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Abstract. Energy usage is becoming a challenge for the design of next
generation large scale distributed systems. This paper explores an inno-
vative approach of profiling such systems. It proposes a DNA-like solution
without making any assumptions on the running applications and used
hardware. This profiling based on internal counters usage and energy
monitoring allows to isolate specific phases during the execution and
enables some energy consumption control and energy usage prediction.
First experimental validations of the system modeling are presented and
analyzed.

1 Introduction

Software solutions to improve the energy consumption of computing systems of-
ten fall into two categories, namely application-level solutions and system-level
solutions. At the application level, a power-aware application design can use
technologies such as Dynamic Voltage and Frequency Scaling (DVFS) for CPU
energy reduction and the Low Power Idle (LPI) techniques for networks to re-
duce the application power usage at runtime with low performance penalty [12].
Code instrumentation can be used to adapt the processor’s frequency and voltage
according to the application’s needs, so to reduce the application’s overall power
consumption [13, 9, 14]. Instrumented-code, inserted into the application source
code, aims at dividing the application into regions having the same character-
istics (memory intensive, CPU intensive, network intensive or disk intensive).
The appropriate “power-saving” scheme (often the CPU frequency and voltage
or P-state) is then selected for each defined region accordingly.

Software approaches could be very effective if a system designer (cloud or
grid provider) has sufficient knowledge of the applications running on its sys-
tem. For example an action applied to a single node may impact the power
consumption of the remaining nodes running the same application and therefore
the overall system energy consumption. Therefore, an effective use of these power



saving schemes on a multi-node system require a view of the system as a whole.
The commonly used approach consists of instrumenting the source program to
determine when to trigger an action on a computing node and how to handle
that action’s side effects on the remaining nodes running the same application.
Instrumenting the program source code requires a specific expertise from the
platform provider, which can not be assumed. Our work overcomes that neces-
sity of instrumenting the application source code in order to apply power saving
schemes.

A large body of work highlights the effectiveness of high performance com-
puting (HPC) applications’ power and energy consumption estimation via ded-
icated system registers known as hardware monitoring counters or performance
counters. Hardware monitoring counters provide a means to understanding an
application’s resource utilization patterns. Power or energy estimation models
based on hardware performance counters are often tailored for a specific type
of applications: Indeed a power consumption model built for a workload having
frequent memory accesses may not fit well a workload having infrequent memory
accesses, and the same goes for frequent disk/network accesses workloads. Hence
we believe that it is necessary to model phases of applications instead of appli-
cations, and therefore it is first needed to recognize and identify the successive
phases of the system.

This paper studies how to represent the system into different phases consid-
ering their power consumption and hardware performance counters (including
disk read/write and network bytes received/sent count) accessed throughout the
phase. Observations led us to the following assumptions: (a) Hardware perfor-
mance counters are accurate predictors of the system’s energy consumption, (b)
Any change in the set of performance counters relevant to power consumption
prediction over a given duration reflects a change in the system’s computational
state over that duration. Based on these assumptions, we propose an approach
to model the whole system’s runtime (from a single node system to a cluster
system) as a sequence of phases where each phase exhibits a computational be-
havior. This modeling paves the way to providing fine-grained control of HPC
application power consumption without a priori knowledge of the application.

The major contributions of this paper are the following:

– We propose a DNA-like system model in order to better control large scale
systems energy consumption. We focus on dividing applications into different
phases. Its effectiveness is proven experimentally.

– We develop a cross platform energy consumption prediction model as a use-
case of our system modeling approach.

This paper is organized as follows. Background and related work are pre-
sented in Section 2. We propose a representation model denoted as “DNA-like”
representation of a system in Section 3. Based on this model, we propose an ap-
plication mapping to the system representation and present some experimental
results in Section 4. Section 5 concludes and introduces future works.



2 Background

Many applications have recurring phases during execution. Many works investi-
gate methods to use these phases for architectural and system adaptations. Weis-
sel et al. propose to adapt processor execution by monitoring memory bound-
edness of applications [17] . Dhodapkar et al. investigate dynamic hardware
reconfiguration [7]. Murali Annavaram and al. [1] also point out the use of se-
quential and parallel phases in parallel applications for efficient distribution of
threads on an asymmetric multiprocessor. These works open the door to any
kind of system’s optimization based on phases recognition including controlling
and limiting the power consumption of large-scale systems.

