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Abstract Most state-of-the-art speaker recognition systems are based on dis-
criminative learning approaches. On the other hand, generative Gaussian mix-
ture models (GMM) have been widely used in speaker recognition during the
last decades. In an earlier work, we proposed an algorithm for discriminative
training of GMM with diagonal covariances under a large margin criterion. In
this paper, we propose an improvement of this algorithm which has the major
advantage of being computationally highly efficient, thus well suited to handle
large scale databases. We also develop a new strategy to detect and handle the
outliers that occur in the training data. To evaluate the performances of our
new algorithm, we carry out full NIST speaker identification and verification
tasks using NIST-SRE’2006 data, in a Symmetrical Factor Analysis compen-
sation scheme. The results show that our system significantly outperforms the
traditional discriminative Support Vector Machines (SVM) based system of
SVM-GMM supervectors, in the two speaker recognition tasks.
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1 Introduction

Generative (or informative) training of Gaussian Mixture Models (GMM)
using maximum likelihood estimation and maximum a posteriori estimation
(MAP) [1] has been the paradigm of speaker recognition for many decades.
Generative training does not however directly address the classification prob-
lem because it uses the intermediate step of modeling system variables, and
because classes are modeled separately. For this reason, discriminative training
approaches have been an interesting and valuable alternative since they focus
on adjusting boundaries between classes [2,3], and lead generally to better
performances than generative methods. Hybrid learning approaches have also
gained a big interest. For instance, Support Vector Machines (SVM) combined
with GMM supervectors are among state-of-the-art approaches in speaker ver-
ification [4,5].

In speaker recognition applications, mismatch between the training and
testing conditions can decrease considerably the performances. The session
variability remains the most challenging problem to solve. The Factor Analysis
techniques [6,7], e.g., Symmetrical Factor Analysis (SFA) [8,9], were proposed
to address that problem in GMM based systems. While the Nuisance Attribute
Projection (NAP) [10] compensation technique is designed for SVM based
systems.

Recently a new discriminative approach for multiway classification has been
proposed, the Large Margin Gaussian mixture models (LM-GMM) [11]. The
latter have the same advantage as SVM in term of the convexity of the opti-
mization problem to solve. However they differ from SVM because they draw
nonlinear class boundaries directly in the input space, and thus no kernel
trick/matrix is required. While LM-GMM have been used in speech recogni-
tion, they have not been used in speaker recognition (to the best of our knowl-
edge). In an earlier work [12], we proposed a simplified version of LM-GMM
which exploit the fact that traditional GMM systems use diagonal covariances
and only the mean vectors are MAP adapted. We then applied this simplified
version to a ”small” speaker identification task. While the resulting training
algorithm is more efficient than the original one, we found however that it is
still not efficient enough to process large databases such as in NIST Speaker
Recognition Evaluation (NIST-SRE) campaigns [13].

In order to address this problem, we propose in this paper a new approach
for fast training of Large-Margin GMM which allow efficient processing in large
scale applications. To do so, we exploit the fact that in general not all the com-
ponents of the GMM are involved in the decision process, but only the k-best
scoring components. We also exploit the property of correspondence between
the MAP adapted GMM mixtures and the world model mixtures. Moreover,
we develop a new strategy to detect outliers and reduce their negative effect
in training. This strategy leads to a further improvement in performances.

In order to show the effectiveness of the new algorithm, we carry out full
NIST speaker identification and verification tasks using NIST-SRE’2006 (core
condition) data. We evaluate our fast algorithm in a Symmetrical Factor Anal-
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ysis compensation scheme, and we compare it with the NAP compensated
GMM supervector Linear Kernel system (GSL-NAP) [5]. The results show
that our Large Margin compensated GMM outperform the state-of-the-art
discriminative approach GSL-NAP, in the two speaker recognition tasks.

