
A Contractor Based on Convex Interval Taylor

Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

To cite this version:

Ignacio Araya, Gilles Trombettoni, Bertrand Neveu. A Contractor Based on Convex Interval
Taylor. Springer. CPAIOR 2012, 2012, Nantes, France. 7298, pp.1-16, 2012, LNCS. <hal-
00733848>

HAL Id: hal-00733848

https://hal-enpc.archives-ouvertes.fr/hal-00733848

Submitted on 20 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50538747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-enpc.archives-ouvertes.fr/hal-00733848

A Contractor Based on Convex Interval Taylor

Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

UTFSM (Chile), IRIT, INRIA, I3S, Université Nice–Sophia (France), Imagine LIGM
Université Paris–Est (France)

iaraya@inf.utfsm.cl,Gilles.Trombettoni@inria.fr,Bertrand.Neveu@enpc.fr

Abstract. Interval Taylor has been proposed in the sixties by the in-
terval analysis community for relaxing continuous non-convex constraint
systems. However, it generally produces a non-convex relaxation of the
solution set. A simple way to build a convex polyhedral relaxation is
to select a corner of the studied domain/box as expansion point of the
interval Taylor form, instead of the usual midpoint. The idea has been
proposed by Neumaier to produce a sharp range of a single function and
by Lin and Stadtherr to handle n× n (square) systems of equations.

This paper presents an interval Newton-like operator, called X-Newton,
that iteratively calls this interval convexification based on an endpoint
interval Taylor. This general-purpose contractor uses no preconditioning
and can handle any system of equality and inequality constraints. It
uses Hansen’s variant to compute the interval Taylor form and uses two
opposite corners of the domain for every constraint.

The X-Newton operator can be rapidly encoded, and produces good
speedups in constrained global optimization and constraint satisfaction.
First experiments compare X-Newton with affine arithmetic.

1 Motivation

Interval B&B algorithms are used to solve continous constraint systems and
to handle constrained global optimization problems in a reliable way, i.e., they
provide an optimal solution and its cost with a bounded error or a proof of in-
feasibility. The functions taken into account may be non-convex and can include
many (piecewise) differentiable operators like arithmetic operators (+, −, ., /),
power, log, exp, sinus, etc.

Interval Newton is an operator often used by interval methods to contract/fil-
ter the search space [12]. The interval Newton operator uses an interval Taylor
form to iteratively produce a linear system with interval coefficients. The main
issue is that this system is not convex. Restricted to a single constraint, it forms
a non-convex cone (a “butterfly”), as illustrated in Fig. 1-left. An n-dimensional
constraint system is relaxed by an intersection of butterflies that is not convex
either. (Examples can be found in [24, 15, 23].) Contracting optimally a box
containing this non-convex relaxation has been proven to be NP-hard [16]. This
explains why the interval analysis community has worked a lot on this problem
for decades [12].

2 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

f’

f’

f’

f’

x x

f(m([x]))+f'.(x-m([x]))

f(m([x]))+f'.(x-m([x])) f(x)+f'.(x-x)

f(x)+f'.(x-x)f(x) f(x)

Fig. 1. Relaxation of a function f over the real numbers by a function g : R→ IR using
an interval Taylor form (graph in gray). Left: Midpoint Taylor form, using a midpoint
evaluation f(m([x])), the maximum derivative f ′ of f inside the interval [x] and the
minimum derivative f ′. Right: Extremal Taylor form, using an endpoint evaluation

f(x), f ′ and f ′.

Only a few polynomial time solvable subclasses have been studied. The most
interesting one has been first described by Oettli and Prager in the sixties [27]
and occurs when the variables are all non-negative or non-positive. Unfortu-
nately, when the Taylor expansion point is chosen strictly inside the domain
(the midpoint typically), the studied box must be previously split into 2n sub-
problems/quadrants before falling in this interesting subclass [1, 5, 8]. Hansen
and Bliek independently proposed a sophisticated and beautiful algorithm for
avoiding explicitly handling the 2n quadrants [14, 7]. However, the method is
restricted to n × n (square) systems of equations (no inequalities). Also, the
method requires the system be first preconditioned (i.e., the interval Jacobian
matrix must be multiplied by the inverse matrix of the domain midpoint). The
preconditioning has a cubic time complexity, implies an overestimate of the relax-
ation and requires non-singularity conditions often met only on small domains,
at the bottom of the search tree.

In 2004, Lin & Stadtherr [19] proposed to select a corner of the studied box,
instead of the usual midpoint. Graphically, it produces a convex cone, as shown
in Fig. 1-right. The main drawback of this extremal interval Taylor form is that it
leads to a larger system relaxation surface. The main virtue is that the solution
set belongs to a unique quadrant and is convex. It is a polytope that can be
(box) hulled in polynomial-time by a linear programming (LP) solver: two calls
to an LP solver compute the minimum and maximum values in this polytope for
each of the n variables (see Section 4). Upon this extremal interval Taylor, they
have built an interval Newton restricted to square n × n systems of equations
for which they had proposed in a previous work a specific preconditioning. They

A Contractor Based on Convex Interval Taylor 3

have presented a corner selection heuristic optimizing their preconditioning. The
selected corner is common to all the constraints.

The idea of selecting a corner as Taylor expansion point is mentioned, in
dimension 1, by A. Neumaier (see page 60 and Fig. 2.1 in [24]) for comput-
ing a range enclosure (see Def. 1) of a univariate function. Neumaier calls this
the linear boundary value form. The idea has been exploited by Messine and
Laganouelle for lower bounding the objective function in a Branch& Bound al-
gorithm for unconstrained global optimization [21].

