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ABSTRACT: The architecture design process requires to define several design alternatives and to compare them in 

order to choose the most relevant system architecture given a set of objectives. Nevertheless, designers are generally 

constrained to restrict their studies to a small set of alternatives due to time constraints and combinatorial aspects of the 

problem. The objective of our method is to assist them by automatically generating a larger number of design 

alternatives. The proposed algorithm will first generate alternatives by adding components to the architecture and 

allocate them to functions. The originality of our approach is that it takes into account two rules that ensure the viability 

(component–to-component consistency) and the validity (function-to-component consistency) of the generated 

architectures. Once a set of consistent alternatives are generated, we use them as an input of a multi-objective genetic 

algorithm to propose a set of Pareto-optimal alternatives. 
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1 INTRODUCTION 

For several years, aerospace industrials tried to concen-

trate their efforts around their core business i.e. system 

design, integration, verification and validation. As a con-

sequence, other activities of the development process are 

more and more entrusted to industrial partners in the 

frame of the extended enterprise. It is thus a major stake 

for aerospace industrials to optimize the processes they 

keep in-house.  

Among these processes, the design of product and sys-

tem architectures is of first importance. Indeed, during 

this process, the main characteristics of the product are 

fixed, thus constraining the following stages of the de-

sign process. Consequently, it is during this stage that a 

major part of the product/system quality will be bounded 

(the following design stages trying to optimize the sys-

tem quality within this range). That is the main reason 

why the optimization of the product/system architecture 

must be performed carefully and supported by methods 

and tools. 

The method proposed in this paper supports the system 

architecture design from the definition of the architecture 

problem to the selection of solutions. It takes advantages 

of model-based engineering (MBSE) techniques and of 

modeling and simulation (M&S) means to find high 

quality solutions in the design space.  

The paper is organized as follows. The next section in-

troduces the problematic of system architecture design 

with an insight on the aeronautical field. 

Then, we will give an overview of the proposed ap-

proach and details its activities. Finally, the last section 

presents results and contributions of such a method as 

well as working perspectives opened by this research. 

2 PROBLEM POSITIONNING 

The system architecture design process aims at the syn-

thesis of system architecture that: 

 - fulfils the functions that are allocated to it, 

 - fulfils a number of non-functional requirements 

including performance requirements, 

 - maximizes the perceived quality of the product 

with respect to stakeholders’ viewpoints (custom-

er, users …).  

This is done through a divergent (or creative) phase dur-

ing which a design space is set and explored i.e. potential 

solutions are created, and a convergent (or decisional) 

phase during which solutions are compared to each other 

and selected (see INCOSE 2007; NASA 2007).  

Design theory usually defines three spaces that gather 

concepts on which the design process will work: the de-

sign, the performances and value spaces. The design (or 

decision) space is a combination of the possible values 

of design parameters (components, connection and main 

component parameters in the case of architecting). The 

performance (or objective) space is an N-dimensional 

space composed of performance attributes (e.g. mass, 

cost, availability). The value space is built taking into 

account the performance space and the preferences of 

decision-makers. While the divergent phase works on the 

design space exploration, the convergent phase works on 

performance and on value space assessment. 
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Figure 1 - Different spaces in design theory 

 

2.1 The creative phase 

During the creative phase of the architecture design pro-

cess, different design alternatives must be imagined.  

Generally, two strategies to tackle the creative process 

can be distinguished: derivative design and innovative 

design. 

2.1.1 Derivative design 

Derivative design is based on the reuse of existing sys-

tems architectures (old products, competitors…). Adap-

tations of the architecture are often necessary due to new 

functions, new performance requirements or change of 

value perception (e.g. growing importance on environ-

mental aspects on decisions). These adaptations are done 

by technology changes and by “light” rework of the ar-

chitecture (e.g. addition or removal of a component). The 

main interest of such an approach is that it maximizes 

the reuse of architecture concepts and consequently de-

creases the development costs, delays and risks. On the 

other hand, the possibilities of innovation and of strong 

product/system improvements are limited as the process 

only explores a small part of the whole design space. 

2.1.2 Innovative design 

Innovative design is a completely opposite strategy. It 

focuses on the identification of  a large design space and 

on its   exploration. Contrarily to derivative design, it 

makes abstraction of previously designed systems and 

offers great opportunities of radical innovations that can 

lead to disruptive  improvements of the product. 