The paper is organized as follows. After an overview on Large-Margin
GMM training with diagonal covariances in section 2, we describe our new
fast training algorithm in section 3. To make the paper self-contained, the
GSL-NAP system and SFA are described in sections 4 and 5, respectively.
Experimental results are reported in section 6.

2 Overview on Large Margin GMM with diagonal covariances
(LM-dGMM)

In this section we start by recalling the original Large Margin GMM training
algorithm developed in [11,14]. We then recall the simplified version of this
algorithm that we introduced in [12].

In Large Margin GMM [11,14], each class c is modeled by a mixture of
ellipsoids in the D-dimensional input space. The mth ellipsoid of the class c

is parameterized by a centroid vector µcm (mean vector), a positive semidefi-
nite (orientation) matrix Ψcm and a nonnegative scalar offset θcm ≥ 0. These
parameters are then collected into a single enlarged matrix Φcm:

Φcm =

(

Ψcm −Ψcmµcm

−µT
cmΨcm µT

cmΨcmµcm + θcm

)

. (1)

A GMM is first fit to each class using maximum likelihood estimation. Let
{on,t}Tn

t=1 (on,t ∈ RD) be the Tn feature vectors of the nth segment (i.e. nth

speaker training data). Then, for each on,t belonging to the class yn, yn ∈
{1, 2, ..., C} where C is the total number of classes, we determine the index
mn,t of the Gaussian component of the GMM modeling the class yn which has
the highest posterior probability. This index is called proxy label.

The training algorithm aims to find matrices Φcm such that ”all” examples
are correctly classified by at least one margin unit, leading to the LM-GMM
criterion:

∀c 6= yn, ∀m, zT
n,tΦcmzn,t ≥ 1 + zT

n,tΦynmn,t
zn,t, (2)

where zn,t =

[

on,t

1

]

. Eq. (2) states that for each competing class c 6= yn the

match (in term of Mahalanobis distance) of any centroid in class c is worse
than the target centroid by a margin of at least one unit.

In speaker recognition, most of state-of-the art systems use diagonal co-
variances GMM. In these GMM based speaker recognition systems, a speaker-
independent world model or Universal Background Model (UBM) is first trained
with the EM algorithm [15] from tens or hundreds of hours of speech data
gathered from a large number of speakers. The background model represents
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speaker-independent distribution of the feature vectors. When enrolling a new
speaker to the system, the parameters of the UBM are adapted to the feature
distribution of the new speaker. It is possible to adapt all the parameters, or
only some of them from the background model. Traditionally, in the GMM-
UBM approach, the target speaker GMM is derived from the UBM model by
updating only the mean parameters using a maximum a posteriori (MAP)
algorithm [1], while the (diagonal) covariances and the weights remain un-
changed.

Making use of this assumption of diagonal covariances, we proposed in
[12] a simplified algorithm to learn GMM with a large margin criterion. This
algorithm has the advantage of being more efficient than the original LM-
GMM one [11,14] while it still yielded similar or better performances on a
speaker identification task. In our Large Margin diagonal GMM (LM-dGMM)
[12], each class (speaker) c is initially modeled by a GMM with M diagonal
mixtures (trained by MAP adaptation of the UBM in the setting of speaker
recognition). For each class c, the mth Gaussian is parameterized by a mean
vector µcm, a diagonal covariance matrix Σm = diag(σ2

m1, ..., σ
2
mD), and the

scalar factor θm which corresponds to the weight of the Gaussian.
With this relaxation on the covariance matrices, for each example on,t, the

goal of the training algorithm is now to force the log-likelihood of its proxy
label Gaussian mn,t to be at least one unit greater than the log-likelihood of
each Gaussian component of all competing classes. That is, given the training
examples {(on,t, yn,mn,t)}N

n=1, we seek mean vectors µcm which satisfy the
LM-dGMM criterion:

∀c 6= yn, ∀m, d(on,t, µcm) + θm ≥ 1 + d(on,t, µynmn,t
) + θmn,t

, (3)

where d(on,t, µcm) =
D
∑

i=1

(on,ti − µcmi)
2

2σ2
mi

.

