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Exact distribution for the local score
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ABSTRACT

Let X����Xn be a sequence of i�i�d� positive or negative integer valued

random variables and Hn � max��i�j�n�Xi � ��� � Xj� the local score of

the sequence� The exact distribution of Hn is obtained using a simple

Markov chain� This result is applied to the scoring of DNA and protein

sequences in molecular biology�
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�� INTRODUCTION

The assessment of the statistical signi�cance of scores of DNA and protein se�
quence is an important stage in the work of molecular biologists� Let A����An

be a nucleic or protein sequence� In order to identify interesting patterns� ap�
propriate scoring values can be assigned to each residue� Scoring assignments for
nucleotides or amino acids may arise from a variety of considerations like biochem�
ical categorization� physical properties� or association with secondary structures�
�see Kyte et al� ���� and Karlin et al� ���� for examples�� The local score of the
sequence A����An according to a scoring scheme � is de�ned as follow�

Hn � max
��i�j�n

�
jX

k�i

��Ak�

�
�

The local score is a very useful tool for biological sequence analysis in order to
identify unusual sequence pattern or similarity that may re�ect biological signif�
icance� It is desirable to know whether interesting patterns can arise by chance�
We are therefore interested in the distribution of Hn under the null hypothesis of
only random variation� so that we may judge the statistical signi�cance of a local
score of a real biological sequence� For surveys of this subject� see Waterman
���	� or Durbin et al� �����

Let X � �Xi��i�������n� be a sequence of independent and identically distributed
random variables of positive or negative integers� Let Sk � X� � ����Xk be the
partial sums and S� � �� The local score of X is de�ned as follows

Hn � max
��i�j�n

�Sj � Si� � max
��i�j�n

�Xi � ����Xj� ����

The local score has been already studied a lot� and asymptotic approximations
have been obtained but its exact distribution is unknown untill now�
Following Iglehart ��
�� Karlin and Altschul ����� Karlin and Dembo �����
proved the next limit when E�X� � � and for X non lattice

lim
n���

P �Hn �
logn

�
� x� � exp

�
�K� � e��x

�
����

where � and K� depend only on the probability distribution of the Xi� For X
lattice� there is no limit for P �Hn �

log n
�

� x� and ��� is replaced by

exp ��K�e��x� � lim inf
n���

P �Hn �
logn

�
� x����

� lim sup
n���

P �Hn �
logn

�
� x� � exp ��K�e�x� �

�



where K� and K� depend on the distribution of the Xi too�
This result applied to sequence alignment� �see Dembo et al� �����b��� is imple�
mented in BLAST� �see Altschul et al� ������ for gapless alignment between two
sequences�

In this paper we give the exact distribution of the local score Hn for X lattice
independently of the sign of E�X�� This article is organized as follows� The result
and its proof is given in Section �� Section � is devoted to a comparison between
our exact result and the approximation used by Karlin and Altschul ���� on the
numerical examples given by these authors� Section � deals with the ungapped
alignment problem� A conclusion is given in section 	�

�



�� EXACT DISTRIBUTION OF Hn

Let Tk be the time of the kth successive minimum of the process fSkg

T� � � and Tk�� � inffi � Tk  Si � STk � �g

and m�j� � supfk  Tk � jg� the number of successive minimum over the time
from � to j� The Tk may be in�nite for k � � if E�X� � �� These stopping time
have already been studied by Karlin and Dembo ���� to obtain their approxi�
mation of the distribution of the local score� See also Karlin and Taylor ����
�Chapter �
�� Let U be the process de�ned by 

Uj � Sj � STm�j�
for j � � and U� � �

Lemma � U possesses the following properties�

�� �k � �� ���� m�n� UTk � ��

�� �j � � Uj � ��

�� �j � � Uj � �Uj�� �Xj�
��

Proof

�� By de�nition of Uj and m�j��

�� If Uj � � we should have Sj � STm�j�
which contradicts the de�nition of

Tm�j��

�� Uj � Sj � STm�j�
� Sj�� � Xj � STm�j�

� There are two possible cases
Tm�j� � j or Tm�j� � j�

� Tm�j� � j� On the one hand Uj � � �see the �rst property�� and on the
other hand

Uj�� �Xj � Sj�� � STm�j���
�Xj � Sj � STm�j���

� STm�j�
� STm�j���

�

The last term is negative by the de�nition of Ti� Thus �Uj���Xj�
� � �

and we get Uj � �Uj�� �Xj�
��

� Tm�j� � j� Then Tm�j��� � Tm�j� and STm�j���
� STm�j�

and we have

Uj � Sj � STm�j�
� Sj�� �Xj � STm�j���

� Uj�� �Xj �

As Uj � � �property ��� Uj�� �Xj � �� Therefore

�Uj�� �Xj�
� � Uj�� �Xj

and Uj � �Uj�� �Xj�
��

	



