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Sandra Ulrich NGUEVEU(b)(d) (d), Frédéric MESSINE(c)(d)

(a) LAPLACE, UMR CNRS 5213, INPT, UPS, 2 rue Camichel, 31071 Toulouse, France
(b) CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
(c) ENSEEIHT-IRIT, UMR-CNRS 5055, 2 rue Camichel, 31000 Toulouse, France
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ABSTRACT: In an hybrid electrical vehicle, the electrical powertrain system uses multiple energy sources
among which a compromise of usage must be found to ensure that the vehicle can satisfy the power demand
whilst minimizing the total energy consumption. This paper focusses on the minimization of the hydrogen
consumption over a given set of constraints. Based on global optimization approaches, the heuristics proposed
find solutions that best split the power required between the multi-electrical sources available. A lower bounding
procedure is introduced for a better evaluation of the solutions quality. Computational results show a sig-
nificant improvement over previous results from the literature in both the computing time and the solution quality.
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1 INTRODUCTION

The growing interest in environment friendly hybrid
vehicles during the design of new cars, has opened
several research fields such as energy management for
power distribution. A hybrid vehicle uses at least two
energy sources for its function:(1) an internal com-
bustion engine, a fuel cell with an hydrogen tank or a
solar panel, these sources are not reversible and can
only furnish a limited power quantity at a time, com-
bined with (2) a reversible source such as a battery
or super capacitor which can store braking energy
and give it back later. The operation of such vehicles
is restricted by several constraints depending on the
energy sources chosen: fuel cells have a slow respon-
siveness due to the chemical reaction inside their stack
and due to the air compressor; whereas the cost, dura-
bility and energy capacity of reversible sources limit
their proliferation in such vehicles. Today, the storage
element plays the role of a secondary energy source
that supports the primary source, but it represents
an intermediate step towards full electrical vehicles.

Several operational research approaches have been
applied to respond to the increasing concern with
power control and energy management, specifically
from combinatorial or global optimization. For hy-
brid systems, the goal is to minimize the energy con-
sumption. Often, various methods are implemented
and compared with each other. Two different situ-
ations can arise depending on whether the profile of
power demand is considered entirely known in ad-

vance or not. In the first case, the best ‘offline strat-
egy” is searched for, whereas in the second case, an
”online strategy” has to be designed to allow real time
optimization. This paper focusses on the first case,
although the best offline algorithms, if fast enough,
may be applicable in an online context. The pa-
per is organized as follows: Section 2 specifies the
problem studied, Section 3 presents an overview of
classical resolution methods from the literature, Sec-
tion 4 highlights the main weaknesses identified in the
best known method from the literature, Section 5 de-
scribes the heuristics proposed, Section 6 introduces
the lower bounding procedure and section 7 analyses
the results obtained, before the conclusion.

2 PROBLEM DESCRIPTION

The hybrid electric system considered in this pa-
per has two energy sources, as illustrated on Figure
1: a fuel cell stack and a storage element (super-
capacitor). It derives from a hybrid full electric ve-
hicle classified as hybridization series. The fuel cell
is the main energy source used to produce electricity
from hydrogen (fuel). Usually it provides the elec-
tricity needed for the traction whereas the storage el-
ement can recover the energy generated during brak-
ing, or from the fuel cell, for a later reuse.

The goal is to minimize the overall cost of hydro-
gen consumption for a given vehicle that follows a
given profile of power demand, by optimizing the dis-
tribution of power on the two sources, in the presence
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of several constraints of availability, performance and
state of charge of the super-capacitator.

Fuel Cell 
(FC) 

Powertrain 

Storage 
Element 
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Possible transfer of energy 

Figure 1: Series-hybrid architecture of the vehicle.

2.1 Fuel Cell System (FC)

A fuel cell (FC) is composed of several elementary
cells and has several uses. In this system, it produces
electricity from hydrogen and oxygen. The optimiza-
tion criterion of our problem has to take into account
the efficiency coefficient of the FC, which varies with
the amount of power delivered. Such characteristic is
given in the form of a yield curve (or efficiency curve).

