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Abstract. The wide adoption of MDE raises new situations where we need to
manipulate very large models or even infinite model streams gathered at runtime.
These new uses cases for MDE raise challenges that had been unforeseen by the
time standard modeling framework were designed. This paper proposes a formal
definition of an infinite model, as well as a formal framework to reason on queries
over infinite models. This formal query definition aims at supporting the design
and verification of operations that manipulate infinite models. First, we precisely
identify the MOF parts which must be refined to support infinite structure. Then,
we provide a formal coinductive definition dealing with unbounded and poten-
tially infinite graph-based structure.

1 Introduction

The growing adoption of Model-Driven Engineering (MDE) at all steps of software de-
velopment comes with new requirements for MDE theories and tools. In particular, this
work focuses on the need to process (i) finite but very large models, and (ii) infinite
models. A major challenge to process these categories of models consists in under-
standing the exact meaning of a query over a model for which the interpretation does
not know the size at a given point in time.

To illustrate the need to process finite but very large models, let us consider the
complete model representing the entire Eclipse platform (the minimal workbench with
OSGi). This model includes about 5 million model elements. Current model process-
ing tools require all the model elements in memory (e.g., Eclipse Modeling Framework
(EMF) [1]). With EMF, the model of the Eclipse platform Java code requires 900MB
in RAM memory. Steel et al. [2] provide an even bigger example: when they adopted
a MDE approach to analyze civil engineering models, they had to deal with more than
7.3 million computational objects. Programming languages provide a good source of
inspiration to deal with these issues. Through the notion of lazy evaluation, program-
ming languages allow (lazy) iterations on potentially infinite data-structures. Even in
Java, which does not support laziness natively, skilled programmers tend to manually
postpone object instantiations as much as possible, i.e. only when needed, in order to re-
duce instantaneous memory consumption. Recent work were inspired by this approach
to propose lazy model transformations to process very large models [3], or NoSQL-
based approaches for model persistence [4].
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Beyond the problem of very large models, stands the issue of processing infinite
models. This requirement becomes more and more critical with the growing adoption
of the models@runtime paradigm [5]. For instance, if we consider a monitoring au-
tonomous system which relies on a model at runtime to abstract information from a
complex event processing (the CEP) engine. The CEP will indefinitely provide infor-
mation about the environment and thus one cannot consider that the model at runtime
will be bounded as it could grow indefinitely. Another illustration can be found in the
realm of reactive systems, which are modeled by transition systems intended to run
forever. In this case, the model at runtime that records the trace of states and events
triggered during execution is another form of infinite model. To deal with infinite mod-
els, we could leverage mechanisms established in the area of web feeds, such as RSS
syndication. In these cases, data following a predefined format is timely and infinitely
appended to an initial model (even though the RSS file usually corresponds to a sliding
window because older elements are removed). However, as far as we know, no model
processing solution adopts the notion of sliding window over an infinite flow of model
elements in order to deal with infinite models.

If we look at the current state of MDE theories and tools to deal with large and
infinite models, we make two observations. First, metamodeling formalisms and most
of the tools are deeply rooted on the assumption that models include a bounded number
of model elements and that this bound is known when computing a query over the
model. Second, there exist some ad-hoc implementations to deal with these issues, but
there is no formal definition of infinite models and no reference formal semantics for
a query over an infinite model. The consequence of these two observations is that it
is currently impossible to formally verify operations that process very large or infinite
models. This is a major challenge for the adoption of MDE in the use cases discussed
above.

In this paper, we tackle the two limitations listed above through two major contri-
butions.

– a detailed analysis of current metamodeling standards and a precise identification
on how they prevent the definition of infinite models. In order to face this, we
propose an extension to the MOF formalism to enable the local definition of an
infinite part of a model.

– a coinductive semantics for a query operation over an infinite part of a model. This
semantics relies on a formal definition of infinite models, and provides both a ref-
erence for various implementations and the foundations for the verification of op-
erations that must process models of unknown size.

The paper is organized as follows. Section 2 illustrates through a concrete exam-
ple how the current metamodeling formalisms such as MOF prevent the definition and
manipulation of infinite models. Based on this observation, Section 3 introduces MOF
extensions supported by a formal definition of infinite models, and Section 4 proposes
a coinductive semantics supporting the manipulation of such infinite models. Since the
proposed formal semantics is independent of any implementation choice, we discuss in
Section 5 the various existing and possible implementations of coinductive operators.
Finally, we conclude and outline our perspectives in Section 6.



