
A formal design synthesis and optimization method for

systems architectures

Nicolas Albarello, Jean-Baptiste Welcomme, Claude Reyterou

To cite this version:

Nicolas Albarello, Jean-Baptiste Welcomme, Claude Reyterou. A formal design synthesis and
optimization method for systems architectures. 9th International Conference on Modeling,
Optimization & SIMulation, Jun 2012, Bordeaux, France. 2012. <hal-00728577>

HAL Id: hal-00728577

https://hal.archives-ouvertes.fr/hal-00728577

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50538782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00728577

9
th

 International Conference of Modeling, Optimization and Simulation - MOSIM’12

 June 06-08, 2012 – Bordeaux - France

“Performance, interoperability and safety for sustainable development”

A FORMAL DESIGN SYNTHESIS AND OPTIMIZATION

METHOD FOR SYSTEMS ARCHITECTURES

Albarello N., Welcomme J.B., Reyterou C.

EADS Innovation Works

EADS France - Campus Engineering - BP 90112 - 31703 BLAGNAC cedex - France

nicolas.albarello@eads.net, jean-baptiste.welcomme@eads.net, claude.reyterou@eads.net

ABSTRACT: The architecture design process requires to define several design alternatives and to compare them in

order to choose the most relevant system architecture given a set of objectives. Nevertheless, designers are generally

constrained to restrict their studies to a small set of alternatives due to time constraints and combinatorial aspects of the

problem. The objective of our method is to assist them by automatically generating a larger number of design

alternatives. The proposed algorithm will first generate alternatives by adding components to the architecture and

allocate them to functions. The originality of our approach is that it takes into account two rules that ensure the viability

(component–to-component consistency) and the validity (function-to-component consistency) of the generated

architectures. Once a set of consistent alternatives are generated, we use them as an input of a multi-objective genetic

algorithm to propose a set of Pareto-optimal alternatives.

KEYWORDS: system architecture design, architecture optimization, evolutionary algorithm, decision-aiding

1 INTRODUCTION

For several years, aerospace industrials tried to concen-

trate their efforts around their core business i.e. system

design, integration, verification and validation. As a con-

sequence, other activities of the development process are

more and more entrusted to industrial partners in the

frame of the extended enterprise. It is thus a major stake

for aerospace industrials to optimize the processes they

keep in-house.

Among these processes, the design of product and sys-

tem architectures is of first importance. Indeed, during

this process, the main characteristics of the product are

fixed, thus constraining the following stages of the de-

sign process. Consequently, it is during this stage that a

major part of the product/system quality will be bounded

(the following design stages trying to optimize the sys-

tem quality within this range). That is the main reason

why the optimization of the product/system architecture

must be performed carefully and supported by methods

and tools.

The method proposed in this paper supports the system

architecture design from the definition of the architecture

problem to the selection of solutions. It takes advantages

of model-based engineering (MBSE) techniques and of

modeling and simulation (M&S) means to find high

quality solutions in the design space.

The paper is organized as follows. The next section in-

troduces the problematic of system architecture design

with an insight on the aeronautical field.

Then, we will give an overview of the proposed ap-

proach and details its activities. Finally, the last section

presents results and contributions of such a method as

well as working perspectives opened by this research.

2 PROBLEM POSITIONNING

The system architecture design process aims at the syn-

thesis of system architecture that:

 - fulfils the functions that are allocated to it,

 - fulfils a number of non-functional requirements

including performance requirements,

 - maximizes the perceived quality of the product

with respect to stakeholders’ viewpoints (custom-

er, users …).

This is done through a divergent (or creative) phase dur-

ing which a design space is set and explored i.e. potential

solutions are created, and a convergent (or decisional)

phase during which solutions are compared to each other

and selected (see INCOSE 2007; NASA 2007).

Design theory usually defines three spaces that gather

concepts on which the design process will work: the de-

sign, the performances and value spaces. The design (or

decision) space is a combination of the possible values

of design parameters (components, connection and main

component parameters in the case of architecting). The

performance (or objective) space is an N-dimensional

space composed of performance attributes (e.g. mass,

cost, availability). The value space is built taking into

account the performance space and the preferences of

decision-makers. While the divergent phase works on the

design space exploration, the convergent phase works on

performance and on value space assessment.

mailto:nicolas.albarello@eads.net
mailto:jean-baptiste.welcomme@eads.net
mailto:claude.reyterou@eads.net

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Figure 1 - Different spaces in design theory

2.1 The creative phase

During the creative phase of the architecture design pro-

cess, different design alternatives must be imagined.

