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émanant des établissements d’enseignement et de
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Abstract

We introduce a new mean field kinetic model for systems of rational agents
interacting in a game theoretical framework. This model is inspired from non-
cooperative anonymous games with a continuum of players and Mean-Field Games.
The large time behavior of the system is given by a macroscopic closure with a Nash
equilibrium serving as the local thermodynamic equilibrium. An application of the
presented theory to a social model (herding behavior) is discussed.
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1 Introduction

This paper is concerned with a dynamic model for an ensemble of rational agents or players
in the game-theoretical sense. Each agent is endowed with two variables: a type variable
X which describes the state of the agent such as its position in some social or economic
neighbourhood, its geographical position, etc., and a decision (or control or action or
strategy) variable Y which describes the degrees of freedom the agent can play with
in the game. Each agents tries to minimize a cost function (or equivalently maximize a
utility function) in the presence of the other players in the framework of a non-cooperative,
anonymous game [15, 24]. By contrast to equilibrium theory, we assume that the agents
are not choosing the Nash equilibrium instantaneously [22] (also known as Cournot-Nash
equilibria), but rather work towards this goal by choosing the steepest descent direction
towards the minimum of the cost function in each infinitesimal time step. In addition,
this action is overlayed by some statistical noise, giving rise to Brownian fluctuations.
This setup gives rise to a system of stochastic differential equations.

We are interested in systems of a large number of agents where a continuum description
can be adopted, in the way of games with a continuum of players [3, 25, 29] also known
as Mean-Field Games [7, 19]. Indeed, in the situation of anonymous games with a large
number of players, the construction of a mean field that serves as a mediator for describing
inter-particle interactions constitutes an excellent approximation. In this kind of models,
one describes the contribution of each particle to the creation of a mean field, and the
effect of the mean field on each particle, by conceiving each particle as infinitesimal, i.e.
by carrying out a kind of limit process on the number N of particles for N → ∞. We
refer the reader to [4] for a nice introduction to game theory and Mean-Field Game.
In the present paper we consider such mean field models, i.e. we consider a continuum
of players which, under the usual molecular chaos assumptions, can be described by an
effective equation for the probability distribution of single agents in the phase space (x, y)
consisting of the type and action variables.

In this large number of agents limit, a kinetic model for the time evolution of this
probability distribution f(x, y, t) can be written as follows.

∂tf(x, y, t) +∇x · [fV (x, y)]−∇y · [f∇yΦf(x, y, t)] = d∆yf . (1.1)

The vector valued function V (x, y) is given by the basic dynamics of the system, describing
how the state x evolves for a given control variable y. The forcing term∇y ·[f∇yΦf (x, y, t)]
in equation (1.1) describes the agent trying to minimize the cost functional Φf by marching
in the steepest descent direction −∇yΦf (In the mean field model considered in this paper
Φf will exhibit a functional dependence on the density f .) The Laplacian on the right
hand side of equation (1.1) is a consequence of the Brownian noise in the system, with
the diffusion coefficient d corresponding to the variance. Again, by contrast to the usual
Mean-Field Game models for agent systems [7, 19] where the optimum control is realized
instantaneously (leading to the solution of a Hamilton - Jacobi - Bellman equation), our
agents march an infinitesimal step towards the optimum at each time step by taking the
steepest descent of the cost functional.

The substance of this paper is to relate the kinetic description given by equation (1.1)
to the well-established game theoretical framework. We show that, in the homogeneous
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case, when the density f is independent of the state x, steady state solutions of equation
(1.1) correspond to Nash equilibria. Therefore the model considered here consists of
agents who try to achieve a Nash equilibrium by choosing their controls in the direction
of steepest descent towards this equilibrium. In the case of potential games [21, 23],
when the cost functional Φf can be expressed as the functional derivative of a potential
functional, we show that the kinetic equation can be expressed as the gradient flow of a free
energy. Nash equilibria are the critical points of this free energy. Stable Nash equilibria
are those which correspond to a global minimum of the free energy, the other minima
corresponding to metastable ones. For special cases, we can prove that the dynamic
solution of the kinetic equation converges to these stable or metastable Nash equilibrium
solutions (see section 5). We note that potential games have originated from congestion
games aimed at describing congested traffic situations [23] and that we will recover familiar
models of traffic flow below (see Eq. 1.2 and comments below). Recently, an approach
similar to that developed here has been applied to pedestrian traffic [1, 2].

The main goal of the paper is to investigate the inhomogeneous case, when the proba-
bility density f depends on the both the state (or type) x and control variable y. We aim
to derive macroscopic dynamic equations in the state variable x only, which constitute
good approximations to the solution of equation (1.1) at large scales. Indeed, we look at
the system over time scales which are large compared to the typical time needed by the
players to act on their control variables. Simultaneously, we suppose that the interactions
between the players are localized in the state space x. This corresponds to a situation of
so-called bounded information where the agents only take into account agents which are
close to themselves in state space x to make their decision, ignoring agents in the far field.
In the macroscopic dynamics, we focus on scales in state space which are large compared
to this interaction scale. Over these large time and state space scales, the distribution of
agents in the control variable y instantaneously realizes the local Nash equilibrium. This
local Nash equilibrium describes the statistics of agents in control variable y and depends
on parameters which may vary over the large scale state variable x and time t. Such
parameters may be e.g. the local number density ρ(x, t) of agents at given state x and
time t, or the mean or standard deviation of the local Nash equilibrium distribution.

