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Disjoint unions of complete graphs characterized

by their Laplacian spectrum ∗

Romain Boulet
†

Dec. 2009

Abstract

A disjoint union of complete graphs is in general not determined by

its Laplacian spectrum. We show in this paper that if we only consider

the family of graphs without isolated vertex then a disjoint union of com-

plete graphs is determined by its Laplacian spectrum within this family.

Moreover we show that the disjoint union of two complete graphs with a

and b vertices, a

b
>

5

3
and b > 1 is determined by its Laplacian spectrum.

A counter-example is given when a

b
= 5

3
.

Keywords: Graphs, Laplacian, complete graphs, graphs determined by

its spectrum, strongly regular graphs.

AMS subject classifications: 05C50, 68R10.

1 Introduction and basic results

The Laplacian of a graph G is the matrix L defined by L = D −A where D is
the diagonal matrix of the degrees of G and A is the adjacency matrix of G. The
Laplacian spectrum gives some informations about the structure of the graph
but determining graphs characterized by their Laplacian spectrum remains a
difficult problem [2].

In this paper we focus on the disjoint union of complete graphs. A complete
graph on n vertices is denoted by Kn and the disjoint union of the graphs G

and G′ is denoted by G ∪G′. The Laplacian spectrum of Kk1
∪Kk2

∪ ... ∪Kkn

is
{k(k1−1)

1 , k
(k2−1)
2 , ..., k(k1−1)

n , 0(n)}
but in general the converse is not true: a disjoint union of complete graphs is not
in general determined by its Laplacian spectrum. For instance [2] the disjoint
union of the Petersen graph with 5 isolated vertices is L-cospectral with the
disjoint union of the complete graph with five vertices and five complete graphs
with two vertices, these graphs are depicted in figure 1.

In this paper we show in Section 2 that the disjoint union of complete graphs
without isolated vertex is determined by its Laplacian spectrum in the family of
graphs without isolated vertex. Then in Section 3 we study the disjoint union
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Figure 1: The graph drawn on the left is a graph non-isomorphic to a disjoint
union of complete graphs but Laplacian cospectral with the disjoint union of
complete graphs drawn on the right

of two complete graphs Ka and Kb and show that if a
b
> 5

3 then Ka ∪ Kb is
determined by its Laplacian spectrum.

To fix notations, the set of vertices of a graph G is denoted by V (G) and
the set of edges is denoted by E(G); for v ∈ V (G), d(v) denotes the degree of v.
The complement of a graph G is denoted by G and concerning the spectrum,

Sp(G) = {µ(m1)
1 , · · ·µ(mk)

k } means that µi is mi times an eigenvalue of L (the
multiplicity of µi is at least mi, we may allow µi = µj for i 6= j).

We end this introduction with some known results about the Laplacian spec-
trum and strongly regular graphs.

Theorem 1 [6] The multiplicity of the Laplacian eigenvalue 0 is the number of
connected components of the graph.

Theorem 2 [4, 6] Let G be a graph on n vertices whose Laplacian spectrum is
µ1 ≥ µ2 ≥ ... ≥ µn−1 ≥ µn = 0. Then:

1. µn−1 ≤ n
n−1 min{d(v), v ∈ V (G)}.

2. If G is not a complete graph then µn−1 ≤ min{d(v), v ∈ V (G)}.

3. µ1 ≤ max{d(u) + d(v), uv ∈ E(G)}.

4. µ1 ≤ n.

5.
∑

i µi = 2|E(G)|.

6. µ1 ≥ n
n−1 max{d(v), v ∈ V (G)} > max{d(v), v ∈ V (G)}.

Theorem 3 Let G be a graph on n vertices, the Laplacian spectrum of G is:

µi(G) = n− µn−i(G), 1 ≤ i ≤ n− 1

Corollary 1 Let G be a graph on n vertices, we have µ1(G) ≤ n with equality
if and only if G is a non-connected graph.

Theorem 4 [2] A complete graph is determined by its Laplacian spectrum.

