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Stéphane Conversy
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stephane.conversy@enac.fr

Abstract
There is no agreed set of grounded principles on which to rely to an-
alyze and discuss code representations. I propose a combination of
Semiotic of Graphics and ScanVis. I discovered that this unifying
framework brings together many aspects of visual layout and ap-
pearance of programming languages. We describe how the frame-
work applies to programming languages, which is not obvious and
has never been done before. We show how to use the framework to
compare representation of code by relying on sound arguments. Fi-
nally, we use the framework to devise design principles to help gen-
erate new representations. Relying on such a framework can help
researchers and designers invent better languages with respect to
this concern. This work also suggests that the gap between textual
and graphical languages is narrow, and that true visual languages
should rely on the capability of the human visual system.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords Code representation, Visual perception, Semiotic of
graphics, Textual and Visual Programming Languages

1. Introduction
An implicit but important aspect of programming languages is that
they must support the production of readable programs [1]: “Pro-
grams must be written for people to read, and only incidentally for
machines to execute. [2]” Programmers read a program by looking
at its ‘code’ i.e. the representation of the program on the screen,
perceivable by the eyes of a human. Both textual and so-called
‘visual’ representations of programs on the screen employ vari-
ous graphical ‘features’: texts, shapes, alignements, colors, arrows
etc. (fig. 1). Those visual features are often considered as ‘aesthetic
sugar’ that does not map to semantics (e.g. a colored representa-
tion of textual C program), but they can also be part of the syntax
(e.g. indented textual Python code, arrows in state machines, col-
ored Petri-nets).

As with any visual scene, the performances of programmers at
reading textual or visual programs depend on their performances at
perceiving the visual features presented on the screen. However,

[Copyright notice will appear here once ’preprint’ option is removed.]
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CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = new State() {
        Transition press = new PressOnShape(BUTTON1, ">> hyst") {
            public void action() {
                toMove = getShape();
                lastPoint = getPoint(); }}};
    public State hyst = new State() {
        Transition drag = new Drag(BUTTON1, ">> drag") {
            public boolean guard() {
                Point2D newPoint = getPoint();
                return !(newPoint.distance(lastPoint) < 25); }
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};
        Transition release = new Release(BUTTON1, ">> start"); };
    public State drag = new State() {
        Transition stop = new Release(BUTTON1, ">> start") {
        Transition move = new Drag(BUTTON1) {
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};};};

Figure 1. Two representations of the same program using various
graphical features.

few works exist that help justify the choices made by language
designers with respect to those features and performances. Instead,
programmers and designers have to rely on ‘aesthetics’ or ‘personal
preferences’ [1, 3] and specialists warn about possible ‘danger of
religious wars’ when dealing with the topic [4]. The use of such
terms is a sign that there may be a lack of foundation to manage the
phenomenon of code perception, and how this may help or hinder
programmers’ performance.

This paper investigates the principles of programming lan-
guages that underpin the practice of code representation: we aim
at finding the science in the art, instead of finding the art in the
science as advocated in [3]. We propose a framework to describe,
compare and generate visual representations of programming lan-
guages with respect to human perception. The expected benefits of
this work would be to better understand the phenomenon of code
perception, unify the concepts used in the literature, give accurate
definitions to these concepts and help researchers and designers of
programming languages invent more readable languages. For ex-
ample, this work suggests that the gap between textual and graphi-
cal languages is narrow, and that true visual languages should rely
on the capability of the human visual perceptual system.

This work focuses on the representation of ‘a single page’ of
code. Though current trends in this area focus on the management
and representation of large-scale programs, representation at the
level of the page is overlooked. Even if visualisation of large-scale
programs is an important problem, a programmer’s understanding
of a single page of code is still required since the very act of
programming (i.e. editing code) is often done at this level. In
addition, even if interaction with code is important [5, 6], this paper
focuses on visual perception of code only.

2. The Proposed Framework
I propose to use a combination of Semiotics of Graphics and the
ScanVis model as a framework to analyze various code represen-
tations and assess their perceivability. This section presents them
briefly.

short description of paper 1 2012/7/10



2.1 Semiotic of graphics
Semiotic of graphics is a theory of abstract drawings (i.e. drawings
that do not imitate a natural scene) such as maps and bar charts
[7]. A part of this theory describes and explains the perceptual phe-
nomena and properties underlying the act of visualizing 2D abstract
drawings. Semiotic of graphics relies on the characterization of data
to be represented (the data type: nominal, ordered, and quantita-
tive), and the perceptual properties of the visual variables used in a
drawing, such as color or shape.

Drawings are a set of 2D ‘marks’ (a point, a line or a zone) lying
over a background. Marks vary according to visual variables such
as X and Y position (‘planar’ variables), shape, color, luminosity,
size, orientation [7], enclosures and lines that link two marks [8].
Visual variables are characterized by their perceptual properties,
and can be: Selective - enables a viewer to assimilate and differen-
tiate marks instantaneously (e.g. all red marks) (fig. 2); Ordered -
enables a viewer to rank marks perceptually (e.g. from light to dark)
(fig. 3); Quantitative - enables a viewer to quantify differences be-
tween marks perceptually (e.g. twice as large) (fig. 3).

Figure 2. by default all marks are circles and light. (left) Some
marks are dark to produce an H. Luminosity is selective: the H
letter emerges because the eye discriminates two groups of marks
(light and dark) instantaneously. (right) Some marks are square
to produce the same H. Shape is not selective: the H letter does
not emerge because the eye does not discriminate groups instanta-
nously when marks differ by their shape only.