A common approach to minimize the power consumption of large-scale sys-
tems is to identify phase-based applications [13]. The core idea is to schedule the
processors to a higher frequency for CPU (Central Processing Unit) intensive
phases, and to a lower frequency for non-CPU bound phases and workload [13,
6]. Focusing on highly iterative applications which allow them to predict the
future behavior of an application based on its past, Freeh et al. identify nodes
having been assigned small computations to reduce their frequency [8]. These
approaches are quite effective, however to our knowledge the source code of the
application needs to be analyzed carefully to determine the different phases thus
the CPU frequency at which each phase should run. Therefore, detecting phases
is not only application specific but also requires extensive knowledge given the
complexity of today’s high performance applications. In comparison, our work
does not attempt to estimate or reduce the system’s power or energy consump-
tion, instead, we investigate the possibility of detecting and characterizing appli-
cation’s execution phases at runtime for using insights gathered form hardware
monitoring events and the system’s energy consumption. The particularity of
our approach is that it almost does not require any knowledge of the application
under consideration.

3 DNA-like System Modeling

As mentioned earlier in this paper, a fine-grained power control of a whole cluster
system requires a view of that system as a whole. In this section, we introduce
a very simple model for describing a system’s runtime behavior. We assume a
system or a cluster system is a set of computing nodes with their applicative
states (the system state during application execution); network devices such as
routers and switches are not taken into account. The strength of our model
is that it provides insights about the system’s computational state as well as
its power/energy consumption. Our model represents a cluster system runtime
as a state graph whose initial and final states are the system’s idle state (or
configuration). A transition from one state S1 to S2 is weighted by the conditional
probability that the system goes to S2 given that it is in S1.

We represent each system state including the idle state as a column vector
of size n; where n is the number of computing nodes in the system, and whose



entries describes the system behavior over a fixed period of time. An entry of a
system’s state vector is defined considering what we call the “DNA-like” struc-
ture of the system, which is a succession of computational behaviors exhibited
by the system over time. We call such a computational behavior a “letter” and
the set of possible computational behaviors the “system description alphabet”.

A letter itself is modeled as a column vector of hardware monitoring counters
including disk read/write and network bytes (respectively packets) sent/received
counts to capture non memory- or CPU-intensive behavior. Details on their
construction are provided later in this paper. On some platforms, it may not
be possible to measure the system power/energy consumption using the power
distribution unit. To avoid this limitation, one of our design constraint is that a
letter in addition to describing the computational system, should provide a way
to estimate the system power/energy consumption over a time period.

3.1 Letter Model

Observation Efforts to model HPC applications power/energy consumption
via performance monitoring counters have shown that performance monitoring
counters relevant to power consumption estimation depend on the application
itself. Thus performance counters relevant to power consumption estimation of a
CPU intensive application may differ from those relevant to power consumption
estimation of a memory intensive application.

As performance monitoring counters relevant to power consumption estima-
tion depends on the computational state of the application, we state that any

change in the set of performance counters relevant to power consumption esti-

mation of an application over a time period T reflects a change in the application

computational state over the same time period T .
Based on the above statement, we propose Algorithm 1 which takes as input

an application footprint as a matrix and outputs the partition of the applica-
tion into computational phases according to changes in the set of performance
monitoring counters relevant to the power consumption estimation. Each row r

of the input matrix contains values of hardware monitoring counters recorded
over the sample interval timestamped r.

Relevant hardware Counters Definition The steps to find out which perfor-
mance counters are relevant to power estimation are the following: (1) the most
straightforward approach is to only take into account the first k performance
counters highly correlated to power consumption, (2) the second approach relies
on the power model described by Power ∼

Pn

i=1
αi ∗Ci or a similar one (linear

or not). In this equation αi and Ci are model coefficients and hardware counters
respectively. We conduct a multi-variable linear regression to obtain coefficients
αi and retain counters Cj exhibiting a 5% level of statistical significance to power
consumption estimation given the power model.