Definition 1 [5] A graph G is strongly regular with parameters n, k, α, γ if
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• G is not the complete graph or the graph without edges

• G is k-regular

• Every two adjacent vertices have exactly α common neighbors

• Every two non-adjacent vertices have exactly γ common neighbors

Theorem 5 [5] A regular connected graph is strongly regular if and only if it
has exactly three distinct adjacency eigenvalues.
A strongly regular non-connected graph is the disjoint union of r complete graphs
Kk+1 for a given r.

Theorem 6 [5] Let G be a connected strongly regular graph with parameters
n, k, α, γ and let k, θ, τ the eigenvalues of its adjacency matrix. Then:

θ =
α− γ +

√
∆

2

τ =
α− γ −

√
∆

2

where
∆ = (α− γ)2 + 4(k − γ) = (θ − τ)2

Moreover, let mθ (resp. mτ ) the multiplicity of θ (resp. τ), then:

mθ = − (n− 1)τ + k

θ − τ

mτ =
(n− 1)θ + k

θ − τ

That is:

mθ =
1

2

(

n− 1− 2k + (n− 1)(α− γ)√
∆

)

mτ =
1

2

(

n− 1 +
2k + (n− 1)(α− γ)√

∆

)

2 Disjoint union of complete graphs

The aim of this section is to show that if we consider graphs without isolated
vertex then the disjoint union of complete graphs is determined by its Laplacian
spectrum.

We first state some results about disjoint union of complete graphs (including
isolated vertices).

Proposition 1 The Laplacian spectrum of a graph G with one and only one
positive Laplacian eigenvalue a is {a(ra−r), 0(r+p)} and G is isomorphic to
Ka ∪Ka · · · ∪Ka
︸ ︷︷ ︸

r times

∪K1 ∪K1 ∪ · · · ∪K1
︸ ︷︷ ︸

p times

.
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Proof : Let G be a graph with one and only one positive Laplacian
eigenvalue a and let H be a connected component of G different from K1. The
graph H has one and only one positive eigenvalue a. If H is not a complete
graph, then by theorem 2 we have a ≤ min{d(v), v ∈ V (G)} ≤ max{d(v), v ∈
V (G)} < a, contradiction. As a result H is a complete graph and H is iso-
morphic to Ka and there exists r ∈ N

∗, p ∈ N such that G is isomorphic to
Ka ∪Ka · · · ∪Ka
︸ ︷︷ ︸

r times

∪K1 ∪K1 ∪ · · · ∪K1
︸ ︷︷ ︸

p times

.

�

Theorem 7 There is no cospectral non-isomorphic disjoint union of complete
graphs.

Proof : Let G = Kk1
∪· · ·∪Kkn

and G′ = Kk′

1
∪· · ·∪Kk′

n′
, we have n = n′

(same number of connected components). If G and G′ are not isomorphic then
there exists λ ∈ N \ {0, 1} such that the number of connected components of
G isomorphic to Kλ is different from the number of connected components of
G′ isomorphic to Kλ. Therefore, the multiplicity of λ as an eigenvalue of the
Laplacian spectrum of G is different from the multiplicity of λ as an eigenvalue
of the Laplacian spectrum of G′ and so G and G′ are not cospectral.

�

Theorem 8 Let G be a graph without isolated vertex. If the Laplacian spectrum

of G is {k(k1−1)
1 , k

(k2−1)
2 , ..., k

(kn−1)
n , 0(n)} with ki ∈ N\{0, 1} then G is a disjoint

union of complete graphs of order k1, ..., kn.

Proof : The graph G has n connected components (Theorem 1) G1, ..., Gn

of order l1, ..., ln. We denote by N the number of vertices of G. We have

N =

n∑

i=1

li =

n∑

i=1

ki

Let kj be an eigenvalue of G, there exists i such that kj is an eigenvalue of
Gi, so li ≥ kj (Theorem 2).

Let Gi be a connected component, as G does not have isolated vertices we
have li > 1 and Gi possesses at least one eigenvalue different from 0, let kj be
this eigenvalue, we have li ≥ kj .
As a result

∀j ∃i : li ≥ kj

∀i ∃j : li ≥ kj

We assume k1 ≥ k2 ≥ ... ≥ kn > 0 and l1 ≥ l2 ≥ ... ≥ ln > 1. We now show by
induction on j that kn−j ≤ ln−j, ∀j = 0...n− 1.

