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Abstract. We construct triangulated categories of mixed motives over a noetherian scheme
of finite dimension, extending Voevodsky’s definition of motives over a field. We prove that
motives with rational coefficients satisfy the formalism of the six operations of Grothendieck.
This is achieved by studying descent properties of motives, as well as by comparing different
presentations of these categories, following insights and constructions of Beilinson, Morel and
Voevodsky. Finally, we associate with any mixed Weil cohomology a system of categories of
coefficients and well behaved realization functors.
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Introduction



A. Historical background

A.1. The conjectural theory described by Beilinson. In a landmarking paper, [Bĕı87],
A. Beilinson stated a series of conjectures which offer a complete renewal of the traditional theory
of pure motives invented by A. Grothendieck. Namely, he proposes to extend the notion of pure
motives to that of mixed motives with two models in mind: mixed Hodge structures defined by
P. Deligne one the one hand, perverse sheaves on the other hand defined in [BBD82]. One of
the main innovation, considered by Beilinson in analogy with the second model, is to consider a
triangulated version of mixed motives in which one could hope to find the more involved theory of
abelian mixed motives through the concept of t-structures. This hoped for theory was conjecturally
described by Beilinson in [Bĕı87, 5.10] under the name of motivic complexes.

It was modeled (see loc. cit., paragraph A) on the theory of étale l-torsion (resp. l-adic)
sheaves and their derived category as introduced fifty years ago by Grothendieck and M. Artin.
The major achievement of Grothendieck and his collaborators in [SGA4] was to define a theory
of coefficients systems relative to any scheme with a collection of operations, f∗, f

∗, f!, f
!,⊗,Hom,

satisfying a set of formulas now called the Grothendieck six functors formalism (see section A.5
in this introduction for more details). This formalism, formulated in the language of triangulated
categories, ultimately encode a very general duality theory. Note however that the complete duality
theory for l-torsion étale sheaves was completed only recently by the work of Gabber [ILO].

The theory was also conjectured to be deeply linked with Quillen algebraic K-theory (see
[Bĕı87, 5.10, §B]). In fact, up to torsion and for a regular scheme S, the ext-groups between two
Tate motives over S should coincide with Adams graded parts of Quillen algebraic K-theory.1

The ideas of Beilinson were very fecund because, not long after the publication of [Bĕı87], one
had three candidates for a triangulated category of mixed motives, respectively by M. Hanamura,
M. Levine, and V. Voevodsky. In this book, we will focus on Voevodsky’s theory.

A.2. Voevodsky’s motivic complexes. The first attempt of Voevodsky in defining the
category of motivic complexes, in his 1992 Harvard’s thesis, introduces the fundamental process
of A1-localization, which amounts to make the affine line contractible in the category of mixed
motives, by analogy with the topological case. It also involves the use of the h-topology which
was to become fundamental in the area of motives and cohomology. These two ingredients given,
Voevodsky defined the triangulated category of (effective) h-motives over any base in [Voe96].

However, Voevodsky was aware that his definition will give the correct answer to Beilinson’s
conjectural construction only with rational coefficients. In [VSF00, chap. 5], he introduces
another definition of motivic complexes over a perfect field with integral coefficients, still using
theA1-localization process but this time introducing the notion of Nisnevich sheaves with transfers
and their derived category (see [MVW06] for a detailed exposition). At the time being all the
properties foreseen by Beilinson are established for this integral category over a perfect field, except
for the construction of the motivic t-structure.2 It remains to extend this definition to arbitrary
bases and established the Grothendieck six functors formalism.

The path in this direction was laid down by Voevodsky in [Voe10a] were he uses the theory
of relative cycles invented by Suslin and Voevodsky to extend the definition of transfers. This
definition was also exploited by Ivorra in [Ivo07] to extend the definition of geometric motivic
complexes of Voevodsky over any base, avoiding the use of sheaves with transfers. Still it entirely
remained to construct Grothendieck six functors formalism for this definition.

A.3. Morel and Voevodsky homotopy theory. Soon after the introduction of Voevod-
sky’s motivic complexes, F. Morel and Voevodsky introduced the more general theory of A1-
homotopy of schemes ([MV99]) whose design is to extend the framework of algebraic topology
to algebraic geometry and built around the A1-localization tool. It is within this theory that was
invented another important tool in the motivic homotopy theory, the P1-stabilization process.
From the purely motivic point of view, this amounts to invert the Tate motive Z(1) for the tensor
product. From the homotopical point of view, this operation is much more involved and reveals

1See below for the precise statement.
2This hoped for t-structure is described in [Voe92, Hyp. 0.0.21].
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the theory of spectra, objects which incarnate cohomology theories in algebraic topology. These
two processes, of A1-localization and P1-stabilization, applied to the category of simplicial Nis-
nevich sheaves, led to the stable A1-homotopy category of schemes (see [Jar00]) a triangulated
category with integral coefficients, defined over any base, which generalizes the category of motivic
complexes.3

Over a perfect field, and with rational coefficients, the relation between homotopy and motives
was clarified in an unpublished paper of Morel ([Mor06]): the rational stable A1-homotopy
category contains the stable (i.e. P1-stable) version of the category of motivic complexes as an
explicit direct factor, called the +-part of the stable homotopy category.4 Then Morel introduces
this +-part as a good candidate for the rational version of the triangulated category of motives
([Mor06, paragraph at the end of p.2]). We will dubbed the objects of this category the Morel
motives.

On the other hand, with integral coefficients, O. Röndigs et P.A. Østvær showed that over a
field of characteristic 0, the P1-stable category of motivic complexes coincides with the category
of modules over the ring spectrum which represents motivic cohomology (see [RØ08]).5 This ring
spectrum was introduced by Voevodsky (see [Voe98]) using the theory of relative cycles. It is
defined over any base and one is led to consider the category of modules over this ring spectrum
as a possible definition of the integral triangulated category of motives.6

A.4. Cross functors. The definitive step towards the six functors formalism in motivic
homotopy theory was taken up by Voevodsky in a series of lectures were he laid down the theory
of cross functors. The main theorem of this theory consists in giving a criterion on a system
of triangulated categories indexed by schemes, equipped with a basic functoriality, to be able
to construct exceptional functors (f!, f

!) satisfying the properties required by Grothendieck 6
functors formalism. In particular, the system of triangulated categories must satisfy three notable
properties: the A1-localization property, the P1-stability property and the localization property.
Unfortunately, only an introductory part on this theory was released (see [Del01]) in which the
basic setup is established but which does not contain the proof of the main result.

The writing of this theory was accomplished by J. Ayoub in his thesis (see [Ayo07a, Ayo07b]).
Ayoub uses the axioms laid down by Voevodsky: he calls a system of triangulated categories sat-
isfying the properties alluded above a homotopy stable functor. However, he goes far beyond the
original result of Voevodsky: apart the complete theory of cross functors (concerned with f!, f

!),
he also studied tensor structures, constructibility properties and their stability under the six op-
erations, t-structures and specialization functors such as the vanishing cycle functor. The main
example of a stable homotopy functor is the stable A1-homotopy category. One readily deduces
that the category of Morel motives is also a homotopy stable functor.

However, it is by no means obvious that the category of modules over the motivic homotopy
ring spectrum does meet the requirements of a homotopy stable functor. In fact, it can be seen
that this is equivalent to Conjecture 15 of Voevodsky in [Voe98].

A.5. Grothendieck 6 functors formalism.

A.5.1. We now give the precise formulation of the Grothendieck 6 functors formalism. As
presented here, it is extracted from the properties of the derived category of l-torsion étale sheaves
obtained in [SGA4, tome 3].7

A triangulated category T , fibred over the category of schemes, satisfies the Grothendieck 6
functors formalism if the following conditions hold:

3Heuristically, the essential difference between stable A1-homotopy and motivic complexes is the presence of
transfers in the later case.

4See also Theorem 11 in this introduction and its corollary.
5See also Theorem 8 in this introduction for an extension of their result.
6In a precise sense, the problem of obtaining the Grothendieck 6 functors formalism with that definition

is almost equivalent to solving affirmatively conjecture 17 of [Voe02b]. See below for a partial answer to that
conjecture.

7It also coincides with formulas gathered by Deligne in an unpublished note which he graciously support us
with.
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(1) There exists 3 pairs of adjoints functors as follows:

f∗ : T (X) ⇄ T (Y ) : f∗, f any morphism,

f! : T (Y ) ⇄ T (X) : f !, f any separated morphism of finite type,

(⊗,Hom), symetric closed monoidal structure on T (X).

(2) There exists a structure of a covariant (resp. contravariant) 2-functors on f 7→ f∗, f 7→ f!
(resp. f 7→ f∗, f 7→ f !).

(3) There exists a natural transformation

αf : f! → f∗

which is an isomorphism when f is proper. Moreover, α is a morphism of 2-functors.
(4) For any smooth morphism f : X → S in S of relative dimension d, there exists a

canonical natural isomorphism of 2-functors

p′f : f∗ −→ f !(−d)[−2d]

where ?(−d) denotes the inverse of the Tate twist iterated d-times. Moreover p′ is an
isomorphism of 2-functors.

(5) For any cartesian square in S :

Y ′
f ′

//

g′

��
∆

X ′

g
��

Y
f

// X,

such that f is separated of finite type, there exist natural isomorphisms

g∗f!
∼
−→ f ′! g

′∗ ,

g′∗f
′! ∼
−→ f !g∗ .