2 Illustrative Example: How MOF Does Not Support Infinite
Models

Model Driven Engineering (MDE) considers software artifacts as abstract typed graphs
(i.e., models conforming to precisely defined metamodels). As discussed in the intro-
duction, we have to deal with increasingly large models. In many cases these models
may even be considered of unbounded and infinite size (i.e., their size is a priori un-
known). Since models are conforming to metamodels, such situations must be consid-
ered in the definition of metamodels. These metamodels are themselves implemented
using a meta-language, usually compliant with the Meta Object Facility (MOF) [6],
such as Ecore [1].

This section illustrates how a meta-language such as MOF ties MDE practices to a
vision of finite and bounded models and thus prevents the definition and manipulation
of infinite models. We illustrate these issues with the UML2 State Machine formalism.

2.1 UML2 State Machine as an illustrative example

The state machine sketched in the bottom left corner of Figure 1 conforms to the State
Machine metamodel displayed in the middle left of Figure 1 (see the metamodel level).
This metamodel defines a StateMachine as composed of several State elements, includ-
ing an initial state, as well as several Event elements which it may react to. States are
pairwise linked through Transition elements as source and target states. Each transi-
tion is triggered by a set of events (Trigger) and in return sends events (SendEvent) as
the e f f ect of its firing.

The execution semantics of such a state machine processes as follows: The first
RuntimeEvent to be processed (that is, in our case, an In jectEvent element) is popped
from the eventToProcess queue belonging to the state machine. This element represents
an EventOccurrence of some event. A RuntimeEvent is either locally raised by the state
machine transitions (endogenous) or brought by the environment (exogenous) and sev-
eral other preceding events, which have been previously processed, constitute the cause
for which it occurs. Runtime events keep on being popped and put aside as unhandled,
until this set contains enough events, for some outgoing transitions of the current state
to be triggered. Then, actually firing the transition pushes some new events at the end
of the event queue, changes the current state of the machine and removes the triggering
events from the unhandled ones.

Since a model conforms to a precisely defined metamodel, the underlying model of
a state machine (graph of objects) follows the constraints expressed in the metamodel,
according to the MOF semantics.

2.2 Bounded collections of properties

As illustrated in Figure 1, the upper bound of the collection eventToProcess is rel-
ative to its cardinality. In MOF, this cardinality is reified in terms of the lower and
upper attributes of the Property construct (cf. top of Fig. 1). According to the OMG
MOF Specification, the value of the upper attribute is typed by UnlimitedNatural
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and must be of kind LiteralUnlimitedNatural taken from the UML’s Kernel [6,
§12.4 and §14.4]. The UML’s kernel leaves open the concrete semantics implemen-
tation but involves a notation for the unlimited value (*) which "denotes unlimited
(and not infinity)" [7, §9.11.7]. In the same specification, unlimited is reasonably inter-
preted as bounded (i.e., finite) in the type Collection used for the resulting collections,
for instance by navigating through relationships. Indeed "the semantics of the collec-
tion operations is given in the form of a postcondition that uses the IterateExp
of the IteratorExp construct." [8, §11.6.1]. Its execution semantics, which refers
to IterateExpEval, is explicitly bounded in the specification [8, §10.3.2.14]. Conse-
quently, the execution semantics of the iterators (e.g., the ones coming from OCL) on
the collection eventToProcess is bounded. This means that the iterators assume that all
elements are considered as available at any time of the iteration.



2.3 Transitive closure

The underlying cyclic directed graph structure of any MOF-based metamodel (cf. top
of Fig. 1) raises the issue of evaluating the transitive closure of a cycle. Such an issue
can be shown in Figure 1, with the execution semantics of the closure over the next
states (obtained from a given state with outgoing→ collect(target)). Since OCL 2.3,
the standard includes a closure operation [8, §7.7.5]. This is very useful to specify
recursive OCL operations. For instance, in Figure 1, the reachable states from a given
state can be specified as proposed in the following OCL expression.

context State :: reachableStates () : Set( State ) body :
{ self }−>closure(outgoing−>collect( target ));

As stated by the OCL specification for the operator closure, "the collection type of the
result collection is the unique form (Set or OrderedSet) of the original source collection.
If the source collection is ordered, the result is in depth first preorder.". Here again,
the underlying semantics refers to the type Collection. Consequently, the execution
semantics of the closure is a finite processing, which assumes that the whole model is
available for evaluation.