• j = 0: we know that there exists j such that kj ≤ ln, so kn ≤ ln.
• Let j0 > 0. We assume that ∀j < j0, kn−j ≤ ln−j et let us show that

kn−j0 ≤ ln−j0 by contradiction. If kn−j0 > ln−j0 then kn−j0 > ln−j, ∀j < j0 so
kn−j , j ≥ j0, cannot be an eigenvalue of Gn−j , j < j0. So

⋃

j<j0

(Sp(Gn−j) \ {0}) ⊂
⋃

j<j0

{k(kn−j−1)
n−j }.
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But
∣
∣
∣
∣
∣
∣

⋃

j<j0

Sp(Gn−j) \ {0}

∣
∣
∣
∣
∣
∣

=
∑

j<j0

ln−j − j0 ≥
∑

j<j0

kn−j − j0 =

∣
∣
∣
∣
∣
∣

⋃

j<j0

{k(kn−j−1)
n−j }

∣
∣
∣
∣
∣
∣

so
⋃

j<j0

(Sp(Gn−j) \ {0}) =
⋃

j<j0

{k(kn−j−1)
n−j }.

As a result kn−j , j < j0 cannot be an eigenvalue of Gn−j0 and as kn−j0 > ln−j0 ,
kn−j , j ≥ j0 cannot be an eigenvalue of Gn−j0 . That implies that Gn−j0 does
not have any positive eigenvalue which contradicts that G is without isolated
vertex. So kn−j0 ≤ ln−j0 which conclude this induction.

As
∑

li =
∑

ki and ∀j = 1, · · · , n, lj ≥ kj we have ∀j = 1, · · · , n, lj = kj .

We now show by induction on j that Sp(Gn−j) \ {0} = {k(kn−j−1)
n−j }, ∀j =

0, · · · , n− 1.
• j = 0. Let kr be an eigenvalue of Gn then kr ≤ ln = kn and as kr ≥ kn

we have kr = kn. So the kn − 1 positive eigenvalues of Gn are the kn’s.

• Let j0 > 0. We assume that ∀j < j0 Sp(Gn−j) \ {0} = {k(kn−j−1)
n−j }. Then

k
(kn−j−1)
n−j for j < j0 are not eigenvalues of Gn−j0 and as kn−j = ln−j ≥ ln−j0

for j ≥ j0 the positive eigenvalues of Gn−j0 are necessarily ln−j0 i.e. k
(kn−j0

−1)

n−j0
.

By Theorem 1 we have that Gi, i = 1, · · · , n are the complete graphs on ki
vertices.

�

3 Disjoint union of two complete graphs

In this section we consider the disjoint union of two complete graphs and we want
to replace the condition “without isolated vertex” of Theorem 8 (this condition
cannot be deduced from the spectrum) by a condition on the eigenvalues.

The spectrum of Ka ∪ Kb, a ≥ b > 1 is {a(a−1), b(b−1), 0(2)}. The disjoint
union of two complete graphs is not in general determined by its spectrum, here
is a counter-example. The Laplacian spectrum of the line graph of K6 (which
is a strongly regular graph with parameters 15, 8, 4, 4) is {10(9), 6(5), 0}, so the
Laplacian spectrum of L(K6)∪K1 is {10(9), 6(5), 0(2)} which is also the spectrum
of K10 ∪K6.

As the disjoint union Ka ∪Ka ∪ ... ∪Ka is determined by its spectrum [2],
we assume a 6= b The aim of this section is to show that a graph with Laplacian
spectrum {a(a−1), b(b−1), 0(2)} with a > 5

3b is the disjoint union of two complete
graphs.

The paper [3] and the thesis [1] study graphs with few eigenvalues. We can
in particular mention the following results:

Theorem 9 [3, Theorem 2.1 and Corollary 2.4] A k-regular connected graph
with exactly two positive Laplacian eigenvalues a and b is strongly regular with
parameters n, k, α, γ with γ = ab

n
. Moreover k verifies k2−k(a+b−1)−γ+γn=

0.
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Remark 1 In [3], the relation γ = ab
n

and the equation k2−k(a+b−1)−γ+γn =
0 are given in the proof of Theorem 2.1.

