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The wave propagation problems addressed in this paper involve a relatively large and impenetrable sur-
face on which is posed a comparatively small penetrable heterogeneous material. Typically the numerical
solution of such kinds of problems is solved by coupling boundary and finite element methods. However,
a straightforward application of this technique gives rise to some difficultieswhich mainly are related
to the solution of a large linear system whose matrix consists of sparse and dense blocks. To face such
difficulties, the adaptive radiation condition technique is modified by localizing the truncation interface
only around the heterogeneous material. Stability and error estimates are established for the underlying
approximation scheme. Some alternative methods are recalled or designed making it possible to compare
the numerical efficiency of the proposed approach.

Keywords: Helmholtz equation, domain decomposition methods, finite element methods, boundary ele-
ment method.

1. Introduction

Coupling dissimilar numerical schemes generally enhancesthe solution process but may lead to specific
difficulties. For instance, such a coupling is particularlyadapted for dealing with the radiation or the
scattering of time-harmonic waves when the problem involves heterogeneous material. The boundary el-
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ement method (BEM) efficiently handles the truncation of thesolution domain as a transparent radiation
condition, whereas the zones where the material presents varying characteristics are approximated by a
finite element method (FEM) (cf., e.g., Johnson & Néd́elec (1980); Costabel (1988); Bendali & Fares
(2008)). However a straightforward coupling of the two methods leads to a linear system, generally of
very large scale, with a matrix partly sparse and partly dense. This kind of linear system is difficult to
solve, especially when the computation is performed on a parallel platform (Boubendiret al. (2008)).
Domain decomposition methods (DDMs) display distinct advantages for overcoming such difficulties.
Indeed, non-overlapping DDMs were successfully applied for the combination of a FEM with a BEM to
solve the Helmholtz equation (Boubendiret al. (2008); Bendali & Fares (2008); Bendaliet al. (2007)).
However, the wave problems treated in these papers concern obstacles where the heterogeneous region
completely encloses the impenetrable boundary.

In this work, we are interested in impenetrable surfaces with relatively large size on which a hetero-
geneous object of relatively small size is posed. A widespread instance of such a problem is met in the
numerical simulation of the radiation of an antenna posed ona large metallic structure. In this case, the
non-overlapping domain decomposition developed in Bendali et al. (2007) and mentioned above is not
efficient any more mainly because of the slow convergence of the underlying iterative method. In this
work, we propose an alternative method derived from a modification of the adaptive radiation condition
approach (Jin (2002); Alfonzettiet al.(1998); Li & Cendes (1995)). In its standard form, this technique
consists of enclosing the computational domain by an artificial truncating surface on which the adaptive
radiation condition is posed. This condition is expressed using integral operators acting as a correction
term of the absorbing boundary condition. Precisely, the more iterations performed, the closer this con-
dition converges towards the transparent one. However, enclosing completely the computational domain
by an artificial surface in this range results in a too large size problem. Even worse, approximating the
propagation of a wave along large distances by a FEM may be very problematic because of the disper-
sion errors, which can severely damage the accuracy of the final result. The difference with the method
we propose resides in the localization of the truncating interface only around the heterogenous region
(Zerbib (2006)). This truncation generates a relatively small bounded domain dealt with by a FEM, and
suitably coupled with a BEM expressing the solution on the impenetrable surface. The resulting for-
mulation, based on a particular overlapping domain decomposition method, is solved iteratively where
finite and boundary element linear systems are solved separately. This way to proceed can hence be
called a localized adaptive radiation condition.

The main focus of this paper is on the numerical analysis of the FEM-BEM coupling. We estab-
lish its well-posedeness and stability using Fredholm alternative, and the theory of mixed formulations
(Brezzi & Fortin (1991)). In addition to this analysis, we propose alternative methods based mainly on
non-overlapping domain decomposition methods. The goal isto demonstrate that the proposed approach
performs well in comparison with these competing methods. Since this study is of methodological inter-
est, for the sake of simplicity we limit ourselves in this paper to the two-dimensional case. The extension
to 3D problems governed by the Helmholtz equation does not add any difficulty except a more intricate
notation. However, this is not the case with Maxwell system,for which an application of this technique
is by no means straightforward. The description of the related algorithm and its implementation on a
parallel platform will be given in a forthcoming paper.

This paper is organized as follows. Section 2 consists of a description of a model problem and its
appropriate functional setting. Section 3 is devoted to thedevelopment of the localized adaptive radia-
tion condition. In section 4, we begin by introducing the FEM-BEM coupling formulation and proving
its stability and convergence. Then, we detail its numerical implementation, and more particularly, how
suitably the iterative procedure avoids solving a linear system with a matrix partly sparse and partly
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FIG. 1. Non-overlapping decomposition of the exterior domainΩ into Ω0 andΩ1.

dense. Finally in section 5, we show how to use domain decomposition principles to develop alternative
numerical procedures. Experiments validating the localized adaptive radiation as well as comparing
its performances with the other competing methods are next presented. Section 6 is reserved for some
concluding remarks.

2. The model problem

We are dealing in this paper with wave problems for which the heterogeneous media extends in a rel-
atively small part of the propagation domain. Precisely, weconsider the geometrical data depicted in
Fig. 1. The model problem we are looking at can be stated as follows





∇ · (χ ∇ u)+ χκ 2n2u= 0 in Ω ,

χ∂nu=− f onΓ ,

lim|x|→∞ |x|1/2(∂|x|u− iκu) = 0,

(2.1)

whereΩ is the complement of the impenetrable obstacle. We indicateby Ω1 a bounded domain filled
by a possibly heterogeneous material and posed on a slotΓslot. This slot is also part of the boundaryΓ of
the impenetrable obstacle on which are applied the sources producing the radiated waveu. As a result,
the Neumann dataf are zero on all ofΓ except onΓslot. The interfaceΣ separatesΩ1 from the free
propagation domainΩ0, characterized by the wave numberκ > 0. It is worth noting thatΩ0 andΩ1

constitute a non-overlapping decomposition ofΩ . According to the context,n will denote the normal
to Γ or to Σ directed outwards respectively the impenetrable obstacleenclosed byΓ or the domainΩ1

(see Figure 1 for the geometric configuration of the problem).

The fact that the heterogeneous medium is confined toΩ1 is expressed by assuming that the possibly
varying contrast coefficients satisfyχ = n= 1 in Ω0.

It will be convenient to express problem (2.1) in the form of the following system consisting of two
boundary-value problems 




∆u0+κ 2u0 = 0 in Ω0,

∂nu0 = 0 onΓ ∩∂Ω0,

lim|x|→∞ |x|1/2(∂|x|u0− iκu0) = 0,

(2.2)
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{
∇ · (χ ∇ u1)+ χκ 2n2u1 = 0 in Ω1,

χ∂nu1 =− f onΓ ∩∂Ω1,
(2.3)

coupled by means of the following transmission conditions on Σ

u0 = u1, ∂nu0 = χ∂nu1. (2.4)

Passing from one to the other formulation simply amounts to writing u0 = u|Ω0, u1 = u|Ω1.
Model problem (2.1) is given in the general framework of time-harmonic wave propagation. In the

two-dimensional electromagnetic case, the variablesχ andn can be expressed by means of the relative
dielectric permittivity and the relative magnetic permeability. The waveu represents the component of
the magnetic field normal to the plane of propagation. For acoustics, the variableχ is related to the
fluid density, andu can be either the potential of the velocity or the pressure. For both cases,n is the
refractive index inΩ1. Usual energy considerations and physical properties of penetrable media ensure
that the following bounds

0< χ∗ 6 ℜ χ 6 χ∗, −χ∗
6 ℑ χ 6 0, 16 ℜ n6 n∗, 06 ℑ n6 n∗ (2.5)

hold true almost everywhere onΩ1. We denoted byℜ zandℑ z the real and imaginary parts respectively
of the complex numberz.