Generally, two strategies to tackle the creative process

can be distinguished: derivative design and innovative

design.

2.1.1 Derivative design

Derivative design is based on the reuse of existing sys-

tems architectures (old products, competitors…). Adap-

tations of the architecture are often necessary due to new

functions, new performance requirements or change of

value perception (e.g. growing importance on environ-

mental aspects on decisions). These adaptations are done

by technology changes and by “light” rework of the ar-

chitecture (e.g. addition or removal of a component). The

main interest of such an approach is that it maximizes

the reuse of architecture concepts and consequently de-

creases the development costs, delays and risks. On the

other hand, the possibilities of innovation and of strong

product/system improvements are limited as the process

only explores a small part of the whole design space.

2.1.2 Innovative design

Innovative design is a completely opposite strategy. It

focuses on the identification of a large design space and

on its exploration. Contrarily to derivative design, it

makes abstraction of previously designed systems and

offers great opportunities of radical innovations that can

lead to disruptive improvements of the product.

In the field of optimization, whatever the evaluation and

decision methods are, derivative design can be viewed as

a local optimization process for which previous architec-

tures are used as starting points whereas innovative de-

sign is based on a global optimization process working

on the whole design space.. Although local optimization

is a more straightforward and faster process, global op-

timization processes generally find better optimum, no-

tably in discrete problems, as they do not stick to local

optima. For this reason, this approach will be used in our

method.

Several methods were developed to enable innovative

design dealing with system architectures. Many of them

rely on the tuning of the component parameters of an

architecture (De Tenorio et al. 2008) or on the substitu-

tion of components by others working on a given archi-

tecture (Gubitosa et al. 2009; Scaravetti 2004). It finds

the best combination of components for a given structure

of the system, but doesn’t find the best architecture for

the system under consideration.

Some recent methods, known as formal design synthesis

methods, overcome this limitation by considering the

structure of the system architecture as an optimization

criterion. They generally rely on design rules that define

the compatibility between objects (components or func-

tions). Most of them only consider components and

search structures of components that respect some rules

(Seo et al. 2003; Bolognini et al. 2007; Alber & Rudolph

2004). Some of these methods also consider functions to

generate a product physical architecture (Kurtoglu & M.

I. Campbell 2009) using explicit functions-to-

components rules.

Techniques based on matrixes (Bryant et al. 2005; Holey

2010; Condat 2011) are also able generate design alter-

natives for system architectures. In these approaches, the

problem and its solutions are described using matrixes

(function-to-component, function-to-function, compo-

nent-to-component…) that permit to represent one-to-

one relations between the objects of the problem. An

algorithm then combines the matrices information to

compute feasible solutions (generally by use of con-

straint programming) and to build new matrixes repre-

senting the arrangement of components and functional

allocations.

2.2 The decisional phase

During the decision phase, design alternatives that were

synthesized during the creative phase have to be evaluat-

ed. This evaluation is performed by comparing the set of

criteria of each alternative and selecting the

best/preferred ones..

Evaluations of alternatives make the link between the

design space and the performance space and can be

done by two different means (not mutually exclusive).

 The first mean is to acquire the performances of

a given design alternative and to ask to experts

to assess it on a given criteria.

 The second mean is to numerically compute

performance indicators or data. For this, recent

M&S (Modeling and Simulation) means are

useful as they enable the computation of per-

formances for complex systems. From the in-

formation contained in a model and using the

associated semantic, simulation tools are able to

compute attributes and/or to simulate the behav-

ior of the system.

Once the performances have been computed, decisions

can be made to select the preferred design alternative(s).

As it is very seldom that an alternative dominates all

others on all criteria, it is necessary to make trade-offs

between the different considered criteria. These trade-

offs require to make a link between the performance

space and the decision space via preferences of the

stakeholder.