Theorem 10 [3] Let G be a non-regular graph with Laplacian spectrum
{a(a−1), b(b−1), 0} with a > b > 1, a, b ∈ N

∗ . Then G possesses exactly two

different degrees k1 and k2 (k1 ≥ k2) verifying:

{
k1 + k2 = a+ b− 1
k1k2 = ab− ab

n

and

k2 ≥ b with k2 = b if and only if G or G is not connected.

Lemma 1 A regular graph with Laplacian spectrum {a(a−1), b(b−1), 0} is a
strongly regular graph with parameters n, n+1

2 , n+1
4 , n+1

4 .
Moreover we have (a− b)2 = a+ b.

Proof : LetG be a regular graph with Laplacian spectrum {a(a−1), b(b−1), 0},
then according to Theorem 9 G is strongly regular with parameters n, k, α, γ.
The spectrum of the adjacency matrix of G is {(k − a)(a−1), (k − b)(b−1), k}.
By Theorem 6 we have k − b = α−γ+

√
∆

2 and k − a = α−γ−
√
∆

2 where ∆ =
(α− γ)2 + 4(k − γ) = (a− b)2 and we have α− γ = 2k − a− b so (remind that
a+ b− 1 = n):

α− γ = 2k − n− 1 (1)

Moreover Theorem 6 gives b − 1 = 1
2

(

n− 1− 2k+(n−1)(α−γ)√
∆

)

and

a− 1 = 1
2

(

n− 1 + 2k+(n−1)(α−γ)√
∆

)

so a− b = 2k+(n−1)(α−γ)√
∆

and so

(a− b)2 = 2k + (n− 1)(α− γ) (2)

But ab = γn (Theorem 9) so

(a− b)2 = 2k + nα− ab− (α− γ) (3)

Equations 1 and 3 give:

(a− b)2 = 1+ n(α+ 1)− ab (4)

As the mean of the degrees is k, we have k = 2|E|
n

and 2|E| is the sum of the

Laplacian eigenvalues, so k = a(a−1)+b(b−1)
n

i.e.

nk = a2 + b2 − n− 1 (5)

Equation 4 gives a2 + b2 − ab − n − 1 = nα, using Equation 5 we have
nk − ab = nα i.e. n(k − α) = ab. But ab = γn so

α+ γ = k (6)

Using ∆ = (α−γ)2+4(k−γ) and ∆ = (a−b)2 = 2k+(n−1)(α−γ) (Equation
2) we obtain (α−γ)2+4(k−γ) = 2k+(n−1)(α−γ) but n−1 = −α+γ+2k−2
(Equation 1) and 2k = 2α+2γ (Equation 6), so (α− γ)2+4α = 2α+2γ+(α+
3γ − 2)(α− γ) that is

(α− γ)(4− 4γ) = 0 (7)

As a result we have α = γ or γ = 1. Let us show that γ = 1 is impossible:
γ = 1 implies α = k − 1 and Equation 1 becomes n = k + 1 and so G is the
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complete graph with n vertices, which is impossible because {a(a−1), b(b−1), 0}
with a > b > 1 is not the spectrum of a complete graph.

Finally α = γ = k
2 (Equation 6) and (Equation 1) k = n+1

2 and (Equation
2) (a− b)2 = 2k = n+ 1 = a+ b.

�

Theorem 11 Let G be a graph whose Laplacian spectrum is {a(a−1), b(b−1), 0}
with a > b > 1, a, b ∈ N \ {0, 1} and a > 5

3b. Then G is not regular.

Proof : Proof by contradiction. Let G be a graph whose Laplacian spec-
trum is
{a(a−1), b(b−1), 0} with a > b > 1, a, b ∈ N \ {0, 1} and a > 5

3b and we as-
sume that G is a k-regular graph. Then by the previous lemma we have that G
is strongly regular and (a− b)2 = a+ b.