2.4 Discussion

Iterating both over the collection eventToProcess or the corresponding closure of the
reachable states is thus a finite process for which the whole model is required (e.g., a
state machine defined at design time to model the behavior of a given class). The col-
lection eventToProcess is bounded by the semantics of the attribute upper of a MOF
property, and sets the "width" (i.e., number of outgoing edges from the same node) of
the underlying graph of a conforming model. The reachable states process is finite,
as defined by the underlying unfolding semantics as considered in the OCL operator
closure, and sets the "depth" (i.e., length of a path with unique nodes) of the underly-
ing graph of a conforming model.

These are strong limitations imposed by current metamodeling formalisms since, as
illustrated in the introduction, such a state machine should also be considered as locally
infinite (e.g., state machine continuously updated to monitor at runtime a running and
non-terminating program). In the following sections, we introduce slight modifications
in MOF, which broaden its scope. In the context of infinite models, these modifica-
tions support the definition of a formal semantics for the MOF attribute upper and the
unfolding semantics as used in the OCL operator closure.

3 Defining Infinite Models

This section starts with two proposals to extend the scope of MOF and allow the identi-
fication in metamodels of the infinite parts of the conforming models (i.e., parts which
need to be manipulated despite their unknown size). These extensions are then used to
provide a formal definition of infinite models.



3.1 Intuitive presentation

While the semantics described by the OMG in the MOF specification involves a finite
interpretation of models, some situations require an infinite interpretation of the same
structure. For instance, a state machine can be considered as infinite (cf. right part of
Fig. 1) if it abstracts the execution trace of a non-terminating program. In practice, this
execution trace can be lazily built at design time while exploring the graph of reachable
states, or continuously built at runtime during the system execution (e.g., monitoring).

As seen in the previous section and illustrated in the example depicted in Figure 1,
a model can be infinite in two situations, respectively in the width and in the depth of
the underlying graph. In the following, we come back into these two situations and we
propose MOF extensions with a concrete syntax to locally characterize in a metamodel
the infinite parts of the conforming models.

– The collection defined in Figure 1 by the relation eventToProcess on StateMachine
may be considered as infinite in case of a non terminating execution (i.e., an infinite
sequence of runtime event). We are noting ω the upper bound of the multiplicity
of an infinite collection (cf. right part of Fig. 1), compared to the ∗ value which
defines an unbounded but finite collection (cf. left part of Fig. 1). We assume that
an infinite collection is ordered and then countable.

– A reflexive relation may be indefinitely unfolded and then, the computation of the
closure may not terminate (currently, common practices consider that the closure
computation terminates). This situation may even be mandatory if we consider in
this relation a multiplicity with a lower bound greater than zero. We propose to
graphically note such reflexive relations with infinite unfoldings as an arrow with
two heads (cf.� in Fig. 1, right)4. We are aware that infinite unfolding may come
from more complex cycles in a graph-based metamodel. For example in Figure 1,
we may consider the cycle between State and Transition as an infinite unfolding.
Common textual and graphical metamodeling notations cannot easily characterize
a cycle. Nevertheless, a reflexive relation may be derived from an OCL expression
characterizing the cycle. For example, the reflexive reference nextStates on State
in Figure 1 is derived as specified by the following OCL expression. This derived
reference characterizes the cycle between State and Transition.

context State :: nextStates : Set( State ) derive :
self . outgoing−>collect( target );

According to this new notation, the classical example proposed in the left of Figure
1 is modified as shown in the right of Figure 1 in order to locally consider infinite
structures (in our case to consider a possible infinite execution of a state machine).
Note that several collections and cycles voluntarily keep the initial semantics based on
a finite part of the model. For example, the collection of states (resp. transitions) which
compose a state machine is unbounded but remains finite, and the transitive closure of

4 Finite unfoldings where an explicit bound is known could be interesting. We could then add
an annotation on relations, belonging to the same type as the upper bound of the multiplicity
of collections. This extension is not taken into account in the scope of this paper.



the reflexive relation cause always terminate. So this syntax allows to clearly define in
a metamodel the parts of a model which should be interpreted as infinite.

3.2 Formal presentation

We propose a formal definition relying on the previous intuitive presentation of our
extended metamodeling facilities.

In the following formal definition, we assume that we have finite sets of meta-
elements (MetaElements) and relations (Relations), i.e., a finite metamodel. We are
also using Elements as the set of possible model elements without any type informa-
tion.