A simple way to support the decision process is to use

the Pareto optimality definition (Pareto 1896) to high-

light most interesting alternatives based on the declared

criteria. Nevertheless, this approach is often unable to

filter sufficiently the solutions and enable the designer to

analyze all of them. Other methods can be used to sup-

port the decision. They are known as Multi-Criteria De-

cision Analysis (MCDA) methods and have been devel-

Design

space

Performance

space

Value

 space

Evaluations Preferences

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

oped in the field of Operational Research (see Figueira et

al. 2005 for a review). These methods support the deci-

sion process by analyzing the performances of the alter-

natives taking into account the decision-maker prefer-

ences Introducing preferences in the decision generates

solutions that are closer to the designers’ expectations.

2.3 Optimization

Optimization processes is a coupling of both creative and

decisional phases. The optimization process is able to

discover the optimal solution(s) of the problem given a

search space, constraints and objectives without testing

every possible solution.

Evolutionary algorithms (genetic algorithms, genetic

programming, Particle Swarm Optimization, …) are

proved to be robust and reliable ways to find optimum

solution(s) for continuous, discrete and hybrid problems.

These techniques are based on the same principle: gener-

ating a population of solution(s), assessing them and

generate a new population based on the best elements of

the previous population. By repeating this process until

convergence, the population individuals progressively

move to optimal zones of the design space. These ap-

proaches are heuristics i.e. the optimality of the found

solutions cannot be proved mathematically.

As a majority of industrial problems do not consider

only one objective, a multi-objective optimization

(MOO) process has to be used. This kind of process

takes into account several objectives in the definition of

best architectures. For instance, the NSGA-II algorithm

(Deb et al. 2000) uses the Pareto dominance definition to

select alternatives based on several optimization objec-

tives.

The method described in the next section supports both

divergent and convergent phases of the architecture de-

sign process.

3 PROPOSED APPROACH

The proposed method aims at exploring the design space

in order to find the most interesting solutions of the de-

sign problem. For this, we developed an algorithm that

synthesizes system architectures based on a functional

architecture, system interfaces, a library of components

and a set of design rules. This algorithm is able to create

several design alternatives thanks to this knowledge and

random mechanisms.

Using this algorithm to generate the whole set of design

alternatives would be very costly as the combinatory of

the problem is huge. To overcome this problem, an evo-

lutionary algorithm is used to iteratively modify the ini-

tially synthesized solutions and explore the design space.

The exploration process is guided by the performances

of the alternatives and, thus, limited to the most interest-

ing zones of the design space.

The process (Figure 2) is composed of the following

activities that will be detailed in the following para-

graphs:

- Initialization: initial design alternatives are generat-

ed based on the description of the problem

- Assessment: the performances of the architectures

along each criterion are computed

- Selection: the best architectures are selected based

on their performances.

- Evolution: evolution mechanisms are applied to best

architectures to create a new population

- Result analysis: at the end of the process, results are

analyzed by designers to make a decision.

Figure 2 – Process overview

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

3.1 Problem modeling

First, some characteristics of the problem must be mod-

eled to permit the execution of the process.

The method is based on a custom meta-model which

contains the concepts needed for the representation of

architecture aspects (components, connections…) as well

as decision aspects (criteria, objectives…). This meta-

model will be used to build the problem model.

3.1.1 System boundaries modeling

System boundaries must be modeled to define the system

properties with its environment. The system is modeled

as a block with ports. System boundaries ports have

flows (e.g. altitude data, electrical power for a given sys-

tem…), a direction (input, output or bidirectional) and a

multiplicity to indicate the number of simultaneous con-

nections that can be made with the port.

3.1.2 Function modeling

The functions of the system must be modeled to permit

the synthesis of valid architectures. They are modeled as

classes with input and output flows. Flows are typed

(e.g. “altitude data” is of type “raw data”). Function can

have required capabilities (e.g. “computing capabili-

ties”). These capabilities are used to determine the va-

lidity of component chains to fulfill the function i.e. a

chain of function can realize a function if it provides the

required capabilities. Function classes can also be en-

riched by any attribute that would be necessary for veri-

fication of constraints or performance evaluations (e.g. a

function safety level).

Figure 3 – Illustration of a function

3.1.3 Component modeling

Components that can be used by the algorithm to synthe-

size architectures are modeled as classes with ports and

are grouped into a component library. Ports have a flow

type and a direction. Components can have provided

capabilities that are used to check validity of component

chains. Component models can be enriched by any at-

tribute (e.g. component mass) and can be linked to any

model (e.g. a behavioral model) that will that would be

necessary for analysis.

A component cannot be put directly in an architecture.

Instead, an instance of it must be created. The compo-

nent instance inherits from the component properties

(ports, capabilities and attributes). Also, when a compo-

nent instance is added to an architecture, instances of its

induced functions are added to the system functions. The

maximum number of component instances in an archi-

tecture can be limited by the user.

Figure 4 – Illustration of a component, its induced func-

tion and an instance of it

3.1.4 Decision modeling

The quality of alternatives must be defined. The user can

define criteria, e.g. “mass”, that will be linked to an

evaluation module (see 3.3). These criteria are then

linked to objectives and/or constraints. Objectives are

declared with a criteria and an optimization direction e.g.

“minimize mass”. Constraints are declared using a crite-

rion, a comparator, a performance threshold and a criti-

cality (see 3.4.3) e.g. “mass must be less than 60kg with

criticality 2”.

Figure 5 – Examples of criteria, performance, constraint

and objective

3.2 Population initialization

The process starts with the definition of an initial popu-

lation constituted by a predefined number of different

architectures (individuals). Architectures can be explicit-

ly defined by the system designers but an algorithm can

also create valid architectures based on the model previ-

ously defined. This algorithm relies on the functional

architecture, on the component library, on the system

interfaces and on design rules.

The viability rule defines in which condition two ports

can be linked by a connection. The default rule checks

that the two ports have inverse directions (in/out), com-

patible types and do not exceed their multiplicity (the

maximum number of connections that can be made

to/from it). The rule can be extended by adding a condi-

tion on an attribute of the ports. For instance, the user

COMPONENT
Name : A

Basetype : -
Offered capability : C

Attributes :
MTTF=30000 h

 

FUNCTION
Name : IF

Requested capability : -
Attributes : -

Induced
function

PORT
Name : Pout
Type : T
Multiplicity : 1
Attributes :
PortType = male

COMPONENT
INSTANCE
Name : A_1

Basetype : A

 

FUNCTION
Name : F1

Requested capability : C
Attributes :

MaxAdmissibleMTTF = 1e9/h

in1

in2

out

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

can define a “port type” attribute (male/female) and state

that the two ports must also have different port types.

The validity rule defines in which condition a chain of

components is able to realize a function. The default rule

checks that the capabilities required by the function are

contained in the set of capabilities offered by the compo-

nents of the chain. Also, this rule checks that the chain

can be connected to the sources, if any, and sinks of the

function (see Step 2.1). As for the viability rule, the va-

lidity rule can be extended based on the functions and

components attributes.

Using these two rules, the synthesis algorithm is able to

generate viable and valid architectures in accordance

with the following process:

Step 1. The algorithm treats each function sequentially

in a backtracking manner. For this, the algorithm first

orders system functions so that a function supplying an-

other one is placed after it.

Step 2. The algorithm builds a chain for each function

Step 2.1. The algorithm looks for sinks and sources

for the output and input flows of the function. A sink

(resp. source) is a system port containing a function

output (resp. input) flow or being of same type, or a

component containing a function output (resp. input)

flow. The chain of components allocated to this func-

tion will have to connect to these sinks and sources.

Step 2.2. The algorithm searches chains of compo-

nents that respect the viability and validity rules. For

this, the algorithm performs an in-width search of

component chains that respect these rules. The com-

ponents considered in the chains can be existing

component instances or library components that will

be instantiated in the architecture. The depth of the

search (in other words the length of the chains) is

limited to the N+Δ depth level where N is the mini-

mal size of possible chains and Δ is a parameter of

the algorithm.

Step 2.3. If several chains of components are viable

and valid, the algorithm selects randomly one of

them. All choices are equiprobable.

Step 2.4. The selected chain of components is im-

plemented in the architecture. If the chain contains

library components, instances of them are added to

the architecture and their induced functions are added

to the system functions. The treated function is allo-

cated to the component instances. The function input

and output flows are added to the port’s flows and/or

to the component variables. This information will be

used for the detection of sinks and sources for the

next treated function.