The process U and the local score are linked by the following lemma

Lemma �

Hn � max
��k�n

Uk ����

Proof

With j held �xed and by de�nition of Tm�j� we have Sj � Si � Sj � STm�j�
for all

i � j� with equality for i � Tm�j�� Then

Hn � max
��i�j�n

�Sj � Si� � max
��j�n

�max
i�j

�Sj � Si�� � max
��j�n

�Sj � STm�j�
� � max

��j�n
Uj�

�	�

Let a be a positive integer and �a the dual variable of Uj

�a � inffj � ��Uj � ag �

Using ���� we get

f�a � ng � fmax
k�n

Uk � ag � fHn � ag �

So the distribution of the local sore Hn is given by

P �Hn � a� � P ��a � n� ����

Let U�
j � Uj for j � �a and U�

j � a for j � �a� The Lemma � implies that the
process U� is a Markov chain whose states are f�� �� ���� ag� Let � � ��h����h���a
be the probability matrix transition of U� 

�h�� � P �U�
n � ��U�

n�� � h� for � � h� � � a �

By construction� a is an absorbing state� thus we have

�a�a � � and �a�� � � for � � �� ���� a� � ��
�

Moreover�

�h�a � P �U�
n � a�U�

n�� � h�

� P �Un � a�Un�� � h�

� P ��Un�� �Xn�
� � a�Un�� � h�

� P �Un�� �Xn � a�Un�� � h�

�



� P �Xn � a� h�Un�� � h� �

As the Xk are iid and Un�� only depends on the �Xk� k � n� ��� we obtain

�h�a � P �Xn � a� h� � P �X� � a� h� for h � �� ���� a� � ����

For the state �� we have

�h�� � P �X� � �h� pour h � �� ���� a� � ����

and for the general transition from h� h � �� ���� a � � to �� � � �� ���� a � �� we
obtain

�h�� � P �Xn � �� h� � P �X� � �� h� �����

Let f�k� � P �Xi � k� and p�k� � P �Xi � k� for � � h� � � a� According to �
��
���� ��� and ����� � is given by

� �

�
BBBBBBB�

f��� p��� p�a� �� �� f�a� ��
���

���
���

f��h� � � � p��� h� �� f�a� h� ��
���

���
f��� a� p��� a� p��� �� f���

� � � � � � �

�
CCCCCCCA

�

The distribution of U�
n� denoted by Pn � �P �U�

n � ��� ���� P �U�
n � a�� is given by

an elementary result on Markov chains� �see Freedman ��
���

Pn � P��
n with P� � ��� �� �� ���� �� �����

Then

P ��a � n� � �� P ��a � n� � �� P �U�
n � a� �����

Taking into account ����� ���� and ���� we obtain the following theorem

Theorem � The c�d�f� of the local score is given by

P �Hn � a� � �� Pn�a� � �� P��
nP �

a with Pa � ��� �� �� ���� �� �����






�� COMPARISON BETWEEN THE EXACT AND THE

ASYMPTOTIC RESULTS ON EXAMPLES

Karlin and Altschul ���� ��KA�� have presented representative examples of max�
imal scoring segments of protein sequences with scores based on charge� hydropa�
thy� cysteine clusters and amino acid similarity� We use the same examples and
give the exact result in comparison with the approximation given by �KA�� The
following table �Table �� summarize the results� The indexing of the examples is
the one used in �KA�� Even if the relative error may be large in some case� one
can see that the �KA� approximation is correct and does not lead to dramatic
errors of decision� However the relative error is high in two cases �Examples a�
ii� and c� iii�� where a is the highest among all examples� Generally the relative
error is positive� a fact which is in agreement with �KA� remark about the use
of the constant K� which leads to conservative P�values� However the error is
negative in two cases which proves that the �KA� approximation is not always
conservative�
This formula is good for the tail of the distribution� One can use two di�erent
ways in order to judge of its accuracy�
First� when the P�value obtained is small enough �� ������ the asymptotic
bounds �see ���� can be use with con�dence�
The second way stands on x� where x � a � log�n���� The ratio Hn� log�n�
converges almost surely to ��� where � depends on the distribution of X �see
Dembo et al� �����a�� Arratia and Waterman et al� ���	�� and x corresponds to
the deviation between the calculated local score a and the almost surely �limit��
Larger is x� better are the conditions� For a safe use of ���� empirical tests lead to
consider that x � � is a su�cient condition if n is enough high and E�X� �� ��
The two negative relative errors in the Table �� c��i� and e�� are linked to the
too large P�value  �� 	������ for c��i� and ��	�� for e�� We are not in the tail of
the distribution and the upper bound given by Karlin et al� can be less than the
exact P�value� The deviation x equals to ���� for c��i� and ������ for e�� However
note that the case d��ii� is an example of high P�value but ��� is correct�

These numerical examples are only illustrations about the quality of the �KA�
approximation� A more complete numerical study must be made in order to give
more general results and to produce advices about its safe use specially with short
sequences�

Table �

�



�� UNGAPPED ALIGNMENT PROBLEM

In order to compare two biological sequences A and B � scores can be assigned
to couple of amino acids or nucleotides re�ecting the similarity between the two
components  ��Ai� Bj�� We can de�ne the local score of two sequences as

Hn � max
��i�j�n

�
jX

k�i

��Ai� Bj�

�
�

The statistical signi�cance of this problem is already solve by the case of one
sequence �see previous sections�� But this approach of evolution between two
sequences implies that they have the same length� and does not consider shifted
couple of segments� It does not consider as well the fact that components can be
inserted or deleted� what we call indel� or gap�

For the ungapped alignment problem� but considering shifts� see R Mott and
R� Tribe ����� we can use the exact probabilities in the following way� Let us
consider two sequences of respective size m and n with m � n� We can align the
�rst sequence with m�n�� sequences obtained by slipping the second sequence
�see Figure ���
The local score is then de�ned as Figure �

Hn�m � max
����min�n�m����

��i�n��
��j�m��

�X
k��

��Ai�k� Bj�k�

As most authors we do not take into account the dependence between them�
Their weak dependence is ignored� Therefore the probability that the local score
does not exceed a is approximately the product of the corresponding probabilities
for each of the m� n� � couple of sequences�
The length of each couple is equal to the common length� between � and n� There
are � couples of length i for i � �� ���� n� � �see the �rst case and the third cases
of Figure �� and m�n�� couples of length n �see the middle case of the �gure��
Therefore the probability of exceeding a is approximatively equal to

P �Hn�m � a� � ��
Y

i�������n��

P �Hi � a��P �Hn � a�m�n��

Note that we are able to take into account the size of each couple of sequences�
which is not possible when an asymptotic method is used�

�



�� CONCLUSIONS

Our exact method is very easy to implement� A MATLAB computer program
�available upon request� contains only thirty lines of code� It is not computa�
tionally intensive if one possesses a good subroutine for computing nth�powers of
a matrix� For example the computation of the P�value a ��������long sequence
with a � ��� is obtained in less than one second using a Pentium�II PC� Note
that the �KA� approximation also needs a computer program in order to obtain
the constant K�� The imprecision due to computation errors can be controlled
using the fact that the sum of the probability of the states of the Markov chain
must be equal to one� The �rst wrong �nger in the above example is the ��th
and we think that the computation errors are small for P�values greater than
������ In our mind it would be useful to implement the computation of the exact
P�values in any scoring sequence software� It would give exact P�values even if n
is small and if E�X� is near from zero� which is not the case for the asymptotic
expression ����
Some work remains to deal with the alignment scoring problem with gap and
with the case of Markovian dependent sites�

��
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Figure � There is a total of m � n � � di�erent positions between the two
sequences that can be regrouped in three main cases�
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Index Sequence and frequencies n a KA P�value Exact P�value Relative

error

�i� Human 	
�kDa keratin

a� Mixed charge cytoskeletal type II� ��� �� � ������ �� ������� ��!
X� � for DEKRH f�s������� �

�� for others �ii� Human c�junc nuclear

transcription factor ��� �� � ������ �� ������� ��!
f�s������� �

b� Acidic charge Drosophila zeste protein

X� � for DE� �� for KR nuclear transcription factor 	
	 �� �� 
����� �� 
	����� ��!
�� for others f�s������ �� f�s������

�i� Drosophila sodium

ion channel protein ���� �� �� ������ �� 	������ �	!
c� Basic charge f�s������� ��f�s��������

X� � for KRH� �ii� Zeste protein

�� for DE� f�s������� �� f�s�������� 	
	 �� ������ �� �
����� ��
!
�� for others �iii� U� 
��kDa small

nuclear ribonucleoprotein ��� �
 � ������ �� ������� ��
!
f�s������� �� f�s�������� �

�i� Drosophila engrailed

f�s������� 
� f�s�������� � 		� �
 �� ������ �� 
������ �!
d� Hydrophobic �ii� Human c�mas� angiotensin

X� � for ILVFMCA� receptor protein ��	 �	 ������ 
� �
����� 
!
�� for GSTWYP� f�s�����	� �� f�s�������� �

�� for others �iii� Cystic �brosis �CF�

gene product ���� �� ���� �� ������� 
!
f�s������� 	� f�s������	� �

e� Cysteine Cluster Human thrombomodulin

X� � for C �� else f�s������ � 	
	 �� �� ������ �� 	������ ��!

Table � Comparison of exact and asymptotic values of P �Hn � a� on KA �Karlin
and Altschul� examples a� research for high�scoring mixed charge segments �of
basic and acidic residues�" b� research for high�scoring acidic charge segment" c�
high�scoring basic charge segment" d� Strong hydrophobic segments" e� Cysteine
cluster

��


