations, however, such fully automated systems are still uncommon 

because the optimum solutions cannot be determined with any degree of efficiency through 

automation alone (Lenior et al., 2006). In goods delivery, for instance, optimization criteria 

are particularly complex and planners are known to consider various unstated constraints: 

personal (e.g., how well the driver knows a particular route or foreign language), 

environmental (e.g., impact of weather conditions, traffic congestion), social (e.g., period of 

absenteeism), infrastructure (e.g., vehicle maintenance), and so on. The planner has a list of 

demands and has to prepare a sheet for each driver, on the basis of constraints such as 

locations, sequences, travel times and time windows for deliveries. This solution, which is 

also based on optimization criteria, is then given to each driver at the start of his or her shift. 

In an ideal world, the planner would design a route considering each constraint as an 

independent subproblem. However, as these constraints interact, planners cannot define an 

acceptable route without paying considerable attention to their interactions. In line with Stefik 
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(1981), we regard constraints as expressions of partial relationships among variables. They 

also partially specify the overall solution (route). Planners play a crucial role, taking the large 

set of routing constraints into account and adapting to changes in the problem constraints 

(Jackson et al., 2004; Sanderson, 1989). They also make a decisive contribution when 

problems are over-constrained, as their extensive knowledge allows them to relax constraints 

in order to arrive at an efficient solution (Gacias, 2010; Higgins, 1996, 2001; MacCarthy & 

Wilson, 2001). Planners play such a vital part in routing that full automation of route selection 

is impossible. If they are to be properly supported, it is important to identity all the constraints 

they have to process in order to design appropriate routing interfaces. 

There have been a number of attempts to define the vehicle routing task structure on 

the basis of hierarchical task analysis (Rahimi & Dessouky, 2001) and cognitive task analysis 

(Wong & Blandford, 2002). However, when Cegarra and van Wezel (2010) compared the 

amount of information produced by these two methods, as well as by work domain analysis, 

they found that the latter was far more exhaustive in identifying constraints, not least because 

it provides a generic view of constraints and does not focus on usual or known tasks. Work 

domain analysis (WDA) was developed by Rasmussen and colleagues (Rasmussen, Pejtersen, 

& Goodstein, 1994; Vicente, 1999) and emphasizes on the domain constraints. Initially, it was 

applied to “causal” systems guided by physical laws, as in nuclear power stations (Itoh, 

Sakuma, & Monta, 1995), conventional power stations (Burns, 2000) and cement milling 

plants (Van Paassen, 1995). In “causal” systems, the objective reality is imposed on the 

human operator (Vicente, 1999), as opposed to “intentional” systems, where the operator is 

the main agent of the domain and there are fewer references to an external environment. This 

is the case of routing problems, where it is difficult to enumerate the constraints in a generic 

fashion because they result partly from conventions, organizational objectives, formal or 

informal rules and operators’ goals. 
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2.2. TOWARD COMPLETENESS OF DOMAIN CONSTRAINTS 

At the lowest levels of the routing constraint space, we find physical objects such as 

vehicles, goods, drivers or depots. These objects are easily identified through interviews or 

observations. The highest levels, however, may well include human activities, for which work 

domain analysis is inappropriate. For instance, when Wong, Sallis, and O’Hare (1998) 

produced a tentative breakdown of ambulance dispatching, they initially conducted a 

cognitive task analysis and then used their findings to model the work domain. The authors 

included human tasks in their breakdown (e.g., “Locate nearest available ambulance”, 

“Dispatch in 3 minutes”), meaning that the analysis did not focus solely on domain 

constraints. Hajdukiewicz, Burns, Vicente, and Eggleston (1999) criticized this approach and 

undertook a different breakdown, trying to describe the constraints more independently of the 

decision-maker (see Fig. 1). At the top of their hierarchy is the overall functional purpose of 

the system, namely taking care of sick or injured people based on acceptable risks and 

resource constraints. This is done by prioritizing emergencies according to several abstract 

functions: ‘survival/damage’ (degree of urgency), ‘resource balance’, ‘time’ and ‘probability 

of successful treatment’ (related to transportation and care quality). Moving down to the 

lower levels, the description focuses increasingly on the physical aspects, such as physical 

functions: capabilities and limitations of resources to handle emergencies (e.g., ambulance 

speed, vehicle only offering first aid). Finally, physical form describes the appearance, 

condition and location of the emergencies. 