The resulting macroscopic equation represents, in the language of kinetic theory, the
macroscopic closure of the kinetic equation, using the Nash equilibrium distribution as the
Local Thermodynamic Equilibrium. For instance, the large time evolution of the density
ρ(x, t) is of the form

∂tρ(x, t) +∇x · (uρ) = 0 , (1.2)

where ρ is related to the probability density f by ρ(x, t) =
∫

f(x, y, t) dy. The macroscopic
velocity u(x, t) is given by the expectation of the local velocity V (x, y) over the Nash
equilibrium distribution. In the simplest possible case the macroscopic velocity u can
be expressed in terms of the macroscopic density ρ as u = uρ, giving a closed (usually)
hyperbolic conservation law such as in the Lighthill-Whitham-Richards model of traffic
[20]. However, in many applications the structure of the macroscopic velocity u is more
complicated, and additional constitutive equations are needed to obtain a closed system
from equation (1.2). In such an occurrence a case by case study is necessary. We will give
such an example in section 5.

This paper is organized as follows:
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- In Section 2 we define the basic model, consisting of a system of stochastic differential
equations, and state under what assumptions the solution can be expressed in terms
of a mean field density for one effective agent.

- Section 3 is devoted to the analysis of equilibria. For this purpose it is sufficient to
consider the homogeneous case where the density function f in (1.1) does not depend
on the state variable x. In this case the equilibrium solution is given as the solution
of a fixed point problem and we show that this equilibrium solution is actually a
Nash equilibrium in the game theoretical sense. In the case of potential games, we
provide a variational structure and Lypounov functional to equation (1.1).

- Section 4 is concerned with the inhomogeneous case. We consider the macroscopic
limit in the regime when the control variable y is adjusted on a much faster time
scale than that of the evolution of the state variable x and when the interactions
are nearly local in state space. In the limit, this leads to the macroscopic model
(1.2) where the macroscopic velocity u has to be computed from the local Nash
equilibrium.

- In Section 5, we apply the framework developed so far to a model of social herding
behavior, where V is an actual velocity in physical space, and the goal of each
individual is to adjust to the mean velocity of the ensemble. Here, equilibrium
distributions are given by the Von-Mises-Fischer distribution. This serves as an
example of a potential game. However, the macroscopic limit equation (1.2) is
not well defined unless some additional constitutive relations are used to determine
the macroscopic velocity u. An other example pertaining to the evolution of the
distribution of wealth in economic neighborhood can be found in [12]. There are
many models of social interactions and group formation based on a game theoretical
approach (see e.g. [18]).

- In section 6, a conclusion is given and perspectives are drawn.

2 A mean-field model of social dynamics

We consider N rational agents (or players) moving continuously in a space of social
configurations X . Each agent labeled j, j ∈ {1, . . . , N} has social configuration Xj(t) ∈
X , depending on time t ∈ R+. It controls its state by an action (or decision) variable Yj(t)
belonging to a space of control variables Y . For simplicity, we suppose that X = Rn and Y
is a compact, orientable, connected manifold imbedded in Rp with or without boundary
and endowed with the Riemannian structure induced by Rp. Given (Xj(t), Yj(t)), the
j-th agent moves in configuration space with velocity Vj(t) = V (Xj(t), Yj(t)), where
V = V (X, Y ) is a given function of the configuration and decision variables. To act on
their decision variables, the agents impose a given force FN

j which will be a function
of his own and the other agents’ configuration and decision variables. In addition to
this force, each agent’s decision variables are subject to Brownian noises which model
uncertainties in the decision process as well as of the influence of the environment. In the
game-theoretical literature, this is called a game with mixed strategy. Brownian noises
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for different agents are independent. In order to constrain the dynamics of the decision
variables to the manifold Y , the resulting combination of the force and Brownian noise is
projected onto the tangent plane TYj(t) to Y at this point. The particle dynamics is given
by the following Stochastic Differential Equation (SDE):

Ẋj = V (Xj(t), Yj(t)), dYj = PTYj(t)
◦ (FN

j +
√
2d dW j

t ), (2.1)

where the dot indicates the time derivative, PTYj (t)
is the orthogonal projection onto the

tangent plane to Yj(t), the symbol ◦ refers to the Stratonowich interpretation of the
SDE, dW j

t for j ∈ {1, . . . , N} denote N independent Brownian motions in Rp and d is
the diffusion coefficient. Finally FN

j denotes the force acting on the j-th agent which is
described below. In the case where Y is a manifold with boundary, suitable boundary
conditions must be given. Such boundary conditions will be specified later on in the
kinetic framework (see Eq. (2.8)). That (2.1) provides a well-defined SDE on X × Y
follows from the theory descibed e.g. in [16].

We denote by ~X(t) = (X1, . . . , XN), ~Y (t) = (Y1, . . . , YN) and Ŷj = (Y1, . . . , Yj−1,

Yj+1, . . . , YN). We also write ~Y = (Yj, Ŷj) by abuse of notation. We assume the existence

of a cost function ΦN ( ~X, ~Y , t), such that each agent tries to achieve a Nash equilibrium,

i.e. relaxes its control variable Yj to an equilibrium Yj( ~X, Ŷj, t) such that

Y N
j ( ~X, Ŷj, t) = arg min

Yj∈Y
ΦN ( ~X, Yj, Ŷj, t), ∀j ∈ {1, . . . , N}. (2.2)

Since such a goal cannot be achieved instantaneously, it chooses the steepest descent
direction, i.e. it acts a force FN

j on itself such that

FN
j ( ~X, ~Y , t) = −∇Yj

ΦN( ~X, Yj, Ŷj, t), ∀j ∈ {1, . . . , N}. (2.3)

We now assume that FN
j is globally Lipschitz with respect to all its arguments, so that

the system (2.1) has global solutions.
A more sophisticated way to optimize the action or control variables is to use a

Hamilton-Jacobi-Bellman equation (see e.g. the Mean-Field Game theory of Lasry &
Lions [19]). We can also easily generalize this setting to a fiber bundle but we will stay
in the frame of a trivial bundle (i.e. a cartesian produc) for simplicity.