(6) For any separated morphism of finite type f : Y → X, there exist natural isomorphisms

Ex(f∗! ,⊗) : (f!K)⊗X L
∼
−−→ f!(K ⊗Y f

∗L) ,

HomX(f!(L),K)
∼
−−→ f∗HomY (L, f

!(K)) ,

f !HomX(L,M)
∼
−−→ HomY (f

∗(L), f !(M)) .

(Loc) For any closed immersion i : Z → S with complementary open immersion j, there exists
a distinguished triangle of natural transformations as follows:

j!j
!

α′
j

−−−→ 1
αi−−−→ i∗i

∗ ∂i−−→ j!j
![1]

where α′
? (resp. α?) denotes the counit (resp. unit) of the relevant adjunction.

A.5.2. The next part of Grothendieck 6 functors formalism is concerned with duality. This
kind of properties appears already in [Har66]. It is considered more axiomatically, in the case
of étale sheaves, in [SGA5, Exp. I].8 In loc. cit., Grothendieck states the fundamental property
of absolute purity and indicates its fundamental link with duality. We state these properties as
natural extensions of the properties given in the preceding paragraph; assume T satisfies these
preceding properties:

(7) Absolute purity.– For any closed immersion i : Z → S of regular scheme of (constant)
codimension c, there exists a canonical isomorphism:

1Z(−c)[−2c]
∼
−→ i!(1X)

where 1 denotes the unit object for the tensor product.

8The duality properties are stated in the unpublished notes of Delignes as part of the complete formalism.
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(8) Duality.– Let S be regular scheme and KS be any invertible object of T (S). For any
separated finite type morphism f : X → S, put KX = f !(KS). For any object M of
T (X), put DX(M) = Hom(M,KX).
(a) For any X/S as above, KX is a dualizing object of T (X). In other words, the

canonical map:

M → DX(DX(M))

is an isomorphism.
(b) For any X/S as above, and any objects M,N of T (X), we have a canonical iso-

morphism

DX(M ⊗DX(N)) ≃ HomX(M,N) .

(c) For any morphism between separated S-schemes of finite type f : Y → X, we have
natural isomorphisms

DY (f
∗(M)) ≃ f !(DX(M))

f∗(DX(M)) ≃ DY (f
!(M))

DX(f!(N)) ≃ f∗(DY (N))

f!(DY (N)) ≃ DX(f∗(N)) .

A.5.3. The last property we want to exhibit as a natural extension of Grothendieck 6 functors
formalism is the compatibility with projective limits of schemes. The basis for the next statement
is [SGA4, Exp. VI] though it does not appear explicitely. As in the case of the duality property,
it should involve some finiteness assumption. Note the formulation belon is valid for an arbitrary
fibred triangulated monoidal category T .

(9) Continuity.– Let (Sα)α∈A be an essentially affine projective system of schemes. Put
S = lim

←−α∈A
Sα.

Then the canonical functor

2- lim
−→
α

T (Sα)→ T (S)

is an equivalence of monoidal triangulated categories.

B. Voevodsky’s motivic complexes

The primary goal of this treatise is to develop the theory of Voevodsky motives, integrally
over any base scheme9, within the framework of sheaves with transfers. Actually, we can define
Voevodsky’s motives with coefficients in an arbitrary ring Λ and prove all the results stated below
in that case but we restrict to integral coefficients for simplicity.

After refining and completing Suslin-Voevodsky’s theory of relative cycles, we introduce the
category Smcor

Z,S of integral finite correspondences over smooth Sschemes and the related notion

of (Nisnevich) sheaves with transfers over a base scheme S (Def. 10.4.2) as in the usual case of
a perfect base field. Following the idea of stable homotopy, we define the triangulated category
DM(X) of stable motivic complexes (see Def. 11.1.1) as the P1-stabilization of the A1-localization
of the derived category of the (Grothendieck) abelian category of sheaves with transfers over S.

One easily gets that the fibred category DM is equipped with the basic functoriality needed
by the cross-functor formalism. The main difficulty is the localization property, property (Loc) in
Paragraph A.5.1. Unfortunately, though all the functors involved in the formulation of (Loc) are
well defined for DM, we can only prove this property when S and Z are smooth over some base
scheme (see Prop. 11.4.2). This is not enough to apply Ayoub’s results.

However, we are able to construct the 6 operations for DM using the method of Deligne, used
in [SGA4, XVII], and partially get the Grothendieck 6 functors formalism:

9In this introduction, all schemes will be assumed to be noetherian of finite dimension.
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Theorem 1 (see Th. 11.4.5). The triangulated category DM, fibred over the category of
schemes, satisfies the following part of the properties stated in Paragraph A.5.1:

• properties (1), (2), (3),
• property (4) when f is an open immersion or f is projective and smooth,
• property (5) when g is smooth or f is projective and smooth,
• property (6) when f is projective and smooth,
• Property (Loc) when S and Z are smooth over some common base scheme.

One of the application of this theory is that we get a well defined integral motivic cohomology
theory for any scheme X:

Hn,m
M (X,Z) = HomDM(X)

(
1X ,1X(m)[n]

)

which enjoy the following properties (see section 11.2):

• it admits a ring structure, pullback maps associated with any morphism of schemes
compatible with the ring structure,

• it admits push-forward maps with respect to projective morphisms between schemes
smooth over some common base, or with respect to some finite morphisms (for example
finite flat; see Paragraph 11.2.4),

• it coincides with Voevodsky’s motivic cohomology groups when X is smooth over a
perfect field (see Example 11.2.3); in particular one gets the following identification with
higher Chow groups:

Hn,m
M (X,Z) = CHm(X, 2m− n),

• it admits Chern class and satisfies the projective bundle formula,
• it admits a localization long exact sequence associated with a closed immersion of schemes
smooth over some common base.

As in the classical case, any smooth S-scheme X admits a motive MS(X) over X in DM(S).
Moreover, one defines the Tate motive 1S(1) as the reduced motive of P1

S . We defined the category
of constructible motives DMc(S) as the thick triangulated subcategory of DM generated by the
objects of the form MS(X)(n) for a smooth S-scheme X and an integer n ∈ Z, where ?(n) refers
to the n-th Tate twist. One gets the following generalization of the classical result obtained by
Voevodsky over a perfect field:

Theorem 2 (see Th. 11.1.13). A motive M in DM(S) is constructible if and only if it is
compact.10

The category DMc(S) is equivalent to the category obtained from the bounded homotopy cate-
gory of the additive category Smcor

Z,S in the following way:

• take the Verdier quotient modulo the thick triangulated subcategory generated by:

– for any Nisnevich distinguished square W
k //

g ��
V
f��

U
j // X

of smooth S-schemes:

[W ]
g∗−k∗
−−−−→ [U ]⊕ [V ]

j∗+f∗

−−−−→ [X]

– for any smooth S-scheme X, p : A1
X → X the canonical projection:

[A1
X ]

p∗
−→ [X],

• invert the Tate twist,
• take the pseudo-abelian enveloppe.

The triangulated category DMc(X) is stable by the operations f∗, f∗ when f is smooth
projective, and ⊗ but we cannot prove the stability for the other operations of DM and a fortiori
do not get the duality properties (7) and (8) of the Grothendieck 6 functors formalism.

10Recall that M is compact if Hom(M,−) commutes with arbitrary direct sums.
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However, we are able to prove the continuity property (9) for the category DMc:

2- lim
−→
α

DMc(Sα) ≃ DMc(S),

where we only require that the transition morphism of (Xα) are affine and dominant (see Theorem
11.1.24) . Note this result allows us to extend the comparison of motivic cohomology with higher
Chow groups to arbitrary regular schemes of equal characteristics.

C. Beilinson motives

C.1. Definition and fundamental properties. As anticipated by Morel, the theory of
mixed motives with rational coefficients is much simpler and we succeed in establishing a complete
formalism for them. Our initial approach differs slightly from that of Morel. We construct, out
of the rational stable homotopy category and the ring spectrum associated with rational Quillen
K-theory a Q-linear triangulated category DMB(X), which we call the triangulated category of
Beilinson motives (see Def. 14.2.1). Essentially by construction, in the case where X is regular,
we have a natural identification

HomDMB (X)(QX ,QX(p)[q]) ≃ GrpγK2p−q(X)Q ,

where the right hand side is the graded part of the algebraic K-theory of X with respect to the
γ-filtration. These groups were first considered by Beilinson as the rational motivic cohomology
groups. We call them the Beilinson motivic cohomology groups.

One of the interest of our definition is that the localization property (Loc) can be easily
deduced from its validity for the stable homotopy category. Therefore, the cross-functor formalism
and more generally all the results of Ayoub can be applied to DMB. Using the constructions of
this book, we obtain a slightly more general and precise formalism.

Theorem 3 (see Cor. 14.2.11 and Th. 2.4.50). All the standard Grothendieck six functors
formalism (see Paragraph A.5.1) is verified by the fibred triangulated category DMB.

Concerning duality for Beilinson motives, we first deduce from Quillen’s localization theorem
in algebraic K-theory the absolute purity theorem:

Theorem 4 (see Th. 14.4.1). The absolute purity property (see A.5.2(7)) holds for DMB.

As said before, this result is not enough to establish duality for Beilinson motives. We first
have to use descent theory and resolution of singularities (as first explained by Grothendieck in
[SGA5, I.3]). Using the existence of trace maps in algebraic K-theory, we prove the following
result:

Theorem 5 (qfh-descent, see Th. 14.3.3 and Th. 3.3.37). Consider a finite group G and a
pullback square of schemes

T
h //

g

��

Y

f

��
Z

i
// X

in which Y is endowed with an action of G over X. Put U = X − Z and assume the following
three conditions are satisfied:

(a) The morphism f is finite and surjective.
(b) The induced morphism f−1(U)→ f−1(U)/G is flat.
(c) The morphism f−1(U)/G→ U is radicial.