Figures 1, where similar patterns refer to the same computational behavior,
shows the output of our algorithm considering a constant number (4 in this case)



Data: A: a matrix representing the application footprint, P = Ø
Result: P : a set containing subsets Ri representing application phases
Initialization: consider a sample interval Sn of upper bound n, n represents the
first n rows of the application matrix A such that n > p+ 1, where p is the
number of performance counters (including disk read/write and network packets
(bytes) sent/received count).
P = P [R0

while row(A) > n do
Shift the upper bound of S to n = upper bound(S) + n

Compute the set Ri of relevant counters from Sn

if Ri−1 6= Ri then
Find j 2 [upper bound(S)− n, upper bound(S)] such that Rj == Ri−1,
where Rj is the set of relevant counters from Sj;
P = P [Rj

Delete the first j rows of A
Go to 1 (Initialization)

end

end

Algorithm 1: Algorithm to detect application phases

of hardware counters. The system under consideration comprises two computing
nodes running the NAS LU (class C problem on sixteen processes) benchmark
[2]. The second approach showed bad results as the power estimation error using
the power model is sometimes too high. We can also noticed that four phases was
detected on the first computing node (on the x-axis from 0 to 60, form 60 to 90,
from 90 to 120, and finally from 120 to 160) and five on the second computing
node.

Letter Encoding and Representation In this section, we present a formal
representation of letters of our system description model. To simplify we consider
that a letter has four hardware monitoring counters i.e., the number of hardware
monitoring counters representing a letter is fixed to 4. We also limit the overall
number of hardware monitoring counters to sixteen. Although it is possible to
monitor more than 64 hardware counters on a single node of our cluster, only a
few of them are relevant to the system’s power consumption estimation [5, 15].

Let’s assign each hardware monitoring counter (including disk reads/writes
and network (packets) sent/received bytes) to a four-bit aggregation or half
byte. Our quadruplet is therefore of the form (X1, X2, X3, X4); where each Xi

values is a half byte. Now, deleting commas in between the Xi gives a sixteen-bit
aggregation which converted into decimal is an unsigned integer. The unsigned
integer obtained from the above transformation is then the final representation
of a letter.
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Fig. 1. Example of phase detection on a two-nodes cluster system running the NAS
LU benchmark (from top to bottom, first and second computing node).

3.2 System Model Use-cases

This section proposes two simple use-cases of our system modeling approach. We
first show how the system’s energy profile can be derived from its model. Next,
we present an approach to predict the energy consumption of an application
using our system model and partial execution.

Energy Profiling The concept of energy profile is very well defined in fields
such as physical chemistry, but in computer science it is not easy to find an unan-
imous definition of this concept. The following definitions can be considered: For
an application, the energy profile (respectively power profile) can be roughly
defined as its energy (respectively power) footprint during its execution. This
definition assumes that the application under consideration is the only applica-
tion running on the system. A more complete definition presents an application’s
energy profile as its part of the energy footprint variation of the overall system
during its execution.

In studies such as [5, 11, 4, 16, 3, 10, 18] efforts have been devoted to model
power usage of system components (CPU, memory, disk, network) via hard-
ware performance counters or hardware monitoring events. From those studies,
the energy profile of an application can also be defined as a set of measure-
ments (hardware monitoring events collected per-process or system-wide) over
a time interval T such that there exists a combination of them estimating the
power/energy used by the application or the whole system over T. The last defi-
nition describes the energy consumed by the application or the whole system via
a set of hardware monitoring counters. This is particularly interesting as hard-
ware monitoring counters in addition to providing insight about the system’s
(application’s) computational state give way to compute its power consumption.



According to the hardware events-oriented definition of the energy profile,
our system model implicitly defines its energy profile. For example, let’s consider
the energy profile in Figure 1 (a), which can be written as a sequence of the form
Li . . . Xi . . . Lk denoted as its DNA-like structure; where each system phase
is replaced by a letter Li or XXX which refers to any system configuration or
state we do not have enough information about (XXX may typically represent
an idle state of the system). It is obvious that the system’s energy profile is easy
to obtain considering the application, for each known letter is associated to a
specific power consumption.

Cross Platform Energy Consumption Prediction This work is probably
the very first attempt to predict energy consumption of an application on a given
platform. The design of an energy prediction model is mainly motivated by the
idea that users often have more than one candidate platforms for running their
jobs, therefore choosing the less energy consuming platform can be beneficial to
both users and platform providers.

Key concepts of our prediction model include DNA-like structure of the ap-

plication, and relative energy. To simplify, we assume that the application under
consideration is the only application running on the system, so the system’s
DNA-like structure is that of the application.