Definition 1 (Infinite Model). Let ME ⊆MetaElements be a bounded set of meta-
elements. Let R ⊆ {〈me1,r,me2〉 | me1,me2 ∈ME ,r ∈Relations} be the bounded
set of relations among meta-elements such that ∀me1 ∈ME ,∀r ∈Relations,
card{me2 | 〈me1,r,me2〉 ∈R} ≤ 1.

We define an infinite model 〈E,L〉 ∈ Model(ME ,R) as a multigraph built over an
unbounded set E of typed elements and an unbounded set L of labeled links such that:

E ⊆ {〈e,me〉 | e ∈ Elements,me ∈ME }
L⊆

{
〈〈e1,me1〉,r,〈e2,me2〉〉 〈e1,me1〉,〈e2,me2〉 ∈ E,〈me1,r,me2〉 ∈R

}
We define the auxiliary type Naturalω = N∪{∗,ω}. Naturalω is an extension of

the UnlimitedNatural type provided by the OMG MOF specification. It is used to
represent a range of possible numbers of instances. Unbounded finite ranges can be
modeled using the ∗ value whereas unbounded infinite ranges can be modeled using the
ω value. The type Naturalω also comes equipped with the following order: m < ∗< ω,
for all m ∈ N.

We aim at characterizing the presence of infinity both at the level of collections (i.e.
the width of the underlying graph) and reflexive relations unfolding (i.e. the depth of
the underlying graph).

First, regarding the width of the graph, we define the upper property which aims
at distinguishing finite collections from infinite ones. Either for attributes or references
(i.e., relation), a maximum number of instances of a target concept can be defined using
the upper attribute, which value n is reflected in the following definition. Whether the
upper bound of a relation is finite or infinite impacts the semantics (and implementation
as well) of the model elements fetching operator get (cf. Section 4.2).

Definition 2 (Upper). The upper property characterizes an upper bound n of a multi-
plicity of a given relation, this bound been taken from Naturalω.

upper(〈me1,r,me2〉 ∈R,n ∈ Naturalω), 〈E,L〉 7→
∀〈e,me〉 ∈ E,me = me1⇒ card({m2 ∈ E | 〈〈e,me1〉,r,m2〉 ∈ L})≤ n

where the card function returns either m ∈ N or ω.

Second, regarding the depth of the graph, we introduce the property ru_unstable ap-
plying on primitive as well as derived relations. It requires the definitions of (maximal)
model paths as the results of relation unfolding.



Definition 3 (Model Path). Let 〈E,L〉 ∈ Model(ME ,R) be an infinite model. A
model path is a relation path through model elements, i.e. a sequence of triples {〈〈ei,mei〉,
ri,〈ei+1,mei+1〉〉}i∈I ∈ L, where either I = [0,sup[ is finite (sup∈N) or I =N is infinite.
Relying on the previous model path definition, we also assimilate a model path to the
(behavioral) trace of the model element creations.

Definition 4 (Maximal Path). Let 〈E,L〉 ∈ Model(ME ,R) be an infinite model. A
maximal path is a model path, such that if it is finite, then the final element of the
sequence has no relation to any element of the model.

The property ru_unstable states that a given relation only gives rise to finite unfold-
ings, whatever the maximal model path considered. We need to focus on maximal paths
as we express properties about possibly infinite unfoldings. Whether a given relation
of a model satisfies the ru_unstable property or not impacts the semantics and imple-
mentation of the OCL closure and other iteration operators applied to this relation (cf.
Section 4.3).

Definition 5 (Unstable Reflexive Unfolding). Considering model paths as creation
traces (cf. definition 3), a relation has only finite unfoldings if and only if it is unsta-
ble in any maximal model path π. This condition is rephrased as the following Linear
Temporal Logic (LTL) property: �♦¬r or equivalently ¬♦�r. Relying on our model
definition, it amounts to directly defining the following property:

ru_unstable(〈me,r,me〉 ∈R), 〈E,L〉 7→ ∀π ∈ maximal paths(〈E,L〉)
Iπ = N⇒∃i ∈ Iπ,mei 6= me∨ ri 6= r

where Iπ is the set of indexes of π and satisfies definition 3.

4 A Coinductive Semantics to Iterate Infinite Models

We discuss in this section the ways to manage model elements in the context of an
infinite model (Subsection 4.1) and we propose a formal definition of the operators
needed to querying such models. First we formalize the common operators for getting
model elements (Subsection 4.2), and then we rely on them to formalize an alternative
of the main iterators inspired from the OCL language (Subsection 4.3). We finally put
into practice the proposed operators, among others for the manipulation of infinite state
machines as defined in the right of Figure 1 (Subsection 4.4).