All visual variables but shape and link are selective (fig. 2).
All visual variables but shape, link and color are ordered (colors
are ordered in a limited spectrum only). X and Y position, angle,
length, size are quantitative, to various degrees as experimentally
evidenced [9]. The performance of readers at selecting, ordering or
quantifying depends on the number of values differentiable by them
(e.g. 5 levels of luminosity for selection, 20 levels of luminosity for
order), the difference between each value (the less the worse) and
the spatial distance between marks (the more the worse).

10% 20% 40% 80%

10% 20% 40% 80%

0%

0% Lum

Xpos

Figure 3. (top) Position is quantitative: one can perceive the ratio
and the difference between various X positions (pos. 80% is 2x pos.
40% and 4x pos. 20%); (bottom) Luminosity is ordered but cannot
be perceived quantitatively.
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Figure 4. Two visualization and visual operations for the task "find
how long I have to wait for the next bus." [6]

Fig. 4 shows two representations of a bus schedule, overlaid
with the arrows and circles depicting a visual scanning required to
fulfill a task (see below). The figure also contains the mapping be-
tween data and visual variables (e.g. ‘time → X : O’ means that
the data ‘time’ is mapped to the X visual variable in an Ordered
manner). An efficient representation (with respect to a task, see be-
low) enables the reader to instantaneously perceive patterns, trends,
correlations or outliers inside the totality of marks (global reading
e.g "when are the occurrences of busses?" Fig. 4, bottom), or in a
subset of marks (partial reading e.g. "when are the occurrences of
yellow busses between 4 and 5pm?" in fig. 4, top). A bad repre-
sentation only allows the reader to perform elementary reading: the
reader is required to focus on marks one by one, perceive the visual
variables and retrieve the data. In this case, the representation is not
better than a mere display of texts representing data.

2.2 ScanVis
ScanVis is a descriptive model that helps designers analyze how vi-
sualizations are read [6] and assess their effectiveness with respect
to a reading task. ScanVis relies on the decomposition of visual-
ization tasks into elementary visual operations: memorizing infor-
mation, entering into and exiting from the representation, seeking a
subset of marks, seeking and navigating among a subset of marks,
unpacking a mark and verifying a predicate. Given a task, one can
infer the required sequence of visual operations to accomplish this
task. Fig. 4 shows the required elementary visual operations with
circles and arrows for a particular task (more information in [6]).
Operations are facilitated by the use of adequate visual cues, such
as selective visual variables (color, size or alignment).

3. Application to Programming Languages
Semiotics of Graphics and ScanVis have already been applied to
graphs, charts or visualizations of information. The remainder of
this paper is devoted to their application to programming lan-
guages. Though this seems a rather obvious task (a mere applica-
tion of an existing framework), it is not: reducing visual features of
programming languages to the concepts of the framework proved
to be difficult and required maturing ideas for a long time.

In order to help the reader assess the significance of the pro-
posed framework, we will describe its descriptive power (what
are the phenomena that the framework capture?), its comparative
power (how can it help assess or compare particular code repre-
sentations?) and its generative power (how can it help explore the
design space of code representation?).

As seen above, assessing a particular visual representation of
a program requires identifying the set of reading tasks performed
by the programmer. In the following, I present a number of visual
representations together with tasks. Since reading tasks have sel-
dom been clearly stated in the literature, I had to devise them by
trying to justify interesting aspects of the representations. I assume
that the tasks are the right ones, but I do not claim perfect validity
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on this area, and the reader of this article may disagree with them.
Actually, an outcome of this paper is to initiate a work on the elic-
itation of reading tasks. The tasks presented here are a first step in
this direction.

4. Describing Visual Features Of Languages
The goal of this section is to explore how popular sayings about
code can be appropriately deconstructed and translated to the con-
cepts and vocabulary (in italic) of the framework. If correct and
comprehensive, such translation is the first step toward the valida-
tion of the significance of the framework.

4.1 Visually structuring the code
“Lots of Irritating Superfluous Parenthesis.” Lisp uses parenthe-
sis to structure code. Lists are designated with spaced expressions
surrounded by an opening and a closing parenthesis. Function com-
position uses compound parenthesizing.

(defun fac �n▷ �if ♢<= n 1♢ 1 ♢* n ♡fac ☞- n 1☜♡♢▷)
(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

Figure 5. Delimiters varying in shape. Top: parenthesis, bottom:
other shapes.

Lisp is reputed difficult to read ([10] p65). This difficulty comes
partly from the fact that list boundaries are depicted with two
shapes (opening and closing parentheses, see fig. 5, top) and pre-
vents fulfilling the task “figure out the [lisp] expressions” effi-
ciently. This can be explained with the selectivity concept: since
shape is non-selective, this prevents from seeing Lisp expression
boundaries at a single glance, and forces the programmer to scan
the code linearly to find them out. The bottom line of fig. 5 uses a
unique boundary shape according to the level of depth of enclosure.
This doesn’t work better and also illustrates non-selectiveness, es-
pecially with multiple symbols: for example, it is difficult to find
the diamond closing the multiply expression.