Afterward, these M constraints are fold into a single one using the soft-

max inequality min
m

am ≥ − log
∑

m

exp(−am). The segment-based LM-dGMM

criterion becomes thus:

∀c 6= yn,

1
Tn

Tn
∑

t=1

(

− log
M
∑

m=1

exp(−d(on,t, µcm) − θm)

)

≥ 1 + 1
Tn

Tn
∑

t=1

d(on,t, µynmn,t
) + θmn,t

.

(4)

The loss function to minimize for LM-dGMM is then given by:

 L =

N
∑

n=1

∑

c 6=yn

max

(

0 , 1 +
1

Tn

Tn
∑

t=1

(

d(on,t, µynmn,t
)

+ θmn,t
+ log

M
∑

m=1

exp(−d(on,t, µcm) − θm)

))

.

(5)
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3 LM-dGMM training with k-best Gaussians

3.1 Description of the new LM-dGMM modeling

Despite the fact that our LM-dGMM is computationally much faster than the
original LM-GMM of [11,14], we still encountered efficiency problems when
dealing with high number of Gaussian mixtures. Indeed, even for an easy 50
speakers identification task as the one presented in [12], we could not run
the training in a relatively short time with our current implementation. This
would imply that large scale applications such as NIST-SRE, where hundreds
or thousands of target speakers are available, would be infeasible in reasonable
time (for instance, 5460 target speakers are included in the NIST-SRE’2010
core condition, with 610748 trials to process involving 13325 test segments [16]
).

In order to develop a fast training algorithm which could be used in large
scale applications, we propose to drastically reduce the number of constraints
to satisfy in Eq. (4). By doing so, we would drastically reduce the computa-
tional complexity of the loss function and its gradient, which are the quantities
responsible for most of the computational time. To achieve this goal we pro-
pose to use another property of state-of-the-art GMM systems, that is, decision
is not made upon all mixture components but only using the k-best scoring
Gaussians.

In other words, for each on and each class c, instead of summing over the
M mixtures in the left side of equation Eq. (4), we would sum only over the k

Gaussians with the highest posterior probabilities selected using the GMM of
class c. In order to further improve efficiency and reduce memory requirement,
we exploit the property reported in [1] about correspondence between MAP
adapted GMM mixtures and UBM mixtures. We use the UBM to select one
unique set Sn,t of k-best Gaussian components per frame on,t, instead of (C−1)
sets. This leads to a (C−1) times faster and less memory consuming selection.
Thus, the higher the number of target speakers is, the greater computation
and memory saving is. More precisely, we now seek mean vectors µcm that
satisfy the large margin constraints in Eq. (6):

∀c 6= yn,

1
Tn

Tn
∑

t=1

(

− log
∑

m∈Sn,t

exp(−d(on,t, µcm) − θm)

)

≥ 1 + 1
Tn

Tn
∑

t=1

d(on,t, µynmn,t
) + θmn,t

.

(6)
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The loss function becomes:

 L =

N
∑

n=1

∑

c 6=yn

max

(

0 , 1 +
1

Tn

Tn
∑

t=1

(

d(on,t, µynmn,t
)

+ θmn,t
+ log

∑

m∈Sn,t

exp(−d(on,t, µcm) − θm)

))

.

(7)

This loss function remains convex and can still be solved using dynamic pro-
gramming.

3.2 Handling of outliers

We have adopted in our previous work [17] the strategy of [11] to detect
outliers and reduce their negative effect on learning. Outliers are detected
using the initial GMM models. The original strategy consists on computing the
accumulated hinge loss incurred by violations of the large margin constraints
in Eq. (6):

hn =
∑

c 6=yn

max

(

0 , 1 +
1

Tn

Tn
∑

t=1

(

d(on,t, µynmn,t
)

+ θmn,t
+ log

∑

m∈Sn,t

exp(−d(on,t, µcm) − θm)

))

,

(8)

and then re-weighting1 the hinge loss terms in Eq. (7) by using segment weights

sn = min
(

1, 1
hn

)

.