4.1 Reasoning on model elements: from finite to infinite model

Standard inductive semantics aims at defining finite data-structures as well as reason-
ing and programming with them. Therefore, an inductive structure comes naturally
equipped first with an induction principle, allowing proofs by induction on the elements
of this data-structure ; and second with a generic reduce programming primitive, al-
lowing terminating recursive traversal of these data-structures. Induction principles are
commonplace for reasoning about terminating algorithms and finite data-structures. It



comes in many flavours such as induction on natural numbers, lists, binary trees, etc. As
for the reduce and alike operators, they are also pervasive in programming paradigms,
mostly in functional languages, but also in Java (e.g. the Iterator interface) and OCL
(the iterate construction that operates on a finite collection).

Dually, coinductive semantics aims at defining potentially infinite data-structure.
Therefore, a coinductive data-structure comes equipped with a coinduction principle
and also a produce operator. The coinduction principle, among various usages, is at
work when typing compilation units in languages supporting separate compilation. In
Java for instance, you can type-check a bunch of classes, even if they are totally abstract
and don’t contain any piece of code. In this respect, checking type safety of two mutu-
ally dependent classes A and B works as if you were producing an infinite proof under
the form: A is type-safe if B is type-safe if A is type safe, etc. There, type-safety is only
proved to be a stable relation, with no base case at all. On the contrary, type-checking
a concrete method amounts to reason inductively on the code structure, with assumed
well-typed parameters and local object creations as base cases.

The produce operator (dual of the reduce operator) aims at producing potentially
infinite data (as it cannot obviously perform a terminating recursive full traversal of an
infinite structure), through the repeated execution of a piece of code that generates new
values each time, appended to the growing structure. The resulting structure is the limit
of this maybe infinite creation process, much akin to the fractal structures resulting from
infinite iterations of a subdivision process. Often enough, as it is the case for instance
in stream processing languages, the output structure is produced by a piece of code that
consumes/explores in turn another corecursive input structure, one element at a time.

These coinductive concepts are mandatory in order to define the formal semantics of
our MOF extensions (as used in the right part of Figure 1) independently of a particular
implementation. The infinite state sequences of a state machine (cf. right lower part)
should follow the semantics of the metamodel, just as plain finite models follow the
inductive semantics of the metamodel. These state sequences may be defined as being
produced from infinite sequences of transition-enabling events, following the execution
semantics of the state machine. A standard inductive viewpoint on these sequences
would be for instance to define an allInstances() OCL constraint that checks that
each n+ 1th state is the result of executing a transition from a nth state. As each OCL
operator is supposed to work on a collection of states taken as a whole, evaluating the
constraint on an infinite model would yield a non-terminating behavior and no outcome
at all. Moreover, how such a collection may be produced still remains an open question
in this case.

As can be seen, coinductive semantics, which amounts to producing infinite proofs
and data, may be found in various areas, even though not always presented as such.
Defining and formalizing a (coinductive) structure of models will help at elaborating
important and practical tools for infinite model manipulation. A coinductive semantics
may be implemented in several ways: in a programming language with lazy constructs
that will evaluate only the finite browsed part of the model, or with data stream primi-
tives randomly producing new model elements consumed afterwards by the execution
semantics when possible, or else with a prefetch semantics that estimates how many
model elements should be evaluated in advance, even if not needed. Each such imple-



mentation is interesting in its own right as it corresponds to a well-known class of ap-
plications. In the remainder of this section, we propose a formalization of a coinductive
model semantics and the implementation standpoint is discussed in the next section.

4.2 Getting model elements

On a model m = 〈E,L〉, we first assume the operator getRoots() which corresponds to
a minimal set of model elements from which any other model element can be accessed
(i.e., a covering set). The accessibility predicate is defined as the existence of a finite
model path from a model element to another. A set of model elements is defined as
minimal when it is a covering set such that no proper subset is also covering.

accessibility(e,e′ ∈ E) , ∃{〈ei,ri,ei+1〉}i∈I ∈ model path(〈E,L〉),
e0 = e∧∃i ∈ I,ei = e′

covering(S⊆ E) , ∀e′ ∈ E,∃e ∈ S,accessibility(e,e′)
minimality(S⊆ E) , covering(S)∧∀e,e′ ∈ S,¬accessibility(e,e′)

We can now specify the getRoots() operator which corresponds to the entry point
facility on the model:

m.getRoots() ∈ {S⊆ E | minimality(S)}

We assume that the getRoots() operator return a finite set of roots. We note also
that an alternative model definition based upon rooted multigraph may be adopted and
would yield a non under-specified definition. In this case, the set of roots is uniquely
defined.