(defun
   fac (n)
   (if
      (<= n 1)
      1
      (*
         n
         (fac
            (- n 1)))))
(fac 5)

(defun
   fac
   (n
   )
   (if
      (<=
         n
         1
      )
      1
      (*
         n
         (fac
            (-
               n
               1
            )
         )
      )
   )
)

(fac 5)

(defun
      fac (n)
      (if
            (<= n 1)
            1
            (*
                  n
                  (fac
                        (- n 1)))))
(fac 5)

(c)

(d)

(defun
 fac
 (n
 )
 (if
  (<=
   n
   1
  )
  1
  (*
   n
   (fac
    (-
     n
     1
    )
   )
  )
 )
)

(fac 5)

(a)

(b)

Figure 6. Delimiters varying in using X, a selective visual vari-
able (a.1). A smaller difference between X values hinders selec-
tion (a.2); improving X selectiveness by shortening positionnal dis-
tances (b.1) or with larger indentation, at the expense of visual scan-
ning, depicted with circles and arrows .(b.2).

“Indentation makes structure obvious.” In fig. 6 (a) the level of
depth is mapped to the X visual variable. Matching parentheses are
“vertically aligned”, which is another way of expressing an assimi-
lation of X values. Since X is selective, the perception of expression
boundaries is better than using a shape. Selectivity depends on the
amount of difference between values: shrinking the size of the in-
dentation lowers the selective ability of X (b). Reserving a line for

a closing parenthesis alone lengthens the Y spatial distance with
the matching opening parenthesis and weakens the selective prop-
erty of the X visual variable (i.e. it is difficult to perceive vertical
alignment) (a and b); ignoring the parenthesis matching problem
altogether shortens the distances and improves X selectivity (c);
more indentation improves selective perception of X (d). However,
the assumed improvement is supposedly done at the expense of a
longer scanning to go from the beginning of a block to its first in-
struction, as experimentally assessed in [20]. Note that since X is
ordered, such a representation also facilitates the task “figure out
the hierarchy of expressions”.

“LabView’s G language is intuitive.” G mixes large boxes that
enclose other objects to specify a hierarchical structure, and links
that connect the components inside and outside boxes (see [24] for
more details). Enclosures may be “intuitive”, but a more appropri-
ate qualification is that they are selective: one can grasp in a single
glance the elements that are part of a parent. They are also ordered
and help perceive a containment hierarchy.

Figure 7. G language from LabView.

extern void printf(char*,...);

int fact(int n);

int main(int argc, char* argv[]) {
  int res = fact(argv[1]);
  printf("fact %s: %s\n",argv[1],res);
  return 0;
}

int fact(int n) {
  int res=1;
  while (n) {
    res *= n;
    n-=1;
  }
  return res;
}

function decl ! Y:O
function def ! Y:N
instruction flow ! Y:O
loop/branch/jump ! Text:N

call function ! Text:N
block ! X:O
block ! shape(X,Y)'{''}':N

Figure 8. C language classification.

“Syntax highlighting improves readability.” Fig. 9 shows an ex-
isting ‘syntax-colored’ textual representation of Java code with the
NetBeans editor. Blue glyphs correspond to reserved keyword of
the Java language, and gray ones to comments. A yellow back-
ground corresponds to a variable at which the mouse pointer points.

Coloring all appearances of a variable the mouse is pointing at
does make sense with a programming task point of view: this en-
ables the programmer to efficiently grasp all occurrences of this
variable thanks to selectivity. Similarly, adding a colored back-
ground to a brace enables the programmer to quickly see where the
corresponding one is and assess the scope of a block. The gray color
is lighter than the other ones: since luminosity is selective, this en-
ables user to rapidly assimilate and differentiate code from com-
ments, and rapidly navigate between sections of the code. Hence
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until they find the right, and find and seek all transitions from 
this state. With circles and arrows, one can consider that large 
white circles are selective compared to other marks (because of 
their size and luminosity). With SwingStates code, the 
indentation is also selective. Hence both representations help 
seek a subset of marks. Finding ‘out’ transition is more 
efficient in SwingStates code since all transitions are out 
transitions. With circle-and-arrows, one has to differentiate 
between links with and without arrowhead laid around the 
circles. Links without arrowhead may be more difficult to 
differentiate than other marks. 

 
Figure 14.  ScanVis for the task: “what are the out transitions for state ‘hyst’?” 

 
Figure 15.  ScanVis for  the task: “what are the in transitions of state ‘hyst’?” 

Figure 15. illustrates the visual operations required for the task 
“what are the in transitions for a particular state?” For the 
circle-and-arrows representation, the operations are almost 
similar to the operations required in the previous task. Finding 
the ‘in’ transition may be facilitated by the fact that arrowheads 
are dark and thus selective. With the SwingState code, the 
visual operations are very different: one has to find the name of 
the states inside a transition. Most of those names are on the 
right part of the code, which helps seek and find them. Still, 
since they are texts, it may be difficult to navigate without any 
risk of missing one. 

 
Figure 16.  ScanVis for task: “go to the state following a transition ‘Drag’ on 

state ‘Hyst.’” 

Figure 16. illustrates the visual operations required for the 
task “go to the state following a transition ‘Drag’ on a 
particular ‘Hyst.’”. One has to find the first state, find the 
transition, and go to the state following this transition. After 
having found the transition, it may be easier to follow a link in 
the case of circle-and-arrows than find a text (the name of the 
next state) in the case of the SwingState code. 

VI. GENERATING NEW DESIGNS 
This section introduces a number of design principles to make 
new designs emerge and illustrates them with a number of 
examples. I devised the design principles by examining how 
existing designs improve over former ones. 