Now, we introduce the N -particle empirical distribution function

fN(x, y, t) =
1

N

N
∑

j=1

δXj(t)(x)⊗ δYj(t)(y),

and regard fN as a map from t ∈ R+ to fN(t) ∈ P(X ×Y), where P(X ×Y) denotes the
space of probability measures on X ×Y . We assume that in the mean-field limit N → ∞
of the number of players going to infinity, there exists a one-particle distribution function
f = f(x, y, t), which maps t ∈ R+ to f(t) ∈ Pac(X × Y) where Pac(X × Y) is the space
of probability measures on X × Y which are absolutely continuous with respect to the
Lebesgue measure on X ×Y (i.e. the measure on X ×Y induced by the Lebesgue measure
on Rn × Rp), such that

fN ⇀ f, (2.4)
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in the weak star topology of bounded measures. We assume that a mean-field cost function
exists. More precisely, we assume that there exists a map Pac(X × Y) → C2(X × Y),
f 7→ Φf , such that, for all trajectories (Xj(t), Yj(t)) satisfying (2.4), we have

ΦN (Xj(t), X̂j(t), Yj(t), Ŷj(t), t) → Φf(t)(Xj(t), Yj(t)), ∀j ∈ {1, . . . , N}, ∀t ≥ 0. (2.5)

Thanks to these assumption, in the limit N → ∞, the one-particle distribution func-
tion f is a solution of the following Fokker-Planck equation [26]

∂tf +∇x · (V (x, y)f) +∇y · (Ff f) = d∆yf, (2.6)

where Ff = Ff(x, y, t) is given by

Ff(x, y, t) = −∇yΦf(t)(x, y). (2.7)

In (2.6), the symbol ∇y· denotes the divergence of tangent vector fields on Y , while ∆y

is the Laplace-Beltrami operator on Y . Below, we will also use ∇y for the tangential
gradient of functions defined on Y . We supplement this system with an initial condition
f(0) = f0. For short, we will write Φf(t) = Φf . In the case where Y is a manifold with
boundary, we set a zero flux condition on the boundary X × ∂Y , namely:

f∂nΦf + d∂nf = 0, on X × ∂Y , (2.8)

where ∂nf(x, y) denotes the normal derivative of f at (x, y) ∈ X × ∂Y .

3 The homogeneous configuration case: convergence

to Nash equilibria

Here, we assume that the dynamics of the decision variables is independent of the state
variables and we restrict the system to the decision variables only. In the kinetic-theory
framework, this would refer to the spatially homogeneous case, where the spatial depen-
dence is omitted. Then, f becomes a mapping from t ∈ [0,∞[ to f(t) ∈ Pac(Y), where
Pac(Y) is now the space of absolutely continuous probability measures on Y . The cost
function Φ becomes a mapping from f ∈ Pac(Y) to Φf ∈ C2(Y). Eq. (2.6) is now written:

∂tf = Q(f), Q(f) = ∇y · (f ∇yΦf + d∇yf) , (3.1)

with initial condition given by f0. We note that we can write the collision operator Q(f)
as follows:

Q(f) = ∇y ·
(

f ∇y

(

Φf + d ln f
)

)

= ∇y ·
(

f ∇yµf

)

, (3.2)

with
µf (y) = Φf (y) + d ln f(y). (3.3)

In the case where Y has boundary, then the boundary condition (2.8) reduces to

f ∂nµf = 0, on ∂Y , (3.4)
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where ∂nµf(y) is the normal derivative of µf at y ∈ ∂Y . For a given function Φ(y), we
introduce the Gibbs measure MΦ(y) by:

MΦ(y) =
1

ZΦ

exp
(

− Φ(y)

d

)

, ZΦ =

∫

y∈Y

exp
(

− Φ(y)

d

)

dy. (3.5)

The definition of ZΦ is such that MΦ is a probability density, i.e. it satisfies
∫

y∈Y

MΦ(y) dy = 1. (3.6)

Now, we can write

Q(f) = d∇y ·
(

MΦf
∇y

( f

MΦf

)

)

. (3.7)

We have the

Lemma 3.1 (i) For any sufficiently smooth function f and g on Y, we have
∫

y∈Y

Q(f)
g

MΦf

dy = −d

∫

y∈Y

∇y

( f

MΦf

)

· ∇y

( g

MΦf

)

MΦf
dy, (3.8)

(ii) We have
∫

y∈Y

Q(f)
f

MΦf

dy = −d

∫

y∈Y

∣

∣

∣
∇y

( f

MΦf

)

∣

∣

∣

2

MΦf
dy ≤ 0. (3.9)

Proof. (i) Multiplying (3.7) by g/MΦf
, integrating over y and using Green’s formula on

Y , we get (3.8). In the application of Green’s formula, the boundary term is either absent
when Y has no boundary or vanishes due to the boundary condition (3.4) in the case
where Y has a boundary. Indeed, we notice that

f

MΦf

= ZΦf
e

µf
d , Q(f) = dZΦf

∇y ·
(

MΦf
∇y e

µf
d

)

. (3.10)

Therefore, the boundary term in Green’s formula is written

dZΦf

∫

y∈∂Y

MΦf
(y) ∂n

(

e
µf (y)

d

)

(y)
g

MΦf

dS(y) = 0,

where dS(y) is the measure on ∂Y and where the integral is zero because

∂n
(

e
µf (y)

d

)

(y) =
1

d
e

µf (y)

d ∂nµf(y) = 0,

by virtue of (3.4).
(ii) We let g = f in (3.8) and get (3.9).