Relying on the entry point previously defined by the getRoots() operator, we mainly
consider the get() operator for getting model elements from a model 〈E,L〉. Usually,
this operator allows to access to a property r from a model element e (written e.r in
OCL).

e.get(r ∈ Relations) , {e′ ∈ E | 〈e,r,e′〉 ∈ L}

where e ∈ E. In our formalization, we assume that the return value of the get() operator
is always a collection of model elements, tagged as either finite or infinite in our MOF
extension and processed accordingly with the appropriate iterator. We are aware that in
most model management APIs (e.g., EMF) or in the OCL query language, the return
value may exhibit different types according to the known multiplicity of the relation.

4.3 Iterating model elements

We propose in this section a formalization of an alternative version – called coiterate –
of the main generic OCL iterator iterate [8, § 7.6.5], from which all other iterators may
be defined. Both iterators allow to browse a collection returned by the get() operator
and to unfold a reflexive relation, for instance in order to compute its closure.

A particularity of OCL finite collections is that they are implicitly ordered. Indeed,
the nth element may easily be retrieved with the help of the iterate operator. It may
merely appear as a design clumsiness in the API for collections in the finite case. Yet,



the ordering of elements is mandatory in the infinite case, as elements will be processed
sequentially, one by one, and the user may observe intermediate results of this infinite
computation. So we assume that collections, whether finite or infinite, are ordered.

The iterate operator processes the successive values of an (ordered) finite collection
in order to compute the final value of an accumulator of any type. Dually to this se-
mantics, the coiterate operator starts from an initial value which processing produces
a potentially infinite collection of new values. This approach, which applies the coin-
duction principles, allows to produce a new collection either from an already existing
infinite collection or more generally as the sequence of values built from successive
assignments of a variable of any type.

In order not to depart too much from the iterate operator, from a syntactic viewpoint,
we define coiterate as follows, first recalling the definition of iterate. We require that
coll:Collection(A) possesses the three basic operations provided on Collection by OCL:
isEmpty() which tests a collection for emptiness, first() which returns the first element of
a collection, and append(elem:A) which appends a new element elem at the end of the
collection. For the sake of readability, we also define the operation tail() which returns
the collection without the first element5. Note that, as e1, e2 and e3 are expressions and
not values in the following definitions, we must use substitutions6 in order to define
recursively (resp. corecursively) these iterators.

coll->iterate(elem: A; acc : B = e1 | acc = e2),
i f coll->isEmpty() then e1 else let e′1 = e2[coll->first() | elem][e1 | acc] in
coll->tail()->iterate(elem: A; acc : B = e′1 | acc = e2)

coll->coiterate(acc : B = e1 | acc = e2; elem: A = e3),
i f e1 = null then coll else let e′1 = e2[e1 | acc] in
coll->append(e3[e1 | acc])->coiterate(acc : B = e′1 | acc = e2; elem: A = e3)

The coiterate operator starts from a finite collection coll, to which it will append
a potentially infinite sequence of elements. For that purpose, it considers a variable
acc, initialized with value e1. From the current value of acc, if not equal to null, a new
element elem with value e3 built from acc must be appended to the current resulting
collection, and the next value of acc is given by e2. This process is repeated as long as
acc is not null. So the resulting collection is finite if and only if acc finally becomes null,
otherwise the collection is infinite. Moreover, both iterators are able to handle several
accumulating variables of any name at once, provided the variable elem is defined.

4.4 Putting the coiterate iterator into practice

We illustrate how the coiterate iterator may be used, through the following two basic
examples. In the first one, the infinite collection of the natural numbers is built and in
the second one, the infinite collection of the squares of even numbers is built from the
first collection.

5 The operation tail() is defined in OCL by: coll->excluding(coll->first()).
6 e[u | u′] is the expression e where any occurrence of sub-term u′ has been replaced by u.