Seek selectivity. Figure 17.  shows a ‘syntax-colored’ 
textual representation of Java code with the NetBeans editor. 
Blue glyphs correspond to reserved keyword of the Java 
language, and gray ones to comments. A yellow background 
corresponds to a variable at which the mouse pointer points. 
// replicable pseudo random generator 
Random rpos = new Random(456); 
Random r = new Random(321); 
double[] sizes = new double[6]; 
double a = 10, b = 5; 
for (int i = 0; i < sizes.length; ++i) { 
   sizes[i] = a * i + b; 
} 
float[] tricol = new float[3], rgb, lch; 
lch = tricol; 
lch[0] = 40; 
lch[1] = 100; 
lch[2] = 45; 
Color c1 = srgb.fromLCHtoColor(lch); 
[…] 
System.out.println(“[debug] color is”+c1); 
// compute each symbol hue 
for (int i=0; i<hue_symbol.length(); ++i) { 
   lch[2] = (float)(i*360./hue_symbol.length()); 
   colors[i] = srgb.fromLCHtoColor(lch); 
   hue_shapes.add(buildShape(g, hue_symbol.substring(i,i+1), w, h)); 
}||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Figure 17.  Colored editor 

Coloring all appearances of a variable the mouse is pointing 
at does make sense as a programming task point of view: this 
enables the programmer to efficiently grasp all occurrences of 
this variable thanks to selectivity. Similarly, adding a colored 
background to a brace enables the programmer to quickly see 
where the corresponding one is and assess the scope of a block. 
The gray color is lighter than the other ones. Luminosity is 
selective and enables user to rapidly assimilate and 
differentiate code from comments, and rapidly navigate 
between sections of the code. Hence this removes the need to 
scan the first letters of a line to check if it begins with two 
slashes, a much more demanding visual task since shape (‘//’) 
is not selective. In addition, the order of luminosity indicates 
an order of importance between code, comments, and 
background. 

Identify the task and seek selectivity only if needed. Using 
color for keyword is not related to any task the programmer 
should accomplish. Of course, one can argue that it helps 
assess that a keyword has been recognized as the user types it, 
and that no lexical error has been made. Nonetheless, fulfilling 
this task does not require a selective variable such as color. 
One should fall down to elementary reading instead, by using a 
non-selective variable such as a shape, or a typeface e.g. 
‘unrecognized’ in ‘italic’, ‘recognized’ in ‘regular’. This would 
reserve color, a scarce resource, for a more efficient use. 

Figure 9. Colored editor.

this removes the need to scan the first letters of a line to check
if it begins with two slashes, a much more demanding visual task
since shape (‘//’) is not selective. In addition, the order of luminos-
ity indicates an order of importance between code, comments, and
background.

4.2 Understanding instructions flow
“The instruction flow in C is implicit.” In a block of C instruc-
tions, a sequence of texts separated by semi-columns denotes a se-
quence of instructions. Often, instructions are put together with one
line for each instruction. In this case, the Y visual variable is used
in an ordered manner, and maps the ordered sequence of the pro-
gram counter. This makes the programmer visualize the evolution
of the program counter path by scanning the textual instructions
vertically. Thus, the task “given an particular instruction, what is
the next instruction to be executed?” is efficiently supported by the
representation since it uses a selective, ordered variable. As such,
the instruction flow is depicted explicitly (and not implicitly) with
the X visual variable. Calls to function or gotos are a different story
since they are done by name (a shape), a visual variable that is not
selective. In order to fulfill the same task from a call instruction
(“next instruction?”), the user has to scan the representation and
seek the answer.

“Arrows make the instruction flow explicit” Fig. 10 shows a
circle-and-arrow description of a Drag’n’Drop interaction with
hysteresis [11]. There are three states (‘start’, ‘hyst’ and ‘drag’),
one transition from state ‘start’, and two from states ‘hyst’ and
‘drag’. The instruction flow is entirely depicted with arrows. To
fulfill the task “figure out the flow”, a reader must seek a subset
of marks (links) and navigate visually by following arrows, which
may be slow especially when arrows are numerous.

start
hyst

drag

Press

Release Drag > d

Drag

Release

state ! circle:S
transition ! link:S
out transition ! link/L:S
in transition ! link/L:S
instruction flow ! link:scan

state name ! text:N
transition clause ! text:N
PC ! N/A

Figure 10. Box-and-arrow representation of a state machine.

Code Bubble is an IDE that presents code with function snippets
inside individual window resembling ‘bubbles’ [12]. Users can
juxtapose bubbles that contain related code. One use is to display
the code of a callee into a bubble at the right of a bubble containing

the caller. Hovering over a bubble highlights the connections and
code lines that lead to it by changing the color or luminosity of the
links. This turns a non-selective variable (link) to selective (colored
link) and helps users figure out the flow and navigate between
instructions that belong to related functions.

call function ! Arrow:N
block ! X:O
block ! shape(X,Y)'{''}':N

function decl ! Y:O
function def ! Y:N
instruction flow ! Y:O
loop/branch/jump ! Text:N

Figure 11. Code Bubble classification.

0&>:1-:v v *_$.@ 
  ^    _$>\:^

0&>:1-:v v *_$.@ 
  ^    _$>\:^

stack n-=1 pop & multin out

instruction flow ! X,Y:O+Symbol:N
loop/branch/jump ! Symbol:N
call function ! N/A
block ! Symbols Containment:N

Figure 12. Factorial in befunge (top); explanation of the flow
(bottom).