All the considered domains are supposed lipschitzian (cf.,e.g., McLean (2000)) with a boundary
being moreover piecewiseC ∞. Notation and functional spaces, including Sobolev spaces, which are
standard in the partial differential equations theory are used without further comment (cf., e.g., Taylor
(1996); McLean (2000)).

The sourcesf are assumed to be iñH−1/2(Γslot), i.e., f ∈ H−1/2(Γ ) and is zero outsideΓslot (cf.
McLean (2000)). Adapting, for example, the techniques usedin Wilcox (1975) for the usual Helmholtz
equation, we readily get that problem (2.1) admits one and only one solutionu in the setting of the
following Fréchet space

H1
loc(Ω) =

{
v∈ D

′(Ω); ϕv∈ H1(Ω), ∀ϕ ∈ D(R2)
}
. (2.6)

3. The adaptive localized radiation condition

3.1 The derivation of the FEM-BEM coupling procedure

The method we propose resembles in its principle the one developed in Lenoir & Jami (1978) for the
Laplace equation and subsequently extended to Maxwell’s equations in Hazard & Lenoir (1996). The
standard method consists of enclosing completely the obstacle (here meaning the complement of the
free propagation zoneΩ0) using a fictitious boundaryS. The step following this truncation resides
in approximating the problem by a combination of FEM and BEM where the integral equations are
defined onSbut with densities on the boundary∂Ω0, sometimes conveniently denotedΓΣ below. These
formulations require an explicit expression of the variable p = ∂nu0|Σ which is not available in the
framework of an approximation of the problem in the domain enclosed byS by a nodal finite FEM.
Actually in Lenoir & Jami (1978),p is a given datum, and in Liu & Jin (2001), the authors resort
to a formulation whose unknowns are the electric and magnetic fields respectively inside and outside
Ω1. In the present context, the approach in Liu & Jin (2001) would have consisted in using a usual
nodal FEM outsideΩ1 combined with a mixed one inΩ1 (see, e.g., Brezzi & Fortin (1991) for the
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FIG. 2. The bounded domainΩS and the fictitious boundarySon which is posed the adaptive radiation condition.

solution of second-order elliptic boundary-value problems by mixed FEMs). The method considered
below overcomes this difficulty.

The approach we propose in this work consists in localizing the truncation only around the penetra-
ble material. This is performed, as depicted in Fig. 2, by introducing a fictitious boundarySwhich in
turn produces the bounded domainΩS limited by Sand the impenetrable zone. It is worth mentioning
thatΩS contains the domainΩ1 in which the contrast coefficientχ and the refracting index may be not
set to 1.

The goal is to derive a formulation of problem (2.1) as a coupled system composed of two equations
with two unknownsu0 anduS where the functionuS= u|ΩS is approximated by a FEM, andu0, already
defined in the above section, is computed using an integral equation onΓΣ . The treatment adopted
for u0 is based on an integral representation of this function in terms of a single- and a double-layer
potential created by densities onΓΣ , and as a result can be seen as the restriction toΩ0 of the solution
of a transmission problem posed on all of the planeR

2 (cf., e.g., Hsiao & Wendland (2008); Néd́elec
(2001); McLean (2000)). In view of the equations that are setin ΩS, we are in the case of a particular
decomposition with an overlap of the computational domain (see similar ideas in Ben Belgacemet al.
(2009); Ben Belgacemet al. (2005) for the usual adaptive radiation condition). However, as will be
clear below, it will be more convenient not to distinguishu0 from uS and to refer to them as the same
functionu in H1

loc(Ω).
Simply by restrictingu to ΩS, we get from (2.1) thatu satisfies

{
∇ · (χ ∇ u)+ χκ 2n2u= 0, in ΩS,

χ∂nu=− f onΓ ∩∂ΩS.
(3.1)

In Ω0, we use the integral representations of the solutions to theHelmholtz equation satisfying the
Sommerfeld radiation condition (cf., e.g., Néd́elec (2001); Colton & Kress (1983, 1992); Bendali &
Fares (2008))

u(x) =V∗,Σ p(x)−N∗,ΓΣ u(x), x∈ Ω0, (3.2)

with
V∗,Σ p(x) =

∫

Σ
G(x,y)p(y) dsy (3.3)

p=−χ∂nu|Σ (3.4)
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N∗,ΓΣ u(x) =−
∫

ΓΣ
∂nyG(x,y)u(y) dsy (3.5)

where the kernel is expressed in terms of the Hankel functionof the first kind of order 0 by

G(x,y) =
i
4

H(1)
0 (κ |x−y|), x 6= y∈ R

2. (3.6)

In the sequel, the context indicates the curve to which refers the arc lengths.
The determination ofu is therefore reduced to its tracesp andu|ΓΣ . Observe that transmission conditions
(2.4) define these traces unambiguously. Moreover, it is clear in (3.2) that the involved values ofu are
those corresponding to its traceu|ΓΣ avoiding the need of an explicit notation for the restriction. Finally,
it is worth mentioning that integral (3.2) vanishes forx∈ Ω+

0 , the domain enclosed byΓΣ (Figure 3).
Problem (3.1), once solved, determinesu on ΩS only. The complete determination ofu on ΓΣ is

obtained by writing an adequate integral equation outsideΩS using the condition∂nu = 0 onΓ , thus
yielding the FEM-BEM coupling approach.

REMARK 3.1 In the method of Jami-Lenoir (Lenoir & Jami (1978)), the boundaryΣ is contained in
the interior ofΩS so thatu can be obtained outsideΩS by an explicit integral representation. This is in
contrast with the need here to solve an integral equation on apart ofΓ .

The derivation of the FEM-BEM coupling procedure can be introduced starting from the following
Green formula

∫

ΩS

χ
(
∇ u· ∇ v−κ 2n2uv

)
dx= 〈∂nu,v〉H̃−1/2(S),H1/2(S)+ 〈 f ,v〉H̃−1/2(Γslot),H1/2(Γslot)

(3.7)

where〈·, ·〉H̃−1/2(S),H1/2(S) denotes the duality pairing betweeñH−1/2(S) andH1/2(S), andv is an arbi-

trary test function inH1
loc(Ω). The spacẽH−1/2(S) is defined similarly toH̃−1/2(Γslot).

The adaptive approach consists mainly in solving problem (3.7) by means of an iterative method,
the term∂nu at the right-hand side being assumed to be known before each iteration and updated after
terminating it. However, in this form, there is no garantee that problem (3.7) can be safely solved.
Usually the stabilization term−iκ

∫
Suv ds, corresponding to the crudest absorbing radiation condition,

is appended to both sides of (3.7) to alleviate this difficulty. However,S is here an open curve having
its end-pointsA andB on Γ (see Fig. 2). To avoid singular integrals near these points,we introduce a
cut-off functionη ∈ D(R2) such that 06 η 6 1, η = 1 onS, except small neighborhood of any ofA
andB, η being moreover equal to 0 aroundA andB, and write (3.7) in the following form

∫

ΩS

χ
(
∇ u· ∇ v−κ 2n2uv

)
dx− iκ

∫

S
ηuv ds= 〈∂nu,v〉H̃−1/2(S),H1/2(S)

−iκ
∫

S
ηuv ds+ 〈 f ,v〉H̃−1/2(Γslot),H1/2(Γslot)

(3.8)
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To complete the coupling procedure, we then consider the curveΓS obtained by joiningSand the part of
Γ outsideΩS and note that we can express the fact that∂nu= 0 there outsideSvariationally as follows

〈∂nu,v〉H̃−1/2(S),H1/2(S) = 〈∂nu,v〉H−1/2(ΓS),H1/2(ΓS)
, (3.9)

for all test functionv. We thus arrive to
∫

ΩS

χ
(
∇ u· ∇ v−κ 2n2uv

)
dx− iκ

∫

S
ηuv ds=

〈∂nu,v〉H−1/2(ΓS),H1/2(ΓS)
− iκ

∫

S
ηuv ds+ 〈 f ,v〉H̃−1/2(Γslot),H1/2(Γslot)

(3.10)

where the traces in the right-hand side are expressed from the integral representation (3.2) ofu
{

ηu|S= ηVS,Σ p−ηNS,ΓΣ u
∂nu|ΓS = ∂nVΓS,Σ p−∂nNΓS,ΓΣ u

(3.11)

Clearly, sinceΣ andSshare no common point andη is zero in the proximity of the end-points ofS, if p
andu are sufficiently smooth functions, say for example continuous, only the integral corresponding to
∂nN∗,ΓΣ u in (3.11) is an improper integral which can be expressed by means of a weakly singular kernel
as follows

〈
∂nNΓS,ΓΣ u,v

〉
H−1/2(ΓS),H1/2(ΓS)

=〈
∂sv,VΓS,ΓΣ ∂su

〉
H−1/2(ΓS),H1/2(ΓS)

−κ 2
〈
vτττ ,VΓS,ΓΣ (uτττ )

〉
H−1/2(ΓS),H1/2(ΓS)

(3.12)

from a slight adaptation of the case whereΓS = ΓΣ (cf., e.g., (Hsiao & Wendland, 2008, p. 5)). The
superscripts in the integral operators indicate that they correspond to a potential created by a density on
ΓΣ and evaluated onΓS, andτττ is the unit tangent vector pointing in the growth direction of the arc length
s.

As indicated above, we need to deal with (3.4) in order to be able to use a nodal approximation
of (3.10). We use a standard technique for gluing finite element approximations of different kinds or
associated with non-conforming meshes generally called mortar FEM (cf., e.g., Ben Belgacem (1999)).
It is worth mentioning that here only standard meshes and finite element methods of the same kind are
used. This way to proceed is just considered as a tool providing an approximation for the additional
unknownp in the framework of a nodal finite elemnt method. This technique consists in breaking the
continuity acrossΣ thatu is compelled to satisfy a priori and to express it as a constraint. The Lagrange
multiplier corresponding to this constraint will be precisely the unknownp. It is hence more convenient
to denote by separate symbols:u0 for the restriction ofu to Ω0∩ΩS andΓΣ andu1 for its restriction to
Ω1. More precisely, we will use the following functional framework





X0 = {u0 defined (a.e.) onΩ0∩ΩS andΓΣ ;
∃U ∈ H1(Ω0),U |ΓΣ = u0|ΓΣ andU |Ω0∩ΩS = u0|Ω0∩ΩS

}

X1 = H1(Ω1), X = X0×X1,
(3.13)

relation (3.4) and (3.10) to write
∫

ΩS∩Ω0

(
∇ u0 · ∇ v0−κ 2n2u0v0

)
dx− iκ

∫

S
ηu0v ds

+
∫

Ω1

χ
(
∇ u1 · ∇ v1−κ 2n2u1v1

)
dx+ 〈p,v1−v0〉H̃−1/2(Σ),H1/2(Σ) =

〈∂nu,v0〉H−1/2(ΓS),H1/2(ΓS)
− iκ

∫

S
ηuv0 ds+ 〈 f ,v1〉H̃−1/2(Γslot),H1/2(Γslot)
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for all (v0,v1) ∈ X. Using then the integral represensation of∂nu|ΓS andu|S given above in (3.11), we
readily arrive to the formulation effectively used to solveproblem (2.1) numerically





(u, p) ∈ X×M, ∀(v,q) ∈ X×M
a(u,v)+d(u0,v0)+b(p,v)+ r(p,v0) = 〈 f ,v1〉H̃−1/2(Γslot),H1/2(Γslot)

b(q,u) = 0
(3.14)

with the following notation




a0(u0,v0) =

∫

ΩS∩Ω0

(
∇ u0 · ∇ v0−κ 2u0v0

)
dx− iκ

∫

S
ηu0v0ds,

a1(u1,v1) =
∫

Ω1

χ
(
∇ u1 · ∇ v1−κ 2n2u1v1

)
dx,

a(u,v) = a0(u0,v0)+a1(u1,v1),

d(u0,v0) =
〈
∂nNΓS,ΓΣ u0,v0

〉
H−1/2(ΓS),H1/2(ΓS)

− iκ
∫

S
ηv0NS,Σu0ds

r(p,v0) =−
∫

ΓS

v0∂nVΓS,Σ p ds+ iκ
∫

S
ηv0VS,Σ p ds,

b(p,v) = 〈p,v1−v0〉H̃−1/2(Σ),H1/2(Σ) ,

(3.15)

and
M = H̃−1/2(Σ). (3.16)

For simplicity, an element(v0,v1) ∈ X is denoted by a single symbolv.

3.2 Well-posedness and stability estimates

We first establish the coerciveness estimates and Brezzi’s inf-sup condition that reduce problem (3.14)
to a Fredholm alternative. Towards this end, we introduce the following notation:





a(0)(u,v) =
∫

ΩS∩Ω0

(∇ u0 · ∇ v0+u0v0)dx+
∫

Ω1

χ (∇ u1 · ∇ v1+u1v1)dx

d(0)(u0,v0) =
〈

∂nN(0)u0,v0

〉
H−1/2(ΓS),H1/2(ΓS)

whereN(0)u0 is the double-layer potentiel corresponding to the kernel of the Laplace equation and the
curveΓΣ created by the densityu0

N(0)u0(x) =
∫

ΓΣ

1
2π

∂ny ln(|x−y|) u0(y) dsy.

Let us consider the following variational problem




(u, p) ∈ X×M, ∀(v,q) ∈ X×M,

a(0)(u,v)+d(0)(u0,v0)+b(r,v) = L v,
b(q,u) = 〈q, ℓ〉H̃−1/2(Σ),H1/2(Σ) .

(3.17)

set withL ∈ X′, the space of continuous linear forms onX, andℓ ∈ H1/2(Σ). Clearly, usual properties
of boundary integral operators readily yield that problems(3.14) and (3.17) differ from each other by
compact bilinear forms only (cf., e.g., Buffa & Hiptmair (2003); Hsiao & Wendland (2008); Ńed́elec
(2001)). For this poblem, we have the following well-posedness result.
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LEMMA 3.1 Problem (3.17) admits one and only one solution and thereexists a constantC independent
of L andℓ such that

‖u‖X +‖p‖H̃−1/2(Σ) 6C

(
sup

‖v‖X61
|L v|+‖ℓ‖H1/2(Σ)

)
.

Proof. Problem (3.17) is a saddle-point problem. Its well-posedness will result from the following
Brezzi’s conditions

∃β > 0 : sup
‖v‖X61

|b(p,v)|> β ‖p‖H̃−1/2(Σ) (3.18)

∃γ > 0 : a(0)(u,u)+d(0)(u0,u0)> γ‖u‖2
X (3.19)

for all u∈V with
V = {v∈ X; b(q,v) = 0, ∀q∈ M}

(see for instance Brezzi & Fortin (1991)). Sinceb(p,v) = 〈p,v1〉H̃−1/2(Σ),H1/2(Σ) for v0 = 0, inf-sup

condition (3.18) is immediately obtained by noticing thatH̃−1/2(Σ) is the dual space ofH1/2(Σ) (cf.,
e.g., McLean (2000); see also (Steinbach, 2003, p. 79)). To prove (3.19), we first remember that
u= (u0,u1) ∈V means that ifw is defined byw|Ω0∩ΩS = u0 andw|Ω1 = u1, then it is inH1 (ΩS). Then,
sinceN(0)u0 is a double-layer potential associated to the Laplace equation, it is an harmonic function
in Ω0, i.e., ∆N(0)u0 = 0 in Ω0, and satisfiesN(0)u0 ∈ H1 (Ω0∩BR) for any ballBR centered at 0 and
of radiusR (for this last property see, e.g., (McLean, 2000, p. 208)). Now, let ϕ be a cut-off function
in D

(
R

2
)

equal to 1 on a ballBR with R sufficiently large such thatΩ+
0 ∪ΩS ⊂ BR. Using Green’s

formula, we can write

d(0)(u0,u0) =
〈

∂nN(0)u0,ϕu0

〉
H−1/2(ΓS),H1/2(ΓS)

=−
∫

Ω0\ΩS

∇ N(0)u0 · ∇ ϕu0dx

=−
∫

Ω0

∇ N(0)u0 · ∇ (ϕu0)dx+
∫

Ω0∩ΩS

∇ N(0)u0 · ∇ u0dx

sinceϕ is equal to 1 onΩS. Using once more Green formula, we readily obtain

a(0)(u,u)+d(0)(u0,u0) =
∫

ΩS

χ
(
|∇ w|2+ |w|2

)
dx

+

∫

Ω0∩ΩS

∇ N(0)u0 · ∇ u0dx+
〈

∂nN(0)u0,u0

〉
H−1/2(ΓΣ ),H−1/2(ΓΣ )

.

Making use once more of the following properties of the double-layer potential∆N(0)u0 = 0 in Ω+
0 ∪Ω0,(

∂nN(0)u0

)+
=
(

∂nN(0)u0

)−
= ∂nN(0)u0 onΓΣ ,

(
N(0)u0

)+
−
(

N(0)u0

)−
= u0|ΓΣ , and∇ N(0)u0|Ω+

0
∈

L2
(
Ω+

0

)
and∇ N(0)u0|Ω0 ∈ L2 (Ω0), we can write

〈
∂nN(0)u0,u0

〉
H−1/2(ΓΣ ),H−1/2(ΓΣ )

=
∫

Ω+
0

∣∣∣∇ N(0)u0

∣∣∣
2
dx+

∫

Ω0

∣∣∣∇ N(0)u0

∣∣∣
2
dx.
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We have denoted by a superscript+ the trace onΓΣ from the values of the corresponding function on
Ω+

0 and by a superscript− this trace from the values onΩ0. The end of the proof is obtained in a
straightforward way by noticing that

ℜ
∫

Ω0∩ΩS

∇ N(0)u0 · ∇ u0dx>−
∥∥∥∇ N(0)u0

∥∥∥
L2(Ω0∩ΩS)

‖∇ u0‖L2(Ω0∩ΩS)

>−1
2

(∥∥∥∇ N(0)u0

∥∥∥
2

L2(Ω0∩ΩS)
+‖∇ u0‖2

L2(Ω0∩ΩS)

)
.

�

Keeping the above data and notation, we can now prove the following general stability result which
clearly reduces to a Fredholm alternative (cf., e.g., Hsiao& Wendland (2008); Taylor (1996)).

THEOREM 3.1 The variational problem




(u, p) ∈ X×M, ∀(v,q) ∈ X×M
a(u,v)+d(u0,v0)+b(p,v)+ r(u0,v0) = L v
b(q,u) = 〈q, ℓ〉H̃−1/2(Σ),H1/2(Σ)

(3.20)

admits one and only one solution satisfying

‖w‖X +‖r‖H̃−1/2(Σ) 6C

(
sup

‖v‖X61
|L v|+‖ℓ‖H1/2(Σ)

)
(3.21)

with C a constant independent ofL andℓ.

Proof. We have seen right above that the well-posedness of problem (3.20) reduces to a Fredholm
alternative. We thus focus on the uniqueness and consider(u, p) a solution to (3.20) corresponding to
L = 0 andℓ= 0. At first, we note that, sinceb(q,u) = 0, ∀q∈ H̃−1/2(Σ), we haveu0|Σ = u1|Σ . Hence,
if we definew by w|Ω0∩ΩS = u0 andw|Ω1 = u1, we get thatw∈ H1(ΩS). The notationw will stand also
for the function defined onΓΣ associated tou0 and which coincides withu0 onΓΣ (see the definition of
X0 in (3.13)). To put problem (3.20) in a more concrete shape, let us introduce the following function
z expressed in terms of a single- and a double-layer potential, which as well-known yield a solution to
the Helmholtz equation inΩ+

0 ∪Ω0 outgoing at infinity

z(x) =V∗,Σ p(x)−N∗,ΓΣ w(x), x∈ R
2\ΓΣ .

Let us denote byz± and∂nz± the traces ofzonΓΣ where the signs± respectively indicate that the traces
are taken from inside (resp. outside) the domainΩ+

0 enclosed byΓΣ . Jump relations (cf., e.g., Colton &
Kress (1983); Bendali & Fares (2008))) connect these tracesto that ofw onΣ as

z−−z+ = w, ∂nz−−∂nz+ =−p. (3.22)

Let nowS0 be the part ofΓΣ in ΩS (see Fig. 2). Observing that∂nzhas no jump acrossΓΣ \S0, by chosing
v∈X such thatv1 = 0 and suppv0 compact inΓΣ \S0, we directly obtain that∂nz= 0 onΓΣ \S0. In other
words, both of∂nz+ and∂nz− are inH̃−1/2 (S0). As in the proof of lemma 3.17, sincez∈ H1(Ω0∩BR)
for all R, and satisfies∆z+ κ 2z= 0 in Ω0 ∪Ω+

0 , ∂nz|ΓS is well-defined inH−1/2(ΓS) and belongs to
H̃−1/2(S). Going back to problem (3.20), we can thus see thatw, p andz satisfy

∫

Ω0

(
∇ w · ∇ v0−κ 2wv0

)
dx− iκ

∫

S
ηwv0ds+

∫

Ω1

χ
(
∇ w · ∇ v1−κ 2wv1

)
dx

〈p,v1−v0〉H̃−1/2(Σ),H1/2(Σ)−〈∂nz,v0〉H̃−1/2(S),H1/2(S)+ iκ
∫

S
ηzv0ds= 0
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for all v0 ∈ H1 (Ω0) andv1 ∈ H1 (Ω1). Green formula then directly gives thatχ∂nw has no jump across
Σ , thatp=−χ∂nu and thatw satisfies

{
∇ χ ∇ ·w+ χκ 2n2w= 0 in ΩS,
χ∂nw= 0 onΓ ∩∂ΩS,

that is,χ∂nw∈ H̃−1/2(S). In the same way, we get also that

χ∂nw− iκη w= ∂nz− iκη zonS.

The crucial point in the proof is then to take advantage of thefact thatχ andn are 1 inΩ0 for getting
that
∫

Ω0∩ΩS

(
|∇ (w−z)|2−κ 2 |w−z|2

)
dx− iκ

∫

S
η |w−z|2ds=−

〈
χ∂nw−∂nz−,w−z−

〉
H̃−1/2(S0),H1/2(S0)

.

Then using jump relations (3.22) and the fact that both∂nz+ and∂nz− are inH̃−1/2 (S0), we can write
∫

Ω0∩ΩS

(
|∇ (w−z)|2−κ 2 |w−z|2

)
dx− iκ

∫

S
η |w−z|2ds=−

〈
∂nz+,z+

〉
H̃−1/2(S0),H1/2(S0)

=−
〈

∂nz+,z+
〉

H−1/2(ΓΣ ),H1/2(ΓΣ )

As above, since∆z+κ 2z= 0 in Ω+
0 andz∈ H1(Ω+

0 ), Green formula then gives that
∫

Ω0∩ΩS

(
|∇ (w−z)|2−κ 2 |w−z|2

)
dx− iκ

∫

S
η |w−z|2ds+

∫

Ω+
0

(
|∇ z|2−κ 2 |z|2

)
dx= 0.

Taking the imaginary part of this equation, we obtain
∫

S
η |w−z|2ds= 0.

Therefore, we have that∂n (w−z) = w−z= 0 in a neighborhood of at least an interior point ofSsince
we can find at least one interior point ofSaround whichη = 1. We then deduce thatw= z in Ω0∩ΩS

by using, for instance, the Holmgren theorem (cf. Chazarain& Piriou (1982)). It is then possible to
extendw by z in all of Ω0. The end of the proof follows from the uniqueness of problem (2.1). �

4. Discretization and numerical solution

After describing the coupling FEM-BEM approximation of problem (3.14), we establish its stability and
convergence.

4.1 The FEM-BEM approximation

The domainΩS is meshed in triangles according to the general matching rules of conforming meshes of
the FEM and in a way compatible with its decomposition in the two non-overlapping domainsΩ1 and
Ω0∩ΩS. This induces a mesh in segments ofΣ . The rest ofΓΣ is also meshed in segments. An instance
of such a mesh is depicted in Fig. 4, which moreover exhibits the nodes used either for the FEM and the
BEM.
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FIG. 4. Meshes and nodes ofΩS andΓΣ used for the FEM-BEM approximation.

Denoting byh> 0 the usual mesh size of FEM approximations, we can then consider the FEM-BEM
discrete versionXh

0 (resp.Xh
1 , Mh) of X0 (resp.X1, M). A function vh in Xh

0 (resp.Xh
1 , Mh) is defined

such thatvh is globally continuous onΩ0∩ΩS∪ΓΣ (resp. Ω1, Σ), and linear-affine on each triangle
or segment included in this set. It is worth mentioning that the conditionM = H̃−1/2(Σ) is taken into
account by compelling the nodal values ofph ∈ Mh to be zero at the end-points ofΣ . The FEM-BEM
spaceXh is associated withXh

0 andXh
1 in the same way asX with X0 andX1 except that, in order to

avoid the usual difficulties raised by the cross-points (cf.,e.g., Bendali & Boubendir (2006)),vh
0 ∈ Xh

0
andvh

1 ∈ Xh
1 are assumed to share the same nodal value at the end-points ofΣ . The norm onXh is that

onX, that is,

∥∥∥vh
∥∥∥

X
=

√∥∥vh
0|Ω0

∥∥2
H1(Ω0)

+
∥∥vh

1

∥∥2
H1(Ω1)

+
∥∥vh

0|ΓΣ

∥∥2
H1/2(ΓΣ )

. (4.1)

4.2 Stability and convergence of the FEM-BEM scheme

The stability and the convergence of the above FEM-BEM scheme are embodied in the following the-
orem. In the sequel,C stands for various constants, not the same in all instances,always independent
of h. We also neglect the consistency error coming from the approximation of curved interfaces and
boundaries by straight lines (see how such an error can be taken into account in Bendali & Souilah
(1994) for instance).

THEOREM 4.1 Assume that the mesh ofΣ is globally quasi-uniform in the meaning

hΣ
max/hΣ

min 6C

wherehΣ
max andhΣ

min are respectively the lengths of the largest and the smallestsegment ofΣ . There
existsh0 > 0 and a constantC independent of 0< h 6 h0 such that, ifLh andℓh are linear forms on
respectivelyXh andMh, the problem





(wh,zh) ∈ Xh×Mh, ∀
(
vh,qh

)
∈ Xh×Mh,

a(wh,vh)+d(wh
0,v

h
0)+b(zh,vh)+ r(zh,v0) = Lhvh,

b(qh,wh) = ℓhqh,
(4.2)
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admits one and only one solution such that

∥∥∥wh
∥∥∥

X
+
∥∥∥zh
∥∥∥

H̃−1/2(Σ)
6C


 sup
‖vh‖X

61

|Lhvh|+ sup
‖qh‖

H̃−1/2(Σ)
61

∣∣∣ℓhqh
∣∣∣


 . (4.3)

Proof. The proof is obtained from the coerciveness properties of the bilinear form(wh,vh)→a(wh,vh)+
d(wh

0,v
h
0), the usual stability estimates for the Galerkin approximation of the problems whose well-

posedness is established from a Fredholm alternative, (see, for instance, Chen & Zhou (1992)) and the
following Brezzi condition for saddle-point problems

∃γ > 0 independent ofh : sup
‖vh‖X

61

∣∣∣b(ph,vh)
∣∣∣> γ

∥∥∥ph
∥∥∥

H̃−1/2(Σ)
, ∀ph ∈ Mh.

All these properties can be established in a straightforwardway except the above stability condition
which is an immediate consequence of the following one

∃α > 0 independent ofh : sup
‖vh

1‖H1(Ω1)
61

∣∣∣∣
〈

ph,vh
〉

H̃−1/2(Σ),H1/2(Σ)

∣∣∣∣> α
∥∥∥ph
∥∥∥

H̃−1/2(Σ)
, ∀ph ∈ Mh.

Fortin’s lemma (cf. (Brezzi & Fortin, 1991, p. 58)) directlyyields this estimate from the following
property: theL2 projection ontoVh, the space of functions continuous onΣ and linear-affine on each
segment, is bounded uniformly inh as a map fromH1/2(Σ) into itself (cf., e.g., (Steinbach, 2003, p.
21)). �

The following corollary, proving the convergence of the FEM-BEM approximation of the solution
to (2.1), is an immediate consequence of the above theorem.

COROLLARY 4.1 Under the general conditions of theorem 4.1, there exists h0 > 0 such that, for 0<
h6 h0, the following estimate holds true

∥∥∥uh−u
∥∥∥

X
+
∥∥∥ph− p

∥∥∥
H̃−1/2(Σ)

6C

(
inf

vh∈Xh

∥∥∥vh−u
∥∥∥

X
+ inf

qh∈Mh

∥∥∥qh− p
∥∥∥

H̃−1/2(Σ)

)
(4.4)

where(u, p) is the solution to the continuous problem (3.14), and(uh, ph) is the solution of the following
discrete one





(uh, ph) ∈ Xh×Mh, ∀
(
vh,qh

)
∈ Xh×Mh,

a(uh,vh)+d(uh
0,v

h
0)+b(ph,vh)+ r(ph,vh

0) =
〈

f ,vh
1

〉
H̃−1/2(Γslot),H1/2(Γslot)

,

b(qh,uh) = 0.
(4.5)

4.3 Numerical implementation

The general strategy for solving the discrete problem (4.5)is to use an iterative procedure to uncouple
the FEM and the BEM solutions in order to deal with linear systems with either a sparse or a dense
matrix. Let us first describe the procedure as a successive approximations method. The iterative process
is actually accelerated by means of a suitable Krylov technique. For the sake of clarity, we use the
following projectorvh → Π vh

0 obtained by setting to zero each nodal value ofvh
0 not onΩS. In matrix

form, Π just corresponds to a partitioning technique. The superscript h is removed to simplify the
notation.
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• Start withu(0) = 0 andp(0) = 0.

• For m= 0,1, . . . until convergence solve




(u(m+1), p(m+1)) ∈ Xh×Mh, ∀(v,q) ∈ Xh×Mh,

a(u(m+1),v)+d((1−Π )u(m+1)
0 ,v0)+b(p(m+1),v) =
〈

f ,vh
1

〉
H̃−1/2(Γslot),H1/2(Γslot)

−d(Π u(m)
0 ,v0)− r(p(m),v0)

b(q,u(m+1)) = 0,

(4.6)

Actually, sincea0(u0,(1−Π )v0) = b0(p,(1−Π )v0) = 0, the problem (4.6) consists of two uncou-
pled problems




a1(u
(m+1)
1 ,v1)+a0(Π u(m+1)

0 ,Π v0)+b1(p(m+1),v1)−b0(p(m+1),Π v0) =
〈

f ,vh
1

〉
H̃−1/2(Γslot),H1/2(Γslot)

−d(Π u(m)
0 ,Π v0)− r(p(m),Π v0)

b1(q,u
(m+1)
1 )−b0(q,Π u(m+1)

0 ) = 0,

(4.7)

d((1−Π )u(m+1)
0 ,(1−Π )v0) =−d(Π u(m)

0 ,(1−Π )v0)− r(p(m),(1−Π )v0). (4.8)

Moreover, problem (4.7) can be solved in two steps. The first one is a simple FEM solution onΩS

that determines the nodal values ofu there. This problem is obtained by compelling the test function v
to satisfy the constraint, that is, to be continuous also at the nodes in the interior ofΣ




ũ(m+1) ∈Vh, ∀v∈Vh
∫

ΩS

χ
(

∇ ũ(m+1) · ∇ v−κ 2n2ũ(m+1)v
)

dx− iκ
∫

S
η ũ(m+1)vds=

〈
f ,vh

1

〉
H̃−1/2(Γslot),H1/2(Γslot)

−d(Π u(m)
0 ,Π v0)− r(p(m),Π v0)

(4.9)

with
Vh =

{
vh ∈ C

0(ΩS
)

; vh linear-affine on each triangle
}

andũ(m+1) is such that̃u(m+1)|Ω0∩ΩS = u(m+1)
0 |Ω0∩ΩS andũ(m+1)|Ω1 = u(m+1)

1 . The multiplierp(m+1) is
next obtained by solving the variational system whose underlying linear system is simply a boundary
mass matrix associated with the mesh onΣ

b1(p
(m+1),v1) =−a1(u

(m+1)
1 ,v1), ∀v1 ∈ Mh. (4.10)

In addition to designing a procedure which makes it possibleto solve separately sparse and dense
matrices, we also get the following theorem.

THEOREM 4.2 The above iterative algorithm does not break down.

Proof. It is sufficient to prove that the above three problems are well-posed. Problem (4.9) corresponds
to a FE approximation of a boundary-value problem set in terms of a Helmholtz equation with variable
coefficients and a strictly absorbing impedance condition in a part of the boundary. In this way, it
satisfies strong coerciveness properties which yields thatthe related linear system can be solved in a
stable way. Problem (4.10) is a linear system only posed in terms of a mass matrix. Problem (4.8)
corresponds to an integral equation set on an open curve and solved by a BEM, whose well-posedness
is well-known (cf., e.g., Hsiao & Wendland (2008); Maischaket al. (1997)). �

We will refer below to this approach as the LRC (Localized Radiation Condition) formulation.
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5. Alternative approaches

In this section, we consider alternative approaches for solving problem (2.1). The goal is to validate the
LRC formulation by first testing its accuracy through its comparison with standard methods. Next we
compare its efficiency with methods based on other domain decomposition principles.

5.1 Direct methods

“Direct methods” means here that the underlying linear system can be solved by usual Gaussian elimi-
nations.

5.1.1 Boundary elements formulations.Whenχ andn are constant, the problem can be addressed
using only a BEM. We have chosen the reduction to a system of first kind Boundary Integral Equations
(BIE), as is done in von Petersdorff (1989), but with a more convenient way in expressing the constraints
on the unknowns of the BIE. When internal resonances do not affect the well-posedness of such kinds of
formulations, they are known to deliver very accurate results. The formulation of this integral equation
makes use of the following space

X
1/2 =

{
(v0,v1) ∈ H1/2(∂Ω0)×H1/2(∂Ω1);

∃v∈ H1
loc(R

2),v0 = v|∂Ω0
,v1 = v|∂Ω1

} (5.1)

defined on the skeleton made of the boundaries and the interfaces involved in the problem. Conveniently,
we use the notation∂Ω0 to refer to the boundary ofΩ0. Clearly from (2.4), the traces of the solutionu
to (2.1) are inX1/2. In the same way, we denote the flux variables associated withu as follows

p0 = ∂n0u0, p1 = χ∂n1u1

whereni (i = 0,1) stands for the unit normal to∂Ωi directed outwardsΩi . The Green formula directly
yields that(p0, p1) satisfies

〈p0,v0〉0+ 〈p1,v1〉1 = 〈 f ,v1〉1 (5.2)

for all (v0,v1) ∈ X
1/2. For simplicity, we have denoted by subscript 0 or 1, the duality brackets be-

tweenH−1/2(∂Ω0) andH1/2(∂Ω0), and betweenH−1/2(∂Ω1) andH1/2(∂Ω1) respectively. Clearly
this condition defines a closed linear-affine subspaceX

−1/2( f ) of H−1/2(∂Ω0)×H−1/2(∂Ω1) whose
underlying subspace is

X
−1/2 =

{
(q0,q1) ∈ H−1/2(∂Ω0)×H−1/2(∂Ω1);

〈q0,v0〉0+ 〈q1,v1〉1 = 0,∀(v0,v1) ∈ X
1/2
}

(5.3)

Actually condition (5.2) expresses that

p0|Σ + p1|Σ = 0, p0|Γ ∩∂Ω0
= 0, p1|Γ ∩∂Ω1

= f , (5.4)

and(q0,q1) ∈ X
−1/2 that(q0,q1) satisfies (5.4) withf = 0. The matching on the traces ofu can also be

expressed in a dual way as

X
1/2 =

{
(v0,v1) ∈ H1/2(∂Ω0)×H1/2(∂Ω1);

〈q0,v0〉H−1/2(∂Ω0),H1/2(∂Ω0)
+ 〈q1,v1〉H−1/2(∂Ω1),H1/2(∂Ω1)

= 0, ∀(q0,q1) ∈ X
−1/2

}
.
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Using the integral representations ofu0 in Ω0 in terms ofp0 andu0|∂Ω0
, and that ofu1 in Ω1 from p1

andu1|∂Ω1

u0(x) =V0p0(x)+N0u0(x) (x∈ Ω0), u1 = χ−1V1p1+N1u1 (x∈ Ω1).

Here,V0 andV1 are the single-layer potentials for respectively the wave numbersκ andκ1 = κn, and
N0, N1 are the double-layer potentials defined usingn0, κ andn1,κ1 respectively. We can readily solve
the BIEs system as

{
(u0,u1) ∈ X

1/2, (p0, p1) ∈ X
−1/2( f ), ∀(v0,v1) ∈ X

1/2, ∀(q0,q1) ∈ X
−1/2

〈
∂n0u0,v0

〉
0−〈q0,u0〉0+ 〈χ∂n1u1,v1〉1−〈q1,u1〉1 = 〈 f ,v1〉1 .

(5.5)

From usual trace formulas of single- and double-layer potentials (cf., e.g., Hsiao & Wendland (2008);
Bendali & Fares (2008); Colton & Kress (1983)), this system can be written in the explicit form





(u0,u1) ∈ X
1/2, (p0, p1) ∈ X

−1/2( f ), ∀(v0,v1) ∈ X
1/2, ∀(q0,q1) ∈ X

−1/2

〈
∂n0N0u0,v0

〉
0+ 〈χ∂n1N1u1,v1〉1−〈q0,N0u0〉0−〈q1,N1u1〉1

−〈p0,N0v0〉0−〈p1,N1v1〉1−〈V0p0,q0〉0−
〈
χ−1V1p1,q1

〉
1 =

1
2 〈 f ,v1〉1 .

(5.6)

The discretization of this system by a BEM involving only globally continuous linear-affine functions
on each segment of the above skeleton is straightforward andis not recalled here (cf., e.g., Chen & Zhou
(1992); Bendali & Fares (2008); von Petersdorff (1989)).

5.1.2 FEM-BEM coupling. Whenχ or n vary in Ω1, formulation (5.5) does not apply since the ex-
plicit representation ofu1 in terms of the Cauchy datau1|∂Ω1

andp1 = χ∂n1u1|∂Ω1
is no more available.

However to obtain a FEM-BEM coupling, we keep the variational system (5.5) in whichu1 represents
the first trace ofu1 on∂Ω1 and expressχ∂n1u1|∂Ω1

in terms of a Green formula





(u0,u1) ∈ X, (p0, p1) ∈ X
−1/2( f ), ∀(v0,v1) ∈ X, ∀(q0,q1) ∈ X

−1/2

〈
∂n0N0u0,v0

〉
0−〈q0,N0u0〉0−〈p0,N0v0〉0−〈V0p0,q0〉0+

1
2 〈p0,v0〉0

+
∫

Ω1

χ
(
∇ u1 · ∇ v1−κ 2n2u1v1

)
dx− 1

2 〈q1,u1〉1 = 〈 f ,v1〉1 ,

(5.7)

where
X=

{
(u0,u1) ∈ H1/2(∂Ω0)×H1(Ω1);

(
u0,u1|∂Ω1

)
∈ X

1/2
}
.

To solve this system, we meshΩ1 in triangles and∂Ω0 in segments, as was used in the case of the
LRC formulation. We also use the same type of approximation,for trial and test function, as for the
FEM-BEM formulation. Clearly the linear system associatedwith this formulation, referred to as the
FEBE formulation in section 5.3, has a matrix which is partlysparse and partly dense. It can thus lead to
specific difficulties when dealing with the huge size linear systems which is the inherent characteristic
to such a kind of problems in 3D.

However, to compare these kinds of formulations with the above LRC formulation on the same
basis, we will also consider an adaptation of this FEM-BEM coupling by setting the problem with
varying coefficients inΩS after extendingχ andn in the homogeneous part of this domain by 1. The
resulting method will be referred to as the FEBE2 formulation.
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5.2 Iterative methods

We develop here some iterative methods, based on a suitable use of DDM techniques, that avoid solving
linear systems whose matrix is partly sparse and partly dense.

5.2.1 A primal domain decomposition method.The domain decomposition method used here is
based on the non-overlapping partition of ofΩ into Ω0 andΩ1. The primal DDMs consists of op-
erating the Dirichlet-to-Neumann mapTi for Ωi (i = 0,1) (cf., e.g., Gosselet & Rey (2006)). These
maps are defined as follows





w0 ∈ H1
loc(Ω0),

∆w0+κ 2w0 = 0 in Ω0,
w0 = ϕ0 on∂Ω0,

lim|x|→∞ |x|1/2(∂|x|w0− iκw0
)
= 0,

(5.8)





w1 ∈ H1(Ω1),
∇ · χ ∇ w1+ χκ 2n2w1 = 0 in Ω1,
w1 = ϕ1 on∂Ω1,

(5.9)

T0ϕ0 = ∂n0w0|∂Ω0
∈ H−1/2(∂Ω0), T1ϕ1 = χ∂n1w1|∂Ω1

∈ H−1/2(∂Ω1). (5.10)

for ϕi given in H1/2(∂Ωi), and assuming that the corresponding Dirichlet problem forthe Helmholtz
equation is well-posed. The equations, corresponding to the continuous problem, can then be set using
the above framework {

(u0,u1) ∈ X
1/2, ∀(v0,v1) ∈ X

1/2,

〈T0u0,v0〉0+ 〈T1u1,v1〉1 = 〈 f ,v1〉1 .
(5.11)

Obviously, the equations of this system are set in an implicit way only.
The discretization of the coupling FEM-BEM system is based on the following approximation of

the previous Dirichlet-to-Neumann maps. The approximation Th
0 of T0 is carried out by means of the

following BEM discretization of the Burton-Miller BIE (cf., e.g., Bendali & Fares (2008))
{

ϕ0 given inXh
0 |∂Ω0

, p0 = Th
0 ϕ0 ∈ Xh

0 |∂Ω0
, ∀v0 ∈ Xh

0 |∂Ω0
,

〈(
1
2 − iκV0

)
p0,v0

〉
0+ 〈p0,N0v0〉0 =

〈(
∂n0N0− iκ

(
1
2 −N0

))
ϕ0,v0

〉
0 ,

(5.12)

whereXh
0 |∂Ω0

is the space generated by the restriction to∂Ω0 of the functionsvh
0 belonging to the space

Xh
0 previously defined in the context of the LRC formulation.

The approximationTh
1 of T1 is obtained by a standard FEM static condensation performedas follows.