1. Naturals ,

Set{}−>coiterate (acc:Integer = 0 |
acc = acc+1; elem = acc)

2. Squares ,

Set{}−>coiterate (acc: Collection (Integer) = Naturals |
acc = acc−>tail()−> tail (); elem = acc−>first ()∗acc−>first ())

Similarly, the operator coiterate may be used to browse the infinite collection of
events to process (cf. eventToProcess in the right part of Fig. 1) and then to specify the
simulation of a state machine. For instance, the following listing define the body of an
operation simulate() on StateMachine which creates the trace (i.e., a sequence of states)
according to the events to process7.

context StateMachine :: simulate () : Sequence(State) body :
Set{}−>coiterate (

acc : Sequence(EventOccurence) = eventToProcess ;
current : State = self . initial |
current = self . step ( current , acc−>first ()) ;
acc = acc−>tail () ;
elem = current

)

Our definition of the iterate (resp. coiterate) iterator was shown to browse a collec-
tion (resp. create a collection). However, it seems to be an elegant way to use these oper-
ators in order to also (co)iterate over unfoldings of a reflexive relation. In the following
listing, the coclosure operator of a reflexive relation is defined in terms of coiterate and
corresponds to a breadth-first traversal of the underlying graph. From this generic coclo-
sure operator we also specify an operation on State computing the potentially infinite
set of reachable states from a given state:

context T:: coclosure ( relation ) : Sequence(T) body :
Set{}−>coiterate (

acc : Sequence(State) = Sequence{self} |
acc = acc−>tail()−>union(acc−>first (). relation

−>asSequence())
elem = acc−>first () ;

)

context State :: reachableStates () : Sequence(State) derive :
{ self }−>coclosure( nextStates );

7 We consider the operation step() which returns the current state according to the event given
as a parameter.



5 On the Implementation of Coinductive Operators

We have proposed in the previous section a formal specification to define and evaluate
infinite models relying on coinduction principles. Stemming from this first milestone,
our immediate next goal will be to explore pragmatical solutions to implement such
principles.

In all cases, and by definition, it is not possible to store the entire infinite model in
memory. When a causal dependency exists between the model producer and the model
consumer, the model can be lazily interpreted (from the producer) in order to build,
on demand (by the consumer), only the necessary model elements. In our example,
the state machine may be lazily executed during a step-by-step simulation. Such lazily
interpreted constructs have been recently proposed at the metamodel level in ATL [3].
In this case, infinite model processing is close to existing lazy interpretation (also called
call-by-need) of a data structure [9] and relies on the following properties :

– the model elements in the infinite model are only built when it is necessary,
– once an infinite model element has been built, it is never built twice.

However, in some situations it may be necessary to relax these properties. For example,
the last property implies memoization8 and may be relaxed in some cases because it
may render certain things impossible (e.g., because more elements may have to be re-
membered than system memory permits) or very inefficient (e.g., because of synchro-
nization issues in concurrent systems). A non-memoized lazy evaluation also called
call-by-name [10] may then be of interest. For example, such strategies have been ex-
plored in [4] as part of an approach for model persistence based on NoSQL databases.

Even if lazy interpretation seems promising, specifying the level of laziness is also
important. In the context of the MDE, different solutions are possible. For instance,
does model element creation entails creation of its references atomically? Or are these
references also created on demand?

When the model consumption is disconnected from the model production, the order
in which model elements arrive is out of control. Such an infinite model relies on the
following properties (inherited from data stream [11]):

– model elements in the infinite model arrive online,
– once an element from an infinite model has been processed it is discarded or archived.

Different semantics may be considered depending on several options. For instance,
model elements delivery must take into account the following options from [12]: Pull
vs. Push, Aperiodic vs Periodic and Unicast Vs. 1-to-N. Then, mechanisms for model
elements delivery may be inspired from known protocols in data stream, such as Re-
quest/Response (Aperiodic Pull), polling (Periodic Pull), Publish / Subscribe (Aperi-
odic Push) or Broadcast Disks (Periodic Push). Moreover, an info gatherer may be used
to change the appearance of the real model elements delivery at the query language
level. In this case, we have also to take into account the conformity points when model
interpretation is coherent, for instance using an operation-based model representation
[13].

8 With memoization, computation of a model element is not repeated: the element is kept in a
cache after its first usage.



6 Conclusion and Perspectives

The contributions of this paper are motivated by the need to define and manipulate
infinite models (i.e. models whose comprehensive set of model elements is too large
to be loaded or even not available). After pinpointing how current metamodeling for-
malisms prevent such situations, we first propose MOF extensions to locally character-
ize in a metamodel the infinite parts of the conforming models. Then we introduce a
formal alternative semantics of the OCL operator iterate, called coiterate, providing an
implementation-independent semantics for manipulating infinite models, and support-
ing specification and verification of complex situations involving infinite models. The
coiterate operator can be used both to browse an infinite collection, and to compute the
infinite closure of a transitive relation (or more generally a cycle in a model).