INSERT FIGURE 1 ABOUT HERE 

Even so, when we look carefully at their proposed breakdown, we see that it is based 

on a hypothetical situation featuring two available ambulances and two emergencies (see Fig. 

1). Vicente (1999) stressed that work domain analysis should be performed independently of 

usual or known tasks, the aim being to provide an exhaustive breakdown that is resistant to 
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changes in the situation. Thus, while their breakdown focuses on constraints, not planners’ 

tasks, it still deals with known cases, which is not compatible with the idea of a detailed and 

resilient view of constraints. In view of this, we sought to enhance the identification of 

domain constraints by extending the scope of the domain. More specifically, instead of 

focusing on currently known or usual cases in one particular situation (which inevitably leads 

to the inclusion of more details about the current situation), we set out to identify constraints 

by looking at different situations documented in the literature. Each variant of the VRP would 

allow us to increase the completeness of the constraint space by considering constraints which 

might potentially help to identify planners’ degrees of freedom. Our search for VRPs in 

scientific databases yielded more than ten thousand articles. However, only a few of them 

suggested genuinely new variants of the generic VRP (see Toth & Vigo, 2002). Instead, 

researchers tended to develop algorithms to solve known variants or design algorithms for 

multiple variants (e.g., Pisinger & Ropke, 2007). The variants extended the domain by 

providing constraints related to a temporal perspective, including customers’ time windows 

(VRPTW) and vehicles with limited capacity (CVRP), as well as more complex ones, such as 

trucks and trailers (TTRP), pick-up and delivery (VRPPD), or constraints related to multiple 

depots (MDVRP). 

INSERT FIGURE 2 ABOUT HERE 

As previously indicated, work domain analysis organizes the planners’ constraint 

space in terms of different concepts that planners can then use for reasoning within a work 

system. We believe that the classic five levels of the abstraction hierarchy are needed to 

describe this space, as exemplified in Figure 2. Detailing each level is beyond the scope of 

this article, but readers can refer to Gacias (2010) and Gacias, Cegarra, and Lopez (2010) for 

further details about the different variants and the procedure we used to achieve this model. 
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3. Challenges for constraint processing following technological changes 

Harper et al. (1998) performed a task analysis of vehicle planners and noted that it was 

necessary both to improve positional information about vehicles for correct planning and to 

reduce tasks requiring the entry of large amounts of data. These recommendations have since 

been met by the introduction of technological changes, with companies increasingly 

integrating new systems such as GPS, EDI and GIS into their internal systems, and the 

development of support systems to aid in routing decisions and reduce time-consuming tasks. 

This brings us to the two main technological changes under consideration in our study. 

3.1. AUTOMATION AND CONSTRAINT ABRIDGMENT  

The introduction of new automation devices has brought about a major change in 

routing procedures. GPS help planners to gather information about vehicles’ current routes 

and automatically compute journey times to customers. EDI systems, such as on-board 

computers, allow locations and other information to be automatically transferred between 

planners and drivers. GIS, meanwhile, are gradually being integrated with GPS and EDI, and 

allow planners to easily monitor vehicles on computer-based road maps. Keenan (1998) noted 

that planners can greatly improve the quality of routes produced by automated systems. 

Furthermore, because planners’ decisions are partly based on positional information, he 

argued that routing interfaces should be supplemented with GIS technology. 

However, with this increasing automation and the introduction of hardware devices, the 

work situation of planners will inevitably start to resemble supervisory control in process 

industries (Lenior et al., 2006). As such, to select routes, planners will no longer need to have 

extensive knowledge about physical constraints, especially spatial ones (e.g., location of 

vehicles or customers). In addition, with GPS and EDI automatically computing distances, 

planners will find it easier to combine these constraints with basic information about road 



9 

 

networks. They will simply have to choose the most relevant solution according to 

optimization criteria such as the overall cost of the solution. If the physical levels of the 

abstraction hierarchy are automated, planners will naturally focus their attention on the 

functional levels (optimization criteria). Moreover, it is often recommended to design 

interfaces that favor direct perception of higher-level constraints (Vicente, 2002). In the 

present study, an interface showing only the functional constraints was referred to as 

“abridged” and an interface showing both physical and functional constraints was referred to 

as “unabridged”. We hypothesized that participants using an abridged interface rather than an 

unabridged one would require less time and mental workload to select routes and would 

perform better (Hypothesis 1). 