At the end of this process, all functions are allocated to

component instances; ports are linked by connections

and contain flows. The architecture model can be used to

assess the performances of the architecture.

Figure 6 – Example of function allocation to component

instances

3.3 Analysis

The performances of the current population individuals

must be evaluated to permit their comparison and their

selection. For every attribute, an evaluation mean (per-

formance evaluator) must be set up. The models created

at the beginning of the process and their associated data

can be used to compute performances. The method does

not provide guidelines for setting up these evaluation

means as they are specific to the attributes being in-

volved in the tackled design problem.

3.4 Selection of preferred alternatives

Based on the evaluation of alternatives performances, the

“best” alternatives have to be selected in order to gener-

ate a new population. For this, two approaches can be

used.

Pareto selection process. The first one is a Pareto ap-

proach where alternatives are compared thanks to the

Pareto dominance rule i.e. an alternative dominates (is

better than) another if it is at least as good on all objec-

tives and better on one. This approach permits to obtain

the Pareto front of the problem which is very useful in

understanding the problem stakes and notably the

tradeoffs between objectives.

The algorithm used for this approach is NSGA-II (Deb et

al. 2000).

Preference-based selection process. The second ap-

proach is a preference-based approach where preferences

of the decision-makers are taken into account during the

selection process. For this, the NEMO algorithm (Branke

et al. 2009) is used.

Every N iterations, two alternatives are presented to the

decision-makers that, based on their performances, must

define which alternative is preferred to the other. Indif-

ference between the two alternatives can also be stated.

Based on this information, the algorithm will compute

preference information under the form of Value func-

tions and rank the alternatives with respect to their Val-

ue. This approach permits to concentrate the search of

solutions on the preferred zones of the performance

space.

Function 1
Flow B : Type b

C1_1 C2_2

Flow A : Type a

Capability C

Capability C

Type b

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Constraints. Constraints are taken into account by mod-

ifying slightly the dominance relation of both Pareto and

preference-based selection process as defined in (K. Deb

2005) i.e. a solution A is said to ''constraint-dominate''

solutions B, if any of the following conditions are true:

1. Solution A is feasible and solution B is not.

2. Solutions A and B are both infeasible, but solution A

has a smaller constraint violation.

3. Solutions A and B are feasible and solution A domi-

nates solution B (in the Pareto sense or in the preference-

based sense)

3.5 Evolution

At this stage, we explore new regions of the design space

based on the previous region explorations identified as

potentially interesting. For this, genetic operations are

applied to the selected alternatives (architectures) to

build new ones. We used the 3 genetic operators defined

by Holland (Holland 1975): reproduction, mutation and

cross-over. Nevertheless, as we do not represent the ar-

chitecture as a chromosome, these operators are special-

ized to be able to operate on the architecture model.

In our approach, it is important that our genetic opera-

tions always ensure the validity of the created solutions

as they take into account the types of involved function

ports and component ports. To do that they use the same

generative techniques as during the initialization process

(viability and validity).

The mutation operator can take different forms. It can

replace a component chain by an equivalent one or

add/remove redundant component chains.

Cross-over operations are realized by exchanging the

chains of the two alternatives every two functional chain.

The selected and replaced component chains have a

compatible structure that respects the given design rules.

All these operations are performed randomly on alterna-

tives, functions and component chains.

At the end of this stage, a set of new alternatives and

their associated system models are created and added to

the new population.

This evaluation-selection-evolution process is iterated

until a stop criterion is reached. It can be a predefined

number of generations, a minimum Value (satisfying

threshold) that must be reached by an alternative or a

convergence criterion.

3.6 Results visualization and analysis

The usage of the preference-based selection algorithm

enables to gather preference information during the reso-

lution process and to focus on interesting and valuable

alternatives for the decision-maker.

But even with this process, once the optimization phase

is ended, the comparison of the optimal architectures is

still a challenge, since the number of alternatives select-

ed at this stage is still too important for a manual analy-

sis. For this reason, it may be necessary to filter the final

solutions thanks to the application of a preference-based

selection process (MCDA method, visual method…).