From Lemma 3.1, we deduce the following
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Proposition 3.2 The distribution function f ∈ Pac(Y) is an equilibrium solutions, i.e.
a solution of Q(f) = 0 if and only if f is of the form feq where feq is a solution of the
following fixed point problem:

feq(y) =
1

ZΦfeq

exp
(

−
Φfeq(y)

d

)

, ZΦfeq
=

∫

y∈Y

exp
(

−
Φfeq(y)

d

)

dy. (3.11)

Proof. First, suppose that Q(f) = 0. Then,
∫

y∈Y
Q(f) f

MΦf

dy = 0. Therefore, thanks

to (3.9), f
MΦf

is a constant. Using the positivity of MΦf
and its normalization condition

(3.6), we get f = MΦf
. Consequently, for f to be an equilibrium, it has to satisfy the fixed

point problem (3.11). Conversely, if feq is a solution of the fixed point problem (3.11),

then
feq

MΦfeq
= 1 and Q(feq) = 0 follows.

We now show that equilibria (3.11) are Nash equilibria for the mean-field game (also
known as non-cooperative anonymous game with a continuum of players [7]) associated
to the cost function µf(y). For such a game, a Nash equilibrium measure fNE ∈ P(Y) is
such that [7] (see also [5, 6]) there exists a constant K and

{

µfNE
(y) = K ∀y ∈ Supp(fNE),

µfNE
(y) ≥ K ∀y ∈ Y .

(3.12)

This definition is equivalent to the following statement [7]:

∫

y∈Y

µfNE
(y) fNE(y) dy = inf

f∈Pac(Y)

∫

y∈Y

µfNE
(y) f(y) dy. (3.13)

Eq. (3.13) is called the ’mean-field’ equation. Now, we have the following

Theorem 3.3 Let f ∈ Pac(Y). Then the two following statements are equivalent:
(i) f is an equilibrium (3.11),
(ii) f is a Nash equilibrium (3.12).

Proof. (i) ⇒ (ii). Let feq be an equilibrium (3.11). Since Y is compact and Φf is
continuous on Y for any f ∈ Pac(Y), then Φfeq is bounded. Therefore, its support is
the entire manifold Y and the second line of (3.12) reduces to the first line. We easily
compute that K = −d lnZΦfeq

. Therefore, feq is a Nash equilibrium (3.12).

(ii) ⇒ (i). Let fNE be a Nash equilibrium (3.12). We show that Supp(fNE) = Y . Indeed, by
contradiction, suppose Supp(fNE)  Y . There exists y ∈ Y such that fNE(y) = 0. Then,
because of the log inside (3.3) and the boundedness of ΦfNE

, we have µfNE
(y) = −∞ which

is a contradiction to the second line of (3.12). Therefore, by the first line of (3.12), µfNE

is identically constant over the entire space Y . From the expression of µfNE
in (3.3), fNE

is proportional to exp(−ΦfNE
/d), which means that it is an equilibrium (3.11).
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The mean-field model (3.1), (3.2) can be recast as a transport equation as follows

∂tf +∇y · (v f) = 0, (3.14)

v = −∇yµf . (3.15)

It describes the bulk motion of agents which move in the direction of the steepest descent
towards the minimum of µf . When all agents have reached the minimum of µf , then µf is
a constant and describes a Nash Equilibrium. Therefore, in the proposed dynamics, the
agents choose as their action to move in the steepest descent direction towards the Nash
equilibrium.

Remark 3.1 Variational structure and potential games [21]. We suppose that
there exists a functional U(f) such that

Φf (y) =
δU(f)
δf

(y), ∀y ∈ Y ,

where δU(f)
δf

is the functional derivative of U defined by

∫

y∈Y

δU(f)
δf

(y)φ(y) dy = lim
s→0

1

s
(U(f + sφ)− U(f)), (3.16)

for any test function φ(y). We note that the existence of such a functional gives a very
strong constraint on Φ (if f were finite-dimensional, i.e. if Y were replaced by a finite
set and eq. (3.1) by a system of ordinary differential equations, that would mean that Φ
is the gradient of the scalar potential U). We will call U the potential energy. A game
associated to such a cost function Φ is called a potential game [21]. We now introduce the
entropy functional:

S(f) = d

∫

y∈Y

f(y) ln f(y) dy, (3.17)

and the free energy
F(f) = U(f) + S(f). (3.18)

It is a simple matter to find that

δS(f)
δf

(y) = d ln f(y).

Therefore, we have
δF(f)

δf
(y) = Φf (y) + d ln f(y) = µf(y), (3.19)

so that, in this setting, µf(y) can be seen as the ’chemical potential’ associated to the free
energy F(f). Now, we can recast (3.1), (3.2) as

∂tf = ∇y ·
(

(∇yµ)f
)

= ∇y ·
(

∇y

(δF(f)

δf

)

f
)

. (3.20)
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But, for a function f(y, t), we have

d

dt
F(f(·, t)) =

∫

y∈Y

δF(f(·, t))
δf

(y)
∂f

∂t
(y, t) dy.

Inserting (3.20) into the above equation, and using Green’s formula, we have:

d

dt
F(f(·, t)) = −

∫

y∈Y

f(y, t)
∣

∣

∣
∇y

δF(f(·, t))
δf

(y)
∣

∣

∣

2

(y, t) dy := −D(f(·, t)) ≤ 0.

Therefore, F is Liapounov functional for this dynamic and D is the free-energy dissipation
term. By fine analysis of D, it is possible in some cases to deduce decay rates from this
kind of estimate [14, 28]. Equilibria given by (3.11) are critical points of F subject to
the constraint

∫

f dy = 1 and the chemical potential µ is the Lagrange multiplier of this
constraint in this optimization problem. Each of these critical points corresponds to a
Nash equilibrium. However, these critical points are not necessarily global minimizers of
the free energy. Among these equilibria, the ground states, which are the global minimizers
of F are the most stable ones. Other equilibria are either not stable or only locally stable
(or meta-stable). The co-existence of several stable equilibria may give rise to phase
transitions and hysteresis behavior if bifurcation parameters are involved and varied.