In the field of optimization, whatever the evaluation and 

decision methods are, derivative design can be viewed as 

a local optimization process for which previous architec-

tures are used as starting points whereas innovative de-

sign is based on a global optimization process working 

on the whole design space.. Although local optimization 

is a more straightforward and faster process, global op-

timization processes generally find better optimum, no-

tably in discrete problems, as they do not stick to local 

optima. For this reason, this approach will be used in our 

method. 

Several methods were developed to enable innovative 

design dealing with system architectures.  Many of them 

rely on the tuning of the component parameters of an 

architecture (De Tenorio et al. 2008) or on the substitu-

tion of components by others working on a given archi-

tecture (Gubitosa et al. 2009; Scaravetti 2004). It finds 

the best combination of components for a given structure 

of the system, but doesn’t find the best architecture for 

the system under consideration. 

Some recent methods, known as formal design synthesis 

methods, overcome this limitation by considering the 

structure of the system architecture as an optimization 

criterion. They generally rely on design rules that define 

the compatibility between objects (components or func-

tions). Most of them only consider components and 

search structures of components that respect some rules 

(Seo et al. 2003; Bolognini et al. 2007; Alber & Rudolph 

2004). Some of these methods also consider functions to 

generate a product physical architecture (Kurtoglu & M. 

I. Campbell 2009) using explicit functions-to-

components rules.  

Techniques based on matrixes (Bryant et al. 2005; Holey 

2010; Condat 2011) are also able generate design alter-

natives for system architectures. In these approaches, the 

problem and its solutions are described using matrixes 

(function-to-component, function-to-function, compo-

nent-to-component…) that permit to represent one-to-

one relations between the objects of the problem.  An 

algorithm then combines  the matrices information to 

compute feasible  solutions (generally by use of con-

straint programming) and to build new matrixes repre-

senting the arrangement of components and functional 

allocations. 

 

2.2 The decisional phase 

During the decision phase, design alternatives that were 

synthesized during the creative phase have to be evaluat-

ed. This evaluation is performed by comparing  the set of 

criteria of each alternative and selecting the  

best/preferred ones..  

Evaluations of alternatives make the link between the 

design space and the performance space  and can be 

done by two different means (not mutually exclusive).  

 The first mean is to acquire the performances of 

a given design alternative and  to ask to experts 

to assess it on a given criteria.  

 The second mean is to numerically compute 

performance indicators or data. For this, recent 

M&S (Modeling and Simulation) means are 

useful as they enable the computation of per-

formances for complex systems. From the in-

formation contained in a model and using the 

associated semantic, simulation tools are able to 

compute attributes and/or to simulate the behav-

ior of the system. 

Once the performances have been computed, decisions 

can be made to select the preferred design alternative(s). 

As it is very seldom that an alternative dominates all 

others on all criteria, it is necessary to make trade-offs 

between the different considered criteria. These trade-

offs require to make a link between the performance 

space and the decision space via preferences of the 

stakeholder. 

A simple way to support the decision process is to use 

the Pareto optimality definition (Pareto 1896) to high-

light most interesting alternatives based on the declared 

criteria. Nevertheless, this approach is often unable to 

filter sufficiently the solutions and enable the designer to 

analyze all of them. Other methods can be used to sup-

port the decision. They are known as Multi-Criteria De-

cision Analysis (MCDA) methods  and have been devel-

Design 
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space 
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 space 
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oped in the field of Operational Research (see Figueira et 

al. 2005 for a review). These methods support the deci-

sion process by analyzing the performances of the alter-

natives taking into account the decision-maker prefer-

ences Introducing preferences in the decision generates 

solutions that are closer to the designers’ expectations. 

 

2.3 Optimization 

Optimization processes is a coupling of both creative and 

decisional phases. The optimization process is able to 

discover the optimal solution(s) of the problem given a 

search space, constraints and objectives without testing 

every possible solution. 

Evolutionary algorithms (genetic algorithms, genetic 

programming, Particle Swarm Optimization, …) are 

proved to be robust and reliable ways to find optimum 

solution(s) for continuous, discrete and hybrid problems. 

These techniques are based on the same principle: gener-

ating a population of solution(s), assessing them and 

generate a new population based on the best elements of 

the previous population. By repeating this process until 

convergence, the population individuals progressively 

move to optimal zones of the design space. These ap-

proaches are heuristics i.e. the optimality of the found 

solutions cannot be proved mathematically. 