We propose in this paper a novel and better strategy that outperforms the
previous one. We keep the global large margin constraints segmental, but we
will apply now a frame (feature vectors) weighting scheme. For each feature
vector on,t, we calculate (C − 1) weights sc

n,t relative to each class c 6= yn.
for each on,t and each competing class c, we compute the loss incurred by
violations of the large margin constraints:

hc

n,t =

1 + d(on,t, µynmn,t
) + θmn,t

+ log
∑

m∈Sn,t

exp
(

− d(on,t, µcm) − θm

)

Tn
.

(9)
hc

n,t measures the decrease in the loss function when an initially misclassified
feature vector is corrected during the course of learning. We associate outliers

1 Note that by setting the segment weights to one, i.e., no handling of outliers is done,
the experiments show that the performances degrade.
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with values of hc

n,t > 1, and in this case we multiply this term by the frame

weight sc

n,t = 1
hc

n,t
. The new loss function becomes thus:

L =

N
∑

n=1

∑

c 6=yn

max

(

0 ,

Tn
∑

t=1

sc

n,th
c

n,t

)

. (10)

We solve this unconstrained non-linear optimization problem using the second
order optimizer LBFGS [18].

In summary, our new and fast training algorithm of LM-dGMM is the fol-
lowing:

- For each class (speaker), initialize with the GMM trained

by MAP adaptation of the UBM,

- select Proxy labels using these GMM,

- select the set of k-best UBM Gaussian components for each

training frame,

- compute the point weights sc

n,t,

- using the LBFGS algorithm, solve the unconstrained

non-linear minimization problem:

min  L. (11)

3.3 Evaluation phase

During test, we use the same principle as in the training to achieve fast scoring.
Given a test segment of T frames, for each test frame ot we use the UBM to
select the set Et of k-best scoring proxy labels.

In an identification task, we compute the LM-dGMM likelihoods using only
these k labels. The decision rule is thus given as:

y = argmin
c

{

T
∑

t=1

− log
∑

m∈Et

exp(−d(ot, µcm) − θm)

}

. (12)

In a verification task, we compute a match score depending on both the target
model {µcm, Σm, θm} and the UBM {µUm, Σm, θm} for the test hypothesis
(trial). The average log likelihood ratio is calculated using only the k labels:

LLRavg = 1
T

T
∑

t=1

(

log
∑

m∈Et

exp(−d(ot, µcm) − θm)

− log
∑

m∈Et

exp(−d(ot, µUm) − θm)

)

.

(13)

This quantity provides a score for the test segment to be uttered by the target
model/speaker c.
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4 The GSL-NAP system

In this section we briefly describe the GMM supervector linear kernel SVM
system (GSL)[4] and its associated channel compensation technique, the Nui-
sance attribute projection (NAP) [10].

4.1 SVM-GMM supervector

Given an M -components GMM adapted by MAP from the UBM, one forms a
GMM supervector by stacking the D-dimensional mean vectors, leading to an
MD supervector. This GMM supervector can be seen as a mapping of variable-
length utterances into a fixed-length high-dimensional vector, through GMM
modeling:

φ(x) =







µx1

...
µxM






, (14)

where the GMM {µxm, Σm, wm} is trained on the utterance x.
For two utterances x and y, the Kullback-Leibler divergence kernel is de-

fined as:

K(x, y) =

M
∑

m=1

(√
wmΣ−(1/2)

m µxm

)T(√
wmΣ−(1/2)

m µym

)

. (15)

The UBM weight and variance parameters are used to normalize the Gaussian
means before feeding them into a linear kernel SVM training. This system is
referred to as GSL in the rest of the paper.