McAllester et al. also mention this idea in [20] (end of page 2) for finding
cuts of the box in constraint systems. At page 211 of Neumaier’s book [24], the
step (4) of the presented pseudo-code also uses an endpoint interval Taylor form
for contracting a system of equations.1

Contributions

We present in this paper a new contractor, called X-Newton (for eXtremal interval
Newton), that iteratively achieves an interval Taylor form on a corner of the
studied domain. X-Newton does not require the system be preconditioned and can
thus reduce the domains higher in the search tree. It can treat well-constrained
systems as well as under-constrained ones (with fewer equations than variables
and with inequalities), as encountered in constrained global optimization. The
only limit is that the domain must be bounded, although the considered intervals,
i.e., the initial search space, can be very large.

This paper experimentally shows that such a contractor is crucial in con-
strained global optimization and is also useful in continuous constraint satisfac-
tion where it makes the whole solving strategy more robust.

After the background introduced in the next section, we show in Section 3
that the choice of the best expansion corner for any constraint is an NP-hard
problem and propose a simple selection policy choosing two opposite corners
of the box. Tighter interval partial derivatives are also produced by Hansen’s
recursive variant of interval Taylor. Section 4 details the extremal interval New-
ton operator that iteratively computes a convex interval Taylor form. Section 5
highlights the benefits of X-Newton in satisfaction and constrained global opti-
mization problems.

This work provides an alternative to the two existing reliable (interval) con-
vexification methods used in global optimization. The Quad [18, 17] method is
an interval reformulation-linearization technique that produces a convex polyhe-
dral approximation of the quadratic terms in the constraints. Affine arithmetic
produces a polytope by replacing in the constraint expressions every basic op-
erator by specific affine forms [10, 32, 4]. It has been recently implemented in an
efficient interval B&B [26]. Experiments provide a first comparison between this
affine arithmetic and the corner-based interval Taylor.

1 The aim is not to produce a convex polyhedral relaxation (which is not mentioned),
but to use as expansion point the farthest point in the domain from a current point
followed by the algorithm. The contraction is not obtained by calls to an LP solver
but by the general purpose Gauss-Seidel without taking advantage of the convexity.

4 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

2 Background

Intervals allow reliable computations on computers by managing floating-point
bounds and outward rounding.

Intervals

An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi, where xi

and xi are floating-point numbers. IR denotes the set of all intervals. The size or
width of [xi] is w([xi]) = xi−xi. A box [x] is the Cartesian product of intervals
[x1] × ... × [xi] × ... × [xn]. Its width is defined by maxi w([xi]). m([x]) denotes
the middle of [x]. The hull of a subset S of R

n is the smallest n-dimensional box
enclosing S.

Interval arithmetic [22] has been defined to extend to IR elementary functions
over R. For instance, the interval sum is defined by [x1]+[x2] = [x1+x2, x1+x2].
When a function f is a composition of elementary functions, an extension of f
to intervals must be defined to ensure a conservative image computation.

Definition 1 (Extension of a function to IR; inclusion function; range
enclosure)
Consider a function f : R

n → R.
[f] : IR

n → IR is said to be an extension of f to intervals iff:

∀[x] ∈ IR
n [f]([x]) ⊇ {f(x), x ∈ [x]}

∀x ∈ R
n f(x) = [f](x)

The natural extension [f]N of a real function f corresponds to the mapping
of f to intervals using interval arithmetic. The outer and inner interval lin-
earizations proposed in this paper are related to the first-order interval Taylor
extension [22], defined as follows:

[f]T ([x]) = f(ẋ) +
∑

i

[ai] . ([xi] − ẋi)

where ẋ denotes any point in [x], e.g., m([x]), and [ai] denotes
[

∂f
∂xi

]

N
([x]).

Equivalently, we have: ∀x ∈ [x], [f]T ([x]) ≤ f(x) ≤ [f]T ([x]).

Example. Consider f(x1, x2) = 3x2
1 + x2

2 + x1x2 in the box [x] = [−1, 3] ×
[−1, 5]. The natural evaluation provides: [f]N ([x1], [x2]) = 3[−1, 3]2 + [−1, 5]2 +
[−1, 3][−1, 5] = [0, 27] + [0, 25] + [−5, 15] = [−5, 67]. The partial derivatives are:
∂f
∂x1

(x1, x2) = 6x1+x2, [∂f
∂x1

]N ([−1, 3], [−1, 5]) = [−7, 23], ∂f
∂x2

(x1, x2) = x1+2x2,

[∂f
∂x2

]N ([x1], [x2]) = [−3, 13]. The interval Taylor evaluation with ẋ = m([x]) =
(1, 2) yields: [f]T ([x1], [x2]) = 9 + [−7, 23][−2, 2] + [−3, 13][−3, 3] = [−76, 94].

A Contractor Based on Convex Interval Taylor 5

A simple convexification based on interval Taylor

Consider a function f : R
n → R defined on a domain [x], and the inequality

constraint f(x) ≤ 0. For any variable xi ∈ x, let us denote [ai] the interval

partial derivative
[

∂f
∂xi

]

N
([x]). The first idea is to lower tighten f(x) with one

of the following interval linear forms that hold for all x in [x].

f(x) + a1y
l
1 + ... + anyl

n ≤ f(x) (1)

f(x) + a1y
r
1 + ... + anyr

n ≤ f(x) (2)

where: yl
i = xi − xi and yr

i = xi − xi.