Put a = f ◦ i. Then, for any object M of DMB(X), we get a canonical distinguished triangle in
DMB(X):

M −→ i∗ i
∗(M)⊕ f∗ f

∗(M)G −→ a∗ a
∗(M)G −→M [1]

where ?G means the invariants under the action of G, and the first (resp. second) map of the
triangle is induced by the difference (resp. sum) of the obvious adjunction morphisms.
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In fact, we show that this apparently simple result implies a much stronger descent propery for
the fibred triangulated category DMB, the descent property for the h-topology, thus in particular
étale and even flat descent as well as proper descent.

C.2. Constructible Beilinson motives. The next step towards duality for Beilinson mo-
tives is the definition of a suitable finiteness condition. As in the case of Voevodsky motives, we
define the category of Beilinson constructible motives, denoted by DMB,c(X), as the thick subcat-
egory of DMB(X) generated by the motives of the form MX(Y )(p) := f! f

!(QX)(p) for f : Y → X
separated smooth of finite type, and p ∈ Z. This category coincides with the full subcategory of
compact objects in DMB(X).11

The usefulness of this definition comes from the following result, which is the analog of Gab-
ber’s finiteness theorem in the l-adic setting. Analogously, its proof relies on absolute purity, (a
weak form of) proper descent as well as Gabber’s weak uniformisation theorem.12

Theorem 6 (finiteness, see Th. 15.2.1). The subcategory DMB,c is stable under the six oper-
ations of Grothendieck when restricted to excellent schemes.

The final statement concerning Grothendieck 6 functors formalism in the setting of Beilinson
motives is that, when one restricts to constructible Beilinson motives and separated B-schemes of
finite type for an excellent scheme B of dimension less than 2, the complete formalism is available:

Theorem 7 (see Th. 15.2.4 and Prop. 15.1.6). The fibred category DMB,c over the category
of schemes described above satisfies the complete Grothendieck 6 functors formalism described in
section A.5, in particular the duality property A.5.2(8) and the continuity property A.5.3(9).

Remark. Note that the finiteness theorem as well as the duality property are also conse-
quences of [Ayo07a], respectively Scholie 2.2.34 and Theorem 2.3.73, applied to DMB when one
restricts to quasi-projective schemes over a field or a discrete valuation ring. As ours, the proof of
Ayoub uses in an essential way the absolute purity property (Theorem 4 stated above).

C.3. Comparison theorems. In the historical part of this introduction, we saw many ap-
proaches for the triangulated category of (rational) motives. We succeed in comparing them all
with our definition of Beilinson motives.

Denote by KGLS the algebraic K-theory spectrum in Morel and Voevodsky’s stable homotopy
category SH(S). By virtue of a result of Riou, the γ-filtration on K-theory induces a decomposition
of KGLS,Q:

KGLS,Q ≃
⊕

n∈Z

HB,S(n)[2n] .

The ring spectrum HB,S represents Beilinson motivic cohomology. Almost by construction, the
category DMB(S) is the full subcategory of SHQ(S) which consists of objects E such that the
unit map E → HB,S ⊗ E is an isomorphism. In fact, our first comparison result relates the
theory of Beilinson motives with the approach of Röndigs and Østvær through modules over a
ring spectrum:

Theorem 8 (see Th. 14.2.9). For any scheme S, there is a canonical equivalence of categories

DMB(S) ≃ Ho(HB,S-mod)

where the left hand side denotes the homotopy category of modules over the ring spectrum HB,S.

The next comparison involves the the h-topology: this is the Grothendieck topology on the
category of schemes, generated by étale surjective morphisms and proper surjective morphisms.
The first published work of Voevodsky on triangulated categories of mixed motives ([Voe96]),
introduces the A1-homotopy category of the derived category of h-sheaves. We consider a Q-
linear and P1-stable version of it, which we denote by DMh,Q(S). By construction, for any
S-scheme of finite type X, there is a h-motive MS(X) in DMh,Q(S). We define DMh,Q(S) as the

11Note the striking analogy with perfect complexes.
12i.e. that, locally for the h-topology, any excellent scheme is regular, and any closed immersion between

excellent schemes is the embedding of a strict normal crossing divisor into a regular scheme.
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smallest triangulated full subcategory of DMh,Q(S) which is stable by (infinite) direct sums, and
which contains the objects MS(X)(p), for X/S smooth of finite type, and p ∈ Z. Using h-descent
in DMB, we get the following comparison result.

Theorem 9 (see Th. 16.1.2). If S is excellent, then we have canonical equivalences of cate-
gories

DMB(S) ≃ DMh,Q(S) .

In fact, we first prove this result for the variant of DMh,Q(S) obtained by replacing everywhere
the h-topology by the qfh-topology – for the later, coverings are generated by étale covers and finite
surjective morphisms. In particular we get an equivalence of categories: DMh,Q(S) ≃ DMqfh,Q(S).
This result allows us to link Beilinson motives with Voevodsky’s motivic complexes. Let us denote
by DMQ the fibred category of stable motivic complexes alluded to in Paragraph B. Using the
preceding result in the case of the qfh-topology, we prove:

Theorem 10 (see Th. 16.1.4). If S is excellent and geometrically unibranch, then there is a
canonical equivalence of categories

DMB(S) ≃ DMQ(S) .

In particular, given such a scheme S, we get a description of DMB,c(S) as in Theorem 2 cited
above. Voevodsky’s integral (resp. rational) motivic cohomology is represented in SH(S) by a ring

spectrum HM,S (resp. HQ
M,S). The preceding theorem immediately gives an isomorphism of ring

spectra:13

HB,S ≃ H
Q
M,S .

As Beilinson motivic cohomology ring spectra over different bases are compatible with pullbacks,
we easily deduce the following corollary which solves affirmatively conjecture 17 of [Voe02b] in
some cases, and up to torsion:

Corollary. For any morphism f : T → S of excellent geometrically unibranch schemes, the
canonical map

f∗HQ
M,S → HQ

M,T

is an isomorphism of ring spectra.

The last comparison statement is concerned with the approach of Morel. According to Morel,
the category SHQ(S) can be decomposed into two factors, one of them being SHQ(S)+, that is
the part of SHQ(S) on which the map ǫ : S0

Q → S0
Q, induced by the permutation of the factors in

Gm ∧Gm, acts as −1. Let S0
Q+ be the unit object of SHQ(S)+.

Using the presentation of Beilinson motives in terms of HB-modules (Theorem 8 cited above)
as well as Morel’s computation of the motivic sphere spectrum in terms of Milnor-Witt K-theory,
we obtain another proof of a result of Morel (see [Mor06]):

Theorem 11 (see Th. 16.2.13). For any scheme S, the canonical map S0
Q+ → HB,S is an

isomorphism.

In fact, we even get the following corollary:

Corollary. For any scheme S, there is a canonical equivalence of categories

SHQ(S)+ ≃ DMB(S) .

13Note in particular that, when S is regular, we get an isomorphism:

Hp,q
M

(S,Z)⊗Q ≃ GrpγK2p−q(S)Q

which extends the known isomorphism when S has equal characteristics. It is natural with respect to pullbacks
and compatible with products.
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Recall from Morel theory that, when −1 is a sum of squares in all the residue fields of S, ǫ
is equal to −Id on the whole of SHQ(S). Thus in that particular case (e.g. S is a scheme over
an algebraically closed field), the category of Beilinson motives coincide with the rational stable
homotopy category. In general, we can introduce according to Morel the étale variant of SHQ(S)
denoted by DA1,ét(S,Q).14 As locally for the étale topology, −1 is always a square, and because
DMB satisfies étale descent, we get the following final illuminating comparison statement.

Corollary. For any scheme S, there is a canonical equivalence of categories

DA1,ét(S,Q) ≃ DMB(S) .

Let us draw a conclusive picture which summarize most of the comparison results we obtained:

Corollary. Given any scheme S, the category DMB(S) is a full subcategory of the rational
stable homotopy category SHQ(S). Given an rational spectrum E over S, the following conditions
are equivalent:

(i) E is a Beilinson motive,
(ii) E is an HB,S-module,
(iii) E satisfies étale descent,
(iii’) (S excellent) E satisfies qfh-descent,
(iii”) (S excellent) E satisfies h-descent,
(iv) (S excellent geometrically unibranch) E admits transfers,
(v) the endomorphism ǫ ∈ End(S0

Q) acts by −Id on E i.e. ǫ⊗ 1E = −1E.

Remark. (see Corollary 14.2.16) Points (iv) and (v) are related to the orientation theory for
spectra (not only ring spectra). In fact, HB,S is the universal orientable rational ring spectrum
over S.

Let Q.SmS be the Q-linear envelop of the category SmS . On obtains (see Example 5.3.43 in
conjunction with Par. 5.3.35) that the full subcategory of compact objects of SHQ(S) is equivalent

to the category obtained from the homotopy category Kb(Q.SmS) by performing the following
operations:

• take the Verdier quotient modulo the thick triangulated subcategory generated by:

– for any Nisnevich distinguished square W
k //

g ��
V
f��

U
j // X

of smooth S-schemes:

QS(W )
g∗−k∗
−−−−→ QS(U)⊕QS(V )

j∗+f∗

−−−−→ QS(X)

– for any smooth S-scheme X, p : A1
X → X the canonical projection:

QS(A
1
X)

p∗
−→ QS(X).

• invert the Tate twist,
• take the pseudo-abelian enveloppe.