4.2 Nuisance attribute projection (NAP)

NAP is a pre-processing method that aims to compensate the supervectors
by removing the directions of undesired sessions variability, before the SVM
training [10]. NAP transforms a supervector φ to a compensated supervector

φ̂:
φ̂ = φ − S(ST φ), (16)

using the eigenchannel matrix S, which is trained using several recordings
(sessions) of various speakers.

In the following, (h, s) will indicate the session h of the speaker s. Given a
set of expanded recordings:

{φ(1, s1) · · ·φ(h1, s1) · · ·φ(1, sN ) · · ·φ(hN , sN )}, (17)

of N different speakers, with hi different sessions for each speaker si, one first
removes the speakers variability by subtracting the mean of the supervectors
within each speaker {φ(si)}:

∀si,∀h, φ(h, si) = φ(h, si) − φ(si). (18)
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The resulting supervectors are then pooled into a single matrix:

C =
[

φ(1, s1) · · ·φ(h1, s1) · · ·φ(1, sN ) · · ·φ(hN , sN )
]

, (19)

representing the intersession variations. One identifies finally the subspace of
dimension R where the variations are the largest by solving the eigenvalue
problem on the covariance matrix CCT , getting thus the projection matrix S
of a size MD × R. This system is referred to as GSL-NAP in the rest of the
paper.

5 Symmetrical Factor Analysis (SFA)

In this section we describe the symmetrical variant of the Factor Analysis
model (SFA) [8,9] (Factor Analysis was originally proposed in [6,7]). In the
mean supervector space, a speaker model can be decomposed into three dif-
ferent components:

– a session-speaker independent component (the UBM model),
– a speaker dependent component,
– a session dependent component.

The session-speaker model, can be written as [8]:

M(h,s) = M + Dys + Ux(h,s), (20)

where

– M(h,s) is the session-speaker dependent supervector mean (an MD vector),
– M is the UBM supervector mean (an MD vector),
– D is a MD × MD diagonal matrix, where DDT represents the a priori

covariance matrix of ys,
– ys is the speaker vector (speaker offset), an MD vector assumed to follow

a standard normal distribution N (0, I),
– U is the session variability matrix of low rank R (an MD × R matrix),
– x(h,s) are the channel factors (session offset), an R vector (theoretically, not

dependent on s) assumed to follow a standard normal distribution N (0, I).

Dys and Ux(h,s) represent respectively the speaker dependent component
and the session dependent component [9].

The factor analysis modeling starts by estimating the U matrix, using
different recordings per speaker. The matrix U is theoretically similar to the
channel matrix S of NAP, and it also requires many recordings to identify accu-
rately the subspace where intersession variability is high. However, the matrix
U estimation is computationally less efficient than the matrix S one. Given
the fixed parameters (M,D,U), the target models are then compensated by
eliminating the session mismatch directly in the model domain. Whereas, the
compensation in the test is performed at the frame level (feature domain).
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6 Experimental results

We perform experiments on the NIST-SRE’2006 [19] speaker identification and
verification tasks and compare the performances of the baseline GMM, the LM-
dGMM and the SVM systems, with and without using channel compensation
techniques. The comparisons are made on the male part of the NIST-SRE’2006
core condition (1conv4w-1conv4w). In the identification task, performances are
measured in term of the speaker identification rate. In the verification task,
they are assessed using Detection Error Tradeoff (DET) plots and measured
in terms of equal error rate (EER) and minimum of detection cost function
(minDCF) which is calculated following NIST criteria [20].