4 The inhomogeneous configuration case: Nash Equi-

librium macroscopic closure

Now, we return to the inhomogeneous configuration case (2.6), (2.7) where the positions
of the players in the social configuration space is considered. The goal of this section
is to investigate the ensemble motion of the players at large time scales, averaging out
over their individual decision variables. For this purpose, we have to assume a temporal
scale separation, where individual decisions are fast compared to the evolution of the
ensemble of players in configuration space. We also need to observe the system as a bulk,
averaging out the fine details of the individual players in configuration space. Therefore,
we will introduce a suitable coarse-graining procedure. Taking advantage that at large
times, individuals relax their decision variables towards that corresponding to a global
Nash equilibrium given by (3.11), we use this equilibrium as a prescription for the internal
decision variable distribution of the agents. In this section, we provide the details of this
coarse-graining process, known as the hydrodynamic limit in kinetic theory.

In order to manage the various scales in a proper way, we first change the variables
to dimensionless ones. Let t0 be a time unit and let x0 = at0, where a is the typical
magnitude of V . We choose t0 in such a way that the magnitude of Φ is O(1) and
introduce the quantity d̃ = dt0 = O(1). The decision space Y is already dimensionless
and the variable y does not require any scaling. Introducing new variables x̃ = x/x0,
t̃ = t/t0, f̃(x̃, y, t̃) = xn

0f(x, y, t), Ṽ (x̃, y) = V (x, y)/a, Φ̃f̃ (x̃, y) = Φf (x, y), Eq. (2.6) is
written:

∂t̃f̃ +∇x̃ · (Ṽ (x̃, y)f̃) +∇y · (F̃f̃ f̃) = d̃∆yf̃ , (4.1)
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where F̃f̃ is given by

F̃f̃ (x̃, y, t̃) = −∇yΦ̃f̃ (x̃, y), (4.2)

We now introduce the macroscopic scale. Refering to the discussion of the beginning
of this section, we change the configuration space unit and the time unit to new ones x′

0,
t′0 which are large compared to x0, t0. Specifically, we let ε ≪ 1 be a small parameter
and define x′

0 = x0/ε, t
′
0 = t0/ε. Here, ε refers to the ”small” average change of the

configuration of the ensemble of agents on the ”fast” time-scale of the evolution of the
decision variables. In the kinetic framework, ε would be a measure of the particle mean-
free path in macroscopic units. By doing so, we change the space and time variables x̃ and
t̃ to macroscopic variables x̂ = εx̃, t̂ = εt̃ and define f̂(x̂, y, t̂) = ε−nf̃(x̃, y, t̃). Inserting
this change of variables into (4.1), (4.2), we are led to the following perturbation problem
(dropping the hats and tildes for simplicity):

ε
(

∂tf
ε +∇x · (V (x, y)f ε)

)

+∇y · (F ε
fε f ε) = d∆yf

ε, (4.3)

where Ffε is given by

F ε
f (x, y, t) = −∇yΦ

ε
f (x, y). (4.4)

For a distribution function f(x, y), f ∈ Pac(X × Y), we assume that Φε
f can be

developed as follows:

Φε
f (x, y) = Φρ(x), νx(x, y) +O(ε2), (4.5)

with

νx(y) =
1

ρ(x)
f(x, y), ρ(x) =

∫

y∈Y

f(x, y) dy, (4.6)

and Φρ,ν is a map [0,∞) × Pac(Y) → C2(X × Y), (ρ, ν) 7→ Φρ, ν . In short, νx is the
conditional probability density of f conditionned by fixing the position x ∈ X and it
belongs to Pac(Y). Eq. (4.5) states that, up to factors of order O(ε2), the cost function
is a functional of this conditional probability and of the density only, and therefore, only
depends on local quantities at social position x. The O(ε2) term collects all non-local
effects in social position space. These effects are supposed to be much smaller than the
local ones. This is an expression of the scale separation in social space: local effects in
social space are supposed to have a much bigger influence that non-local ones on a given
subject.

The macroscopic limit is about taking the limit ε → 0 in this set of equations. In
order to do so, we write (4.3), (4.4) as follows:

∂tf
ε +∇x · (V (x, y)f ε) =

1

ε
Q(f ε), (4.7)

with Q given by

Q(f) = ∇y ·
(

∇yΦρ(x,t), νx,t f + d∇yf
)

, (4.8)
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and where ρ(x, t), νx,t are related to f(t) by (4.6). Here, we have used (4.5) to replace
Φε by Φ in (4.7), (4.8) and dropped the remaining O(ε) terms. In the example section
below, we will show that this assumption is actually quite natural.

Here again, we emphasize that (x, t) now refers to slow variables. The left-hand side of
(4.7) describes how the distribution of agents as a function of the external variables (the
social configuration x) evolves. This evolution is driven by the the fast, local evolution
of this distribution as a function of the individual decision variables y described by the
right-hand side. The parameter ε at the denominator highlights that fact that the internal
decision variables evolve on a faster time-scale than the external social configuration
variables. The fast evolution of the internal decision variables drives the system towards
an equilibrium, i.e., solution of Q(f) = 0. Such a solution is referred to in physics as
a Local Thermodynamical Equilibrium (LTE). Below, we use the results of the previous
section to show that, in this case, the LTE’s are given by Nash equilibria.