3.2. DECISION SUPPORT AND ROUTE SELECTION  

More recently, transportation systems have started to focus on software issues, 

especially the use of powerful algorithms to support decision-making (Crainic, Gendreau, & 

Potvin, 2009). Algorithms form the basis of ‘intelligent’ transportation systems and are based 

on either mathematical models (operational research; OR) or knowledge representation 

formalisms (artificial intelligence; AI). They are needed to deal with problem complexity and 

to supply complex data, for instance by anticipating peak demands (Linton & Johnston, 

2000), or providing values for shift optimization (Taylor & Huxley, 1989). A second purpose 

of these algorithms is generally to reduce the time-consuming task of manually designing 

repetitive plans for the vehicle fleet (e.g., Avramovich, Cook, Langston, & Sutherland, 1982). 

As previously noted, planners have to choose the most appropriate solution according 

to the current goal. To this end, powerful algorithms provide the capability to compute all the 

possible solutions. The planners are then shown all these possible solutions, displayed on a 

computer screen one at a time. However, this approach involving the analytical processing of 
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solutions has long been criticized in industrial planning for generating a very high mental 

workload and sometimes leading to poor decision-making (Sanderson, 1989; Schakel, 1976). 

A real-world example is described by Mietus (1994), who noted that planners who were 

offered multiple solutions often finally focused on only one of them. Cegarra and Hoc (2008) 

demonstrated that planners sometimes accept a level of performance that is lower than the 

level they are capable of achieving, due to the very high mental workload of solution analysis. 

According to Vicente (1999), interfaces should favor direct perception of visual 

patterns, as planners’ powerful visual perception of patterns has frequently been noted 

(Dessouky et al., 1995; Sanderson, 1989; Trentesaux, Moray, & Tahon, 1998). Ormerod and 

Chronicle (1996), for instance, showed that visual perception allows planners to find close 

approximations to optimum solutions for simple routing problems at low computational costs. 

An effective approach to supporting decisions would thus consist in collating and integrating 

multiple routing solutions into a single visual form (see Bennett & Flach, 1992). This way, 

planners would be guided in their use of perceptual rather than analytical processing of the 

constraints. An interface displaying the solutions separately (requiring analytical processing) 

would therefore result in poorer performances, longer decision times and a higher mental 

workload than an interface presenting all the solutions simultaneously (and allowing for 

perceptual processing) (Hypothesis 2).  

 

These two types of interfaces focus solely on functional constraints (both are 

“abridged interfaces”) and require algorithms to produce adequate routes on the basis of 

information from GIS, EDI and GPS. However, there are always data that escape automation 

(Couclelis, 2003). For instance, congestion black spots are not always taken into account by 

automated systems, whereas this is precisely the kind of supplementary knowledge needed for 

route selection that human operators possess. When Golob and Regan (2003) conducted a 
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survey of 700 trucking companies operating in California, 85% of managers said that traffic 

congestion caused missed schedules and 36% regarded congestion as a serious problem for 

their businesses. The interface should therefore display not just functional information but 

also information about crucial physical constraints (e.g., traffic status in a particular location), 

which is not the case in “abridged” interfaces. When the planner interacts with an “abridged” 

interface, we can thus deduce that solving a problem with a physical constraint will require 

more time and a higher mental workload, and result in poorer performances, than solving a 

similar problem with a functional constraint (Hypothesis 3) 

4. Constraint processing: an empirical assessment 

4.1. PARTICIPANTS 

In most companies, routing problems are solved by just a single planner or a very 

small group of individuals. Moreover, due to the extreme diversity of routing situations, it is 

often difficult to generalize results (Cegarra, 2008). For this reason, most routing and 

scheduling experiments have been carried out with students. However, it can be difficult to 

reach conclusions about interface design, as students do not have the experience needed to 

solve routing problems. For this study, we therefore gave participants extensive training 

beforehand. 

Twelve participants (mean age: 23.8; six men, six women) spent nine months working 

for a small firm of consultants who mainly provide fleet management analyses for the private 

and public sectors. More specifically, they carried out a variety of tasks related to 

transportation and routing. These included analyses of customers’ sites in order to assess 

distribution costs, analyses of companies’ transport costs (multiple transport modes), and fleet 

utilization assessments. In particular, they worked on a case in the same geographical area as 

the one used as the context for this study. At the end of these nine months, we deemed that 
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they had all acquired sufficient experience of the transportation domain and reached 

approximately the same level of practice in transportation cost assessment and route selection. 