The model implicitly uses two sets of data, one from a reference platform
provided by the DNA-like structure of the application, and one from a target
platform which is the platform on which we want to estimate the overall energy
consumption of the application. The aforementioned reference platform is the
platform on which the pattern (DNA-like structure) matching with the applica-
tion currently running was found.

As mentioned earlier, an application’s run matches with a DNA-like structure
if a significant percentage of the DNA-like structure matches with the already
executed part of the application. Let Etar be the energy consumed by the already
executed part of the application and Eref the energy that the matched part of
the DNA-like structure had consumed on the reference platform. Denoted as
Erel, the relative energy consumption between the two platforms is given by the
following: Erel =

Etar

Eref

With the above relative energy, the estimated energy consumption of the
application is given by:

Eest =
RX%

0
P (t)i,tar dt+ Erel ∗

R end

X%
P 0(t)j,ref dt

Where Eest is the estimated energy consumption on the target platform;
Erel the relative energy consumption between the target platform and the ref-

erence platform. In the above equation,
RX%

0
P (t)i,tar dt represents the energy

consumed by the application before a match is found with a pattern from the
profile database. Either measured or estimated, P (t)i,tar is the instantaneous
power usage of the application. P 0(t)j,ref is the instantaneous power usage of
the application on the reference platform and can be obtained from its DNA-like
structure.



We define the estimation accuracy as the ratio between the estimated and
measured energy on the target platform.

4 Experimental Results: Model Development and

Validation

We design a cluster composed of 2 nodes with 2 Intel Quad-core Xeon CPUs
each (16 cores in total), 12 GB of RAM. The nodes are connected by a Gigabit
Ethernet switch. The Linux kernel 3.1.1 is installed on each node where perf
event is used to read the hardware monitoring counters. MPICH is used as
MPI library. MG, LU, IS, CG, EP, SP, and BT from NPB-3.3 are used for the
experiments. MG demonstrates the capabilities of a very simple multi-grid solver,
MG nodes communicate with their neighbors, and with other “distant” nodes. IS
calculates the large-scale integer sorting. The CG kernel communication graph
involves lots of neighbor communication. EP is embarrassingly parallel code that
implements the random-number generator. Each application has several types
of computations, memory access, and communication phases. Class C of these
benchmarks are used (they are compiled using the default compiler’s options).
Each node’s power usage is monitored with one sample per second using a power
distribution unit.

4.1 Idle System State

We conduct experiments to observe the degree to which diverse hardware events
affect the system’s idle power consumption. Results show that they are almost
never the same from a time interval T to another and that the system’s idle
power cannot be correlated with hardware events. Hence, to characterize the
system’s idle state, we monitor it again under different workload characteristics.
The number of cache misses are chosen as the main system characteristic.

As shown in Figure 2, the number of cache misses normalized to the elapsed
cycles count (yielding the event rate) clearly discriminates among all workloads
(each scatter of points represents one NAS banchmark). Based on this obser-
vation, we define a threshold β under which the system is said to be idle. We
assign the letter XXX to the system’s idle state to reflect the fact that we are
unable to estimate its power usage via hardware performance counters.
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Fig. 2. NAS benchmarks characterized by their cache miss rate.



4.2 Computational States

Firstly, we execute each of the above listed benchmarks 30 times and record the
number of occurrences of each performance counter in Table 1. These perfor-
mance counters are recorded every second along with the power consumption of
each node of our cluster. Next, we run Algorithm 1 for defining regions for each
node in order to create the system description alphabet. Once the alphabet of
each node computed, we use the run history to create a transition matrix for
each node. The transition matrix typically gives the probability to move from
one letter to another.

As evaluation, we first investigate how close to reality is our approach for
partitioning an application into different computational behaviors (or simply
phases). For this purpose, we run successively two applications opposite from
their computational point (i.e. IS and EP). IS is communication intensive whereas
EP is mainly computing. Figure 3 shows the effectiveness of our approach. The
couple of integers appearing in each region of the figure gives for each region
the corresponding letter coded as an unsigned integer and its duration. For ex-
ample, (17692 21) means the hardware events highlighted in bold in Table 1
are relevant to power consumption estimation over 21 seconds for the second
computing node. We observe from the experiments that two phases were de-
tected and identified with different letters for the two nodes nodes, and that
their energy consumptions are different.
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Fig. 3. Dividing NAS benchmarks IS and EP ran successively into two different com-
putational behaviors using their power usage and hardware counters (left: First node;
right: Second node).