Let us denote by DA1,c(S,Q) this category. We finally obtain the following concrete description
of Beilinson constructible motives:

Corollary. Given any scheme S, the category DMB,c(S) is equivalent to the full subcategory
of DA1,c(S,Q) made by the objects E which satisfies one the following equivalent conditions:

(i) (Galois descent) given any smooth S-scheme X and any Galois S-cover f : Y → X of
group G, the canonical map E ⊗QS(Y )/G→ E ⊗QS(X) is an isomorphism,

(ii) (Orientability) ǫ acts by −Id on E,

Recall again the following remarks:

(1) When (−1) is a sum of square in every residue fields of S, conditions (i), (ii) are true for
any rational spectrum E over S.

14In brief, this is the P1-stabilization of the A1-localization of the derived category of sheaves of Q-vector
spaces over the lisse-étale of S.
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(2) When S is excellent and geometrically unibranch, the category DMB,c(S) is equivalent
to the category of rational geometric Voevodsky motives (same definition as in Theorem
2 but replacing Z by Q).

C.4. Realizations. The last feature of Beilinson motives is that they are easily realizable
in various cohomology theories. To get this fact, we use the setting of modules over a strict ring
spectrum.15 Given such a ring spectrum E in DMB(S), one can define, for any S-scheme X, the
triangulated category

D(X, E) = Ho(EX -mod) ,

where EX = f∗E , for f : X → S the structural map.
We then have realization functors

DMB(X)→ D(X, E) , M 7→ EX ⊗X M

which commute with the six operations of Grothendieck. Using Ayoub’s description of the Betti
realization, we obtain:

Theorem 12. If S = Spec (k) with k a subfield of C, and if EBetti represents Betti cohomol-
ogy in DMB(S), then, for any k-scheme of finite type, the full subcategory of compact objects of

D(X, EBetti) is canonically equivalent to Dbc(X(C),Q).

More generally, if S is the spectrum of some field k, given a mixed Weil cohomology E , with
coefficient field (of characteristic zero) K, we get realization functors

DMB,c(X)→ Dc(X, E) , M 7→ EX ⊗X M

(where Dc(X, E) stands for the category of compact objects of D(X, E)), which commute with the
six operations of Grothendieck (which preserve compact objects on both sides). Moreover, the
category Dc(S, E) is then canonically equivalent to the bounded derived category of the abelian
category of finite dimensional K-vector spaces. As a byproduct, we get the following concrete
finiteness result: for any k-scheme of finite type X, and for any objects M and N in Dc(X, E),
the K-vector space HomDc(X,E)(M,N [n]) is finite dimensional, and it is trivial for all but a finite
number of values of n.

If k is of characteristic zero, this abstract construction gives essentially the usual categories
of coefficients (as seen above in the case of Betti cohomology), and in a sequel of this work, we
shall prove that one recovers in this way the derived categories of constructible ℓ-adic sheaves (of
geometric origin) in any characteristic. But something new happens in positive characteristic:

Theorem 13. Let V be a complete discrete valuation ring of mixed characteristic, with field of
functions K, and residue field k. Then rigid cohomology is a K-linear mixed Weil cohomology, and
thus defines a ring spectrum Erig in DMB(k). We obtain a system of closed symmetric monoidal
triangulated categories Drig(X) = Dc(X, Erig), for any k-scheme of finite type X, such that

HomDrig(X)(1X ,1X(p)[q]) ≃ Hq
rig(X)(p) ,

as well as realization functors

Rrig : DMB,c(X)→ Drig(X)

which preserve the six operations of Grothendieck.

D. Detailed organization

The book is organized in four parts that we now review in more details.

15i.e. we say a ring spectrum is strict if it is a commutative monoid in the underlying model category.
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D.1. Grothendieck six functors formalism (Part 1). The first part is concerned with
the formalism described in section A.5 above. It is the foundational part of this work.

We use the language of fibred categories (introduced in [SGA1, VI]), complemented by that
of 2-functors (or pseudo-functors), in order to describe the 6 functors formalism. We first describe
an axioms which allow to derive the core formalism – i.e. the part described in section A.5.1 –
from simpler axioms. We do not claim originality in this task: our main contribution is to give
a synthesis of the approach of Deligne described in [SGA4, XVII] (see also [Har66, Appendix])
with that of Voevodsky developed by Ayoub in [Ayo07a].

Recall that a (cleaved) fibred category M over S can be seen as a family of categories M (S)
for every object S of S together with a pullback functor f∗ : M (S)→M (T ) for any morphism
f : T → S of S .16 Given a suitable class P of morphisms in S , we set up a systematic study of
a particular kind of fibred categories, called P-fibred categories (definition 1.1.10): one where for
any f in P, the pullback functor f∗ admits a left adjoint, generically denoted by f♯. The functor
f♯ has to be thought as a variant of the exceptional direct image functor.17

In section 1, we study basic properties of P-fibred categories which will be the core of the
6 functors formalism, such as base change formulas and projection formulas when an additional
monoidal structure is involved. These formulas are particular case of a compatibility relation be-
tween different kind of functors expressed through a canonical comparison morphism. Such kind
of comparison morphisms are generically called exchange morphisms. They are very versatile and
appears everywhere in the theory (see Paragraphs 1.1.6, 1.1.15, 1.1.24, 1.1.31, 1.1.33, 1.2.5). In
fact, they appears fundamentally in Grothendieck 6 functors formalism: in the list of properties
A.5.1, they are the isomorphisms of (5), (6) and even (4). In the direction of the full Grothendieck
functoriality, we introduce a core axiomatic for P-fibred categories that we consider as minimal:
the categories satisfying this axiomatic are called P-premotivic (section 1.4). P-premotivic cat-
egories will form the basic setting in all this work. They will appear in three different flavours,
depending on which particular kind of additional structure we consider on categories: abelian,
triangulated and model categories.

In Section 2, we restrict our attention to the triangulated and geometric case, meaning that
we consider triangulated P-fibred categories over a suitable category of schemes S . The aim
of the section is to develop, and extend, Grothendieck 6 functors formalism in this basic setting.
We exhibit many properties of such fibred categories which are indexed in the appendix. Let us
concentrate in this introduction on the two main properties which will corresponds respectively
to Deligne and Voevodsky’s approach on the 6 functors formalism.

The first one, called the support property and abbreviated by (Supp), asserts that the adjoint
functors of the kind f∗, for f proper, and j♯, for j an open immersion, satisfy a gluing property
that allows to use the argument of Deligne to construct the exceptional direct image functor f!.

18

Several properties are derived from (Supp) and the basic axioms of P-fibred categories which lead
to a partial version of the 6 functors formalism (see Theorem 2.2.14).

The second property, most fundamental in the motivic context, is the localization property
abbreviated by (Loc), which is in fact part of the 6 functors formalim (see Paragraph A.5.1). It
has many interesting consequences and reformulations that are derived in section 2.3.1. Note that
(Loc) is also known in the literature as the “gluing formalism”. Some of the properties that we
prove in loc.cit. are already classical (see [BBD82]).

The most interesting consequence of (Loc) was discovered by Voevodsky: together with the
usualA1-localization andP1-stabilization properties of the motivic context, it implies the complete
basic 6 functors formalism as stated in Paragraph A.5.1. This was proved by Ayoub in [Ayo07a].

16These pullback functors are subject to the usual cocycle condition ; see section 1.
17This kind of situation frequently happens: analytical case (open immersions), sheaves on the small étale site

(étale morphisms), Nisnevich sheaves on the smooth site (smooth morphisms).
18In the context of torsion étale sheaves of [SGA4, XVII], property (Supp) is a consequence of the proper

base change theorem.
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In section 2.4, we revisit the proof of Ayoub and give some improvement of his theorems (see
Theorem 2.4.50 for the precise statement):

• we remove the quasi-projectivity assumption for the existence of f!, replacing it by the
assumption that f is separated of finite type;

• we introduce the orientation property which allows to get a simpler more usual form to
the purity isomorphism (the one stated in point (4) of A.5.1);

• we give another proof of the main theorem in the oriented case by showing that relative
purity is equivalent to some (strong) duality property in the smooth projective case (see
Theorem 2.4.42);

• we directly incorporate the monoidal structure whereas Ayoub gives a separate discussion
for this.

Apart from these differences, the material of section 2.4 is very similar to that of [Ayo07a].
Moreover, in the non oriented case, it should be clear that we rely on the original argument of
Ayoub for the proof of Theorem 2.4.42.

Concerning terminology, we have called motivic triangulated category (Definition 2.4.45) what
Ayoub calls a “monoidal stable homotopy functor”.

The remaining of Part 1 is concerned with extensions of Grothendieck 6 functors formalism.
In Section 3, we show how to use the setting of P-fibred model categories as a framework to

formulate Deligne’s cohomological descent theory.
Unless in trivial cases, object of a derived category are not local.19 To formulate descent theory

in derived categories, the main idea of Deligne was to extend the derived category of a scheme by
one relative to a simplicial scheme, usually a hypercover with respect to a Grothendieck topology
(see [SGA4, Vbis]). The construction consists in first extending the theory of sheaves to the case
where the base is a simplicial schemes and then consider the associated derived category.