As a majority of industrial problems do not consider 

only one objective, a multi-objective optimization 

(MOO) process has to be used. This kind of process 

takes into account several objectives in the definition of 

best architectures. For instance, the NSGA-II algorithm 

(Deb et al. 2000) uses the Pareto dominance definition to 

select alternatives based on several optimization objec-

tives.  

The method described in the next section supports both 

divergent and convergent phases of the architecture de-

sign process.   

3 PROPOSED APPROACH 

The proposed method aims at exploring the design space 

in order to find the most interesting solutions of the de-

sign problem. For this, we developed an algorithm that 

synthesizes system architectures based on a functional 

architecture, system interfaces, a library of components 

and a set of design rules. This algorithm is able to create 

several design alternatives thanks to this knowledge and 

random mechanisms.  

Using this algorithm to generate the whole set of design 

alternatives would be very costly as the combinatory of 

the problem is huge. To overcome this problem, an evo-

lutionary algorithm is used to iteratively modify the ini-

tially synthesized solutions and explore the design space. 

The exploration process is guided by the performances 

of the alternatives and, thus, limited to the most interest-

ing zones of the design space.  

The process (Figure 2) is composed of the following 

activities that will be detailed in the following para-

graphs: 

- Initialization:  initial design alternatives are generat-

ed based on the description of the problem 

- Assessment: the performances of the architectures 

along each criterion are computed 

- Selection: the best architectures are selected based 

on their performances. 

- Evolution: evolution mechanisms are applied to best 

architectures to create a new population 

- Result analysis: at the end of the process, results are 

analyzed by designers to make a decision. 

 

 

  

 

 

 
Figure 2 – Process overview 
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3.1 Problem modeling 

First, some characteristics of the problem must be mod-

eled to permit the execution of the process. 

The method is based on a custom meta-model which 

contains the concepts needed for the representation of 

architecture aspects (components, connections…) as well 

as decision aspects (criteria, objectives…). This meta- 

model will be used to build the problem model. 

3.1.1 System boundaries modeling 

 

System boundaries must be modeled to define the system 

properties with its environment. The system is modeled 

as a  block with ports. System boundaries ports have 

flows (e.g. altitude data, electrical power for a given sys-

tem…), a direction (input, output or bidirectional) and a 

multiplicity to indicate the number of simultaneous con-

nections that can be made with the port. 

3.1.2 Function modeling 

 

The functions of the system must be modeled to permit 

the synthesis of valid architectures. They are modeled as 

classes with input and output flows. Flows are typed 

(e.g. “altitude data” is of type “raw data”). Function can 

have required capabilities (e.g. “computing capabili-

ties”). These capabilities are used to determine the va-

lidity of component chains to fulfill the function i.e. a 

chain of function can realize a function if it provides the 

required capabilities. Function classes can also be en-

riched by any attribute that would be necessary for veri-

fication of constraints or performance evaluations (e.g. a 

function safety level). 

 

 
Figure 3 – Illustration of a function 

3.1.3 Component modeling 

 

Components that can be used by the algorithm to synthe-

size architectures are modeled as classes with ports and 

are grouped into a component library. Ports have a flow 

type and a direction. Components can have provided 

capabilities that are used to check validity of component 

chains. Component models can be enriched by any at-

tribute (e.g. component mass) and can be linked to any 

model (e.g. a behavioral model) that will that would be 

necessary for analysis.  

A component cannot be put directly in an architecture. 

Instead, an instance of it must be created. The compo-

nent instance inherits from the component properties 

(ports, capabilities and attributes). Also, when a compo-

nent instance is added to an architecture, instances of its 

induced functions are added to the system functions. The 

maximum number of component instances in an archi-

tecture can be limited by the user.  

 

 
Figure 4 – Illustration of a component, its induced func-

tion and an instance of it 

 

3.1.4 Decision modeling   

 

The quality of alternatives must be defined. The user can 

define criteria, e.g. “mass”, that will be linked to an 

evaluation module (see 3.3). These criteria are then 

linked to objectives and/or constraints. Objectives are 

declared with a criteria and an optimization direction e.g. 

“minimize mass”. Constraints are declared using a crite-

rion, a comparator, a performance threshold and a criti-

cality (see 3.4.3) e.g. “mass must be less than 60kg with 

criticality 2”. 

 

 
 

Figure 5 – Examples of criteria, performance, constraint 

and objective 

 

3.2 Population initialization 

The process starts with the definition of an initial popu-

lation constituted by a predefined number of different 

architectures (individuals). Architectures can be explicit-

ly defined by the system designers but an algorithm can 

also create valid architectures based on the model previ-

ously defined. This algorithm relies on the functional 

architecture, on the component library, on the system 

interfaces and on design rules.  