4 APPLICATION

A tool called SAMOA (System Architecture Model-

based OptimizAtion) was developed to implement the

method from model creation/import to visualization of

results. Using this tool, the method was tested on a sim-

plified industrial use-case demonstrator developed to

implement the method: the design of an aircraft cockpit.

The problem is constituted of 8 functions, 10 instantiable

components (screens, computers, cables, networks…)

and of a system with 13 ports (systems’ interface, pilots’

interfaces, electrical interfaces).

5 criteria are considered:

- Mass of the architecture

- Number of components in the architecture

- Part number i.e. number of types of components

present in the architecture

- Electrical consumption

- Mean availability time of output functions

(functions which does not produce a flow used by

other functions)

All these criteria are associated to objectives to be mini-

mized (except for availability which must be maxim-

ized). No constraints are considered.

The initialization stage permits to find solutions to the

problem with various performances (Table 1).

Pop. 0

S
y

stem

m
ass

(k
g

)

P
art

n
u

m
b
er

C
o

m
p
o

n
en

ts

 n
u

m
b
er

M
ean

electrical

co
n

su
m

p
tio

n

 (W
)

M
ean

A
v

ailab
ility

T
im

e (h
)

Min 41,4 8 17 450 33322,6

Max 65,4 11 31 678 39023,1

Mean 51,7 10,1 22,7 559,4 35688,2

Table 1 – Performances of synthesized architectures

Using the Pareto approach, the algorithm is able to find a

set of Pareto-optimal solutions (Table 2).

Pop.
19 S

y
stem

m
ass

(k
g

)

P
art

n
u

m
b
er

C
o

m
p
o

n
en

ts

n
u

m
b
er

M
ean

electrical

co
n

su
m

p
tio

n

(W
)

M
ean

A
v

ailab
ility

T
im

e (h
)

Min 36,1
(-12%)

7
(-12%)

15
(-12%)

388
(-14%)

34759,1
(+4.3%)

Max 58,7
(-10%)

11

(0%)

28
(-9.7%)

621

(-8.4%)

41956,2

(+7.5%)

Mean 46,8
(-9%)

9,3
(-8%)

20,5
(-9.7%)

489,1
(-13%)

38291,3
(+7.3%)

Table 2 – Performances of optimized architectures and

comparison to initial architectures performances

Thanks to visualization techniques integrated to the tool,

it is possible to visualize:

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

- algorithm progress to monitor the algorithm conver-

gence (plot of min-max performances over populations).

- solutions as a whole to better understand the problem

i.e. correlation between objectives, maximal attainable

performances. For this, a scatter-plot matrix permits to

see the relationships between performances of each pair

of criteria. In Figure 7, one can clearly see the correla-

tion between Mass and Electrical consumption.

- individual solutions to analyze best architectures char-

acteristics (physical and functional aspects). For this,

architectures are represented as graphs of components or

as matrices.

Figure 7 – Scatter-plot matrix view of the final popula-

tion in ggobi software (Ggobi 2011)

5 CONCLUSION AND PERSPECTIVES

The main interest of the approach is that it gets rid of the

system architectures designed previously for similar sys-

tems, thus enabling innovative design. Instead, this

method enhances the system architecture design process

by enabling the evaluation of numerous design alterna-

tives and the selection of the most promising ones. By

exploring largely the design space, the chances to get the

global optimum architecture (with respect to given de-

signer’s preferences) is increased. The method also sup-

ports the designer in understanding the problem (correla-

tions and tradeoffs) or in eliciting its preferences with

respect to the different viewpoints of the system perfor-

mances.

The application of the method is particularly suitable for

architecture design problems with large combinatorial

design spaces as it is able to handle this complexity with

limited and simple inputs from the user. In these prob-

lems, the number of combinations of components is huge

and designers generally censure their creativity to limit

this complexity and be able to handle it. Using this

method and the associated tool, the designers will be

able to formalize the design problem to find the best po-

tential solutions to it, leaving computers treating the

complexity of the problem. It shall also allow the intro-

duction of new technologies in architecture design stud-

ies to check whether their use in the new system is perti-

nent or not. The introduction of new technologies can

improve significantly the performances of systems but

often require changing the architecture of the system.

The method permits to see quantitatively the improve-

ment of the system performances using the new technol-

ogy and thus to deduce if it is worth introducing it and, if

so, in which architecture.