“Befunge is an esoteric language” Befunge is a 2D textual
language that can be considered a missing link between textual
and visual languages, instead of esoteric. In Befunge, the flow is
indicated by the four shapes <, >, ^, v, which resemble to pointing
arrows in the four cardinal directions. Branching is specified by
- (equivalent to < if the condition is true and to > otherwise)
and | (equivalent to ^ if the condition is true and to v otherwise).
However, not only the flow is not graspable at once (only real
arrows and links help a little in the bottom part of the picture), but
also directional shapes are not selective and cannot be perceived
instantaneously.

4.3 Understanding functionality: “Icons are easier to use
than texts”

Icons are often considered easier to interpret than text. Fig. 8 in [26]
illustrates the use of ‘analog’ [26] iconic vocabulary in LabView’s
control-flow structures. In this case, icons are differentiated with
shapes (arrowheads, page corners, spirals, ‘N’, ‘I’). When icons
vary according to shape only (a non-selective variable), one can
only perform a slow elementary reading on a scene. In other visual
languages, icons vary in shape but also along other visual variables,
which may turn them selective. For example, the third line of fig.
13 uses a set of shapes with which selection and ordering seem
to ‘work’: this is because they do not contain the same number of
pixels and exhibit different levels of luminosity, a selective variable.

5. Comparing Code Representations
This section shows how the framework helps compare code repre-
sentations.

5.1 Luminosity, color and position of enclosing symbols
In fig. 19, the first line maps level of depth with unique colors. Since
color is selective, this enables the reader to assimilate at one glance
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all parentheses with the same level of depth. However, one has to
wonder if the task “assimilate level of depth” is worth facilitating:
even if a reader correctly detects each opening and closing paren-
thesis, one has to remember the discovered structure to make sense
of it. If an appropriate visual variable was used instead, the pro-
grammer could use it as an externalization of memory to recall the
structure by accessing it immediately, in one glance. For example,
the fourth line uses luminosity alone. Luminosity is selective (and
helps match parentheses), and ordered (helps perceive the relative
depth). One cannot perceive the exact depth since as opposed to X
luminosity is not quantitative. But ordering may be sufficient for
the task at hand.

(defun fac �n▷ �if !<= n 1! 1 !* n "fac #- n 1#"!▷)

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))
(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

Figure 13. Delimiters varying in hue, luminosity, and
shape+luminosity.

5.2 Y versus Arrows
As we have seen above, instruction flow can be depicted using
Y or links and arrows. Links and arrows are not selective visual
variables: a reader is forced to follow the chain of links to figure out
the flow (fig. 14-a). This can be supplemented with alignment cues,
i.e. using the selective property of Y. In this case, the visualization is
equivalent to indented code in a C program (fig. 14-b). Everything
is as if an arrow that would connect two following C instructions
is actually not showed because it would be redundant with the
Y:O representation (fig. 14-c) Nonetheless, keeping an arrow for
the loop would help the reader scan up to the beginning of a
loop, similarly to box-and-arrow languages. Scratch [13] is a visual
language with connectors on blocks suggesting how they should be
put together. The connectors are similar to the arrows: they guide a
reader following the instructions sequence (fig. 14-d). The start of
the loop can be perceived selectively with color and containment.
These examples show how different representations can be unified
with the same underlying principles.

int fact(int n) {

  int res=1;

  while (n) {

    res *= n;

    n-=1;

  }

  return res;

}

int fact(int n) {

  int res=1;

  while (n) {

    res *= n;

    n-=1;

  }

  return res;

}

(a) (b) (c) (d)

int fact(int n)

int res=1;

while (n)

res *= n;
n-=1;

return res;

Figure 14. Arrows could have been used in C (b), as in box-
and-arrow languages (a). Since arrows are redundant the ordered
Y visual variable, they can be removed, except for the loop (c).
Scratch uses similar visual variables (d).

As seen above, arrows are often said to be an explicit represen-
tation of the instructions sequence. To be more precise, they are an
explicit representation of the direction of the sequence. However,
they are no more explicit on the order of the sequence than Y, since
the selective visual variable Y explicitly shows it already (both in
the C version and the scratch version).

5.3 Comparing with multiple, more demanding tasks
Code representations are used to fulfill multiple reading tasks.
When comparing them, one should enumerate a realistic set of
tasks and assess how each representation rate with respect to each
task. Fig. 15 shows the SwingState code describing the same
Drag’n’drop interaction as in Figure 10. [11]. SwingStates is a

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = new State() {
        Transition press = new PressOnShape(BUTTON1, ">> hyst") {
            public void action() {
                toMove = getShape();
                lastPoint = getPoint(); }}};
    public State hyst = new State() {
        Transition drag = new Drag(BUTTON1, ">> drag") {
            public boolean guard() {
                Point2D newPoint = getPoint();
                return !(newPoint.distance(lastPoint) < 25); }
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};
        Transition release = new Release(BUTTON1, ">> start"); };
    public State drag = new State() {
        Transition stop = new Release(BUTTON1, ">> start") {
        Transition move = new Drag(BUTTON1) {
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};};};

state ! X:S?
transition ! X:S?
out transition ! text:N
in transition ! text:N
next state ! text:N

state name ! text:N
transition clause ! X:S
instruction flow ! Y:O

Figure 15. 1D Text representation of the state machine.

textual language for describing state machines [14]. SwingStates
relies on the Java reflexive facility to be embedded seamlessly in
regular java code. The code is indented to facilitate perception of
the states, the transitions from each state, and the clauses associated
to the transitions.

Fig. 16 compares the visual operations required for the task
“what are the out transitions for a particular state?” In both rep-
resentations, readers have to seek and navigate among states until
they find the right one, and find and seek all transitions from this
state. With circles-and-arrows, one can consider that large white
circles are selective compared to other marks (because of their size
and luminosity). With SwingStates code, the indentation is also se-
lective. Hence both representations help seek a subset of marks.
Finding ‘out’ transition is more efficient in SwingStates code since
all transitions are out transitions. With circle-and-arrows, one has to
differentiate between links with and without arrowhead laid around
the circles. Links without arrowhead may be more difficult to dif-
ferentiate than other marks.

start
hyst

drag

Press

Release Drag > d

Drag

Release

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = new State() {
        Transition press = new PressOnShape(BUTTON1, ">> hyst") {
            public void action() {
                toMove = getShape();
                lastPoint = getPoint(); }}};
    public State hyst = new State() {
        Transition drag = new Drag(BUTTON1, ">> drag") {
            public boolean guard() {
                Point2D newPoint = getPoint();
                return !(newPoint.distance(lastPoint) < 25); }
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};
        Transition release = new Release(BUTTON1, ">> start"); };
    public State drag = new State() {
        Transition stop = new Release(BUTTON1, ">> start") {
        Transition move = new Drag(BUTTON1) {
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};};};

M "hyst"M "hyst"

Figure 16. ScanVis for the task: “what are the out transitions for
state ’hyst’?” .

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = new State() {
        Transition press = new PressOnShape(BUTTON1, ">> hyst") {
            public void action() {
                toMove = getShape();
                lastPoint = getPoint(); }}};
    public State hyst = new State() {
        Transition drag = new Drag(BUTTON1, ">> drag") {
            public boolean guard() {
                Point2D newPoint = getPoint();
                return !(newPoint.distance(lastPoint) < 25); }
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};
        Transition release = new Release(BUTTON1, ">> start"); };
    public State drag = new State() {
        Transition stop = new Release(BUTTON1, ">> start") {
        Transition move = new Drag(BUTTON1) {
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};};};

start
hyst

drag

Press

Release Drag > d

Drag

Release

M "hyst" M "hyst"

Figure 17. ScanVis for the task: “what are the in transitions of
state ‘hyst’?”

Fig. 17 illustrates the visual operations required for the task
‘what are the in transitions for a particular state?” For the circle-
and-arrows representation, the operations are almost similar to the
operations required in the previous task. Finding the ‘in’ transition
may be facilitated by the fact that arrowheads are dark and thus
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selective. With the SwingState code, the visual operations are very
different: one has to find the name of the states inside a transition.
Most of those names are on the right part of the code, which helps
seek and find them. Still, since they are texts, it may be difficult to
navigate without any risk of missing one.

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = new State() {
        Transition press = new PressOnShape(BUTTON1, ">> hyst") {
            public void action() {
                toMove = getShape();
                lastPoint = getPoint(); }}};
    public State hyst = new State() {
        Transition drag = new Drag(BUTTON1, ">> drag") {
            public boolean guard() {
                Point2D newPoint = getPoint();
                return !(newPoint.distance(lastPoint) < 25); }
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};
        Transition release = new Release(BUTTON1, ">> start"); };
    public State drag = new State() {
        Transition stop = new Release(BUTTON1, ">> start") {
        Transition move = new Drag(BUTTON1) {
            public void action() {
                toMove.translateBy(getPoint().difference(lastPoint));
                lastPoint = getPoint(); }};};};

M "hyst"

Mstart
hyst

drag

Press

Release Drag > d

Drag

Release

M "state:hyst"
M "transition:Drag"

Figure 18. ScanVis for task: “go to the state following a transition
‘Drag’ on state ‘Hyst’.”

Fig. 18 illustrates the visual operations required for the task ‘go
to the state following a transition ‘Drag’ on state ‘Hyst’ ”. One has
to find the first state, find the transition, and go to the state following
this transition. After having found the transition, it may be easier to
follow a link in the case of circle-and-arrows than find a text (the
name of the next state) in the case of the SwingState code.

6. Generating New Code Representations
This section introduces a number of design principles to make new
code representations emerge and illustrates them with a number
of examples. I devised the design principles by examining how
existing representations improve over former ones.

Identify the task and seek selectivity only if needed. In the
colored code editor fig. 9, using color for all keywords may not
be related to any task the programmer should accomplish (e.g. find
all ‘for’ loops). Of course, one can argue that it helps assess that a
keyword has been recognized as the user types it, and that no lexical
error has been made. Nonetheless, fulfilling this task does not
require a selective variable such as color. One should fall down to
elementary reading instead, by using a non-selective variable such
as a shape, or a typeface e.g. ‘unrecognized’ in ‘italic’, ‘recognized’
in ‘regular’. This would reserve color, a scarce resource, for a more
efficient use.

Try swapping visual variables. One way to generate represen-
tations is to explore the design space by swapping visual variables
for more efficient ones. Fig. 19 illustrates alternative representa-
tions using size and Y position as visual variables instead of color.
Since these visual variables are selective and ordered, they help the
reader visualize the structure of the code, similarly to the more tra-
ditional use of the X visual variable (indentation).

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))
(defun fac                                        )(n) (if          1                    )(<= n 1) (* n              )(fac        )(- n 1)

Figure 19. Using size and Y as visual variables.