A corner of the box is chosen: x in form (1) or x in form (2). When applied
to a set of inequality and equality2 constraints, we obtain a polytope enclosing
the solution set.

The correctness of relation (1) – see for instance [30, 19] – lies on the simple
fact that any variable yl

i is non-negative since its domain is [0, di], with di =
w([yl

i]) = w([xi]) = xi − xi. Therefore, minimizing each term [ai] y
l
i for any

point yl
i ∈ [0, di] is obtained with ai. Symmetrically, relation (2) is correct since

yr
i ∈ [−di, 0] ≤ 0, and the minimal value of a term is obtained with ai.

Note that, even though the polytope computation is safe, the floating-point
round-off errors made by the LP solver could render the hull of the polytope
unsafe. A cheap post-processing proposed in [25], using interval arithmetic, is
added to guarantee that no solution is lost by the Simplex algorithm.

3 Extremal interval Taylor form

3.1 Corner selection for a tight convexification

Relations (1) and (2) consider two specific corners of the box [x]. We can remark
that every other corner of [x] is also suitable. In other terms, for every variable
xi, we can indifferently select one of both bounds of [xi] and combine them in a
combinatorial way: either xi in a term ai (xi − xi), like in relation (1), or xi in
a term ai (xi − xi), like in relation (2).

A natural question then arises: Which corner xc of [x] among the 2n-set Xc

ones produces the tightest convexification? If we consider an inequality f(x) ≤ 0,
we want to compute a hyperplane f l(x) that approximates the function, i.e., for
all x in [x] we want: f l(x) ≤ f(x) ≤ 0.

Following the standard policy of linearization methods, for every inequality
constraint, we want to select a corner xc whose corresponding hyperplane is
the closest to the non-convex solution set, i.e., adds the smallest volume. This
is exactly what represents Expression (3) that maximizes the Taylor form for

2 An equation f(x) = 0 can be viewed as two inequality constraints: 0 ≤ f(x) ≤ 0.

6 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

all the points x = {x1, ..., xn} ∈ [x] and adds their different contributions: one
wants to select a corner xc from the set of corners Xc such that:

maxxc∈Xc

∫ x1

x1=x1

...

∫ xn

xn=xn

(f(xc) +
∑

i

zi) dxn ... dx1 (3)

where: zi = ai(xi − xi) iff xc
i = xi, and zi = ai(xi − xi) iff xc

i = xi.

Since:

– f(xc) is independent from the xi values,
– any point zi depends on xi but does not depend on xj (with j 6= i),

–
∫ xi

xi=xi

ai(xi − xi)dxi = ai

∫ di

yi=0
yi dyi = ai 0.5 d2

i ,

–
∫ xi

xi=xi

ai(xi − xi)dxi = ai

∫ 0

−di

yi dyi = −0.5 ai d2
i ,

Expression (3) is equal to:

maxxc∈Xc

∏

i

di f(xc) +
∏

i

di

∑

i

0.5 ac
i di

where di = w([xi]) and ac
i = ai or ac

i = −ai.
We simplify by the positive factor

∏

i di and obtain:

maxxc∈Xc f(xc) + 0.5
∑

i

ac
i di (4)

Unfortunately, we have proven that this maximization problem (4) is NP-
hard.

Proposition 1 (Corner selection is NP-hard)
Consider a polynomial3 f : R

n → R, with rational coefficients, and defined
on a domain [x] = [0, 1]n. Let Xc be the 2n-set of corners, i.e., in which every
component is a bound 0 or 1. Then,

maxxc∈Xc − (f(xc) + 0.5
∑

i ac
i di)

(or minxc∈Xc f(xc) + 0.5
∑

i ac
i di)

is an NP-hard problem.

The extended paper [3] shows straightforward proofs that maximizing the
first term of Expression 4 (f(xc)) is NP-hard and maximizing the second term
0.5

∑

i ac
i di is easy, by selecting the maximum value among ai and −ai in every

term. However, proving Proposition 1 is not trivial (see [3]) and has been achieved
with a polynomial reduction from a subclass of 3SAT, called BALANCED-3SAT.4

3 We cannot prove anything on more complicated, e.g., transcendental, functions that
make the problem undecidable.

4 In an instance of BALANCED-3SAT, each Boolean variable xi occurs ni times in a
negative literal and ni times in a positive literal. We know that BALANCED-3SAT is
NP-complete thanks to the dichotomy theorem by Thomas J. Schaefer [28].

A Contractor Based on Convex Interval Taylor 7

Even more annoying is that experiments presented in Section 5 suggest that
the criterion (4) is not relevant in practice. Indeed, even if the best corner was
chosen (by an oracle), the gain in box contraction brought by this strategy w.r.t.
a random choice of corner would be not significant. This renders pointless the
search for an efficient and fast corner selection heuristic.

This study suggests that this criterion is not relevant and leads to explore
another criterion. We should notice that when a hyperplane built by endpoint
interval Taylor removes some inconsistent parts from the box, the inconsistent
subspace more often includes the selected corner xc because the approximation
at this point is exact. However, the corresponding criterion includes terms mixing
variables coming from all the dimensions simultaneously, and makes difficult the
design of an efficient corner selection heuristic.

This qualitative analysis nevertheless provides us rationale to adopt the fol-
lowing policy.