We generalize this construction to the case of an arbitrary P-fibred category equipped with
a model structure.20 In fact, we show in Section 3.1 how to extend a P-fibred category over a
category of schemes to the corresponding category of simplicial schemes and even of arbitrary
diagrams of schemes. Most importantly, we show how to extend the fibred model structure to
the case of diagrams of schemes (see Prop. 3.1.11).21 Concretely, this means that we define a
derived functor of the kind Lϕ∗ (resp. Rϕ∗) for an arbitrary morphism ϕ of diagrams of schemes.
Let us underline that these derived functors mingles two different kinds of functoriality: the
usual pullback f∗ (resp. direct image f∗) for a morphism of schemes f together with homotopy
colimits (resp. limits) – see the discussion in Paragraph 3.1.12 till Proposition 3.1.16. With
that extension in hands, we can easily formulate (cohomological) descent theory for arbitrary
Grothendieck topologies on the category of schemes for the homotopy category of a P-fibred
model category: see Definition 3.2.5.

The end of Section 3 is devoted to concrete examples of descent in P-fibred model categories,
and their relation with properties of the associated homotopy category, assuming it is triangu-
lated, as introduced in Section 2. The first and most simple example corresponds to the case of a
Grothendieck topology associated with a cd-structure in the sense of Voevodsky (as the Nisnevich
and the cdh-topology. See [Voe10b] or Paragraph 2.1.10). In that case, descent can be char-
acterized as the existence of certain distinguished triangles (Mayer-Vietoris for Zariski topology,

19The first example of this fact is the circle: any non trivial open subset of S1 is contractible whereas S1 itself
is not.

20Recall that model structures, introduced by Quillen, allow to perform all the usual constructions of derived
categories by localizing an arbitrary category with respect to a given class of morphisms called weak equivalences.
It contains in particular the usual case of complexes of an arbitrary abelian category with quasi-isomorphisms as
weak equivalences. The main construction of the theory of Quillen is that of left (resp. right) derived functors
which can be defined by replacing the usual notion of projective (resp. injective) resolution by that of cofibrant
(resp. fibrant) resolution.

21By restricting the morphisms of diagrams of schemes to a certain class denoted by Pcart , we also show how
to get a Pcart -fibred model category over diagrams of schemes (Rem. 3.1.21) but this is not really needed in the
descent theory.
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Brown-Gersten for Nisnevich topology): this is Theorem 3.3.2 which is in fact a reformulation of
the results of Voevodsky.

We then proceed to the most fundamental case of descent in algebraic geometry, that for
proper surjective maps which allows in principle the use of resolution of singularities. In fact, the
main result of the whole of Section 3 is a characterization of h-descent which allows to reduce it, for
P-fibred homotopy triangulated categories which are rational and motivic, to a simple property
easily checked in practice22: this is Theorem 3.3.37. Along the way, we proved also the following
results interesting in their own:

• several characterization of étale descent (Theorems 3.3.23 and 3.3.32);
• a characterization of qfh-descent (Theorem 3.3.25) as if it was defined by a cd-structure.23

In fact, the last point is the heart of the proof of the main Theorem, 3.3.37. Whereas the extension
of fibred homotopy categories to diagrams of schemes is not unprecedented (see [Ayo07b]), our
study of proper and h-descent seems to be completely new. In our opinion, it is one of the most
important technical innovation of this book.

In Section 4, we study the extension of Grothendieck 6 functors formalism in rational motivic
categories, mainly duality and continuity. As already mentioned, the general principle is not knew
and follows mainly the path laid by Grothendieck in [SGA5].

In the case of an abstract motivic triangulated category – which is for the purpose of descent
theory the homotopy category of an underlying fibred model category as seen above – the first
task is to introduce a correct property of finiteness inherent to any duality theorem. This is done
following Voevodsky, as in the work of Ayoub, by introducing the notion of constructiblity in
Definition 4.2.1. The name is inspired by the étale case, but the notion of constructibility which
we consider here is defined a generation property which really corresponds to what Voevodsky
called geometric motives: constructible motives in our sense are generated by twists of motives of
smooth schemes and are stable by cones, direct factors and finite sums. Let us mention that in good
cases, the property of being constructible coincides with that of being compact in a triangulated
category, resounding with the theory of perfect complexes (in the context of l-adic sheaves, this
corresponds to “constructible of geometric origin”).

The main point on constructible motives is the study of their stability under the 6 operations
that we get from the axioms of a triangulated motivic category. This is done in Section 4.2. As
in the étale case, the crucial point is the stability with respect to the operation f∗, when f is a
morphism of finite type between excellent schemes. In Theorem 4.2.24, we give conditions on a
motivic triangulated category so that the stability for f∗ is guaranteed (then the stability by the
other operations follows easily, see 4.2.29). Our proof follows essentially an argument of Gabber.
The general principle, going back to [SGA4, XIX, 5.1], is to use resolution of singularities to
reduce to an absolute purity statement which is among our assumptions.24

In Section 4.3, we introduce an important property of motivic triangulated categories, called
continuity, which allows reasoning that involves projective limits of schemes. In fact, it is shown
in Proposition 4.3.4 that this property implies the property (9) of the (extended) Grothendieck
6 functors formalism (see Paragraph A.5.3 above). We also give a criterion for continuity (4.3.6)
which will be applied later in concrete cases and draw some interesting consequences.

Finally, Section 4.4 deals with duality in itself for constructible motives, that is property (8) of
Paragraph A.5.2. The main theorem 4.4.21 asserts that, under the same condition than Theorem
4.2.24, and if one restricts to schemes that are separated of finite type over an excellent base
scheme B of dimension less or equal to 2, then the full duality property holds (see also Corollary
4.4.24). The proof follows the line of proof of the analog Th. 2.3.73 of [Ayo07a]. In particular
the main point is the fact that constructible motives are generated by some nice motives adapted
to the use of resolution of singularities: see Corollary 4.4.3. The main difference with op. cit. is

22This is the separation property defined in 2.1.7. Let us mention here it is a consequence of the existence of
well behaved trace maps (see the proof of Theorem 14.3.3).

23It is at the origin of the formulation of descent that we gave for DMB in Theorem 5(b) above.
24Absolute purity will be proved later for Beilinson motives.
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that we use De Jong equivariant resolution of singularities [dJ97], so that our assumptions are a
little bit more general.

D.2. The constructive part (Part 2). The purpose of this part is to give a method of
construction of triangulated categories that satisfies the formalism described in Part 1. We have
chosen to mainly use the setting of derived category. Also, we use our notion of P-fibred categories
(P-premotivic with a good monoidal structure). Recall this means the pullback functor f∗ admits
a left adjoint f♯ when f ∈ P. Essentially, P will be either the class of smooth morphisms of
finite type or the class of all morphisms of finite type (eventually separated).

In Section 5.1, starting from a P-premotivic abelian category A , we first show how to prove
that the derived D(A ) is also a P-premotivic category. This consists in deriving the structural
functors of a P-premotivic category, which is done by building a suitable underlying P-fibred
model category in Proposition 5.1.12. Actually, the proof of the axioms of a model category
has already appeared in our previous work [CD09]. Let us mention the flavor of this model
structure: we can describe explicitely cofibrations as well as fibrations, by the use of an adapted
Grothendieck topology t. This model structure is linked with cohomological t-descent (as shown
later in Proposition 5.2.10). The advantage of our framework is to easily obtain the functoriality
of this construction (Paragraph 5.1.23), as well as other homotopical constructions (dg-structure:
Rem. 5.1.19, extension to diagrams of schemes: Par. 5.1.20). In paragraph 5.1.c, we also describe
in suitable cases the constructible objects of the derived category by a presentation similar to that
of Voevodsky’s geometric motives over a perfect field.

In Section 5.2 (resp. Section 5.3) we show how to describe the A1-localization (resp. P1-
stabilization) process in P-premotivic derived categories: to any P-premotivic abelian cate-

gory A is associated an A1-derived category Deff

A1(A ) (resp. P1-stable and A1-derived category
DA1(A )) in Definition 5.2.16 (resp. 5.3.22). From the model category obtained in Section 5.1, the
construction uses the classical tools of motivic homotopy theory as introduced by Morel and Vo-
evodsky. Again, our framework allows to get the same homotopical constructions as in the simple
derived case as well as some nice universal properties. We also get a description of constructible
objects under suitable assumptions: Section 5.2.d (resp. 5.3.e). These sections are filled with
concrete examples.

In Section 6, we focus on the main (in fact universal) example of motivic derived category, the
A1-derived category of Morel, obtained by the process described above from the abelian premotivic
category of abelian sheaves over the smooth Nisnevich site. The main point here is that one gets
the localization property for this category by a theorem of Morel and Voevodsky. We give two
new contributions on this topic. First we show in Section 6.1 that the A1-derived category can
be embedded in a larger category which naturally contains objects that we can call motives of
singular schemes. This is useful to state descent properties and will be essential to study h-motives.
Second, we show in Section 6.3 how one can use the A1-derived category to obtain good properties
of another premotivic derived category satisfying suitable assumptions. This will be applied to
motivic complexes.

In Section 7, we go back to the case of an arbitrary monoidal P-fibred model category M

and explain how to use the setting of ring spectra and modules over ring spectra in the premotivic
context. The main construction associates to a suitable collection of (commutative) ring spectra R
in M a P-fibred monoidal category denoted by Ho(R-mod): Proposition 7.2.13. This construction
will be used several times:

• in the study of algebraic K-theory (Section 13): the category of modules over K-theory is
the fundamental technical tool to get motivic proper descent as well as motivic absolute
purity;
• in the study of Beilinson motives when we will relate them with modules over motivic
cohomology (Theorem 14.2.9);
• in the study of realizations associated with a mixed Weil cohomology (Section 17).

D.3. Motivic complexes (Part 3). This part is concerned with the constructions described
above, in Section B. Our aim is to extend the definition of Voevodsky’s integral motivic complexes
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to any base, then study their functoriality and introduce their non effective, or rather P1-stable,
counter-part.