4.2. EXPERIMENTAL DESIGN 

The experiment used a 2 x 3 within-participants design. The independent variables 

were scenario type (physical vs. functional constraint) and interface (analytical + abridged vs. 

analytical + unabridged vs. perceptual + abridged). All six conditions required participants to 

select the best solution from a set of thirty computer-generated solutions.  

Participants were individually invited to take part in the experiment. They were first 

given a document introducing them to the context of the routing problem. They then 

familiarized themselves with the three interfaces by using them to solve a number of training 

problems. This training phase was repeated until they had correctly solved all the problems. 

Participants were then administered one problem in each of the six conditions, in a pseudo-

random order. Each time they embarked on a fresh problem, participants were instructed to 

find the least costly solution (performance criterion) that satisfied one particular constraint 

(either functional or physical). Unlike the training phase, no performance feedback was 

provided after the completion of each problem. 

Each problem was designed in such a way as to produce thirty solutions, five of which 

satisfied the relevant constraint. One of the five was calculated using the classic Bellman-Ford 

algorithm (Bellman, 1958), which finds the shortest path in polynomial time with a minimum 

cost in a graph. The four others were all acceptable routes, but with different modes of 

transport and higher transportation costs. Therefore, the computational nature of each problem 

was the same, meaning that any significant difference in the variables we measured related 

solely to the experimental condition (scenario or interface).  
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4.3. CONTEXT AND SCENARIOS 

A real-life problem of waste collection was taken as the context for this study. Each 

year, a producers’ organization in the French department of Seine-et-Marne grows several 

hundred thousand tons of beet. Harvesting starts in July and ends in October, before surface 

temperatures fall below freezing. The beets are cleaned in order to remove sand, soil and 

stones. The sand is then either transported by the producers to an expensive waste collection 

site or sold at a low price to construction companies. Overall, the producers’ organization has 

to plan the transportation of the sand with a view to minimizing the total costs (transportation 

costs and unloading costs for the unsold sand) and (a secondary concern) the number of days 

required for transportation. This context allowed us to design several problems. 

INSERT FIGURE 3 ABOUT HERE 

In our experiment, 4,550 tons of sand had to be routed from the producers’ depot (“La 

Chapelle Rablais” in Fig. 3). The planner had to deliver as many tons as possible to 

construction companies (“Poincy”, “St-Rémy-la-Vanne”, “Rouilly”, “Rozay-en-Brie” and 

“Episy” in Fig. 3) in order to minimize the quantity of sand that would have to be unloaded at 

the waste collection site (“Claye-Souilly”). Multiple constraints had to be taken into account. 

First, unloading at the waste collection site cost about €100/ton, while the construction 

companies would take the sand for free and sometimes even pay a small amount of money for 

it (see Table 1). Furthermore, the waste collection site was large enough to take all the 

producer’s sand, whereas the construction companies differed in the amount they could take, 

according to their construction needs. 

INSERT TABLE 1 ABOUT HERE 

Second, a number of different transportation modes were available: trucks, barges, and 

trains. For each mode of transport, capacity, transportation cost (cost/ton/km), and average 

speed constraints had to be considered (see Table 2). With road transport (trucks), the costs of 



14 

 

traveling back and forth also had to be included. Two of the modes (barges and trains) were 

only possible from one fixed point to another, along fixed routes: the barge docks were 

located in “Dammarie-les-Lys” and “Meaux”, while there were train depots in “Melun”, 

“Nangis” and “Provins”.  

INSERT TABLE 2 ABOUT HERE 

The abstraction hierarchy presented in Figure 2 was used to determine the relevant 

physical and functional constraints in this waste collection context. It indicated that not all the 

constraints of the work domain analysis were needed to produce a solution.  

The system’s functional purpose is twofold: find a solution that both minimizes costs 

and ensures adequate customer service. In our experiment, the company was both the planner 

and the customer of the solution, and the most important constraints therefore related to costs. 

Regarding the values and priority measures (second level of the hierarchy), the planner 

needed to consider global capacity first (total cost of transport), followed by the number of 

days needed to implement the solution. At the lowest level of the abstraction hierarchy, the 

planner needed to take into account the types of vehicles available, the volume that had to be 

routed, and the location of the depots. These constraints determined the number and type of 

vehicles needed to handle the volume, the routes they took, and their travel times (different 

speeds for different modes).  