Using two opposite corners

To obtain a better contraction, it is also possible to produce several, i.e., c, linear
expressions lower tightening a given constraint f(x) ≤ 0. Applied to the whole
system with m inequalities, the obtained polytope corresponds to the intersection
of these c m half-spaces. Experiments (see Section 5.2) suggest that generating
two hyperplanes (using two corners) yields a good ratio between contraction
(gain) and number of hyperplanes (cost). Also, choosing opposite corners tends
to minimize the redundancy between hyperplanes since the hyperplanes remove
from the box preferably the search subspaces around the selected corners.

Note that, for managing several corners simultaneously, an expanded form
must be adopted to put the whole linear system in the form Ax−b before running
the Simplex algorithm. For instance, if we want to lower tighten a function f(x)
by expressions (1) and (2) simultaneously, we must rewrite:

1. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − ai xi =
∑

i aixi + f(x) −
∑

i ai xi

2. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − aixi =
∑

i aixi + f(x) −
∑

i ai xi

Also note that, to remain safe, the computation of constant terms ai xi (resp.
ai xi) must be achieved with degenerate intervals: [ai, ai] [xi, xi] (resp. [ai, ai]
[xi, xi]).

3.2 Preliminary interval linearization

Recall that the linear forms (1) and (2) proposed by Neumaier and Lin &
Stadtherr use the bounds of the interval gradient, given by ∀i ∈ {1, ..., n}, [ai] =
[

∂f
∂xi

]

N
([x]).

Eldon Hansen proposed in 1968 a variant in which the Taylor form is achieved
recursively, one variable after the other [13, 12]. The variant amounts in produc-
ing the following tighter interval coefficients:

∀i∈{1,..., n}, [ai] =

[

∂f

∂xi

]

N

([x1] × ... × [xi] × ˙xi+1 × ... × ẋn)

8 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

where ẋj ∈ [xj], e.g., ẋj = m([xj]).

By following Hansen’s recursive principle, we can produce Hansen’s variant
of the form (1), for instance, in which the scalar coefficients ai are:

∀i ∈ {1, ..., n}, ai =

[

∂f

∂xi

]

N

([x1]×...×[xi]×xi+1×...×xn).

We end up with an X-Taylor algorithm (X-Taylor stands for eXtremal in-
terval Taylor) producing 2 linear expressions lower tightening a given function
f : R

n → R on a given domain [x]. The first corner is randomly selected, the
second one is opposite to the first one.

4 eXtremal interval Newton

We first describe in Section 4.1 an algorithm for computing the (box) hull of
the polytope produced by X-Taylor. We then detail in Section 4.2 how this
X-NewIter procedure is iteratively called in the X-Newton algorithm until a
quasi-fixpoint is reached in terms of contraction.

4.1 X-Newton iteration

Algorithm 1 describes a well-known algorithm used in several solvers (see for
instance [18, 4]). A specificity here is the use of a corner-based interval Taylor
form (X-Taylor) for computing the polytope.

Algorithm 1 X-NewIter (f , x, [x]): [x]

for j from 1 to m do

polytope ← polytope ∪ {X-Taylor(fj ,x,[x])}
end for

for i from 1 to n do

/* Two calls to a Simplex algorithm: */
xi ← min xi subject to polytope
xi ← max xi subject to polytope

end for

return [x]

All the constraints appear as inequality constraints fj(x) ≤ 0 in the vec-
tor/set f = (f1, ..., fj , ..., fm). x = (x1, ..., xi, ..., xn) denotes the set of variables
with domains [x].

The first loop on the constraints builds the polytope while the second loop on
the variables contracts the domains, without loss of solution, by calling a Simplex
algorithm twice per variable. When embedded in an interval B&B for constrained
global optimization, X-NewIter is modified to also compute a lower bound of

A Contractor Based on Convex Interval Taylor 9

the objective in the current box: an additional call to the Simplex algorithm
minimizes an X-Taylor relaxation of the objective on the same polytope.

Heuristics mentioned in [4] indicate in which order the variables can be han-
dled, thus avoiding in practice to call 2n times the Simplex algorithm.

4.2 X-Newton

The procedure X-NewIter allows one to build the X-Newton operator (see Al-
gorithm 2). Consider first the basic variant in which CP-contractor = ⊥.

Algorithm 2 X-Newton (f , x, [x], ratio fp, CP-contractor): [x]

repeat

[x]save ← [x]
[x]← X-NewIter (f , x, [x])
if CP-contractor 6= ⊥ and gain([x],[x]save) > 0 then

[x]← CP-contractor(f ,x,[x])
end if

until empty([x]) or gain([x],[x]save) < ratio fp)

return [x]

X-NewIter is iteratively run until a quasi fixed-point is reached in terms of con-
traction. More precisely, ratio fp is a user-defined percentage of the interval
size and:

gain([x′], [x]) := max
i

w([xi]) − w([x′

i])

w([xi])
.

We also permit the use of a contraction algorithm, typically issued from
constraint programming, inside the main loop. For instance, if the user speci-
fies CP-contractor=Mohc and if X-NewIter reduces the domain, then the Mohc

constraint propagation algorithm [2] can further contract the box, before wait-
ing for the next choice point. The guard gain([x], [x]save) > 0 guarantees that
CP-contractor will not be called twice if X-NewIter does not contract the box.

Remark

Compared to a standard interval Newton, a drawback of X-Newton is the loss
of quadratic convergence when the current box belongs to a convergence basin.
It is however possible to switch from an endpoint Taylor form to a midpoint one
and thus be able to obtain quadratic convergence, as detailed in [3].

Also note that X-Newton does not require the system be preconditioned so
that this contractor can cut branches early during the tree search (see Sec-
tion 5.2). In this sense, it is closer to a reliable convexification method like
Quad [18, 17] or affine arithmetic [26].