Our first task, in Section 8, is to revisit Suslin-Voevodsky’s theory of relative cycles exposed in
[SV00b]. Indeed, they will be at the heart of the general construction. Our presentation is made to
prepare the theory of finite correspondences, a particular case of relative cycles. Especially, we want
to give a meaning to the following picture representing the composition of finite correspondences
α from X to Y and β from Y to Z:

β ⊗Y α //

��

β //

��
Z.

α //

��
Y

X

(see also (9.1.4.1)). More precisely, we want to interpret this as a diagram of cycles. Thus,
we are led to consider cycles (with their support), as objects of a category. Concretely, a cycle is
considered as a multi-pointed scheme, each point being affected with some multiplicity (an integral
or rational number).

This conceptual shift has the advantage of allowing a treatment of cycles analog to that of
algebraic varieties, or rather schemes, promoted by Grothendieck via studying morphisms. Thus,
we replace the various groups of relative cycles introduced by Suslin and Voevodsky in op. cit. by
properties of morphisms of cycles. Here is a list of the principal ones:

• pseudo-dominant (8.1.2), equidimensional (8.1.3 and 8.3.18),
• pre-special (8.1.20),
• special (8.1.28),
• Λ-universal (8.1.48).

The most intriguing one, being pre-special, has no counter-part in op. cit. Its idea comes from
a mistake (fortunately insignificant) in the convention of Suslin and Voevodsky. Indeed, Lemma
3.2.4 of op. cit. is false whenever the base S is non reduced and irreducible: then any fat point
(x0, x1) and any flat S-scheme give a counter-example.25 The explanation is that the operation
of specialization along a fat point does not take into account the geometric multiplicities of the
base. On the countrary, when X is flat over an irreducible scheme S, the geometric multiplicity
of any irreducible component of X is a multiple of the geometric multiplicity of S. This lead us
to the definition of a pre-special morphism of cycles β/α, where a divisibility condition appears
in the multiplicities of β with respect to that of α.26

The main achievement of Suslin and Voevodsky’s theory is the construction of a pullback
operation for relative cycles. In our language, it corresponds to a kind of tensor product, more
precisely a product of cycles relative to a common base cycle (as for example the cycle β ⊗Y α
of the preceding picture). Despite our different presentation, the method to define this operation
follows closely the original idea of Suslin and Voevodsky: use the flatification theorem of Gruson
and Raynaud to reduce to the case of flat base change of cycles. Recall that the key point is to
find the correct condition on cycles – or rather morphisms of cycles in our language – so that one
obtains a uniquely defined operation independent of the chosen flatification. This is measured by
a specialization procedure (Definition 8.1.25) associated with fat points (Definition 8.1.22) and
leads to the central notion of special morphisms of cycles (Definition 8.1.28). An innovation that
we introduce in the theory is to give, as soon as possible, local definitions at a point in the style
of EGA. This is in particular the case for the property of being special.

Once this notion is in place, one defines for a base cycle α, a special α-cycle β and any
morphism φ : α′ → α the relative product denoted by β ⊗α α

′, equivalently the base change of

25Explicitly, take S = Z = Spec
(

k[t]/(t2)
)

= {η}, R =
(

k[t]
)

(t)
. The left hand side of the equality of 3.2.4 is

2.η while the right hand side is η.
26To anticipate the remaining of the construction, given a non reduced scheme S, this will allow for the

operation of pullback along the immersion Sred → S associated with the reduction of S: it simply corresponds to
dividing by the geometric multiplicities of S, as the base change to Sred does for flat S-schemes.
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β/α along φ (Definition 8.1.39). This notion is close to the correspondence homomorphisms of
Section 3.2 of op. cit. In particular it usually involves denominators. The last important notion,
being Λ-universal, corresponds to cycles β/α with coefficients in a ring Λ ⊂ Q, which keeps their
coefficients in Λ after any base change.

One sees that our language is especially convenient when it is time to consider the stability
of certain properties of morphisms of cycles by composition (Cor. 8.2.6) or base change (Cor.
8.1.45). Then the usual statements of intersection theory are proven in Section 8.2, still following
or extending Suslin and Voevodsky: commutativity, associativity, projection formulas. This makes
our relative product a good extension of the classical notion of exterior product of cycles (over a
field).

The focal point of intersection theory is the study of multiplicities. Thus we introduce Suslin-
Voevodsky’s multiplicities, as the ones appearing as a corollary of the existence of the relative cycle
β ⊗α α

′ (Definition 8.1.42). A very important result in the theory, already enlightened by Suslin
and Voevodsky is the fact these multiplicities can be expressed in terms of Samuel multiplicities.27

In fact, we even prove a criterion for the property of being special at a point involving Samuel mul-
tiplicities at the branches of the point: see Corollary 8.3.25. Roughly speaking, the multiplicities
arising from Samuel’s definition at each branches of the point must coincide: then this common
value is simply the Suslin-Voevodsky’s multiplicity.

Finally, still following the treatment of algebraic geometry by Grothendieck, we introduce
in the theory the study of the constructibility of properties of morphisms of cycles (special and
Λ-universal). Explicitly, we prove that given a relative cycle β/α, when α is the cycle associated
with a scheme S, the locus where β is special (resp. Λ-universal) is an ind-constructible subset
of S (Lemma 8.3.4). This allows to prove the good behavior of these notions with respect to
projective limits of schemes (see in particular 8.3.9). This will be the key point when proving the
continuity property – (9) of A.5.3 – of the fibred category DM.

The rest of Part 3, consists in extending the theory of sheaves with transfers introduced by
Voevodsky, originally over a perfect field, to the case of an arbitrary base and apply to it the
general procedures studied in Part 2 to get the fibred category DM.

In Section 9, we work out the theory of finite correspondences using the formalism of relative
cycles. The construction is summarized in Corollary 9.4.1: given a class of morphisms P contained
in the class of separated morphisms of finite type and a ring of coefficients Λ, we produce a monoidal
P-fibred category, denoted by Pcor

Λ , whose fiber over a noetherian scheme (eventually singular)
is the category of P-schemes with morphisms the finite correspondences.

In Section 10, we develop the theory of sheaves with transfers along the very same line as the
original treatment of Voevodsky. This time, the outcome can be summarized by Corollaries 10.3.11
and 10.3.15: given a class P of morphisms as above and a suitable Grothendieck topology t, we
construct an abelian premotivic category Sht(P,Λ) which is compatible with the topology t (cf
Part 2); its fiber over a scheme S is given by t-sheaves of Λ-modules with transfers (in particular
presheaves on Pcor

Λ,S).
28 The section is closed with an important comparison result, essentially due

to Voevodsky, between Nisnevich sheaves with transfers and sheaves for the qfh-topology (with
rational coefficients over geometrically unibranch bases): see Theorem 10.5.14.

Finally, Section 11 is devoted to gather the work done previously and define the stable derived
category of motivic complexes DMΛ, given an arbitrary ring of coefficients Λ. The out-come has
already been described in Section B above.

D.4. Beilinson motives (Part 4). This part contains the construction of Beilinson motives
as well as the proof of all the properties stated before. It is based on the first and second parts
but independant of the third one – except in the comparison statements of Section 16.1.

Section 12 contains a short reminder on the stable homotopy category and the notion of
oriented ring spectra.

27When a correct regularity assumption is added, one reduces to the usual Serre’s Tor-intersection formula:
see 8.3.31 and 8.3.32).

28The most notable topologies t that fit in this result are the Nisnevich and the cdh ones. See Section 10.4.



xxiv

Section 13 is the heart of our construction. It contains a detailed study of the K-theory ring
spectrum KGL and the associated notion of KGL-modules in the homotopical sense (based on
the formalism introduced in Section 7). Using the works of several authors (most notably: Riou,
Nauman, Spitzweck, Østvær), we show how the central results of Quillen on algebraic K-theory
give important properties of KGL-modules: absolute purity (Th. 13.6.3) and trace maps (Def.
13.7.4).

In Section 14, we finally introduce the definition of Beilinson motives. Let us describe it in
detail now. It is based on the process of Bousfield localization of the stable homotopy category
with respect to a cohomology. This operation is fundamental in modern algebraic topology. We
apply it in algebraic geometry to the rational stable homotopy category (or, what amount to
the same, to the rational stable A1-derived category of Morel, Section 6) and to the rational
K-theory spectrum KGLQ: the Bousfield localization of DA1,Λ(S,Q) with respect to KGLQ,S is
the category of Beilinson motives DMB(S) over S (Definition 14.2.1). Using the preceding study
of KGLQ together with the decomposition of Riou recalled in the beginning of Section C.3, we
get the main properties of the premotivic category DMB: the h-descent theorem (14.3.4) and the
absolute purity theorem (14.4.1).

Then the theoretical background laid down in Part 1 is applied to DMB, given in particular
the complete Grothendieck six functors formalism for constructible Beilinson motives (Section 15).
Our work closes on the two main subjects described above on Beilinson motives: the comparison
statements (Section 16) and the study of motivic realizations (Section 17).

Notations and conventions

In every section, we will fix a category denoted by S which will contain our geometric objects.
Most of the time, S will be a category of schemes which are suitable for our needs; the required
hypothesis on S are given at the head of each section. In the text, when no precisions are given,
any scheme will be assumed to be an object of S .

When A is an additive category, we denote by A ♮ the pseudo-abelian enveloppe of A . We
denote by C(A ) the category of complexes of A . We consider K(A ) (resp. Kb(A )) the category
of complexes (resp. bounded complexes) of A modulo the chain homotopy equivalences and when
A is abelian, we let D(A ) be the derived category of A .