Before each condition of the experiment, participants were told that they would have 

to satisfy one of two types of constraints: 

A high-level, functional constraint. This involved looking for solutions whereby all the 

sand could be routed in the space of a set number of days (e.g., “You have to determine the 

least costly route for dispatching the sand in less than 5 days”); 



15 

 

A low-level, physical constraint. Here, they had to avoid a particular route due to 

congestion (e.g., “You have to determine the least costly route for dispatching sand, avoiding 

the ‘La Chapelle Rablais’-‘Meaux’ road due to extensive roadworks”). 

4.4. INTERFACES  

We designed three different interfaces for selecting the solutions (see Fig. 4). 

INSERT FIGURE 4 ABOUT HERE 

The first interface (a) provided only functional information about the thirty solutions, 

which were displayed one at a time. The user had to click on arrows to browse through the 

solutions, which implied analytical processing of these solutions. Each screen consisted of 

performance measures (transportation cost, number of vehicles used, time required for the 

collection). As only functional information was shown on the screen, this was dubbed the 

“abridged interface”. In this interface, physical constraints such as the route used by vehicles 

or the locations were not displayed. 

The second (analytical) interface (b) had the same structure, but this time physical 

information was added to each solution. More specifically, a map was displayed, highlighting 

the routes used by the different modes of transport for a given solution. This allowed both the 

problem’s physical and functional constraints to be visualized (“unabridged interface”). 

The third interface (c) was regarded as a ‘perceptual’ interface, in that it presented all 

the solutions simultaneously on the screen. Participants therefore did not need to browse 

through the solutions because they were all presented on the screen. Instead, they had to circle 

the selected solution with the mouse. Only functional information was provided on this 

(abridged) interface. It therefore differed from the first one not in the information being 

displayed but in the way the solutions were presented (simultaneously vs. successively). 
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For the purpose of our analyses, the first, abridged, interface (a) constituted the control 

condition. 

4.5. PERFORMANCE MEASURES 

In order to assess the participants’ behavior and compare their performances in relation to 

the scenarios and the interfaces with which they had to interact, we selected three measures: 

- Routing performance: This performance measure referred to the instructions given to 

participants, namely to minimize costs whilst satisfying the prescribed constraint. We 

deemed that the participant had successfully solved the problem if he or she selected the 

solution with the best performance.  

- Time performance: unlike the measure of routing performance, time performance was a 

measure not of the outcome but of the cognitive process. Participants needed time to 

compare the solutions and select the most appropriate one. Longer times could be 

assumed to reflect more demanding cognitive processes. 

- Mental workload: We reviewed various workload analysis methods in terms of their 

invasiveness and opted for measures that were directly obtained from participants. 

Accordingly, workload was assessed with the NASA-TLX (Hart & Staveland, 1988). The 

NASA-TLX is a multidimensional rating scale procedure. It probes six dimensions of 

workload: cognitive demand, physical demand, temporal demand, effort, performance, 

and frustration. It is often considered to be not only the most sensitive subjective measure, 

but also the most reliable one (Cegarra & Chevalier, 2008; Hill et al., 1992). The French-

language version was validated prior to this study (Cegarra & Morgado, 2009).  

4.6. RESULTS 

In order to test statistical significance, we performed repeated-measures ANOVAs. 

We controlled the overall Type I error rate of the planned comparison by adjusting the p value 
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downward for declaring statistical significance (p = .0125). Moreover, a priori power analyses 

performed with G*Power software (Faul, Erdfelder, Buchner, & Lang, 2009) showed that an 

optimum sample size would be N = 52. This was far higher than the number of available 

participants in our study and directly affected the probability of the Type II error-retaining a 

false null hypothesis. Because it would not have been possible to distinguish between the 

absence of an effect and the lack of statistical power needed to detect an effect, nonsignificant 

results were regarded as inconclusive and are not discussed here. 

4.6.1. Abridged vs. unabridged interface 

4.6.1.1.  Time taken to select a solution 

INSERT FIGURE 5 ABOUT HERE 

The comparison of interfaces, illustrated in Figure 5, showed that the task took longer 

to perform with the unabridged interface than with the abridged one. There was therefore an 

overall significant effect of interface type across all the scenarios, F(1, 11) = 27.212, p = .000, 

ηp² = .546. In terms of behavioral performance, it took participants longer to make decisions 

when all the constraints were visible on the interface. 

Concerning scenario type (physical vs. functional constraint), we failed to observe any 

clear difference in total times between the two interfaces and our statistical analyses failed to 

reveal any overall significant effect of scenario type across the interfaces, F(1, 11) = .486, 

p = .493, ηp² = .021. 