10 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

5 Experiments

We have applied X-Newton to constrained global optimization and to constraint
satisfaction problems.

5.1 Experiments in constrained global optimization

We have selected a sample of global optimization systems among those tested
by Ninin et al. [26]. They have proposed an interval Branch and Bound, called
here IBBA+, that uses constraint propagation and a sophisticated variant of affine
arithmetic. From their benchmark of 74 polynomial and non polynomial systems
(without trigonometric operators), we have extracted the 27 ones that required
more than 1 second to be solved by the simplest version of IbexOpt (column
4). In the extended paper [3], a table shows the 11 systems solved by this first
version in a time comprised between 1 and 11 seconds. Table 1 includes the 13
systems solved in more than 11 seconds.5 Three systems (ex6 2 5, ex6 2 7 and
ex6 2 13) are removed from the benchmark because they are not solved by any
solver. The reported results have been obtained on a same computer (Intel
X86, 3Ghz).

We have implemented the different algorithms in the Interval-Based EXplorer
Ibex [9]. Reference [30] details how our interval B&B, called IbexOpt, handles
constrained optimization problems by using recent and new algorithms. Contrac-
tion steps are achieved by the Mohc interval constraint propagation algorithm [2]
(that also lower bounds the range of the objective function). The upper bound-
ing phase uses original algorithms for extracting inner regions inside the feasible
search space, i.e., zones in which all points satisfy the inequality and relaxed
equality constraints.6 The cost of any point inside an inner region may improve
the upper bound. Also, at each node of the B&B, the X-Taylor algorithm is used
to produce hyperplanes for each inequality constraints and the objective func-
tion. On the obtained convex polyhedron, two types of tasks can be achieved:
either the lower bounding of the cost with one call to a Simplex algorithm (re-
sults reported in columns 4 to 13), or the lower bounding and the contraction
of the box, with X-NewIter (i.e., 2n + 1 calls to a Simplex algorithm; results
reported in column 10) or X-Newton (columns 11, 13). The bisection heuristic is
a variant of Kearfott’s Smear function described in [30].

The first two columns contain the name of the handled system and its number
of variables. Each entry contains generally the CPU time in second (first line of a
multi-line) and the number of branching nodes (second line). The same precision
on the cost (1.e−8) and the same timeout (TO = 1 hour) have been used by
IbexOpt and IBBA+.7 Cases of memory overflow (MO) sometimes occur. For each

5 Note that most of these systems are also difficult for the non reliable state-of-the-
art global optimizer Baron [29], i.e., they are solved in a time comprised between 1
second and more than 1000 seconds (time out).

6 An equation hj(x) = 0 is relaxed by two inequality constraints: −ǫ ≤ hj(x) ≤ +ǫ.
7 The results obtained by IBBA+ on a similar computer are taken from [26].

A Contractor Based on Convex Interval Taylor 11

method m, the last line includes an average gain on the different systems. For a

given system, the gain w.r.t. the basic method (column 4) is CPU time(Rand)
CPU time(m) . The

last 10 columns of Table 1 compare different variants of X-Taylor and X-Newton.
The differences between variants are clearer on the most difficult instances. All
use Hansen’s variant to compute the interval gradient (see Section 3.2). The gain
is generally small but Hansen’s variant is more robust: for instance ex 7 2 3

cannot be solved with the basic interval gradient calculation.

In the column 3, the convexification operator is removed from our interval
B&B, which underlines its significant benefits in practice.

Table 1. Experimental results on difficult constrained global optimization systems

1 2 3 4 5 6 7 8 9 10 11 12 13 14

System n No Rand R+R R+op RRRR Best B+op XIter XNewt Ibex’ Ibex” IBBA+

ex2 1 7 20 TO 42.96 43.17 40.73 49.48 TO TO 7.74 10.58 TO TO 16.75
20439 16492 15477 13200 1344 514 1574

ex2 1 9 10 MO 40.09 29.27 22.29 24.54 9.07 9.53 46.58 103 154.02
49146 30323 23232 19347 57560 26841 5760 1910 119831 100987 60007

ex6 1 1 8 MO 20.44 19.08 17.23 22.66 31.24 38.59 TO 633 TO
21804 17104 14933 14977 24204 15078 14852 13751 427468

ex6 1 3 12 TO 1100 711 529 794 TO TO 262.5 219 TO TO TO
522036 2.7e+5 205940 211362 55280 33368

ex6 2 6 3 TO 162 175 169 207 172 136 1033 583 1575
172413 1.7e+5 163076 163967 1.7e+5 1.6e+5 140130 61969 1.7e+6 770332 9.2e+5

ex6 2 8 3 97.10 121 119 110 134.7 78.1 59.3 284 274 458
1.2e+5 117036 1.1e+5 97626 98897 1.2e+5 97580 61047 25168 523848 403668 2.7e+5

ex6 2 9 4 25.20 33.0 36.7 35.82 44.68 42.34 43.74 455 513 523
27892 27892 27826 27453 27457 27881 27457 27152 21490 840878 684302 2.0e+5

ex6 2 10 6 TO 3221 2849 1924 2905 2218 2697 TO TO TO
1.6e+6 1.2e+6 820902 894893 1.1e+6 8.2e+5 818833 656360

ex6 2 11 3 10.57 19.31 7.51 7.96 10.82 13.26 11.08 41.21 11.80 140.51
17852 24397 8498 8851 10049 5606 27016 12253 6797 93427 21754 83487

ex6 2 12 4 2120 232 160 118.6 155 51.31 22.20 122 187 112.58
2e+6 198156 1.1e+5 86725 90414 1.9e+5 86729 31646 7954 321468 316675 58231

ex7 3 5 13 TO 44.7 54.9 60.3 75.63 29.88 28.91 TO TO TO
45784 44443 50544 43181 45352 42453 6071 5519

ex14 1 7 10 TO 433 445 406 489 786 938 TO TO TO
223673 1.7e+5 156834 125121 1.7+5 1.1+5 179060 139111

ex14 2 7 6 93.10 94.16 102.2 83.6 113.7 66.39 97.36 TO TO TO
35517 25802 21060 16657 15412 20273 18126 12555 9723

Sum 5564 4752 3525 5026 3767 4311 1982 1672 2963
3.1e+6 2.2e+6 1.7e+6 1.7e+6 1.4e+6 983634 3.6e+6 2.3e+6 1.6e+6

Gain 1 1.21 1.39 1.07 2.23 1.78

ex7 2 3 8 MO MO MO MO MO 544 691 TO 719 TO
611438 588791 681992

The column 4 corresponds to an X-Taylor performed with one corner ran-
domly picked for every constraint. The next column (R+R) corresponds to a
tighter polytope computed with two randomly chosen corners per inequality
constraint. The gain is small w.r.t. Rand. The column 6 (R+op) highlights the
best X-Taylor variant where a random corner is chosen along with its opposite
corner. Working with more than 2 corners appeared to be counter-productive, as
shown by the column 7 (RRRR) that corresponds to 4 corners randomly picked.

12 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

We have performed a very informative experiment whose results are shown
in columns 8 (Best) and 9 (B+op): an exponential algorithm selects the best
corner, maximizing the expression (4), among the 2n ones.8 The reported number
of branching nodes shows that the best corner (resp. B+op) sometimes brings
no additional contraction and often brings a very small one w.r.t. a random
corner (resp. R+op). Therefore, the combination R+op has been kept in all the
remaining variants (columns 10 to 14).

The column 10 (XIter) reports the results obtained by X-NewIter. It shows
the best performance on average while being robust. In particular, it avoids
the memory overflow on ex7 2 3. X-Newton, using ratio fp=20%, is generally
slightly worse, although a good result is obtained on ex6 2 12 (see column 11).

The last three columns report a first comparison between AA (affine arith-
metic; Ninin et al.’s AF2 variant) and our convexification methods. Since we did
not encode AA in our solver due to the significant development time required,
we have transformed IbexOpt into two variants Ibex’ and Ibex’’ very close to
IBBA+: Ibex’ and Ibex’’ use a non incremental version of HC4 [6] that loops
only once on the constraints, and a largest-first branching strategy. The upper
bounding is also the same as IBBA+ one. Therefore we guess that only the con-
vexification method differs from IBBA+: Ibex’ improves the lower bound using
a polytope based on a random corner and its opposite corner; Ibex’’ builds the
same polytope but uses X-Newton to better contract on all the dimensions.9

First, Ibex’ reaches the timeout once more than IBBA+; and IBBA+ reaches
the timeout once more than Ibex’’. Second, the comparison in the number of
branching points (the line Sum accounts only the systems that the three strate-
gies solve within the timeout) underlines that AA contracts generally more than
Ibex’, but the difference is smaller with the more contracting Ibex’’ (that can
also solve ex7 2 3). This suggests that the job on all the variables compensates
the relative lack of contraction of X-Taylor. Finally, the performances of Ibex’
and Ibex’’ are better than IBBA+ one, but it is probably due to the different
implementations.

5.2 Experiments in constraint satisfaction

We have also tested the X-Newton contractor in constraint satisfaction, i.e., for
solving well constrained systems having a finite number of solutions. These sys-
tems are generally square systems (n equations and n variables). The constraints
correspond to non linear differentiable functions (some systems are polynomial,
others are not). We have selected from the COPRIN benchmark10 all the systems
that can be solved by one of the tested algorithms in a time between 10 s and
1000 s: we discarded easy problems solved in less than 10 seconds, and too diffi-
cult problems that no method can solve in less than 1000 seconds. The timeout

8 We could not thus compute the number of branching nodes of systems with more
than 12 variables because they reached the timeout.

9 We have removed the call to Mohc inside the X-Newton loop (i.e., CP-contractor=⊥)
because this constraint propagation algorithm is not a convexification method.

10 http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

A Contractor Based on Convex Interval Taylor 13

was fixed to one hour. The required precision on the solution is 10−8. Some of
these problems are scalable. In this case, we selected the problem with the great-
est size (number of variables) that can be solved by one of the tested algorithms
in less than 1000 seconds.

We compared our method with the state of art algorithm for solving such
problems in their original form (we did not use rewriting of constraints and did
not exploit common subexpressions). We used as reference contractor our best
contractor ACID(Mohc), an adaptive version of CID [31] with Mohc [2] as basic
contractor, that exploits the monotonicity of constraints. We used the same
bisection heuristic as in optimization experiments. Between two choice points in
the search tree, we called one of the following contractors (see Table 2).

– ACID(Mohc): see column 3 (Ref),

– X-NewIter: ACID(Mohc) followed by one call to Algorithm 1 (column 4,
Xiter),

– X-Newton: the most powerful contractor with ratio fp=20%, and ACID(Mohc)

as internal CP contractor (see Algorithm 2).