2.2 Storage Element System (SE)

A storage element (SE) is needed for high accelera-
tions of a few seconds that cannot be provided by
the main source (which otherwise would be over-
dimensioned). To fulfill this requirement, a super-
capacitor is more suitable than a battery, because
it presents a higher dynamic to quickly deliver the
power during a short period of time. It also has an
almost constant efficiency coefficient. Let X(t) be the
amount of energy contained in the storage element at
instant-time t. Xmin and Xmax are respectively the
minimum and the maximum amount of energy SE
that can contain. Generally the storage element can
only be used between 25% and 100% of its energy ca-
pacity. The state of charge (SOC) is defined by the
following equation:

SOC(t) =
X(t)

Xmax
. (1)

If the SE supplies power to the powertrain system
(discharge) then PSE > 0 and Ẋ(t) < 0. Other-
wise, if SE absorbs the power recovered by the braking
(recharge) then PSE < 0 and Ẋ(t) > 0. Therefore,
following equation is always valid.

Ẋ(t) = −PES(t). (2)

2.3 Powertrain System

The powertrain is responsible of the traction in the
hybrid vehicle. This is the system that consumes the
electrical energy provided by both sources. If the
power of this moto-propulsion-group is positive then
the system is in traction, if it is negative then the ve-
hicle is in braking. At the end, if the power demand
is zero then the vehicle is stopped.

2.4 Power demand profile

An instance for our problem corresponds to a profile
of power required (or demand) over time by a chosen
powertrain to perform its mission. The profile pro-
vided by INRETS (Institut National de REcherche
sur les Transports et leur Sécurité) (Figure 2) and
used in this paper represents the path of electric ve-
hicles in urban environments. The validity domain of
the energy variation of the storage element is deduced
from this power profile and illustrated on Figure 3
(The validity domain is all possible states of energy
in the Storage Element).
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Figure 2: Power profile for urban electric vehicles.
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Figure 3: Validity domain of the storage element.

2.5 System characteristics

The design of the power sources is outside the scope of
this paper. The optimization problem considered here
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is done on a pre-defined system whose characteristics
are summarized in Table 1.

Value Description

PSEmin = −60kW min power extractible from SE

PSEmax = 60kW max power extractible from SE

Esmin = 400kW.s min energy storable in SE

Esmax = 1600kW.s max energy storable in SE

Esinit = 900kW.s initial energy in SE

PFCmax = 70kW.s max power deliverable by FC

Table 1: Characteristics of the storage element.

3 Literature review

The general formulation of the problem of energy
management can be represented in the form of dy-
namic equation with equality and inequality con-
straints. In this case, the objective function consid-
ered is non-linear with nonlinear constraints.

Dynamic equation:

ẋ(t) = f(x(t), u(t), t), x(t0) = x0. (3)

Cost criterion to be minimized:

∫ tf

t0

γ(x(t), u(t), t)dt. (4)

Constraints:

{
χ(x(t), u(t), t) = 0,
ϕ(x(t), u(t), t) ≤ 0,

(5)

where x(t), u(t) and γ are respectively the state, con-
trol variables and the representative of the global ef-
ficiency (which is not equal to the sum of the source
characteristics).

Some solving approaches focus on defining the evo-
lution of the state of charge variation (SOC) that
leads to minimize the cost of hydrogen consumption,
and then use these SOC values to deduce the fuel cell
powers. It is the case of dynamic programming, clas-
sically applied once the problem has been discretized
as explained in Subsection 3.1. Other approaches try
to directly compute powers delivered by the fuel cell
and then use the values obtained to deduce the SOC.
The remainder of this section presents an overview of
the latests solving methods from the literature that
have been applied on energy management problems
for electric power systems.

3.1 Dynamic programming

Dynamic programming (DP) is a well known method,
widely used to solve a variety of optimization prob-
lems. For a detailed description see for example the
book of Bertsekas (2011). In papers from the en-
ergy management literature, DP provided the best
results, sometimes after an additional discretization
of the data (Yuan-Bin Yu et al., 2009). For our
problem, any given profile of the power demand is al-
ready discretized in function of time (”horizontally”).
Hankache (2008) proposed a DP algorithm, summa-
rized in Algorithm 1. It requires an additional dis-
cretization of the power levels (”vertically”), where:
Cost(j, i) is the optimal cost to go from the state of
energy j at time i to the final state at time N whereas
Ei is the vector of all feasible (in the validity domain)
states of charge at instant i. Sequence(j, i) is the set
of commands u(t) related to the cost Cost(j, i). In
this case, if Cost′(i, j, p) is the cost of moving from
state j at time i to state p at time i+ 1, then recur-
rence relation is given as follows:

Cost(j,i)= Cost(p,i+1) + Cost’(i,j,p). (6)

Algorithm 1 DP Principle

1: for j ∈ EN−1 do
2: Compute Cost(j,N−1) ; Sequence(j,N−1)
3: end for
4: for i = N − 1 to 1 do
5: for j ∈ Ei do
6: for k ∈ Ei+1 do
7: Compute Cost(j, i) ; Sequence(j, i)
8: end for
9: end for

10: end for
11: return 2 Matrix: Cost and Sequence

3.2 Equivalent Consumption Minimization
Strategy (ECMS)

This is a control strategy based on the minimiza-
tion of the equivalent consumption. Briefly, a cost
of solicitation of the storage element (SE) is de-
fined by equating SE to a secondary fuel tank. In
this case, any discharge of SE becomes equivalent
to some energy consumption (positive fuel flow), and
any recharging becomes equivalent to some energy re-
fill (negative fuel flow). Therefore the resulting strat-
egy is to minimize the total equivalent consumption
(Paganelli, 2002). The resulting objective is given by:

min(Flowfuel/hydrogen + FlowequivfromSE). (7)
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ECMS uses the rules of the optimal control to solve
the resulting problem: the Hamiltonian function is
applied to find a minimum.

3.3 Optimal Control

This theory is in general used in conjunction with
the Bellman principle and/or the Pontryagin maxi-
mum principle, classified as efficient tools for solving
global optimization problems. Consider O an open
interval of Rn. To solve the optimal control problem
we have to introduce the Hamiltonian of equations
(3)-(5). The Hamiltonian equation is expressed with
equation (8).

H(x(t), u(t), λ(t)) = γ(x(t), u(t))+λT (t)f(x(t), u(t))

(8)

The principle is to search the trajectory of the opti-
mal control u∗(t) associated to the optimal solution
x∗(t). The variation of the trajectory of the com-
mand u remains in the validity domain of the state
of charge, see domains (9). The control u defines the
energy distribution of the SE usually included in the
“validity domain”. But λ(t) is not easy to obtain when
constraints are added.

f : I × V × U −→ Rn, such as
I ∈ R, V ∈ Rn, U ∈ Rn, (t0, x0) ∈ I × V (9)

3.4 Fuzzy logic

Among the tools from the artificial intelligence field,
the most used for energy optimization is the fuzzy
logic. Zadeh (1965) ’s method is essentially based
on the mathematical theory of fuzzy sets. This ap-
proach was explained and used by Caux et al (2010).
It appeared especially in the translation of linguistic
rules to states other than boolean. Thus, it allows a
combination of multiple inputs. Linguistics rules are
defined using the membership functions that will take
values between 0 and 1. Therefore we define classes
of membership; more we get closer to a class given
more the membership is strong (see Figure 4).
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Figure 4: Membership function of the required power.

4 Main weaknesses identified in DP

4.1 Recovery of energy braking

It is obvious that recovering energy from braking for
a later reuse can help minimizing the cost of a mis-
sion. However, contrary to the common assumption,
imposing that all braking energy has to be recovered
may lead to worse solutions, especially if applied in
dynamic programming. Figure 5 illustrates an ex-
ample, on a 15 seconds profile, where Pr is power
requested (or power demand), PSE and PFC are the
power provided by respectively SE and FC.
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Figure 5: Contrary example where all braking energy
should not be recovered.

In the first case, when retrieving braking energy, the
cost of the mission is equal to 56.45 kWs. In the sec-
ond case, no braking energy is recovered and the cost
is reduced to 47 kWs. Unrecovered braking energy
can be simply dissipated as heat. Another counter-
example can be generated by considering a vehicle
descending a downhill path. In this case, the amount
of braking energy is greater than the amount of trac-
tion, therefore there is no feasible solution that allows
to recover all of the braking energy. As a consequence,
the equality constraint P = PFC + PSE . should be
replaced with the inequality P ≤ PFC + PSE . This
means that during braking, the recovery of all or part
of the energy generated is authorized but not manda-
tory.

4.2 Final state of charge of the SE

To facilitate comparisons between different algo-
rithms Hankache (2008) proposed to impose an equal-
ity between the initial (at instant-time t0) and the
final (at instant-time tf ) states of charge of the SE.
However, for some instances, this means that the ve-
hicle had to “burn” excess energy towards the end
of the profile to return the energy level to its initial
state. As a solution, we propose to forbid the driver
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to return the SE at the end with less energy than the
quantity he had at the beginning of the profile, but
to allow the final energy level to be higher than at
start (but with no special reward for the additional
energy). In a DP algorithm, this corresponds to open
the validity domain and to allow the final state of the
storage element to vary in an interval, instead of be-
ing reduced to a single point (see for example Figure
6).
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Figure 6: Excess energy at the end (final charge state
greater than the starting state of charge).

4.3 Penalties due to SE discretization

Figure 7 illustrates an example where, although the
braking energy is greater than the traction energy
which should lead to a cost of zero, DP produces a
solution which uses the FC (and therefore has a cost
strictly positive). Basically, since the power levels
have been discretized, the system tends to respond
too strongly to demands that are not exact multiples
of the discretization step. This flaw has been handled
when designing our new heuristics.
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Figure 7: Penalties during the optimization

To summarize, although dynamic programming pro-
duces good results in the literature, even better than
the fuzzy logic and optimal control, there is an in-
creasing need for a new and more efficient approach

to find better solutions in terms of total cost as well
as computing time.

5 New Heuristic Methods

5.1 Heuristic 1

This heuristic has a simple principle, inspired from
electrical filters: filtering is applied on the required
power to determine when power should be delivered
by the fuel cell. It requires two parameters Bl and
Bu called respectively lower and upper bands:

• Bl, called the lower band, is chosen between 0
and the maximum power FC can provide.

• Bu, called the upper band, must be strictly
higher than Bl and less than the maximum power
the FC can provide.

The principle of this heuristic is illustrated on Figure
8, and summarized with Equations (10) and (11). No-
tice that SE is never charged by FC, and the validity
domain must be open.
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Figure 8: Principle of Heuristic 1.

Prmin < Pr < Prmax. (10)

 if Pr ≤ Bl =⇒ Pr = PSE .
if Bl ≤ Pr ≤ Bu =⇒ Pr = PFC .
if Pr ≥ Bu =⇒ Pr = PSE + PFC .

(11)

Figure 9 shows the selection of bands and the propor-
tionality between the power of the fuel cell and the
power of the powertrain.

This approach has several advantages:
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Figure 9: How to choose the upper and lower bands
depending on the efficiency curve of the Fuel Cell.

• The computation time is very short (less than 10
seconds for a sample of 6000 time steps), which
makes it possible to run several tests and fine-
tune the parameter settings.

• A simple modification of the interval [Bl, Bu]
ensures that the desire final state of energy is
reached.

• The best solution reachable with such a strategy
is attained after a few iterations with visual ver-
ification that the variation of the state of charge
is still in the domain of validity.

This heuristic uses the same principle as the method
called ‘Thermostat’ where the power required is fil-
tered by looking at the energy storage elements and
not at the performance of the fuel cell as in our heuris-
tic.

Recall that, the SE turns on when the power demand
is outside the chosen bands and turns off otherwise,
whereas the FC turns on when the power demand is
between the chosen bands (which usually corresponds
to high FC efficiency coefficients).

5.2 Heuristic 2

In most scientific papers, as in Hankache (2008), the
application of dynamic programming is done after
sampling the time (horizontally) and the state of
charge of the SE (vertically). It has several draw-
backs, as described in Section 4. Heuristic 2, instead
of sampling the variation area of the energy storage
element, applies dynamic programming on the vari-
ation of the power of the fuel cell. It computes the
sum of local minimum of power to avoid losses due
to the powers correction (see penalties illustrated on
Figure 7) .

5.3 Heuristic 3

During the DP from Hankache (2008), the storage
element is required to collect all the braking energy
generated. As explained in Section 4, this may lead
to additional consumption and thus increased cost of
the mission. The goal of Heuristic 3 is to get only
the amount of energy that would not deteriorate the
quality of the final solution. As a consequence, the
following constraint is relaxed for all instant times
i ∈ I:

Basic equation Pr(i) = PFC(i) + PSE(i),ww�
Improved equation Pr(i) = PFC(i) + PSE(i) + ε(i).

(12)

The idea is to get less energy from braking and pro-
vide more than the required energy if it leads to a
better point of efficiency curve (thus a better solu-
tion). The excess electrical energy can be dissipated
as heat (in a resistance inserted in the braking sys-
tem).

5.4 Heuristic 4: Using Quasi-Newton
method

We formulated our problem as a nonlinear problem
with nonlinear constraint as follows:

• Decision variables

>xi = power (instantaneous) generated by
the fuel cell (FC) at time i, xi ≥ 0,
> yi = power (instantaneous) generated (yi ≥
0) or stored (yi ≤ 0) by the (SE) at time i,
>SOCi = State Of Charge at time i.

• Bounds

ximin ≤ xi ≤ ximax,
yimin ≤ yi ≤ yimax.

(13)

• Objective-function: Minimize the total energy
generated by the fuel cell

minF (X) = min
∑n
i=1 f(xi), (14)

~ definition of the function f(xi)

f(xi) = xi

ρ(xi)
, (15)

where ρ is the efficiency function of the fuel cell.
Since the data are obtained experimentally, there
are two ways to represent this function: as a lin-
ear per piece function or as a polynomial function
which is generated by interpolation using the ex-
perimental curve (we use here polyfit of Matlab).
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• Constraints

~ Reach the power demand at each instant time

∀i ∈ [1, ..., n], xi + yi ≥ Pr(i), (16)

(Recall that using xi + yi = Pr(i) would force all
energy generated during braking to be recovered
by the SE, which can be sub-optimal.)

~ Emptying the storage element at the end:∑n
i=1[yi + ρ̃(yi)] = 0. (17)

where ρ̃(yi) is the efficiency function of the SE. With
this condition, the storage element ends with a state
of charge equal to the one it began with. In this
case, it rejects the amount of energy recovered from
braking. If the energy level is not imposed to the SE
at the end of the profile, then the equation becomes:

∑n
i=1[yi + ρ̃(yi)] ≥ 0. (18)

~ Bounds of variation of the state of charge:

The state of charge can vary between 25% and 100%
of the maximum energy of the SE:

25%SOCmax ≤ SOCinitial −
∑i
k=1[yk + ρ̃(yk)]

SOCinitial −
∑i
k=1[yk + ρ̃(yk)] ≤ 100%SOCmax.