If M is a model category, Ho(M ) will denote its homotopy category.
We will use the notation

α : C ⇄ D : β

to mean a pair of functors such that α is left adjoint to β. Similarly, when we speak of an adjoint
pair of functors (α, β), α will always be the left adjoint. We will denote by

ad(α, β) : 1→ βα (resp. ad′(α, β) : αβ → 1)

the unit (resp. counit) of the adjunction (α, β). Considering a natural tranformation η : F → G
of functors, we usually denote by the same letter η — when the context is clear — the induced
natural transformation AFB → AGB obtained when considering functors A and B composed on
the left and right with F and G respectively.

In section 8, we will assume that equidimensional morphims have constant relative dimension.
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Fibred categories and the six functors

formalism



1. General definitions and axiomatic

1.0. We assume that S is an arbitrary category.
We shall say that a class P of morphisms of S is admissible if it is has the following properties.

(Pa) Any isomorphism is in P.
(Pb) The class P is stable by composition.
(Pc) The class P is stable by pullbacks: for any morphism f : X → Y in P and any

morphism Y ′ → Y , the pullback X ′ = Y ′×Y X is representable in S , and the projection
f ′ : X ′ → Y ′ is in P.

The morphisms which are in P will be called the P-morphisms.29

In what follows, we assume that an admissible class of morphisms P is fixed.

1.1. P-fibred categories.
1.1.a. Definitions. Let Cat be the 2-category of categories.

1.1.1. Let M be a fibred category over S , seen as a 2-functor M : S op → Cat; see [SGA1,
Exp. VI]

Given a morphism f : T → S in S , we shall denote by

f∗ : M (S)→M (T )

the corresponding pullback functor between the corresponding fibers. We shall always assume that

(1S)
∗ = 1M (S), and that for any morphisms W

g
−→ T

f
−→ S in S , we have structural isomorphisms:

(1.1.1.1) g∗f∗
∼
−→ (fg)∗

which are subject to the usual cocyle condition with respect to composition of morphisms.
Given a morphism f : T → S in S , if the corresponding inverse image functor f∗ has a left

adjoint, we shall denote it by
f♯ : M (T )→M (S) .

For any morphisms W
g
−→ T

f
−→ S in S such that f∗ and g∗ have a left adjoint, we have an

isomorphism obtained by transposition from the isomorphism (1.1.1.1):

(1.1.1.2) (fg)♯
∼
−→ f♯g♯ .

Definition 1.1.2. A pre-P-fibred category M over S is a fibred category M over S such
that, for any morphism p : T → S in P, the pullback functor p∗ : M (S) → M (T ) has a left
adjoint p♯ : M (T )→M (S).

Convention 1.1.3. Usually, we will consider that (1.1.1.1) and (1.1.1.2) are identities. Sim-
ilarly, we consider that for any object S of S , (1S)

∗ = 1M (S) and (1S)♯ = 1M (S).
30

Example 1.1.4. Let S be an object of S . We let P/S be the full subcategory of the comma
category S /S made of objects over S whose structural morphism is in P. We will usually call
the objects of P/S the P-objects over S.

Given a morphism f : T → S in S and a P-morphism π : X → S, we put f∗(π) = π ×S T
using the property (Pc) of P (see 1.0). This defines a functor f∗ : P/S →P/T .

Given two P-morphisms f : T → S and π : Y → T , we put f♯(π) = f ◦ π using the property
(Pb) of P. this defines a functor f♯ : P/T → P/S. According to the property of pullbacks, f♯
is left adjoint to f∗.

We thus get a pre-P-fibred category P/? : S 7→P/S.

29In practice, S will be an adequate subcategory of the category of noetherian schemes and P will be the class
of smooth morphisms (resp. étale morphisms, morphisms of finite type, separated or not necessarily separated) in

S .
30We can always strictify globally the fibred category structure so that g∗f∗ = (fg)∗ for any composable

morphisms f and g, and so that (1S)
∗ = 1M(S) for any object S of S ; moreover, for a morphism h of S such that

a left adjoint of h∗ exists, and we can choose the left adjoint functor h♯ which we feel as the most convenient for

us, depending on the situation we deal with. For instance, if h = 1S , we can choose h♯ to be 1M(S), and if h = fg,

with f∗ and g∗ having left adjoints, we can choose h♯ to be f♯g♯ (with the unit and counit naturally induced by

composition).
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Example 1.1.5. Assume S is the category of noetherian schemes of finite dimension, and
P = Sm. For a scheme S of S , let H•(S) be the pointed homotopy category of schemes over S
defined by Morel and Voevodsky in [MV99]. Then according to op. cit., H• is a pre-Sm-fibred
category over S .

1.1.6. Exchange structures I.– Suppose given a weak P-fibred category M .
Consider a commutative square of S

Y
q //

g
�� ∆

X
f
��

T p
// S

such that p and q are P-morphisms, we get using the identification of convention 1.1.3 a canonical
natural transformation

Ex(∆∗
♯ ) : q♯g

∗ ad(p♯,p
∗)

−−−−−−→ q♯g
∗p∗p♯ = q♯q

∗f∗p♯
ad′(q♯,q

∗)
−−−−−−→ f∗p♯

called the exchange transformation between q♯ and g
∗.

Remark 1.1.7. These exchange transformations satisfy a coherence condition with respect to
the relations (fg)∗ = g∗f∗ and (fg)♯ = f♯g♯. As an example, consider two commutative squares
in S :

Z
q′ //

h �� Θ

Y
q //

g
�� ∆

X
f
��

W
p′

// T p
// S

and let ∆ ◦Θ be the commutative square made by the exterior maps – it is usually called the hor-
izontal composition of the squares. Then, the following diagram of 2-morphisms is commutative:

(qq′)♯h
∗

Ex(∆◦Θ)∗♯ // f∗(pp′)♯

q♯q
′
♯h

∗
Ex(Θ∗

♯ ) // q♯g∗p′♯
Ex(∆∗

♯ ) // f∗p♯p′♯

To see this, one divides this diagram as follows:
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(qq
′)
♯ h

∗
a
d
(
p
p
′
)

//(qq
′)
♯ h

∗(p
p
′)
♯ (p
p
′)
∗

(qq
′)
♯ (qq

′)
∗f

∗(p
p
′)
∗

a
d
′(
q
q
′
)

//f
∗(p

p
′)
♯

q
♯ q

′♯ h
∗p

′∗p
′♯
a
d
p

//q
♯ q

′♯ h
∗p

′∗p
∗p
♯ p

′♯
q
♯ q

′♯ q
′∗q

∗f
∗p
♯ p

′♯
a
d
′q
′

//q
♯ q

∗f
∗p
♯ p

′♯

q
♯ q

′♯ q
′∗g

∗p
′♯

a
d
p

//q
♯ q

′♯ q
′∗g

∗p
∗p
♯ p

′♯
a
d
′q
′

//q
♯ g

∗p
∗p
♯ p

′♯

q
♯ q

′♯ h
∗

a
d
p
′ //q
♯ q

′♯ h
∗p

′∗p
′♯

q
♯ q

′♯ q
′∗g

∗p
′♯

a
d
′q
′

//q
♯ g

∗p
′♯

a
d
p

//q
♯ g

∗p
∗p
♯ p

′♯
q
♯ q

∗f
∗p
♯ p

′♯
a
d
′q //f

∗p
♯ p

′♯

where adr (resp. ad′r) indicates the morphism obtained from the obvious unit morphism (resp.
counit morphism) of the adjunction (r♯, r

∗) by eventually adding functors on the left or on the
right. The reader can check easily that each cell of the above diagram is commutative, proving
our claim.

Thus, according to our abuse of notation for natural transformations, Ex behaves as a con-
travariant functor with respect to the horizontal composition of squares. The same is true for
vertical composition of commutative squares.

Remark 1.1.8. In the sequel, we will introduce several exchange transformation between
various functor. We speak of an exchange isomorphism when the transformation is an exchange
isomorphism. When only two kind of functors are involved, say of type a and b, we say that
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functors of type a and functors of type b commutes when the exchange transformation is an
isomorphism.

As an example (see also next definition), when the exchange transformation Ex(∆∗
♯ ) is an

isomorphism, we simply say that f∗ and p♯ commutes – or also that f∗ commutes with p♯.

1.1.9. Under the assumptions of 1.1.6, we will consider the following property:

(P-BC) P-base change.– For any cartesian square

Y
q //

g
��

∆

X

f
��

T p
// S

such that p is a P-morphism, the exchange transformation

Ex(∆∗
♯ ) : q♯g

∗ → f∗p♯

is an isomorphism.31

Definition 1.1.10. A P-fibred category over S is a pre-P-fibred category M over S which
satisfies the property of P-base change.

Example 1.1.11. Consider the notations of example 1.1.4. Then the transitivity property
of pullbacks of morphisms in P amounts to say that P/? satisfies the P-base change property.
Thus, P/? is in fact a P-fibred category, called the canonical P-fibred category.

Definition 1.1.12. A P-fibred category M over S is complete if, for any morphism f : T →
S, the pullback functor f∗ : M (S)→M (T ) admits a right adjoint f∗ : M (S)→M (T ).

Remark 1.1.13. In the case where P is the class of isomorphisms a P-fibred category is
what we usually call a bifibred category over S .

Example 1.1.14. The pre-Sm-fibred category H• of example 1.1.5 is a complete Sm-fibred
category according to [MV99].

1.1.15. Exchange structures II.– Let M be a complete P-fibred category. Consider a com-
mutative square

Y
q //

g

��
∆

X

f

��
T p

// S.