This implies a2 − 2ab − a = b − b2 < 0 so a − 2b − 1 < 0 and a ≤ 2b.
Then 3b ≥ a+ b = (a− b)2 > 4

9b
2 so b(49b − 3) < 0 which gives b ≤ 6. We have

5
3b < a ≤ 2b and b ≤ 6, by listing the different cases we show that (a−b)2 6= a+b

for b 6= 3:

b a a+ b (a− b)2

3 6 9 9

4
7 11 9
8 12 16

5
9 14 16
10 15 25

6
11 17 25
12 18 36

If b = 3 then a = 6 and n+ 1 = a+ b = 9 but, according to Lemma 1, n+ 1 is
even, a contradiction.

�

Remark 2 When b < a ≤ 5
3b, the equation (a− b)2 = a+ b admits an infinity

of solutions; it is not difficult to show that the couples (a, b) = (ui, ui−1) where
u0 = 3 and ui = ui−1 + i+ 2 are solutions.

Lemma 2 There is no graph with Laplacian spectrum {a(a−1), b(b−1), 0} with
a, b ∈ N \ {0, 1} and a > 2b.

Proof : Let G be a graph with Laplacian spectrum {a(a−1), b(b−1), 0} with
a, b ∈ N\{0, 1} and a > 2b, then G is not regular (Theorem 11) and by Theorem
10 we have that G possesses exactly two different degrees k1 and k2 verifying:

{
k1 + k2 = a+ b− 1
k1k2 = ab− ab

n

with k2 ≥ b+ 1 because G and G are connected (G is disconnected if and only
if the greatest eigenvalue of G is |G|, but here |G| = a+ b− 1 6= a).

We have ab
n

∈ N
∗, but ab 6= n because a+b = n+1 and a, b ≥ 2 ⇒ ab ≥ a+b.

So ab
n

≥ 2.

7



The integers k1 and k2 are solutions of the equation x2−(a+b−1)x+ab− ab
n

= 0

whose discriminant is ∆ = (a+b−1)2−4ab+4ab
n

and so k1 = a+b−1+
√
∆

2 , k2 =
a+b−1−

√
∆

2 .
On one hand we have:

∆ = (a+ b)2 − 2(a+ b) + 1− 4ab+ 4
ab

n
= (a− b)2 − 2(a+ b) + 1 + 4

ab

n

≥ (a− b)2 − 2(a+ b) + 9

and on the other hand we have (remind that k2 ≥ b+ 1):

∆ = (a+ b− 1− 2k2)
2 ≤ (a+ b− 1− 2(b+ 1))2

≤ (a− b− 3)2 = (a− b)2 − 6a+ 6b+ 9

= (a− b)2 − 2a− 4a+ 6b+ 9 but a > 2b i.e. −4a < −8b

< (a− b)2 − 2a− 2b+ 9 = (a− b)2 − 2(a+ b) + 9

Contradiction.

�

Theorem 12 There is no graph with Laplacian spectrum {a(a−1), b(b−1), 0} with
a, b ∈ N \ {0, 1} and 5

3b < a.

Proof : Let G be a graph with Laplacian spectrum {a(a−1), b(b−1), 0} with
a, b ∈ N \ {0, 1} and 5

3b < a. By Lemma 2 we can assume a ≤ 2b. The graph
G is not regular (Theorem 11) and by Theorem 10 we have that G possesses
exactly two different degrees k1 and k2 verifying:

{
k1 + k2 = a+ b− 1
k1k2 = ab− ab

n

with k2 ≥ b+ 1.
First we show that we have b ≥ 6; for that aim we use the relation 5

3b < a ≤
2b and list the possible values of a if b < 6 and we show that n does not divide
ab. This is summed up into the following table.

b a n ab Does n divide ab?

3 6 8 18 no

4
7 10 28 no
8 11 32 no

5
9 13 45 no
10 14 50 no

Henceforth we assume b ≥ 6. Let us show that the case k2 = b + 1 is
impossible. If k2 = b + 1 then k1 = a − 2. We denote by n1 (resp. n2) the
number of vertices of degree k1 (resp. k2). The sum of the degrees is on one hand
k1n1 + k2n2 and on the other hand a(a− 1) + b(b− 1) (sum of the eigenvalues)
i.e. k1(k1+3)+ k2(k2− 3)+4. So k1n1+ k2n2 = k1(k1+3)+ k2(k2− 3)+4 i.e.
k1(n1−k1−3)+k2(n2−k2+3) = 4. But (n1−k1−3)+(n2−k2+3) = 0 because
n = k1+k2 = n1+n2 so (n1−k1−3)(k1−k2) = 4 i.e. (n1−k1−3)(a−b−3) = 4.
As a result a− b− 3 divides 4.