For front-end processing, we follow the same procedure as in [9]. The feature
extraction is carried out by the filter-bank based cepstral analysis tool Spro
[21]. Bandwidth is limited to the 300-3400Hz range. 24 filter bank coefficients
are first computed over 20ms Hamming windowed frames at a 10ms frame
rate and transformed into Linear Frequency Cepstral Coefficients (LFCC)
[22]. Consequently, the feature vector is composed of 50 coefficients includ-
ing 19 LFCC, their first derivatives, their 11 first second derivatives and the
delta-energy. The LFCCs are preprocessed by Cepstral Mean Subtraction and
variance normalization [23]. We applied an energy-based voice activity detec-
tion to remove silence frames, hence keeping only the most informative frames.
Finally, the remaining parameter vectors are normalized to fit a zero mean and
unit variance distribution.

We use the state-of-the-art open source software ALIZE/Spkdet [9,24] for
GMM, SFA, GSL and GSL-NAP modeling. A male-dependent UBM is trained
using all the telephone data from the NIST-SRE’2004. Then we train a MAP
adapted GMM for the 349 target speakers belonging to the primary task. The
identification is made on a list of 539554 trials (involving 1546 test segments),
whereas the verification task uses a shorter list of 22123 trials (involving 1601
test segments) for test. Score normalization techniques are not used in our ex-
periments. The so MAP adapted GMM define the baseline GMM system, and
are used as initialization for the LM-dGMM one. The GSL system uses a list
of 200 impostor speakers from the NIST-SRE’2004, on the SVM training. The
LM-dGMM-SFA system is initialized by model domain compensated GMM,
which are then discriminated using feature domain compensated data. The
session variability matrix U of SFA and the channel matrix S of NAP, both
of rank R = 40, are estimated on NIST-SRE’2004 data using 2934 utterances
of 124 different male speakers.

Table 1 presents the speaker identification accuracy scores of the various
systems. Table 2 presents the speaker verification scores (EER and minDCF).
We show performances using GMMs with 256 and 512 Gaussian components
(M = 256, 512). All the scores are obtained with the 10 best proxy labels
selected using the UBM, k = 10. The actual large margin systems adopt a
segmental weighting approach.

The results of Table 1 and Table 2 show that, without SFA channel compen-
sation, the LM-dGMM system outperforms the classical generative GMM one,
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Table 1 Speaker identification rates with GMM, Large Margin diagonal GMM and GSL
models, with and without channel compensation

System
Speaker identification rate

256 Gaussians 512 Gaussians

GMM 75.87% 77.88%
LM-dGMM 77.62% 78.40%
GSL 81.50% 82.21%
GSL-NAP 87.26% 87.77%
GMM-SFA 89.26% 90.75%
LM-dGMM-SFA 89.65% 91.27%

Table 2 EERs(%) and minDCFs(x100) of GMM, Large Margin diagonal GMM and GSL
systems with and without channel compensation

System
256 Gaussians 512 Gaussians

EER minDCF(x100) EER minDCF(x100)

GMM 9.43% 4.26 9.74% 4.18
LM-dGMM 8.97% 3.97 9.66% 4.12
GSL 7.39% 3.41 7.23% 3.44
GSL-NAP 6.40% 2.72 5.90% 2.73
GMM-SFA 6.15% 2.41 5.53% 2.18
LM-dGMM-SFA 5.58% 2.29 5.02% 2.18

Table 3 GSL performance using different values of C and average number of support vectors
(M = 256)

C Number of support vectors Identification rate EER minDCF(x100)

2−4 46 78.33% 7.81% 3.71
2−3 49 78.20% 7.85% 3.72
2−2 51 78.20% 7.85% 3.72
2−1 52 78.20% 7.83% 3.72
20 52 81.50% 7.40% 3.41
21 52 81.50% 7.39% 3.41

22 52 81.50% 7.39% 3.41
23 52 81.50% 7.39% 3.41
24 52 81.50% 7.40% 3.41

Table 4 GSL-NAP performance using different values of C and average number of support
vectors (M = 256)

C Number of support vectors Identification rate EER minDCF(x100)