(19)

Feasible solutions for our problem can be found by ap-
plying a non linear solver on this formulation. Heuris-
tic 4 combines the nonlinear solver ‘fmincon’ (it per-
forms subgradient optimization taking into account
nonlinear constraints) with random multi-start or
from a specific starting point (given in the form of
a vector). The difficulty is to find a good starting
point that may lead to an optimal solution in a short
computing time. Because of the use of Quasi-Newton
optimization, the starting point is not required to be
a feasible solution.

6 Lower bounding procedure

An upper bound of the consumption can be obtained
by using only the fuel cell to satisfy all positive power
requested. All solutions cost can be compared to this
upper bound, but to have more certainties on the
quality of solutions, it is better to evaluate their gap
with the optimal solution. Since the optimal solution
is yet unknown, a good lower bound is required.

For our problem, such lower bound is computed by
assuming ideal conditions: that the fuel cell effi-
ciency remains at its maximum value. Assuming that

ρ(xi) = α (constant) in Equation (15), the objective
function becomes the linear following function:

f(xi) = xi

α . (20)

The new function is convex and the global optimum
of the resulting problem can be found easily (by a
local search algorithm), which is a lower bound of
the original problem. The proof of convexity of the
objective function is the following:

Let be (λ1, λ2, ..., λn, ) ∈ [0; 1]n where
∑n
i=1 λ

i = 1
and f is defined by Equation (20).

f(
∑n
i=1 λ

ixi) =
∑n

i=1 λ
ixi

α

=
∑n
i=1

λixi

α
=
∑n
i=1 λ

i
(
xi

α

)
=
∑n
i=1 λif(xi).

(21)

=⇒ According to Jensen (1906)’s inequality, applied
to Equation (21), our objective-function is convex.

7 Computational analysis

7.1 Instance, Parameters Settings and Table
headings

The instance solved is the profile provided by IN-
RETS (see figure 2) which represents the path of elec-
tric vehicles in urban environments, obtained after ex-
perimentation. All heuristics have been programmed
with MATLAB 7.9(R2009b) on a desktop computer
Intel Pentium 4 with 3 GB of RAM. Heuristic 4 and
the lower bound use the non-linear solver ‘fmincon’
from the Optimization Toolbox. In both cases, the
efficiency curve can be represented in the form of a
linear interpolation or a polynomial representation.

Table 2 summarizes the results of the DP of Hankache
(2008) and our heuristics with the following headings:

• DP: Dynamic Programming from the literature.

• H1, H2, H3, H4: refer to the heuristics proposed.

• Cost (kWs): solution cost = total hydrogen con-
sumption in (kWs).

• ET : Execution Time = CPU time.

• SH: amount of hydrogen stored in the storage
element in the form of electricity (kWs).

• GLB: Gap to lower-bound

= 100 ∗ Solution Cost − Lower Bound
Lower Bound .
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• HL = Hybridization Level (HL). It is a clas-
sification criterion for hybrid vehicles. It cor-
responds to the percentage of participation
of the storage element in the traction power
train (positive power required) [see among oth-
ers (Bolvashenkov,2006),(Buecherl,2009), (Lu-
kic,2004)].

HL = Total traction power of Electric element
Sum of all traction power sources =

Total traction power of Storage element
Total traction power of (SE ,FC) =

Total traction power of Storage element
Total traction of power required .

DP H 1 H 2 H 3 H4

Cost 10131 8869 8797 9000 8750

ET 22 h 5 s 5 min 20 h 23 min

SH 1115 5 34 335 163

GLB 14.65 % 2.5 % 1.71 % 3.92 % 1.18 %

HL 51.67 % 36.6 % 37 % 39.94 % 38.75 %

Table 2: Result of our heuristics vs literature (DP).