4.6.1.2.  Mental workload 

INSERT FIGURE 6 ABOUT HERE 

Concerning the effect of interface type (Fig. 6) we observed small but consistent 

differences in workload between the unabridged and abridged interfaces. Statistical analyses 

highlighted an overall significant difference between the two interfaces, F(1, 11) = 11.317, 
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p = .003, ηp² = .330. Thus, a smaller mental workload was involved in finding solutions with 

the abridged interface than with the unabridged one. 

There was a comparable difference in workload according to type of constraint (Fig. 

6). We were thus able to identify a significant overall effect of scenario, F(1, 11) = 8.769, 

p = .007, ηp² = .276. Participants experienced a higher workload when they considered 

physical versus functional constraints. 

4.6.1.3.  Routing performance 

INSERT FIGURE 7 ABOUT HERE 

Regarding the percentage of participants who successfully solved the problem, there 

was no clear difference between either the interfaces or the scenarios (Fig. 7). In every 

condition, two or three participants systematically failed to find the best solutions. A detailed 

scrutiny of the solutions they selected showed that these were almost always the second or 

third best. Only one participant selected a solution that did not satisfy the physical/functional 

constraint.  

Using performance (success/failure) as a dichotomous variable raises concerns as to 

the applicability of analyses of variance. A variable taking the value of zero or one to count 

the number of correct answers is not normally distributed. Lunney (1970) argued that analyses 

of variances are robust for dichotomous variables if the response proportions are less extreme 

than 20%-80%. This was not, however, the case for these results. We therefore proceeded to 

conduct nonparametric chi-square tests. Results failed to reveal a significant effect of either 

interface [χ(1) = .000, ns] or scenario [χ(1)=.000, ns] on successful outcome. 

In terms of behavioral performance, scores confirmed the fact that participants 

generally found the correct solution (≥ 75% success).  
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4.6.2. Analytical vs. perceptual interface 

4.6.2.1.  Time taken to select a solution 

INSERT FIGURE 8 ABOUT HERE 

Looking at the results from a descriptive point of view, we observed that decisions 

took less time to make with the perceptual interface than with the analytical interface (Fig. 8). 

More specifically, results showed that there was an overall significant effect of interface type 

across all conditions, F(1, 11) = 13.104, p = .001, ηp² =.363, with participants making 

decisions faster with the perceptual interface than with the analytical ones. 

Furthermore, there was an overall significant effect of type of scenario across the 

interfaces, F(1, 11) = 36.109, p = .000, ηp² = .611. This indicated that participants worked 

faster when they had to consider a functional constraint rather than a physical one. 

4.6.2.2.  Mental workload 

INSERT FIGURE 9 ABOUT HERE 

When we looked at mental workload, there did not appear to be any difference 

between the interfaces. Statistical analysis also showed that there was no significant overall 

effect of interface on mental workload, F(1, 11) = .202, p = .657, ηp² = .009. However, due to 

the small sample size, it was not possible to conclude as to the absence of effect or the lack of 

statistical power. 

There appeared to be a small difference between the physical and functional constraint 

scenarios (Fig. 9). A descriptive analysis allowed us to determine that there was a greater 

mental workload for physical constraint scenarios than for functional constraint ones. This 

finding was strengthened by a statistical analysis, which revealed a significant effect of 

scenario on mental workload, F(1, 11) = 19.125, p = .000, ηp² = .454.  
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4.6.2.3.  Routing performance 

INSERT FIGURE 10 ABOUT HERE 

 During the experiment, virtually no errors were committed whilst using the perceptual 

interface (see Fig. 10). Only one of the participants using this interface missed the correct 

solution, relaxing the functional constraint that had been given. Two of the participants using 

the analytical interface failed to find the best solution with functional constraints and three of 

them failed to find the best solution with physical constraints. Chi-square tests did not reveal a 

significant effect of interface on performance [χ(1) = .381, ns]. No significant effect was 

observed for scenario [χ(1) = .000, ns]. Nonetheless, it is worth noting that only participants 

handling physical constraints with the perceptual interface achieved perfect route selection 

performances. 