8



• If a − b − 3 = 1 then a = b + 4 but a > 5
3b = b + 2

3b ≥ b + 4 (because
b ≥ 6). This case is impossible.

• If a − b − 3 = 2 then a = b + 5 and a > 5
3b = b + 2

3b ≥ b + 5 as soon as
b ≥ 8.

– If b = 6 then a = 11 and n = 16, ab = 66 and 16 does not divide 66.
This case is impossible.

– If b = 7 then a = 12 and n = 18, ab = 84 and 18 does not divide 84.
This case is impossible.

• If a − b − 3 = 4 then a = b + 7 and a > 5
3b = b + 2

3b ≥ b + 7 as soon as
b ≥ 11. The cases 6 ≤ b ≤ 10 are considered in the following table:

b a n ab Does n divide ab?

6 13 18 78 no
7 14 20 98 no
8 15 22 120 no
9 16 24 144 yes
10 17 26 170 no

For the case b = 9, a = 16 we have k1 = 14 and k2 = 10, k1k2 = 140 and
ab− ab

n
= 138, this case is impossible.

As a result we have k2 ≥ b+ 2.
We have that k1 and k2 are solutions of the equation x2− (a+ b− 1)x+ab−

ab
n

= 0 whose discriminant is ∆ = (a+ b− 1)2 − 4ab+ 4ab
n
.

Let d be the mean degree ofG, we have d = a(a−1)+b(b−1)
n

= −2ab+(a+b)(a+b−1)
n

=

−2ab
n

+ a + b so ab
n

= 1
2 (b + a − d) ≥ 4 because b ≥ 6 and a > k1 > d gives

a− d ≥ 2.
We have on one hand:

∆ = (a+ b)2 − 2(a+ b) + 1− 4ab+ 4
ab

n
= (a− b)2 − 2(a+ b) + 1 + 4

ab

n

≥ (a− b)2 − 2(a+ b) + 17

and on the other hand (remind that a+ b− 1− 2k2 = n− 2k2 > 0):

∆ = (a+ b− 1− 2k2)
2 ≤ (a+ b− 1− 2(b+ 2))2

≤ (a− b− 5)2 = (a− b)2 − 10a+ 10b+ 25

= (a− b)2 − 2(a+ b)− 8a+ 12b+ 25 but −8a < − 40
3 b

< (a− b)2 − 2(a+ b)− 4

3
b+ 25 ≤ (a− b)2 − 2(a+ b) + 17.

Contradiction.

�

Remark 3 If b < a < 5
3b then the system

{
k1 + k2 = a+ b − 1
k1k2 = ab− ab

n

with k1, k2, a, b, n ∈

N
∗ admits solutions. If (a − b)2 = a + b then ∆ = 1 and the system admits a

solution if a + b is even. The following table shows solutions with a, b ≤ 1000
and (a− b)2 6= a+ b.

9



a b
√
∆ k1 k2

51 35 13 49 36
81 64 12 78 66
190 153 32 187 155
290 204 83 288 205
260 222 31 256 225
469 403 59 465 406
595 528 58 590 532
784 638 141 781 640
936 833 94 931 837

Theorem 13 The graph Ka∪Kb with a, b ∈ N\{0, 1} and 5
3 b < a is determined

by its Laplacian spectrum.

Proof : Let G be a graph with Laplacian spectrum {a(a−1), b(b−1), 0(2)}
with a, b ∈ N

∗ and 5
3b < a then G has two connected components. If G has an

isolated vertex then the Laplacian spectrum of a connected component of G is
{a(a−1), b(b−1), 0}, which is impossible (Theorem 12). Consequently G does not
have isolated vertex and we apply Theorem 8.

�

The following corollary is straightfoward thanks to Theorem 3:

Corollary 2 The complete bipartite graph Ka,b with a, b ∈ N\{0, 1} and 5
3b < a

is determined by its Laplacian spectrum.
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