The viability rule defines in which condition two ports 

can be linked by a connection. The default rule checks 

that the two ports have inverse directions (in/out), com-

patible types and do not exceed their multiplicity (the 

maximum number of connections that can be made 

to/from it). The rule can be extended by adding a condi-

tion on an attribute of the ports. For instance, the user 

COMPONENT 
Name : A 

Basetype : - 
Offered capability : C 

Attributes : 
MTTF=30000 h 

  

FUNCTION 
Name : IF 

Requested capability : - 
Attributes : - 

Induced 
function 

PORT 
Name : Pout 
Type : T 
Multiplicity : 1 
Attributes : 
PortType = male 

 

COMPONENT 
INSTANCE 
Name : A_1 

Basetype : A 

  

FUNCTION 
Name : F1 

Requested capability : C 
Attributes : 

MaxAdmissibleMTTF = 1e9/h 

in1 

in2 

out 
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can define a “port type” attribute (male/female) and state 

that the two ports must also have different port types. 

The validity rule defines in which condition a chain of 

components is able to realize a function. The default rule 

checks that the capabilities required by the function are 

contained in the set of capabilities offered by the compo-

nents of the chain. Also, this rule checks that the chain 

can be connected to the sources, if any, and sinks of the 

function (see Step 2.1). As for the viability rule, the va-

lidity rule can be extended based on the functions and 

components attributes. 

Using these two rules, the synthesis algorithm is able to 

generate viable and valid architectures in accordance 

with the following process: 

 

Step 1. The algorithm treats each function sequentially 

in a backtracking manner. For this, the algorithm first 

orders system functions so that a function supplying an-

other one is placed after it.  

 

Step 2. The algorithm builds a chain for each function 

Step 2.1. The algorithm looks for sinks and sources 

for the output and input flows of the function. A sink 

(resp. source) is a system port containing a function 

output (resp. input) flow or being of same type, or a 

component containing a function output (resp. input) 

flow. The chain of components allocated to this func-

tion will have to connect to these sinks and sources. 

Step 2.2. The algorithm searches chains of compo-

nents that respect the viability and validity rules. For 

this, the algorithm performs an in-width search of 

component chains that respect these rules. The com-

ponents considered in the chains can be existing 

component instances or library components that will 

be instantiated in the architecture. The depth of the 

search (in other words the length of the chains) is 

limited to the N+Δ depth level where N is the mini-

mal size of possible chains and Δ is a parameter of 

the algorithm. 

Step 2.3. If several chains of components are viable 

and valid, the algorithm selects randomly one of 

them.  All choices are equiprobable.  

Step 2.4. The selected chain of components is im-

plemented in the architecture. If the chain contains 

library components, instances of them are added to 

the architecture and their induced functions are added 

to the system functions. The treated function is allo-

cated to the component instances. The function input 

and output flows are added to the port’s flows and/or 

to the component variables. This information will be 

used for the detection of sinks and sources for the 

next treated function. 

 

At the end of this process, all functions are allocated to 

component instances; ports are linked by connections 

and contain flows. The architecture model can be used to 

assess the performances of the architecture. 

 
 

Figure 6 – Example of function allocation to component 

instances 

 

3.3 Analysis  

The performances of the current population individuals 

must be evaluated to permit their comparison and their 

selection. For every attribute, an evaluation mean (per-

formance evaluator) must be set up. The models created 

at the beginning of the process and their associated data 

can be used to compute performances. The method does 

not provide guidelines for setting up these evaluation 

means as they are specific to the attributes being in-

volved in the tackled design problem.  

 

3.4 Selection of preferred alternatives 

Based on the evaluation of alternatives performances, the 

“best” alternatives have to be selected in order to gener-

ate a new population. For this, two approaches can be 

used. 

 

Pareto selection process. The first one is a Pareto ap-

proach where alternatives are compared thanks to the 

Pareto dominance rule i.e. an alternative dominates (is 

better than) another if it is at least as good on all objec-

tives and better on one. This approach permits to obtain 

the Pareto front of the problem which is very useful in 

understanding the problem stakes and notably the 

tradeoffs between objectives. 

The algorithm used for this approach is NSGA-II (Deb et 

al. 2000).  