5. Discussion 

5.1. ABRIDGED VS. UNABRIDGED INTERFACE 

Results indicated that an abridged interface requires less time and mental workload to 

select a solution, all the while ensuring a high level of performance. More generally, our 

results confirmed our first hypothesis and showed that participants did not have to see the 

lower levels of the abstraction hierarchy to make decisions when these levels were only 

needed by the system (GPS, GIS, EDI) to calculate solutions. Keenan (1998) had previously 

argued that routing interfaces should be supplemented with maps and spatial data (e.g., 

administrative boundaries). However, our results indicated that this lower-level information 

was superfluous to requirements. In all probability, when an interface contains supplementary 

information about the solution, planners laboriously take all this excessive data into account, 

resulting in an increase in decision time and mental workload.  
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This does not mean to say that physical constraints such as spatial information are not 

crucial for resolving routing problems. If planners are in frequent communication with drivers 

during route execution, they are more likely to require route and navigation information to 

carry out real-time monitoring. Thus, planners who currently use GIS regard these features as 

important for communicating with drivers (Ng et al., 1995). This is mainly because they need 

to view the situation from the drivers’ perspective. Accordingly, while computer-based maps 

are useful for supporting communication with drivers, we can conclude that they are of little 

assistance to experienced planners when they are selecting the initial routes.  

A similar conclusion has been reached in the industrial scheduling domain. In this 

domain, the Gantt chart, which displays the use of resources on the y-axis and time on the x-

axis, is the most popular way of representing solutions. For this reason, various authors have 

suggested that humans should be supported by Gantt charts (e.g., Adelsberger & Kanet, 1989; 

Kurbel & Ruppel, 1996). However, these charts have also been criticized, for helping humans 

to communicate the plan to other individuals but not necessarily to reach planning decisions 

(Higgins, 1996). Therefore, as Trenteseaux, Moray, and Tahon (1998) suggested in the 

industrial domain, and as demonstrated by our results, new graphical forms need to be 

developed for route selection. 

5.2. ANALYTICAL VS. PERCEPTUAL INTERFACE 

Results showed that an interface facilitating perceptual rather than analytical 

processing requires less time for decision-making. While the results on mental workload are 

inconclusive, the decision time finding partly confirms our second hypothesis. This result is 

also in line with other studies showing that planners who have to undertake pairwise 

comparisons are impacted in their decision-making (Sanderson, 1989). Similarly, there is now 

a large body of literature arguing for integrated rather than separate displays (Bennett & 
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Flach, 1992). Integrated displays collate and integrate data from multiple sources (“sensors”) 

into a single visual form, unlike separate displays which map each source to a different 

display. Our results stress the importance of facilitating the perceptual processing of 

constraints in order to facilitate the decision process. A secondary benefit of having all the 

information available in computers is the possibility of sharing this information among the 

company’s different departments (shipping, planning, drivers), thus facilitating the overall 

routing process (Scapinakis & Garrison, 1991). 

Nonetheless, one limitation of our study relates to the reliability of the data. In our 

experiment, participants consistently performed well across all the conditions, selecting 

solutions that satisfied the prescribed constraints. Implicitly, the solutions were designed as 

though the computer had access to the physical constraint (traffic congestion) when it 

designed the routes. In practice, however, this constraint is not available to computers and 

they sometime generate solutions on the wrong basis. Moreover, unreliable data can 

considerably affect the performance and usefulness of integrated displays, as Reising and 

Sanderson (2004) demonstrated in their study of the Pasteurizer II microworld. This limitation 

highlights the need for a follow-up study of how planners react to imperfect solutions. For 

instance, Reddy et al. (1995) analyzed the route selection behavior of students using 

simplistic routing software. They noted that acceptance of the single solution proposed by the 

computer was related to its accuracy. More specifically, if they had been given poor advice, 

participants chose not follow the computer’s advice for subsequent trips, although they did 

sometimes start following it again if the accuracy of the computer-generated routes increased. 

When they looked at experienced planners, Ng et al. (1995) found that they set little store by 

the route selection features of automated systems because they trusted in their own ability to 

find an appropriate route. These results are in line with research on trust and self-confidence 

(Lee & See, 2004) and highlight the need to explore the design of trustable routing systems, 
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for instance on the basis of “sensor abstraction hierarchies” (Reising & Sanderson, 2004) to 

determine potential automation inadequacies and their consequences for routing interfaces. 

 

Another important result of our study is the increase in workload and decision-making 

time for physical as opposed to functional constraints for both interfaces. At first sight, this 

would appear to confirm our third hypothesis. However, these results need to be set against 

performance, as the perceptual interface allowed participants to achieve perfect performance 

on physical constraint scenarios, which seems incompatible with our hypothesis. Moreover, in 

the comparison of abridged vs. unabridged interfaces, we noted that mental workload was 

higher for the physical constraint than for the functional one for both interfaces. Overall, these 

results emphasize that finding an adequate route with a physical (spatial) constraint is a 

demanding task even in the presence of a computer map. One possible explanation is that 

these maps are inadequate to support physical constraint processing.  