7.2 Results summary

The maximum efficiency of the fuel cell is 0.4668 (as
shown on the efficiency curve on Figure 9) and the
lower bound of the total consumption cost, on the
INRETS profile was computed as explained in Sec-
tion 6. The value obtained is 8647 KWs.

Table 2 shows that our heuristics outperform the pre-
vious DP from the literature, both in computing time
and solution cost. It also shows that our best known
solution is now proven to be less than 2% far from
the optimal solution.

One advantage of using various methods is to ac-
quire a good insight on the management of power
in the powertrain and have an order of magnitude
when comparing the different strategies. Figure 10
shows the comparison between the different methods
used to solve the problem (Time is represented in a
logarithmic scale).

Figure 11 shows the state of charge variation in
the storage element for the solution given by each
method. DP has the longest path thus more energy
loss, but other methods have a less energy exchanged.

7.3 Focus on Heuristic 4: Quasi-Newton
method from starting point

• Version 1: multi-start technique

A starting point is in fact a vector of dimension n
where n is the number of considered instant-times.
In this version of Heuristic 4, 200 random starting
points were generated to try to scan various parts of
the solution space. The subgradient optimization is
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Figure 11: Energy variation in the storage element

launched from each of these starting points. Results
obtained showed that most solution costs converged
to a value around 9600kWs ± 50kWs. However, with
this strategy, it is possible after several attempts to
find an interesting local minimum, in our case the
best solution was equal to 8800kWs. Nonetheless,
using this strategy, the state of charge of the storage
element is under great fluctuations, which, as illus-
trated on Figure 11, tends to be detrimental to the
solution quality.

To avoid that, we modified the random starting point
generation as follows: generate each initial vector by
picking random values between -70kW and 70kW, but
before the introduction of this vector in the solver
‘fmincon’, cancel (reset to 0) all values from it that are
less than a predefined “decision value”. The results of
this strategy are presented on Figure 12.

• Version 2: specific starting point

The idea is to start the optimization from the vec-
tor for which each value corresponds exactly to the
power required (demand profile). The result obtained
is given in Figure 13. After 48 iterations in 23 min-
utes, the cost of consumption obtained is 8750 kWs.
Figure 13 shows that the algorithm takes the start-
ing point equal to the power required, but modifies
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Figure 12: Impact on the solution cost of the cancel-
lation of values from the initial solution

the power a little in order to find another interesting
minimum. A small variation from the starting point
can lead to a large change in the energy profile but
not in cost of consumption. To confirm that, 35 start-
ing points with random variations from the demand
profile have then been tested.

Figure 14(a) shows the surface displacement of the
state of charge for these tests. This figure hints that
it may be possible to do a Taboo search from any
starting point to follow the path towards the end of
the journey. Figure 14(b) shows the variation on the
consumption cost for each variation of the 35 starting
points.

8 Conclusion

Hybrid vehicles offer the possibility to recover the en-
ergy generated during braking and use it to minimize
fuel consumption and subsequently to minimize the
emission of “greenhouse” gas emissions. In this pa-
per, we developed several global optimization heuris-
tics for the distribution of powers between the fuel
cell and the storage element of an hybrid electric ve-
hicle. The objective is to minimize the cost of fuel
consumption whilst satisfying the power demand.

We conclude that the application of the Quasi-
Newton method through the ‘fmincon’ function as-
sociated with a specific starting point seems to give
us the best results, less than 2% far from our newly
computed lower bound. However, if time is an issue
our other heuristics can produce very good solutions
(less than 3 % far from the lower bound and thus from
the optimal solution) in a few seconds.

To summarize, the efficiency of the new approaches
and resulting heuristics is proven, in comparison to
traditional methods such as dynamic programming.
Also, the novelty in this work compared to previous
research is that the results are compared with lower
bounds of consumption and not only to any other
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upper bounds as it usually done in electric energy
management research. For this reason, we can guar-
antee that the cost of our best solution obtained on
the data set provided by INRETS profile is less than
2 % far from the optimal global solution.
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