Such a coiterate operator can support the formal verification of operations manip-
ulating infinite models. This verification activity can be partially automated by proof
assistant which supports coinductive semantics. Among others, Coq is a valuable can-
didate in that respect [14]. This paper also discusses various possible implementations
of the coiterate operator, whether for reasons of partial availability or partial loading of
models.

More generally, iterate and coiterate iterators may be used for model transformation.
Indeed, the accumulator may be a model (i.e., modeling in the large) which is finitely
extended and returned (iterate) or indefinitely browsed in order to produce a new model
(coiterate). If we abstract away the pieces of code used as arguments of these iterators, it
turns out that iterate needs a function of type9 1+A×B→ B whereas coiterate needs a
function of type B→ 1+A×B. In order to apply these iterators to model production or
browsing, the types A and B may be generalized to dependent types that denote arbitrary
predicates over a (mega-)model structure, aiming at identifying patterns of interest and
providing entry points in these patterns. In this context, we would need functions with
respective types ∀e ∈ E.1+A(e)×B(e)→ B(e) and ∀e ∈ E.B(e)→ 1+A(e)×B(e),
where e are elements of the (mega-)model. Here, A(e) and B(e) represent query or
creation patterns, the functions induce transformation rules and the iterators represent
the execution of a global transformation engine. Finally, specifying models and model
transformations with type predicates allows to talk about their respective properties
within a single language of types. Turning questions about models into typing problems
also brings a rich amount of results in the scope, about type checking, type inference
and subtyping issues for models and model transformations at once, as investigated
in [15].

To conclude with it, some substantial amount of work will be necessary to draw
all the consequences of this promising approach for model transformation and to thor-
oughly compare and cross-fertilize it with existing solutions.

References
1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework

(2nd Edition). Addison-Wesley (2008)

9 In abstract set algebra settings, "1" denotes the set with only one element, "+" denotes the
disjoint sum and "×" the cartesian product.



2. Steel, J., Drogemuller, R., Toth, B.: Model interoperability in building information mod-
elling. Software and Systems Modeling (SoSyM) 11 (2012) 99–109

3. Tisi, M., Perez, S.M., Jouault, F., Cabot, J.: Lazy execution of model-to-model transfor-
mations. In: 14th ACM IEEE International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS). Volume 6981 of LNCS., Springer (2011) 32–46

4. Espinazo-Pagán, J., Cuadrado, J.S., Molina, J.G.: Morsa: A scalable approach for persisting
and accessing large models. In: 14th ACM IEEE International Conference on Model Driven
Engineering Languages and Systems (MoDELS). Volume 6981 of LNCS. Springer (2011)
77–92

5. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42 (2009) 22–27
6. Object Management Group, Inc.: Meta Object Facility (MOF) 2.4.1 Core Specification.

(August 2011) Final Adopted Specification.
7. Object Management Group, Inc.: Unified Modeling Language (UML) 2.4.1 Infrastructure.

(August 2011) Final Adopted Specification.
8. Object Management Group, Inc.: Object Constraint Language (OCL) 2.3.1 Specification.

(January 2012)
9. Henderson, P., James H. Morris, J.: A Lazy Evaluator. In: 3rd ACM Symposium on Princi-

ples on Programming Languages (POPL), ACM (1976) 95–103
10. Douence, R., Fradet, P.: A systematic study of functional language implementations. ACM

Transactions on Programming Languages and Systems 20(2) (1998) 344–387
11. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream

systems. In: 21st ACM Symposium on Principles of database systems (PODS). (2002) 1–16
12. Franklin, M., Zdonik, S.: A framework for scalable dissemination-based systems. SIGPLAN

Not. 32(10) (1997) 94–105
13. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency through

operation-based model construction. In: 30th International Conference on Software Engi-
neering (ICSE), ACM (2008) 511–520

14. Bertot, Y.: Coinduction in coq. CoRR abs/cs/0603119 (2006)
15. Steel, J., Jézéquel, J.M.: On model typing. Software and Systems Modeling (SoSyM) 6(4)

(2007) 401–414


	Formally Defining and Iterating Infinite Models  
	 Benoit Combemale, Xavier Thirioux, and Benoit Baudry 