To highlight this fact, by factoring out ρ(x, t) from the expression of Q in (4.8), we
can recast it as follows:

Q(f) := ρ(x, t)Qρ(x,t)(νx,t), (4.9)

where, for any ρ ∈ R+, we define the operator Qρ acting on Pac(Y) as follows:

Qρ(ν) := ∇y · (∇yΦρ, ν ν + d∇yν) . (4.10)

The equation Q(f) = 0 can then be recast (supposing that ρ(x, t) 6= 0) into Qρ(x,t)(νx,t) =
0. But the operator Qρ freezes the slow variables (x, t) and acts only on the distribution
of agents in the decision variable y. Therefore, this equation is merely a homogeneous
configuration problem and we can apply Proposition 3.2 to solve it. This leads to the
following lemma whose proof is a direct application of Proposition 3.2 and is omitted.

Lemma 4.1 The LTE, i.e. the solutions of Q(f) = 0 are given by

f(x, y, t) = ρ(x, t) νeq, ρ(x,t)(y), (4.11)

where νeq, ρ(y) is a solution of Qρ(ν) = 0. Such solutions νeq, ρ(y) are given by the resolution
of the Nash equilibrium fixed point problem

νeq, ρ(y) =
1

ZΦρ, νeq,ρ

exp
(

− Φρ, νeq,ρ(y)

d

)

, ZΦρ, νeq,ρ
=

∫

y∈Y

exp
(

− Φρ, νeq,ρ(y)

d

)

dy.(4.12)

Now, we can state the result for the coarse-graining limit ε → 0 inside Eq. (4.7). We
have

Theorem 4.2 Suppose that the solution f ε to (4.7) converges to a function f when ε → 0
smoothly, which means in particular that all derivatives of f ε converge to the corresponding
derivative of f . Then, formally f is given by an LTE (4.11). The density ρ(x, t) satisfies
the following conservation law:

∂tρ+∇x · (ρu) = 0, (4.13)
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with
u = u[x, νeq, ρ(x,t)], (4.14)

being the mean velocity of νeq, ρ(x,t) and u[x, ν] is given by

u[x, ν] =

∫

y∈Y

V (x, y) ν(y) dy, (4.15)

for all distributions ν ∈ Pac(Y).

Proof. From (4.7), we have thatQ(f ε) = O(ε) and owing to the convergence assumptions
made on f ε, we have Q(f) = 0. Thanks to Lemma 4.1, f is of the form (4.11). Now,
observe that 1 is a collisional invariant of Q, meaning that

∫

y∈Y
Q(f)(y) dy = 0, for all

functions f(y) (simply by Green’s formula and the boundary conditions). Therefore,
integrating (4.7) with respect to y leads to

∂tρ
ε +∇x · (ρεuε) = 0, (4.16)

with uε(x, t) = u[x, νε
x,t] where u[x, ν] is given by (4.15) and νε

x,t is related to f ε by
the first eq. (4.6). Then, taking the limit ε → 0 in (4.16) and using that ρε → ρ and
νε
x,t → νeq, ρ(x,t), we get that u

ε → u[x, νeq, ρ(x,t)] and that the limit of Eq. (4.16) is precisely
(4.13).

Remark 4.1 We note that Eq. (4.13) (complemented with an initial condition ρ0(x) and
possibly boundary conditions) does not necessarily lead to a closed system. We will provide
examples in the next section where additional equations may be required to provide a closed
problem. However, in many cases, the solution of the Nash equilibrium problem (3.11) is
not known explicitly. This suggests the development of coarse-graining strategies, based
on e.g. the Heterogeneous Multiscale Method [8] or kinetic upscaling [10].

5 Models of social herding behavior

5.1 General framework

Here, we specify the potential Φf (x, y) as given by the following kernel:

Φf(x, y) =

∫

(x′,y′)∈X×Y

k(x, y, x′, y′)f(x′, y′) dx′ dy′, (5.1)

where (x, y, x′, y′) ∈ (X×Y)2 7→ k(x, y, x′, y′) ∈ R is a given function. To be more specific,
we focus on a model of social herding behavior, where pairs of agents try to minimize the
angle between their respective social velocities. Namely, we set:

k(x, y, x′, y′) = −K(x, x′) V (x, y) · V (x′, y′), (5.2)

where V (x, y) is the velocity in social space specified earlier and the dot refers to inner
product in the vector space X . By trying to minimize the angle between their own velocity
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and that of their neighbors, the agents adopt a mimetic behavior, and tend to move in
social space in the same direction as the others. We can write

Φf (x, y) = −V (x, y) · Wf(x), (5.3)

with

Wf (x) =

∫

(x′,y′)∈X×Y

K(x, x′) V (x′, y′) f(x′, y′) dx′ dy′ ∈ X . (5.4)

We can view Wf as some average of V (x, y) over f .
Now, let us first focus on the homogeneous configuration case, letting K = 1. In this

case, f(y, t) satisfies (3.1) with Φf(y) given by:

Φf (y) = −V (y) · Wf , Wf =

∫

y′∈Y

V (y′) f(y′) dy′ (5.5)

By (3.11) the Nash equilibrium is now depending on a parameter W ∈ X . It is denoted
by MW and given by (3.5) with Φ(y) = −V (y) ·W , i.e.