Table 1. List of hardware monitoring counters

PERF COUNT HW CPU CYCLES PERF COUNT HW INSTRUCTIONS

PERF COUNT HW CACHE REFERENCES PERF COUNT HW STALLED CYCLES FRONTEND

PERF COUNT HW CACHE MISSES PERF COUNT HW BUS CYCLES

PERF COUNT HW BRANCH INSTRUCTIONS PERF COUNT HW BRANCH MISSES

netSENTbyte netSENTpkt

netRECVbyte netRECVpkt

Write I/O Read I/O

Use Case Evaluation: Energy Profile The goal of our approach is to use
the energy profile to predict the energy consumption and optimize the resources
used. So, if we are able to predict the next system configuration, it will no



longer be necessary to instrument the application source code prior to applying
power saving schemes. For example if the predictor tells that the next state is a
communication phase with an acceptable error, then power-saving schemes such
as DVFS could be triggered. To observe to what degree our system model fits
that expectation, we follow this generic methodology:

– Run the application and create its alphabet using Algorithm 1. We assume
that all letters have the same duration of fifteen seconds, i.e., each letter
covers fifteen seconds of the application’s lifetime.

– Take the first two letters of the same application and attempt to determine
the rest of the sequence using the system transition matrix.

We discuss the results for LU because it runs a long time. The DNA-like
structure (or description sequence) for one node running LU benchmark is pro-
vided in Figure 4, where durations are omitted (all 15s). We apply our predictor
to the second letter of the LU sequence (293,15) to determine its energy profile
or the rest of the sequence (recall that an application’s energy profile is derived
from its DNA-like structure or description sequence). The predictor simply looks
at the transition matrix and chooses the next state with the highest probability.
Using this approach, we are only able to predict a few parts of the entire appli-
cation – less than 5 letters in this case. This can be attributed to the simplicity
of the predictor. We are currently investigating more complex approaches to
enhance our prediction mechanism.
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Fig. 4. DNA-like representation with fixed letter duration for a node running the LU
benchmark.

Evaluation for Energy Consumption Prediction We evaluate our model
for energy consumption prediction considering a very stable application. For
simplicity, we only predict the energy consumption of one node. The application
iteratively does two things: It first computes the inverse of a 10x10 square matrix
and then it copies a large file from a remote host. We choose such an application
to ensure that its behavior is stable enough over time. The advantage of having
a stable application resides in the fact that we can successfully predict the entire
execution of the application.

We consider two scenarios. For the first scenario, the target and reference
platforms are the same node but running at respectively 1.6GHz and 2.13GHz.
For the second scenario, the reference platform is a Dell Power Edge server
and the target platform a Sun Fire V20z. For partial execution, 20% of the



application is executed. Results are summarized in Table 2. We compute for
both scenarios the expected energy consumption based on the equations given
in Section 3.2. We can see from those results that the accuracy is very good.
Notice that the accuracy is higher because it is computed considering the average
energy consumption instead of the peak energy consumption. However it must
be noted that the considered application is very simple and stable.

Table 2. Energy consumption prediction results summary

Scenario Estimated Energy (in Joules) Accuracy Peak energy consumption

1 797143.5 1.01 811932

2 2068515.6 1.02 2088515.6

5 Conclusions and Future Work

In this paper we propose to optimize large-scale systems energy consumption
by triggering specific actions to reduce energy consumption depending on the
behavior of the application being executed. We introduce a system modeling
approach and some use cases. as a state graph and present some relevant use
cases of the model. Our approach for dividing applications into phases is fast and
does not require extensive knowledge of applications running on the system. We
show through experiments that our model can effectively be used for predicting
the system’s energy profile. We also show that energy consumption estimation
using our system model and partial execution can successfully predict the entire
system power usage.

Future work will combine our model with power saving schemes. We will
also improve the system model using more sophisticated mechanisms in order to
guarantee accurate energy profile prediction. We also plan on using our energy
consumption prediction model for predicting the energy consumption of real
workloads on multi-nodes systems
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