2−4 63 84.22% 6.77% 2.99
2−3 70 84.15% 6.77% 3.00
2−2 75 84.09% 6.78% 2.98
2−1 77 84.15% 6.80% 2.98
20 78 87.26% 6.40% 2.72

21 78 87.19% 6.44% 2.71
22 78 87.19% 6.44% 2.71
23 78 87.19% 6.44% 2.71
24 78 87.19% 6.44% 2.71
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Fig. 1 EER and minDCF performances for GMM, LM-dGMM and GSL systems with and
without channel compensation

however it does yield worse performances than the discriminative approach
GSL. Nonetheless, when applying channel compensation techniques, compen-
sated models outperform the non-compensated ones as expected, but the LM-
dGMM-SFA system significantly outperforms the GSL-NAP and GMM-SFA
ones in the two tasks. Our best system achieves 91.27% speaker identification
rate, while the best GSL-NAP achieves 87.77%. This leads to a 3.5% improve-
ment. In verification, the LM-dGMM-SFA and GSL-NAP achieve respectively
5.02% and 5.90% equal error rates, and 2.18 ∗ 10−2 and 2.73 ∗ 10−2 minDCF
values. This shows that LM-dGMM-SFA yields relative reductions of EER and
minDCF of about 14.92% and 20.15% over the GSL-NAP system. Moreover,
The performances of the GMM-SFA system show that LM-dGMM-SFA yields
relative reductions of speaker identification rate and EER of about 0.57% and
9.22% over this system.

It is known that SVM performances are sensitive to the C parameter. We
have thus used different values of C and reported the best scores of the SVM
systems in Table 1 and Table 2. This can be seen in Table 3 and Table 4 which
show the scores obtained using different values of C for GSL and GSL-NAP
with M = 256. We also report in these tables the average number of support
vectors.

Figure 1 displays the EER and minDCF performances of all systems, with
and without channel compensation, for models with 512 Gaussian components
(M = 512). Figure 2 shows DET plots for LM-dGMM and GSL systems with
and without channel compensation, for models with 512 Gaussian components.
One can see that LM-dGMM-SFA outperforms GSL and GSL-NAP at all
operating points.

Table 5 gives the EER scores of LM-dGMM and LM-dGMM-SFA systems
using the two weighting strategies, for models with 512 Gaussian components.
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Fig. 2 DET plots for LM-dGMM and GSL systems with and without channel compensation

Table 5 Segmental weighting strategy vs frame weighting strategy

System EER

Segmental weighting
LM-dGMM 9.66%
LM-dGMM-SFA 5.02%

Frame weighting
LM-dGMM 9.47%
LM-dGMM-SFA 4.89%

One can see that the frame weighting approach further improves the LM-
dGMM (+SFA) performance. All these results show that our fast Large Mar-
gin GMM discriminative learning algorithm not only allows efficient training
but also achieves better speaker recognition (identification and verification)
performances than a state-of-the-art discriminative technique.

7 Conclusion

We proposed a new algorithm for discriminative learning of diagonal GMM
under a Large-Margin criterion. Our algorithm is highly efficient which makes
it well suited to process large scale databases such as in NIST-SRE campaigns.
We also developed a frame weighting strategy to detect and handle outliers in
training data. This strategy yields further improvement in performances. We
carried out experiments on full speaker identification and verification tasks
under the NIST-SRE’2006 core condition. Combined with the SFA channel
compensation technique, the resulting algorithm significantly outperforms the
state-of-the-art speaker recognition discriminative approach GSL-NAP. An-
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other major advantage of our method is that it outputs diagonal GMM models.
Thus, broadly used GMM techniques/softwares such as SFA or ALIZE/Spkdet
can be readily applied in our framework. Our future work will consist in im-
proving margin selection. Like in SVM, this should indeed significantly improve
the performances. We emphasize also that, while we have applied our algorithm
to speaker recognition, it can be actually applied in any other classification
task which involves supervised learning of diagonal GMM.
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