MW (y) =
1

ZW
exp

(1

d
(V (y) ·W )

)

with ZW =

∫

y∈Y

exp
(1

d
(V (y) ·W )

)

dy. (5.6)

Now, eq. (3.11) which defines a Nash equilibrium is replaced by a ’compatibility condition’
deduced from (5.4) and which expresses that

W = WMW
,

or equivalently

W

∫

y∈Y

exp
(1

d
(V (y) ·W )

)

dy =

∫

y∈Y

exp
(1

d
(V (y) ·W )

)

V (y) dy. (5.7)

The associated game is a potential game. Indeed, we introduce the potential energy

U(f) = −1

2
|Wf |2. (5.8)

According to definition (3.16), we have, for all test functions φ(y),
∫

y∈Y

δU(f)
δf

(y)φ(y) dy = −Wf ·
∫

y∈Y

δWf

δf
φ(y) dy

= −Wf ·
∫

y∈Y

V (y)φ(y) dy

=

∫

y∈Y

Φf (y)φ(y) dy, (5.9)

where, to pass from the first to the second line, we have used that, in the homogeneous
configuration case, Wf is linear with respect to f . So, we get:

δU(f)
δf

(y) = Φf (y), (5.10)
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which shows that the game with cost function µf(y) given by (3.3) is a potentiel game
associated to potential U . Its variational structure is associated to the following free
energy functional (thanks to (3.17) (3.18) and (5.10)):

F(f) = S(f)− 1

2
|Wf |2. (5.11)

In economics, one may be interested in the ’social cost’ defined by

C(f) =
∫

y∈Y

µf(y) f(y) dy = S(f)−
∫

y∈Y

Φf (y) f(y) dy, (5.12)

where the second equality comes from (3.3), (3.17). Now, taking φ = f in (5.9) we have,
for all f ∈ Pac(Y):

∫

y∈Y

Φf (y) f(y) dy =

∫

y∈Y

δU(f)
δf

(y) f(y) dy.

But, noting that U(f) is a quadratic function of f , we have the following identity, which
is valid for all degree 2 homogeneous functions:

∫

y∈Y

δU(f)
δf

(y) f(y) dy = 2U(f).

It follows that, for all f ∈ Pac(Y):
∫

y∈Y

Φf (y) f(y) dy = −|Wf |2. (5.13)

Then, the social cost (5.12) has the expression

C(f) = S(f)− |Wf |2. (5.14)

Note, that the free energy (5.11) and social cost (5.14) differ by a factor 1/2 in front of
|Wf |2. This means that they differ except if Wf = 0 (which is a kind of a measure of the
social disorder). We note that a Nash equilibrium gives rise to a minimizer of the free
energy instead of the social cost. The reason is that individual players make strategies
without taking into account the cost of the freely available social infrastructure. To
correct this discrepancy, one has to make players pay for the use of this infrastructure by
e.g. assigning taxes. In the present cases, taxes would lead to a cost function equal to
µf(y)− V (y) · Wf . An example pertaining with city planning can be found in [6].

5.2 Example: animal herding model

In this section, we consider a special case of the above one which describes the herding
behavior a group of animals or a human crowd. The social space X coincides with the
geographical space Rn (with n = 2 (for crowds) or n = 3 (for fish schools for instance)).
The decision variable y is the direction of the motion of the individuals and is such that
y ∈ Y = Sn−1, where Sn−1 is the unit sphere of Rn endowed with the Lebesgue measure dy
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(normalized such that the total measure of Y is equal to 1). The function V (y) relating
the decision variable to the physical speed is independent of x and simply given by:

V (y) = y,

where the speed (supposed uniform and independent of position) is normalized to 1
through the non-dimensionalization procedure. We take the same kernel (5.2) as before,
which leads to the cost function

Φf (x, y) = −y · Wf (x), (5.15)

with

Wf(x) =

∫

(x′,y′)∈Rn×Sn−1

K(x, x′) y′ f(x′, y′) dx′ dy′. (5.16)

In the homogenous configuration case (where we set K = 1), the free energy is still
given by (5.11) where now Wf is given by

Wf =

∫

y′∈Sn−1

y′ f(y′) dy′.

Then, from (5.6), the Nash equilibrium is given by a so-called Von-Mises-Fischer (VMF)
distribution

MW (y) =
1

ZW
exp

(1

d
(y ·W )

)

, ZW =

∫

y∈Sn−1

exp
(1

d
(y ·W )

)

dy, (5.17)

where W ∈ Rn is a solution of (5.7). In the present context, this equation is written:

W

∫

y∈Sn−1

exp
(1

d
(y ·W )

)

dy =

∫

y∈Sn−1

exp
(1

d
(y ·W )

)

y dy. (5.18)

By rotational symmetry and expressing the integrals in (5.18) in polar coordinates, we
can write

W = |W |Ω, (5.19)

where Ω ∈ Sn−1 is arbitrary. The quantity κ = |W |/d satisfies:

c(κ) = d κ, (5.20)

with

c(κ) =

∫ π

0
eκ cos θ cos θ sinn−2 θ dθ
∫ π

0
eκ cos θ sinn−2 θ dθ

, (5.21)

and cos θ = y · Ω. Then, the VMF distribution (5.17) is more conveniently written MκΩ

(where κ ∈ R+ is the concentration parameter and Ω is the mean direction) as:

MκΩ(y) =
1

Zκ

exp
(

κ(y · Ω)
)

, (5.22)
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with Zκ given by the denominator of (5.21). The quantity c(κ) is the order parameter. It
is an increasing function of κ which satisfies 0 ≤ c(κ) ≤ 1. When c(κ) ≈ 0, then MκΩ(y)
is nearly isotropic (i.e. MκΩ(y) ≈ 1). On the other-hand, when c(κ) → 1, which happens
when κ → ∞, then MκΩ(y) → δΩ(y) (see details in [9, 14]).

Now, we look at the solutions of the compatibility condition (5.20). This analysis has
been performed in [9, 14]. We only summarize the final results in the following.