One important thing to note about the method is that its

purpose is not to make architecting activities by comput-

ers but to allow the architects to have tendencies on the

interesting regions of the design space. These tendencies

will then serve as a base for further studies of the inter-

esting architectures and for negotiations with other de-

sign teams or with industrial partners.

Some potential extensions of the method can be high-

lighted.

First, for problems with many constraints on the struc-

ture of the system (e.g. a function must be allocated to at

least two computers), this approach is not efficient. In-

deed, as constraints are only considered at analysis and

selection phases, a lot of generated solutions will be

structurally not acceptable. In order to overcome this

problem, structural constraints (i.e. constraints which do

not require component data to be checked) could be tak-

en into account during the initialization and evolution

phases.

Secondly, in order to maximize the reuse of models by

the designers, interfaces with standard modeling lan-

guages (SysML (OMG 2010), AADL (SAE 2009), …)

should be designed. This will permit to model the prob-

lem (or at least part of it) reusing existing models (e.g.

functional architecture model) and to gather final results

(architectures) without having to build again architecture

models.

Finally, the possibility to group similar architectures in

clusters will be studied. Indeed, in upstream design

phases, designers are often looking for design patterns or

architecture concepts instead of a particular architecture.

Additionally, selected architectures should be robust i.e.

a slight modification of the architecture should not de-

crease significantly the system performances. Thus, by

selecting robust design patterns, this risk can be elimi-

nated.

Currently, the added-value of the method to the current

design process has not been assessed as it needs to be

applied to the real case. Nevertheless, the system design-

ers we collaborate with already see it as an efficient

mean to detect interesting solutions in the preliminary

stages of the design.

REFERENCES

Alber, R. & Rudolph, S., 2004. On a grammar-based

design language that supports automated design

generation and creativity. In J. Borg., F. Farrugia,

& K. Camilleri, eds. Knowledge intensive design

technology IFIP TC5. Springer Netherlands, p. 19.

Bolognini, F., Seshia, A.A. & Shea, A.K., 2007. A Com-

putational Design Synthesis Method for MEMS

Using COMSOL. In COMSOL Users Conference

2007. Grenoble, France.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Bryant, C. et al., 2005. A computational technique for

concept generation. In Proceedings of IDETC/CIE.

pp. 24–28.

Condat, H., 2011. Model-based automatic generation

and selection of best architectures. Master thesis,

Technical University of Munich.

Deb, K. et al., 2000. A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization:

NSGA-II. In Parallel Problem Solving from Na-

ture PPSN VI. Springer, pp. 849–858.

Figueira, J., Greco, S. & Ehrgott, M., 2005. Multiple

criteria decision analysis: state of the art surveys,

Springer Verlag.

Ggobi, 2011. Ggobi website. Available at:

www.ggobi.org.

Gubitosa, M. et al., 2009. A system engineering ap-

proach for the design optimization of a hydraulic

active suspension. In Vehicle Power and Propul-

sion Conference, 2009. IEEE, pp. 1122–1130.

Holey, V., 2010. Toward the prediction of multiphysic

interactions using MDM and QFD matrices. De-

sign, p.1-11.

Holland, J., 1975. Adaptation in natural and artificial

systems.

INCOSE, 2007. INCOSE Systems Engineering Hand-

book,

Kurtoglu, T. & Campbell, M.I., 2009. Automated syn-

thesis of electromechanical design configurations

from empirical analysis of function to form map-

ping. Journal of Engineering Design, 20(1), p.83–

104.

NASA, 2007. NASA System Engineering Handbook,

Pareto, V., 1896. Cours d’economie politique.

Scaravetti, D., 2004. Formalisation préalable d’un pro-

blème de conception, pour l'aide à la décision en

conception préliminaire. PhD thesis, Ecole Natio-

nale Supérieure d’Arts et Métiers de Bordeaux.

Seo, K. et al., 2003. Toward an automated design meth-

od for multi-domain dynamic systems using bond

graph and genetic programming. Mechatronics,

p.1-21.

Tenorio, C. De, Armstrong, M. & Mavris, D., 2008. Ar-

chitecture Subsystem Sizing and Coordinated Op-

timization Methods. 26th International Congress

of the Aeronautical Sciences.