Golob and Regan (2002) showed in a survey that planners regard computer maps as 

one of the least useful means of reporting traffic congestion. At the same time, they noted that 

traffic maps were deemed to be helpful for carriers with long load moves (>800 km) but not 

for private carriers (transporting only their own goods) and carriers with short load moves. 

This directly relates to previous experience of the road network. Planners who are not familiar 

with the road network (as is the case for long moves) probably need maps to visualize the 

routes, whereas well-informed planners (e.g., those repeating short moves) do not. For 

experienced planners, like our participants, alternative routes may not necessarily be best 

supported by maps, as these routes are already known to them. This idea is also supported by 

different investigations of planners’ practice, showing that information about traffic 

conditions is mainly obtained from radio reports and direct communication with drivers and is 

not necessarily based on maps (Hall & Intihar, 1997). This underscores the need to design 
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innovative interfaces for visualizing spatial constraints in an efficient manner, rather than 

providing planners with information they already have in their heads. More generally, our 

listing of constraints in the form of an abstraction hierarchy (see Fig. 2) could serve in follow-

up empirical studies to identify the constraints (time, capacity, etc.) that planners already 

handle well and those that really deserve to be supported. 

6. Conclusion 

There are many obstacles to the design of empirical studies in the routing domain. The 

presence of only a few planners in each company, the complexity of domain modeling and the 

interdisciplinary nature of these issues all make it difficult for researchers to analyze routing 

interfaces. This probably explains why the latest peer-reviewed article empirically assessing 

the perception of constraints in planning problems was published so long ago (Gibson & 

Laios, 1978). Since then, many authors have expressed concern at the dearth of empirical 

studies of planning/routing (Hoc, Mebarki, & Cegarra, 2004; Moray, Hiskes, Lee, & Muir, 

1995; Sanderson, 1989).  

Technological changes have implications for the way planners solve vehicle routing 

problems. Our results on route selection have direct consequences for the design of routing 

interfaces. More specifically, they validate the inclusion of automation and decision support 

in interfaces. However, they also stress the need to evaluate routing interfaces in terms of 

information reliance (abridgment), automation accuracy (trust) and graphical forms tailored to 

meet genuine support needs. At the end of the day, our results reinforce the idea that it is not 

the technology itself that is the key to its application in routing, but rather the way in which it 

is merged with planners’ decision-making processes. 
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Figure 1. Breakdown of ambulance dispatch management (Hajdukiewiczk, Burns, Vicente, & 

Eggleston, 1999). 
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Figure 2. Work domain analysis of the generic vehicle routing problem. 
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Figure 3. Schematic view of the different locations and distances featured in the experiment. 

White, gray and black backgrounds indicate the waste collection site and the construction 

companies, the loading and unloading points for trains and barges, and the producers’ depot, 

respectively. Solid, dotted and dashed lines indicate trucks, barges and train routes, 

respectively. 
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Figure 4. Illustrations of the three interfaces used in the experiment. Highlighted routes on the 

map (b) and axis graduations of (c) are not shown for readability reasons. In Figures (a) and 

(b), the user browses through the different solutions. In Figure (c) the user sees all the 

solutions displayed on the interface at the same time.
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Figure 5. Total time (in seconds) taken to select a solution according to interface type and 

scenario. 
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Figure 6. Overall mental workload (NASA-TLX). 
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Figure 7. Percentage of participants who successfully solved the problem. 

 



37 

 

 

Figure 8. Total time (in seconds) taken to select a solution according to interface type and 

scenario. 
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Figure 9. Overall mental workload (NASA-TLX). 
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Figure 10. Percentage of participants who successfully solved the problem. 
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Table 1. Capacity and price constraints for the sites used in the scenarios. 

Site Maximum capacity 

(tons) 

Unloading price (per ton) 

Poincy 3,000 0 

St-Rémy-la-Vanne 300 +€1.50 

Rouilly 500 0 

Rozay-en-Brie 1,000 +€1 

Episy 50 0 

Claye-Souilly 

(waste collection site) 

400,000 -€100 
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Table 2. Constraints related to each transport mode. 

Transport mode Maximum capacity Transportation cost for 

maximum capacity  

Average speed 

Truck 25 tons € 2.50/km 55km/h 

Train 500 tons € 250/km 18km/h 

Barge 400 tons € 80/km 8km/h 

 

 