Theorem 5.1 [9, 14] (i) If c′(0) = 1
n
≤ d, then, the only solution of Eq. (5.20) is κ = 0

and the associated equilibrium (5.22) is the uniform distribution M0 = 1. It is a stable
equilibrium.
(ii) If c′(0) = 1

n
> d, then, there exist exactly two solutions of Eq. (5.20): κ = 0 and

another solution denoted by κd > 0. κd is a strictly decreasing function of d ∈ [0, 1
n
] onto

(+∞, 0]. The associated equilibria (5.22) are the uniform distribution M0 = 1 associated
to κ = 0 and all VMF distributions MκdΩ where Ω takes any value on the sphere Sn−1.
The uniform equilibrium is now unstable and the VMF equilibria MκdΩ for all Ω ∈ Sn−1

are the ground states of the free energy and are stable.

We refer to [9, 14] for the precise mathematical statement of the stability result, as well
as for rate estimates of convergence to the equilibria in the homogeneous configuration
case.

Remark 5.1 If n = 1, then Sn−1 = {−1, 1} and c(κ) = tanh(κ). The compatibility
condition (5.20) is the same as the mean-field equation in the Ising spin model for ferro-
magnetism [17].

Now, we apply the coarse-graining procedure with Nash equilibrium closure developed
in section 4 to this special case. To implement this closure, we first need to verify condition
(4.5). For this purpose, we assume that

K(x, x′) = k̄
(
∣

∣

|x− x′|
ε

∣

∣

)

, (5.23)

with k̄(r): r ∈ [0,∞) → R+ a given kernel. The quantities associated to such kernel K
by (5.15) and (5.16) are denoted by Φε

f and Wε
f . For simplicity, we assume

∫

x∈X

k̄
(
∣

∣x
∣

∣

)

dx = 1.

Then, inserting (5.23) into (5.16) and expanding in powers of ε, we get, for f ∈ Pac(X×Y):

Wε
f (x) = ρ(x)W̃νx +O(ε2), (5.24)

with for all ν ∈ Pac(Y),

W̃ν =

∫

y′∈Sn−1

y′ ν(y′) dy′. (5.25)

By inserting this expansion into (5.15), we get

Φε
f (x, y) = Φρ, νx(y) +O(ε2), (5.26)
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where, for ρ ∈ R+ and ν ∈ Pac(Y), we set

Φρ, ν(y) = −ρ y · W̃ν . (5.27)

We note that, in order to recover the homogeneous configuration setting of the beginning
of this section, Wf must be replaced by ρW̃ν in (5.15). It follows that the compatibility
condition (5.20) becomes

c(κ) = κ
d

ρ
,

and that the Nash equilibrium solutions are now the VMF distributions Mκd/ρΩ, with

Ω ∈ Sn−1. The discussion of Theorem 5.1 is still valid provided that d is replaced by
d/ρ everywhere. Therefore, there are two regimes corresponding to items (i) and (ii) in
the statement of Theorem 5.1. We successively describe the models resulting from the
application of Theorem 4.2 for these two regimes.

(i) Large noise or small density case: d
ρ
≥ 1

n
. Then, the only Nash equilibrium being

the isotropic distribution M0 = 1, the macroscopic velocity u as given by (4.14),
(4.15) is

u = u[1] =

∫

y∈Sn−1

y dy = 0,

by antisymmetry. The macroscopic equation (4.13) reduces to

∂tρ = 0.

In order to get a meaningful macroscopic model, we must rescale time to diffu-
sive scales. In this case, a diffusion approximation procedure leads to a nonlinear
diffusion equation for ρ. Details can be found in [9].

(ii) Small noise or large density case: d
ρ
< 1

n
. Then, we use the ground-state Nash

equilibrium Mκd/ρΩ, where Ω ∈ Sn−1. In this case, f is given by (4.11), i.e.:

f(x, y, t) = ρ(x, t)Mκd/ρΩ(x,t)(y). (5.28)

By the computations above, the mean velocity u is given by

u(x, t) = c(κd/ρ)Ω(x, t) 6= 0.

The Nash Equilibrium macroscopic closure equation (4.13) gives

∂tρ+∇x · (c(κd/ρ)ρΩ) = 0. (5.29)

We note that it does not provide an equation for Ω(x, t) yet and as such, would lead
to an ill-posed problem. However, by using the concept of Generalized Collision
Invariant (GCI) [13], it is possible to derive the equation for Ω. This equation
reads:

∂tΩ + b(ρ)(Ω · ∇x)Ω + Θ(ρ)PΩ⊥∇xρ = 0, (5.30)
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where b(ρ) and Θ(ρ) are real-valued functions of ρ and PΩ⊥ = Id − Ω ⊗ Ω is the
orthogonal projection of X onto the hyperplane space (Span{Ω})⊥ orthogonal to
Ω. The functions b and Θ are not specified here. They are obtained through the
application of the GCI to (4.11). Details can be found in [9]. We note that because
of the presence of the projection PΩ⊥ the constraint |Ω| = 1 is propagated in time
as soon as it is verified at time t = 0. We note that the system is not in conservative
form but, in some conditions, it can be shown to be well-posed [11].

This example illustrates that the Nash Equilibrium closure can be effectively used to
derive macroscopic closures. However, the mere mass conservation equation (4.13) may
be not be enough to provide a well-posed closed system and that additional techniques
must be called for in order to find a closed system.

6 Conclusion and perspectives

In this paper we have provided a framework for the time evolution of a system of rational
players in a non-cooperative anonymous game with a continuum of players (or Mean-Field
Game) which collectively make their decision by choosing the steepest descent direction of
the individual cost functions. Assuming that the individual actions are fast and localized
in state space, we have derived a macroscopic dynamic which describes the large scale
evolution of the parameters of the local Nash equilibria. In forthcoming works, we plan
to apply this framework to various phenomena such as the evolution of the distribution of
wealth in the economic neighborhood, opinion formation, social dynamics and collective
decision making.
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