For X-Newton, we have tested 5 ways for selecting the corners (see columns 5–9):

– Rand: one random corner,

– R+R: two random corners,

– R+op: one random corner and its opposite,

– RRRR: four random corners,

– 2R+op: four corners, i.e., two random corners and their two respective oppo-
site ones.

We can observe that, as for the optimization problems, the corner selection
R+op yields the lowest sum of solving times and often good results. The last
line of Table 2 highlights that all the 24 systems can be solved in 1000 s by
X-Newton R+op, while only 18 systems are solved in 1000 s by the reference
algorithm with no convexification method. Each entry in Table 2 contains the
CPU time in second (first line of a multi-line) and the number of branching nodes
(second line). We have reported in the last column (Gain) the gains obtained by
the best corner selection strategy R+op as the ratio w.r.t. the reference method

(column 3 Ref), i.e., CPU time(R+op)
CPU time(Ref) . Note that we used the inverse gain definition

compared to the one used in optimization (see 5.1) in order to manage the
problems reaching the timeout. We can also observe that our new algorithm
X-Newton R+op is efficient and robust: we can obtain significant gains (small
values in bold) and lose never more than 39% in CPU time.

We have finally tried, for the scalable systems, to solve problems of bigger
size. We could solve Katsura-30 in 4145 s, and Yamamura1-16 in 2423 s (instead
of 33521 s with the reference algorithm). We can remark that, for these problems,
the gain grows with the size.

14 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

Table 2. Experimental results on difficult constraint satisfaction problems: the best
results and the gains (< 1) appear in bold

1 2 3 4 5 6 7 8 9 10

System n Ref Xiter Rand R+R R+op RRRR 2R+op Gain

Bellido 9 10.04 3.88 4.55 3.71 3.33 3.35 3.28 0.33

3385 1273 715 491 443 327 299

Bratu-60 60 494 146 306 218 190 172 357 0.38

9579 3725 4263 3705 3385 3131 5247

Brent-10 10 25.31 28 31.84 33.16 34.88 37.72 37.11 1.38
4797 4077 3807 3699 3507 3543 3381

Brown-10 10 TO 0.13 0.17 0.17 0.17 0.17 0.18 0

67 49 49 49 49 49

Butcher8-a 8 233 246 246 248 242 266 266 1.06
40945 39259 36515 35829 35487 33867 33525

Butcher8-b 8 97.9 123 113.6 121.8 122 142.4 142.2 1.26
26693 23533 26203 24947 24447 24059 24745

Design 9 21.7 23.61 22 22.96 22.38 25.33 25.45 1.03
3301 3121 2793 2549 2485 2357 2365

Direct Kinematics 11 85.28 81.25 84.96 83.52 84.28 86.15 85.62 0.99

1285 1211 1019 929 915 815 823

Dietmaier 12 3055 1036 880 979 960 1233 1205 0.31

493957 152455 113015 96599 93891 85751 83107

Discrete integral-16 32 TO 480 469 471 472 478 476 0

2nd form. 57901 57591 57591 57591 57591 57591

Eco9 8 12.85 14.19 14.35 14.88 15.05 17.48 17.3 1.17
4573 3595 3491 2747 2643 2265 2159

Ex14-2-3 6 45.01 3.83 4.39 3.88 3.58 3.87 3.68 0.08

3511 291 219 177 181 145 139

Fredtest 6 74.61 47.73 54.46 47.43 44.26 42.67 40.76 0.59

18255 12849 11207 8641 7699 6471 6205
Fourbar 4 258 317 295 319 320 366 367 1.24

89257 83565 79048 73957 75371 65609 67671

Geneig 6 57.32 46.1 46.25 41.33 40.38 38.4 38.43 0.7

3567 3161 2659 2847 2813 2679 2673

I5 10 17.21 20.59 19.7 20.53 20.86 23.23 23.43 1.21
5087 4931 5135 4885 4931 4843 4861

Katsura-25 26 TO 711 1900 1258 700 1238 1007 0

9661 17113 7857 4931 5013 4393

Pramanik 3 14.69 20.08 19.16 20.31 20.38 24.58 25.15 1.39
18901 14181 14285 11919 11865 11513 12027

Synthesis 33 212 235 264 316 259 631 329 1.22
9097 7423 7135 6051 4991 7523 3831

Trigexp2-17 17 492 568 533 570 574 630 637 1.17
27403 27049 26215 25805 25831 25515 25055

Trigo1-14 14 2097 1062 1314 1003 910 865 823 0.43

8855 5229 4173 2773 2575 1991 1903

Trigonometric 5 33.75 30.99 30.13 30.11 30.65 31.13 31.75 0.91

4143 3117 2813 2265 2165 1897 1845

Virasoro 8 760 715 729 704 709 713 715 0.93

32787 35443 33119 32065 32441 30717 27783

Yamamura1-14 14 1542 407 628 557 472 520 475 0.26

118021 33927 24533 23855 14759 13291 11239

Sum >42353 6431 8000 7087 6185 7588 7131
>1.8e6 531044 477115 432232 415396 382862 382916

Gain 1 0.75 0.77 0.78 0.76 0.9 0.85
Solved in 1000 s 18 22 22 22 24 22 22

A Contractor Based on Convex Interval Taylor 15

6 Conclusion

Endowing a solver with a reliable convexification algorithm is useful in constraint
satisfaction and crucial in constrained global optimization. This paper has pre-
sented the probably simplest way to produce a reliable convexification of the
solution space and the objective function. X-Taylor can be encoded in 100 lines
of codes and calls a standard Simplex algorithm. It rapidly computes a poly-
hedral convex relaxation following Hansen’s recursive principle to produce the
gradient and using two corners as expansion point of Taylor: a corner randomly
selected and the opposite corner.