 

Preference-based selection process. The second ap-

proach is a preference-based approach where preferences 

of the decision-makers are taken into account during the 

selection process. For this, the NEMO algorithm (Branke 

et al. 2009) is used. 

Every N iterations, two alternatives are presented to the 

decision-makers that, based on their performances, must 

define which alternative is preferred to the other. Indif-

ference between the two alternatives can also be stated. 

Based on this information, the algorithm will compute 

preference information under the form of Value func-

tions and rank the alternatives with respect to their Val-

ue. This approach permits to concentrate the search of 

solutions on the preferred zones of the performance 

space. 

 

 

Function 1 
Flow B : Type b 

C1_1 C2_2 

Flow A : Type a 

Capability C 

Capability C 

Type b 
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Constraints. Constraints are taken into account by mod-

ifying slightly the dominance relation of both Pareto and 

preference-based selection process as defined in (K. Deb 

2005) i.e. a solution A is said to ''constraint-dominate'' 

solutions B, if any of the following conditions are true:  

1. Solution A is feasible and solution B is not. 

2. Solutions A and B are both infeasible, but solution A 

has a smaller constraint violation. 

3. Solutions A and B are feasible and solution A domi-

nates solution B (in the Pareto sense or in the preference-

based sense) 

 

3.5 Evolution 

At this stage, we explore new regions of the design space 

based on the previous region explorations identified as 

potentially interesting. For this, genetic operations are 

applied to the selected alternatives (architectures) to 

build new ones. We used the 3 genetic operators defined 

by Holland (Holland 1975): reproduction, mutation and  

cross-over. Nevertheless, as we do not represent the ar-

chitecture as a chromosome, these operators are special-

ized to be able to operate on the architecture model. 

  

In our approach, it is important that our genetic opera-

tions always ensure the validity of the created solutions 

as they take into account the types of involved function 

ports and component ports. To do that they use the same 

generative techniques as during the initialization process 

(viability and validity). 

The mutation operator can take different forms. It can 

replace a component chain by an equivalent one or 

add/remove redundant component chains. 

Cross-over operations are realized by exchanging the 

chains of the two alternatives every two functional chain. 

The selected and replaced component chains have a 

compatible structure that respects the given design rules.  

 

All these operations are performed randomly on alterna-

tives, functions and component chains.  

At the end of this stage, a set of new alternatives and 

their associated system models are created and added to 

the new population.  

 

This evaluation-selection-evolution process is iterated 

until a stop criterion is reached. It can be a predefined 

number of generations, a minimum Value (satisfying 

threshold) that must be reached by an alternative or a 

convergence criterion. 

 

3.6 Results visualization and analysis 

The usage of the preference-based selection algorithm 

enables to gather preference information during the reso-

lution process and to focus on interesting and valuable 

alternatives for the decision-maker.  

But even with this process, once the optimization phase 

is ended, the comparison of the optimal architectures is 

still a challenge, since the number of alternatives select-

ed at this stage is still too important for a manual analy-

sis. For this reason, it may be necessary to filter the final 

solutions thanks to the application of a preference-based 

selection process (MCDA method, visual method…). 

4 APPLICATION 

A tool called SAMOA (System Architecture Model-

based OptimizAtion) was developed to implement the 

method from model creation/import to visualization of 

results. Using this tool, the method was tested on a sim-

plified industrial use-case demonstrator developed to 

implement the method: the design of an aircraft cockpit. 

The problem is constituted of 8 functions, 10 instantiable 

components (screens, computers, cables, networks…) 

and of a system with 13 ports (systems’ interface, pilots’ 

interfaces, electrical interfaces).  

5 criteria are considered: 

- Mass of the architecture 

- Number of components in the architecture 

- Part number i.e. number of types of components 

present in the architecture 

- Electrical consumption 

- Mean availability time of output functions 

(functions which does not produce a flow used by 

other functions) 

All these criteria are associated to objectives to be mini-

mized (except for availability which must be maxim-

ized). No constraints are considered. 