Shorten spatial distance. As said previously, reducing spatial
distance may improve selectivity. Fig. 6 b.1 shows a representation
that shortens spatial distance, but one cannot match parentheses
anymore, which can be annoying when trying to add a missing
parenthesis. Fig. 20 is a representation that shortens the spatial
distance while keeping easy to match parentheses. Remarkably,
if the parentheses match perceptually according to the X visual
variable, they do not match conceptually: for example, the opening
parenthesis at the beginning of the ‘defun’ function conceptually
matches with the rightmost closing parenthesis on the penultimate

line of the code, but is aligned with the closing parenthesis of the
call to factorial. This illustrates that perception can prevail over the
conceptual model, as long as semantic is preserved.

(defun
   factorial (n)
   (if
      (<= n 1)
      1
      (*
         n
         (factorial
            (- n 1)
)  )  )  )

(factorial 5)

Figure 20. Shortening spatial distance: parentheses match percep-
tually, but do not match conceptually.

Another representation that reduces distance is shown in Fig.
21. With a debugger, the user can step inside the call of a function.
This can be made with a toggle arrow: when toggled, the code
of the function unfolds under the call of the function. A similar
feature could be used for static code: this would help understand
how functions compose without the need to memorize the code
surrounding the call of a function and switch visually between the
distant representations of the two functions.

(defun
   factorial (n)
   (if
      (<= n 1)
      1
      (*
         n
         (factorial (- n 1)))))

(factorial 5)

▶

(defun
   factorial (n)
   (if
      (<= n 1)
      1
      (*
         n
         (factorial (- n 1)))))
         (if
            (<= n 1)
            1
            (*
               n
               (factorial (- n 1)))))

(factorial 5)

▶

▶

Figure 21. ‘Debugger view’ of code.

An asset of such a ‘tree-view’ is that it shortens the distance
between instructions before the call and instructions at the begin-
ning of the function being called. However, this also expands the
distance between the instructions before the call and after the call,
especially when multiple functions are deployed. A ‘browser’ view
ala SmallTalk can help see details and contexts of the call i.e.
shorten both the distances (Fig. 22). In fact, Code Bubble can be
seen as a tentative to shorten distance between calling and called
code. The previous examples are variations on this idea that do not
need arrows, and may thus be more efficient.

(defun eval. (e a) (cond
((atom e) (assoc. e a))
((atom (car e)) (cond

((eq (car e) 'quote) (cadr   e))
((eq (car e) 'atom)  (atom   (eval. (cadr e) a)))
((eq (car e) 'eq)    (eq     (eval. (cadr e) a)   (eval. (caddr e) a)))
((eq (car e) 'car)   (car    (eval. (cadr e) a)))
((eq (car e) 'cdr)   (cdr    (eval. (cadr e) a)))
((eq (car e) 'cons)  (cons   (eval. (cadr e) a)   (eval. (caddr e) a)))
((eq (car e) 'cond)  (evcon. (cdr    e) a))
('t                  (eval.  (cons  (assoc. (car e) a) (cdr e)) a

▶ ▶ ▶

Figure 22. Browser view’ of the lisp ‘eval’ function.

Explore and leverage off properties of visual variables. In a typi-
cal imperative language, Y is used in an ordered manner only. Since
the distance between instructions has no meaning, a representa-
tion could vary distances to misalign statements and align synchro-
nization statement only. In Fig. 23-left, selectivity of the Y vari-
able helps see at a glance the synchronization points, and removes
false information conveyed by perfectly aligned statements. Dis-
tance can also be used to convey quantity. Fig. 23-right illustrates
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sync1
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aaa
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end

start
bbb
bbb
bbb
bbb
bbb
bbb
bbb
sync1

bbb

sync2
bbb
bbb
bbb
bbb
bbb
bbb
end

thread a thread b

start

aaaaa

aaaaa

aaaaa

sync1

aaaaa

aaaaa

sync2

aaaaa

aaaaa

aaaaa

enddd

start

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

sync1

bbbbb

sync2

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

enddd

thread a thread b

Figure 23. Left: Y used as a selective variable: instructions are
aligned when synchronized, and misalign when not synchronized.
Right: Y used as a quantitative variable: the number of cycles
is mapped to the distance between instructions (aaaaa: 2cycles,
bbbbb: 1 cycle).

a representation that uses Y as a quantitative variable to depict two
concurrent sequences of instructions. The number of cycles taken
by each instruction is mapped to the Y dimension. The larger the
space after an instruction, the larger the number of cycles it takes
to execute it. This gives a sense of the time spent on some parts
of code, and can help balance the instructions in order to minimize
wasted cycles while waiting for the concurrent process when syn-
chronization is needed.

7. Threats To Validity
The proposed framework relies on models, and as such it is also
a simplification of the reality. Even if the framework allows us
to describe a number of the perceptual phenomena underlying the
perception of code, some of the phenomena may not have been
identified because of the limited capability of the framework, or
because their explanation or cause is different (hammer and nail
problem). Visual perception is complex, and some of the visual
operations may be bypassed because of specific conditions (layout,
number of items involved). Furthermore, code representation is not
the only factor that contributes to program understanding. Other
cognitive factors, such as learning, expertise, API usability and
documentation [19] contribute to program understanding, and may
influence the way the user perceives or scans the code.

The aim of the examples is not to convince the reader of this
paper that the analyses are right or wrong. Nonetheless, most of
the visual features of programming language implicitly assume the
kind of phenomena described here. Again, the framework serves
as a rationale tool for language design. By using common concepts
and vocabulary, designers of language can argue precisely why they
think that a particular feature is or is not appropriate. This is similar
to the objectives of the cognitive dimension of notations [5].