This convex interval Taylor form can be used to build an eXtremal inter-
val Newton. The X-NewIter variant contracting all the variable intervals once
provides on average the best performance on constrained global optimization
systems. For constraint satisfaction, both algorithms yield comparable results.

Compared to affine arithmetic, preliminary experiments suggest that our
convex interval Taylor produces a looser relaxation in less CPU time. However,
the additional job achieved by X-Newton can compensate this lack of filtering
at a low cost, so that one can solve one additional tested system in the end.
Therefore, we think that this reliable convexification method has the potential
to complement affine arithmetic and Quad.

Acknowledgment

We would like to particularly thank G. Chabert for useful discussions about
existing interval analysis results.

References

1. O. Aberth. The Solution of Linear Interval Equations by a Linear Programming
Method. Linear Algebra and its Applications, 259:271–279, 1997.

2. I. Araya, G. Trombettoni, and B. Neveu. Exploiting Monotonicity in Interval
Constraint Propagation. In Proc. AAAI, pages 9–14, 2010.

3. I. Araya, G. Trombettoni, and B. Neveu. A Contractor Based on Convex Interval
Taylor. Technical Report 7887, INRIA, february 2012.

4. A. Baharev, T. Achterberg, and E. Rév. Computation of an Extractive Distillition
Column with Affine Arithmetic. AIChE Journal, 55(7):1695–1704, 2009.

5. O. Beaumont. Algorithmique pour les intervalles. PhD thesis, Université de Rennes,
1997.

6. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and
Box Consistency. In Proc. ICLP, pages 230–244, 1999.

7. C. Bliek. Computer Methods for Design Automation. PhD thesis, MIT, 1992.
8. G. Chabert. Techniques d’intervalles pour la résolution de systèmes d’intervalles.

PhD thesis, Université de Nice–Sophia, 2007.
9. G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,

173:1079–1100, 2009.
10. L. de Figueiredo and J. Stolfi. Affine Arithmetic: Concepts and Applications.

Numerical Algorithms, 37(1–4):147–158, 2004.

16 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

11. A. Goldsztejn and L. Granvilliers. A New Framework for Sharp and Efficient Reso-
lution of NCSP with Manifolds of Solutions. Constraints (Springer), 15(2):190–212,
2010.

12. E. Hansen. Global Optimization using Interval Analysis. Marcel Dekker inc., 1992.
13. E.R. Hansen. On Solving Systems of Equations Using Interval Arithmetic. Math-

ematical Comput., 22:374–384, 1968.
14. E.R. Hansen. Bounding the Solution of Interval Linear Equations. SIAM J. Nu-

merical Analysis, 29(5):1493–1503, 1992.
15. R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic

Publishers, 1996.
16. V. Kreinovich, A.V. Lakeyev, J. Rohn, and P.T. Kahl. Computational Complexity

and Feasibility of Data Processing and Interval Computations. Kluwer, 1997.
17. Y. Lebbah, C. Michel, and M. Rueher. An Efficient and Safe Framework for Solving

Optimization Problems. J. Computing and Applied Mathematics, 199:372–377,
2007.

18. Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.P. Merlet. Efficient and safe
global constraints for handling numerical constraint systems. SIAM Journal on
Numerical Analysis, 42(5):2076–2097, 2005.

19. Y. Lin and M. Stadtherr. LP Strategy for the Interval-Newton Method in De-
terministic Global Optimization. Industrial & engineering chemistry research,
43:3741–3749, 2004.

20. D. McAllester, P. Van Hentenryck, and D. Kapur. Three Cuts for Accelerated
Interval Propagation. Technical Report AI Memo 1542, Massachusetts Institute of
Technology, 1995.

21. F. Messine, , and J.-L. Laganouelle. Enclosure Methods for Multivariate Differ-
entiable Functions and Application to Global Optimization. Journal of Universal
Computer Science, 4(6):589–603, 1998.

22. R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
23. R.E. Moore, R. B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis.

SIAM, 2009.
24. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,

1990.
25. A. Neumaier and O. Shcherbina. Safe Bounds in Linear and Mixed-Integer Pro-

gramming. Mathematical Programming, 99:283–296, 2004.
26. J. Ninin, F. Messine, and P. Hansen. A Reliable Affine Relaxation Method for

Global Optimization. Submitted (research report RT-APO-10-05, IRIT, march
2010), 2010.

27. W. Oettli. On the Solution Set of a Linear System with Inaccurate Coefficients.
SIAM J. Numerical Analysis, 2(1):115–118, 1965.

28. T. J. Schaefer. The Complexity of Satisfiability Problems. In Proc. STOC, ACM
symposium on theory of computing, pages 216–226, 1978.

29. M. Tawarmalani and N. V. Sahinidis. A Polyhedral Branch-and-Cut Approach to
Global Optimization. Mathematical Programming, 103(2):225–249, 2005.

30. G. Trombettoni, I. Araya, B. Neveu, and G. Chabert. Inner Regions and Interval
Linearizations for Global Optimization. In AAAI, pages 99–104, 2011.

31. G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proc. CP,
LNCS 4741, pages 635–650, 2007.

32. X.-H. Vu, D. Sam-Haroud, and B. Faltings. Enhancing Numerical Constraint
Propagation using Multiple Inclusion Representations. Annals of Mathematics
and Artificial Intelligence, 55(3–4):295–354, 2009.