The initialization stage permits to find solutions to the 

problem with various performances (Table 1). 
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Min 41,4 8 17 450 33322,6 

Max 65,4 11 31 678 39023,1 

Mean 51,7 10,1 22,7 559,4 35688,2 

Table 1 – Performances of synthesized architectures 

 

Using the Pareto approach, the algorithm is able to find a 

set of Pareto-optimal solutions (Table 2).  
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(-12%) 

7  
(-12%) 

15 
(-12%) 

388 
(-14%) 

34759,1 
(+4.3%) 

Max 58,7 
(-10%) 

11 

(0%) 

28 
(-9.7%) 

621 

(-8.4%) 

41956,2 

(+7.5%) 

Mean 46,8 
(-9%) 

9,3 
(-8%) 

20,5 
(-9.7%) 

489,1 
(-13%) 

38291,3 
(+7.3%) 

Table 2 – Performances of optimized architectures and 

comparison to initial architectures performances 

 

Thanks to visualization techniques integrated to the tool, 

it is possible to visualize: 



MOSIM’12 - June 06-08, 2012 - Bordeaux - France 

 

- algorithm progress to monitor the algorithm conver-

gence (plot of min-max performances over populations). 

- solutions as a whole to better understand the problem 

i.e. correlation between objectives, maximal attainable 

performances. For this, a scatter-plot matrix permits to 

see the relationships between performances of each pair 

of criteria. In Figure 7, one can clearly see the correla-

tion between Mass and Electrical consumption. 

- individual solutions to analyze best architectures char-

acteristics (physical and functional aspects). For this, 

architectures are represented as graphs of components or 

as matrices. 

 

 
Figure 7 – Scatter-plot matrix view of the final popula-

tion in ggobi software (Ggobi 2011) 

 

5 CONCLUSION AND PERSPECTIVES 

The main interest of the approach is that it gets rid of the 

system architectures designed previously for similar sys-

tems, thus enabling innovative design. Instead, this 

method enhances the system architecture design process 

by enabling the evaluation of numerous design alterna-

tives and the selection of the most promising ones. By 

exploring largely the design space, the chances to get the 

global optimum architecture (with respect to given de-

signer’s preferences) is increased. The method also sup-

ports the designer in understanding the problem (correla-

tions and tradeoffs) or in eliciting its preferences with 

respect to the different viewpoints of the system perfor-

mances.  

The application of the method is particularly suitable for 

architecture design problems with large combinatorial 

design spaces as it is able to handle this complexity with 

limited and simple inputs from the user. In these prob-

lems, the number of combinations of components is huge 

and designers generally censure their creativity to limit 

this complexity and be able to handle it. Using this 

method and the associated tool, the designers will be 

able to formalize the design problem to find the best po-

tential solutions to it, leaving computers treating the 

complexity of the problem. It shall also allow the intro-

duction of new technologies in architecture design stud-

ies to check whether their use in the new system is perti-

nent or not. The introduction of new technologies can 

improve significantly the performances of systems but 

often require changing the architecture of the system. 

The method permits to see quantitatively the improve-

ment of the system performances using the new technol-

ogy and thus to deduce if it is worth introducing it and, if 

so, in which architecture. 

One important thing to note about the method is that its 

purpose is not to make architecting activities by comput-

ers but to allow the architects to have tendencies on the 

interesting regions of the design space. These tendencies 

will then serve as a base for further studies of the inter-

esting architectures and for negotiations with other de-

sign teams or with industrial partners.  

 

 

Some potential extensions of the method can be high-

lighted.  

First, for problems with many constraints on the struc-

ture of the system (e.g. a function must be allocated to at 

least two computers), this approach is not efficient. In-

deed, as constraints are only considered at analysis and 

selection phases, a lot of generated solutions will be 

structurally not acceptable. In order to overcome this 

problem, structural constraints (i.e. constraints which do 

not require component data to be checked) could be tak-

en into account during the initialization and evolution 

phases. 

Secondly, in order to maximize the reuse of models by 

the designers, interfaces with standard modeling lan-

guages (SysML (OMG 2010), AADL (SAE 2009), …) 

should be designed. This will permit to model the prob-

lem (or at least part of it) reusing existing models (e.g. 

functional architecture model) and to gather final results 

(architectures) without having to build again architecture 

models. 

Finally, the possibility to group similar architectures in 

clusters will be studied. Indeed, in upstream design 

phases, designers are often looking for design patterns or 

architecture concepts instead of a particular architecture. 

Additionally, selected architectures should be robust i.e. 

a slight modification of the architecture should not de-

crease significantly the system performances. Thus, by 

selecting robust design patterns, this risk can be elimi-

nated. 

Currently, the added-value of the method to the current 

design process has not been assessed as it needs to be 

applied to the real case. Nevertheless, the system design-

ers we collaborate with already see it as an efficient 

mean to detect interesting solutions in the preliminary 

stages of the design. 
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