Let K be the sparse matrix defined by the following identification




u1 ∈ Xh
1 , v1 ∈ Xh

1∫

Ω1

χ
(
∇ u1 · ∇ v1−κ 2n2u1v1

)
dx= [v1]

⊤K [u1]
(5.13)

whereXh
1 is the FEM space introduced above for the LRC formulation, and [u1] is the column-vector

whose components are the corresponding nodal values ofu1. Let I andB be the sets of indices corre-
sponding to the interior and boundary nodal values respectively. Partitioning

K =

[
KII KIB

KBI KBB

]
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accordingly, we get the nodal values[p1] of p1 = Th
1 ϕ1 from those[ϕ1] of ϕ1 in two sweeps:

• solve the linear system (corresponding to a Dirichlet problem with[u1]B = [ϕ1])

KII [u1]I =−KIB [u1]B (5.14)

• form [p1]
[p1] = KBI [u1]I . (5.15)

Denoting by

X
h
Σ =

{
(v0,v1) ∈ Xh

0 |∂Ω0
×Xh

1 ; v0|Σ = v1|Σ
}
, (5.16)

we obtain the discrete system related to the primal DDM
{

(u0,u1) ∈ X
h
Σ , ∀(v0,v1) ∈ X

h
Σ ,〈

Th
0 u0,v0

〉
0+
〈
Th

1 u1,v1
〉

1 = 〈 f ,v1〉1 .
(5.17)

Effectively, it is not possible to formulate the equations corresponding to problem (5.17) as a linear
system. However, it is possible to perform a matrix-vector product using the expression (5.15) and the
solution of (5.12). As a result, the system (5.17) can only besolved using a Krylov method. We will
refer to this procedure as the P-DDM approach.

The main flaw of the above DDM is that the solution of the linearsystem (5.14) may be unsafe or
can even break down ifκ corresponds to an internal resonance inΩ1. The expression of the matching
conditions initiated by Deprés Despŕes (1993) is generally used to cure this drawback for this kind of
wave propagation problems. Such an approach is generally referred to as mixed DDM in the literature
on domain decomposition methods (cf., e.g., Gosselet & Rey (2006)). We have adapted this method
with a special handling of cross-points as in Bendali & Boubendir (2006). However, because of the
type of geometry treated in this paper, several numerical experiments revealed that this method is the
most expensive and the slowest in converging. For these reasons, we do not consider it as an alternative
approach for the problem we are solving.

5.3 Numerical experiments

We end this section by some numerical experiments validating the LRC formulation. They consist of
demonstrating its efficiency over the alternative techniques developed in section 5.

5.3.1 Description of the test-case.The geometry of the test-case considered here is depicted inFig. 5.
It depends on a parameterL used to set a large size for the impenetrable domain relatively to the zone
meshed in triangles as shown in Fig. 5. By varying this parameter, we test each numerical technique
in terms of accuracy, CPU time, and convergence for the iterative ones. The lengths are expressed in
wavelength units. To be able to compare the LRC formulation with the BE one, we supposeχ andn
constant inΩ1. More precisely, we chooseχ = 1/4 andn= 2(1+ i), which correspond to a magnetic
material in electromagnetism. The sources are located on the segment{x2 = 0, −0.25< x1 < 0.25}
and are given by the Gaussian functionf (x1) =−exp(−(10x1)

2).
The mesh used is of 20 points by wavelength in the free propagation zone and 15 points by wave-

length in the material for the FEM-BEM formulations. The BE formulation is meshed using 20 points
by wavelength for both the free propagation zone and the material. Since it is well-established that the
BE approach is much less sensitive to the dispersion error than the FEM formulation, we use it here as
the reference solution to determine the accuracy for the other methods.
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L

R = 0.5

Zone meshed
in triangles

x1 = 0.5

x1

x2

x1 = 0.75

FIG. 5. Geometry of the test-case

5.3.2 Numerical experiments.The accuracy of each formulation is measured by comparing the far
field pattern with the one obtained using the BE approach. Thefar field is expressed in dB as follows

s(θ) = 10log10

(
2π|a0(θ)|2

)
, (5.18)

with

u(x) =
eiκ r
√

r
a0(θ)+o(

1√
r
), (5.19)

(r,θ) being the polar coordinates of the pointx∈ R
2.

All the iterative methods are solved using the GMRES algorithm (cf., e.g. Saad (1996)). Since this
procedure does not seem to be well-known, we sketch its broadoutlines. Assume that a linear problem
is solved through the linear iterative method

• x(0) being given,

• for m= 0,1,2, until convergence do

x(m+1) = Mx(m)+b.

Clearly if these iterative methods converge, they will converge towards the solutionxof the following
linear system

(I −M)x= b

where I is the identity matrix. It is the above linear system that is solved by GMRES which only
requires the right-hand sideb to be given and the way the matrix-vector(I −M)x is performed. It is
enough to observe thatb can be obtained by performing one iteration starting fromx(0) = 0 and that
x(m)−x(m+1) = (I −M)x(m) if the data of the linear problem are set to zero.

The first test concerns the case of a moderately elongated impenetrable domain corresponding to
L = 4 and the second, much more elongated, is obtained forL = 40. Table 1 summarizes the numerical
for each method in terms of accuracy and CPU time. For the iterative methods, we also compute the
iteration number, noted “Iter” in Table 1, obtained by reducing the residual by a factor 10−6. To measure
the accuracy, we use the quantityE =max|s(θ)−sBE(θ)| wheresBE(θ) is the far field computed by the
BE approach, known to be the less dispersive, using a very refined mesh of 30 points per wavelength.
All the iterative methods were solved using the GMRES algorithm with a Krylov space of dimension
50, the underlying linear system being of order 1400 when coupling FEM with BEM.
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L CPU E Iter

BE
4 3.25 – –
40 153 – –

FEBE
4 1.92 1.16 –
40 63 0.63 –

FEBE2
4 5.78 1.16 –
40 79 0.81 –

LRC
4 8.53 1.19 9
40 68 0.61 10

P-DDM
4 4.40 1.25 40
40 512 1.01 63

Table 1. Comparison of the various formulations in terms of accuracy, CPU time, and number of iterations.

The results reported in Table 1 confirm the robustness of the LRC formulation for the problems
where the impenetrable zone is much larger than the one corresponding to the heterogeneous material.
The number of iterations used by the LRC formulation to converge is almost independent of the size of
the impenetrable zone. ForL = 40, only the FEBE formulation required a lower CPU time. It isworth
noting, however, that the two-dimensional study given hereis just of methodological interest.

Plots 6 and 7 show that the results provided by the LRC formulation completely agree with those of
the other methods.
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FIG. 6. Far field forL = 4.
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FIG. 7. Far field forL = 40.

Finally, it is clear from the plots depicted in Fig. 8 and 9 that the LRC formulation as an iterative
method outperforms the primal DDM approach.

6. Concluding remarks

We have designed a new coupling approach for solving wave propagation problems, where the compu-
tational domain is composed of a large impenetrable object on which is posed some penetrable material
of relatively small size. The BEM is used to deal with the solution on the impenetrable surface, and the
FEM approximates the solution in the heterogeneous region.We have established uniqueness and sta-
bility estimates and provide a theoretical basis to the method. Numerical results validate this approach,
and have confirmed its effectiveness in practical computations.

However, some practical problems deserve further investigations. Indeed, the size of the elongated
impenetrable zone requires particular treatment because of the corresponding dense matrix generated by
the BEM. One way to tackle this problem resides in using a Krylov subspace iterative method coupled
with an acceleration of the matrix-vector product by means of a Fast Multipole Method (cf., e.g., Chew
et al. (2001); Fischeret al. (2004)) associated with a suitable preconditioning technique for the whole
problem. A possible way is to use as a preconditioner an approximation of the Dirichlet-to-Neumann
map, sometimes referred to as the On Surface Radiation Condition (cf. Antoine (2008)). Another
approach regarding the design of a preconditioner consistsof utilizing a thin layer of FE enclosing the
boundary∂Ω0 of the free propagation zoneΩ0 and an accurate radiation condition on the truncating
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FIG. 8. Reduction of the residual forL = 4.
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FIG. 9. Reduction of the residual forL = 40.
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boundary (see Reineret al. (2006)).
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