8. Related Work
Reading code is a complex process that involves many aspects.
I have selected a number of works that address formatting, the
performances at reading, the difference between textual and visual
languages, and the frameworks to analyze them.

8.1 Formatting and pretty-printing
In order to facilitate reading, ‘formatting well’ is often advised
and discussed in early fundamental papers about programming lan-
guages even if not visual (see the discussion in [15]): “Code for-
matting is about communication, and communication is the pro-
fessional developer’s first order of business” [4]. In a recent work,
formatting is still associated to an ‘art’ [3]. Actually, the problem
of program representation is well beyond mere code formatting, too
narrow a concept that refers to the more general problem of the vi-
sual perception of the code presented to the programmer through
language editors.

8.2 Performances at reading programming languages
A number of visual designs were proposed to improve reading per-
formances [16–19]. The indentation length has been experimen-
tally shown to have an impact on the comprehension of code: 2-
and 4-spaces indentation makes readers better at understand the
code than 6-spaces indentation, be they readers novice or expert
[20]. Eye tracking has been used to observe programmers but only
to measure switching between a view on the code and a view pre-
senting an animated algorithm [21].

Moher et al. observed that “performance was strongly depen-
dent to the layout of the Petri nets. In general, the results indicate
that the efficiency of a graphical program representation is not only
task-specific, but also highly sensitive to seemingly ancillary is-
sues such as layout and the degree of factoring” [22]. Green et al.
found that textual representations outperformed LabView for each
and every subject [23]. Their explanation is that ‘the structure of the
graphics in the visual programs is, ‘paradoxically’, harder to scan
than in the text version”. LabView and its G language have been
studied “in the wild” [25]. Respondents declared that G is easier to
read than textual programming languages. G is supposed to provide
an overview (a gestalt view) and clarifies the structure. However,
they also say that it is very easy to create messy, cluttered, hard to
read spaghetti code and that sequence structures tend to be cryptic
or obscure.

8.3 Differences between textual and visual languages
Researchers have already wondered where the actual differences
between textual and visual languages lie. In [26] Petre argues that
the differences in effectiveness between TL and VL “lie not so
much in the textual-visual distinction as in the degree to which
specific representations support the conventions experts expect”.
As Petre noticed, programmers can find gestalt patterns in textual
representation [26].

Much of ‘what contributes to comprehensibility of a graphical
representation is not part of the formal notation but a ‘secondary
notation’: layout, typographical cues and graphical enhancements.”[26].
Petre adds that “the secondary notations [e.g. layout] are subject to
individual skills (i.e. learned ones) and make the difference be-
tween novices and experts. What is required in addition is good use
of secondary notation, which like ’good design’ is subject to per-
sonal style and individual skill” [26]. I take an alternative point of
view: I argue here that even if skills can be learned, the basic visual
capability of humans is enough to explain much of the easiness or
difficulty of programmers to decipher a program.

8.4 Analysis frameworks
There have been attempts at building a metric for software readabil-
ity. In the metric from [27], a few features can be considered per-
ceptual (comma, spaces, indentation), but most are based on the se-
mantic of the texts. The ‘cognitive dimensions of notation (CDN)’
is a framework that helps designers analyze interactive tools, in-
cluding programming environments and languages [5]. CDN di-
mensions targets the cognitive and interactive aspects as opposed to
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the perceptive aspects: the graphics and perception concerns are ad-
dressed partly in the secondary notation and visibility dimensions.
Gestalt is a well-known framework that explains the phenomena
underlying pattern perception. Gestalt can be used to explain how
programmers may perceive patterns in their code, but I found that
Gestalt could not report about all perception phenomena. So-called
pre-attentive features also have a role in the perception of code
[28]. Semiotic of Graphics subsumes pre-attentive features, and ad-
dresses other levels of perception than Gestalt.

Physics of Notations focus on the perceptual properties of nota-
tions [29]. Though using similar frameworks than mines, the level
of perception addressed is higher and oriented towards guidelines.
My work offers a finer grain analysis of code perception together
with operational design principles.

9. Conclusion
Pretending that a framework is not only descriptive and compara-
tive, but also generative is a strong claim. In particular, a precise
and detailed method to describe, compare and generate code repre-
sentations is still missing. Still, I exposed some elements that can
be reused by designers, in particular a way to compare represen-
tations and operational principles to explore the design space. One
can wonder why a particular account of a phenomenon would be
of any interest if it’s not fully operational. However, a framework
often takes years to be appropriated and to be developed (e.g. cog-
nitive dimensions). Even a this stage, a unifying framework that
relies on a set of consistent concepts may lead to important discov-
eries and insights.

For example, such a framework explains why the boundaries be-
tween what we used to consider textual and visual languages blur.
Indeed, the assets or flaws traditionally associated to a particular
mean of presenting code are at stake: most of the textual languages
are displayed using planar variables and thus may use the percep-
tual system efficiently, while so-called visual languages may use
visual variables (icons, links) quite inefficiently. Actually, except
maybe for lambda-calculus with no spaces, all practical languages
are graphical. A true visual language would then be a graphical
language that actually leverages the perceptual system. When de-
signing a true visual language, the designer should think with the
tasks in mind. This is not a linear process, where the designer would
first devise the task, then find a visual representation. Rather, it is
an iterative process: devising reading tasks and finding a visual rep-
resentation contribute to each other, and the process is a refinement
of both the problem (task) and the solution (visual representation).
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