We obtain an exchange transformation:

Ex(∆∗
∗) : p

∗f∗
ad(g∗,g∗)
−−−−−−→ g∗g

∗p∗f∗ = g∗q
∗f∗f∗

ad′(f∗,f∗)
−−−−−−→ g∗q

∗.

Assume moreover that p and q are P-morphism. Then we can check that Ex(∆∗
∗) is the transpose

of the exchange Ex(∆∗
♯ ). Thus, when ∆ is cartesian and p is a P-morphism, Ex(∆∗

∗) is an

isomorphism according to (P-BC).
We can also define an exchange transformation:

Ex(∆♯∗) : p♯g∗
ad(f∗,f∗)
−−−−−−→ f∗f

∗p♯g∗
Ex(∆∗

♯ )
−1

−−−−−−−→ f∗q♯g
∗g∗

ad′(g∗,g∗)
−−−−−−→ f∗q♯.

Remark 1.1.16. As in remark 1.1.7, we obtain coherence results for these exchange transfor-
mations.

First with respect to the identifications of the kind f∗g∗ = (gf)∗, (fg)∗ = f∗g∗, (fg)♯ = f♯g♯.

31In other words, f∗ commutes with p♯.
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Secondly when several exchange transformations of different kind are involved. As an example,
we consider the following commutative diagram in S :

Y q

,,XXXXXXXXXX

Γ′Z

h

��

q′ 33ffffffffff
q′

XXXX
++XXXX

Θ

X

f

��

∆

Y
qfffff

33fffff

g
��
T

pWWWWW
++WWWWW

ΓQ
p′gggg

33gggg

p′ ++WWWWWWWWWW S

T p

33gggggggggg

Then the following diagram of natural transformations is commutative:

q♯g
∗p′∗

Ex(∆∗
♯ ) //

Ex(Θ∗
∗) ��

f∗p♯p
′
∗

Ex(Γ♯∗)

((QQQQQQQQ

q♯q
′
∗h

∗

Ex(Γ′
♯∗) ((QQQQQQQQ

f∗p∗p
′
♯

Ex(∆∗
∗)��

q∗q
′
♯h

∗

Ex(Θ∗
♯ )

// q∗g∗p′♯

We left the verification to the reader (it is analogous to that of Remark 1.1.7 except that it involves
also to the compatibility of the unit and counit of an adjunction).

Definition 1.1.17. Let M be a complete P-fibred category. Consider a commutative square
in S

Y
q //

g
��

∆

X

f
��

T p
// S.

We will say that ∆ is M -transversal if the exchange transformation

Ex(∆∗
∗) : p

∗f∗ → g∗q
∗

of 1.1.15 is an isomorphism.
Given an admissible class of morphisms Q in S , we say that M has the transversality (resp.

cotransversality) property with respect to Q-morphisms, if, for any cartesian square ∆ as above
such that f is in Q (resp. p is in Q), ∆ is M -transversal.

Remark 1.1.18. Assume S is a sub-category of the category of schemes. When Q is the
class of smooth morphisms (resp. proper morphisms), the cotransversality (resp. transversality)
property with respect to Q is usually called the smooth base change property (resp. proper base
change property). See also Definition 2.2.13.

According to Paragraph 1.1.15, we derive the following consequence of our axioms:

Proposition 1.1.19. Any complete P-fibred category has the cotransversality property with
respect to P.

Let us note for future reference the following corollary:

Corollary 1.1.20. If M is a P-fibred category, then, for any monomorphism j : U → S in
P, the functor j♯ is fully faithful. If moreover M is complete, then the functor j∗ is fully faithful
as well.

Proof. Because j is a monomorphism, we get a cartesian square in S :

U

∆

U

j
��

U
j
// S.
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Remark that Ex(∆∗
♯ ) : 1 → j∗j♯ is the unit of the adjunction (j♯, j

∗). Thus the P-base change
property shows that j♯ is fully faithful.

Assume M is complete. We remark similarly that Ex(∆∗
∗) : j∗j∗ → 1 is the counit of the

adjunction (j∗, j∗). Thus, the above proposition shows readily that j∗ is fully faithful. �

1.1.b. Monoidal structures. Let Cat⊗ be the sub-2-category of Catmade of symmetric monoidal
categories whose 1-morphisms are (strong) symmetric monoidal functors and 2-morphisms are
symmetric monoidal transformations.

Definition 1.1.21. A monoidal pre-P-fibred category over S

is a 2-functor

M : S → Cat⊗

such that M is a pre-P-fibred category.

In other words, M is a pre-P-fibred category such that each of its fibers M (S) is endowed
with a structure of a monoidal category, and any pullback morphism f∗ is monoidal, with the
obvious coherent structures. For an object S of S , we will usually denote by ⊗S (resp. 1S) the
tensor product (resp. unit) of M (S).
In particular, we then have the following natural isomorphisms:

• for a morphism f : T → S in S , and objects M , N of M (S),

f∗(M)⊗T f
∗(N)

∼
−→ f∗(M ⊗S N);

• for a morphism f : T → S in S ,

f∗(1S)
∼
−→ 1T .

Convention 1.1.22. As in convention 1.1.3, we will generally consider that these structural
isomorphisms are identities.

Example 1.1.23. Consider the notations of example 1.1.4.
Using the properties (Pb) and (Pc) of P (see 1.0), for two S-objects X and Y in P/S, the

cartesian product X ×S Y is an object of P/S. This defines a symmetric monoidal structure on
P/S with unit the trivial S-object S. Moreover, the functor f∗ defined in loc. cit. is monoidal.
Thus, the pre-P-fibred category P/? is in fact monoidal.

1.1.24. Monoidal exchange structures I. Let M be a monoidal pre-P-fibred category M over
S .

Consider a P-morphism f : T → S, and M (resp. N) an object of M (T ) (resp. M (S)).
We get a morphism in M (S)

Ex(f∗♯ ,⊗) : f♯(M ⊗T f
∗(N)) −→ f♯(M)⊗S N

as the composition

f♯(M ⊗T f
∗(N))→ f♯(f

∗f♯(M)⊗T f
∗(N)) ≃ f♯f

∗(f♯(M)⊗S N)→ f♯(M)⊗S N .

This map is natural in M and N . It will be called the exchange transformation between f♯ and
⊗T .

Remark also that the functor f♯, as a left adjoint of a symmetric monoidal functor, is colax
symmetric monoidal: for any objects M and N of M (T ), there is a canonical morphism

(1.1.24.1) f♯(M)⊗S f♯(N)→ f♯(M ⊗T N)

natural in M and N , as well as a natural map

(1.1.24.2) f♯(1T )→ 1S .
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Remark 1.1.25. As in remark 1.1.7, the preceding exchange transformations satisfy a coher-

ence condition for composable morphisms W
g
−→ T

f
−→ S. We get in fact a commutative diagram:

(fg)♯
(
M ⊗S (fg)∗(N)

) Ex((fg)∗♯ ,⊗)
//
(
(fg)♯(M)

)
⊗W N

f♯g♯
(
M ⊗S g

∗f∗(N)
) Ex(g∗♯ ,⊗)

// f♯
(
g♯(M)⊗T f

∗(N)
) Ex(f∗

♯ ,⊗)
//
(
f♯g♯(M)

)
⊗W N

As in remark 1.1.16, there is also a coherence relation when different kinds of exchange transfor-
mations are involved. Consider a commutative square in S

Y
q //

g

��
∆

X

f

��
T p

// S

such that p and q are P-morphisms and put h = f ◦ q = p ◦ g. Then the following diagram is
commutative:

q♯g
∗(M ⊗T p

∗N)
Ex(∆∗

♯ ) // f∗p♯(M ⊗T p∗N)
Ex(p∗♯ ,⊗)

// f∗(p♯M ⊗S N)

q♯(g
∗M ⊗Y q

∗f∗N)
Ex(q∗♯ ,⊗)

// (q♯g∗M)⊗X f∗N
Ex(∆∗

♯ ) // (f∗p♯M)⊗X f∗N

We left the verification to the reader.

1.1.26. Under the assumptions of 1.1.24, we will consider the following property:

(P-PF) P-projection formula.– For any P-morphism f : T → S the exchange transformation

Ex(f♯,⊗T ) : f♯(M ⊗T f
∗(N))→ f♯(M)⊗S N

is an isomorphism for all M and N .

Definition 1.1.27. A monoidal P-fibred category over S is a monoidal pre-P-fibred cate-
gory M : S op → Cat⊗ over S which satisfies the P-projection formula.

Example 1.1.28. Consider the canonical monoidal weak P-fibred category P/? (see example
1.1.23). The transitivity property of pullbacks implies readily that P/? satisfies the property
(P-PF). Thus, P/? is in fact a monoidal P-fibred category called canonical.

Definition 1.1.29. A monoidal P-fibred category M over S is complete if it satisfies the
following conditions:

(1) M is complete as a P-fibred category.
(2) For any object S of S , the monoidal category M (S) is closed (i.e. has an internal Hom).

In this case, we will usually denote by HomS the internal Hom in M (S), so that we have
natural bijections

HomM (S)(A⊗S B,C) ≃ HomM (S)(A,HomS(B,C)) .

Example 1.1.30. The P-fibred category H• of example 1.1.14 is in fact a complete monoidal
P-fibred category. The tensor product is given by the smash product (see [MV99]).

1.1.31. Monoidal exchange structures II.– Let M be a complete monoidal P-fibred category.
Consider a morphism f : T → S in S . Then we obtain an exchange transformation:

Ex(f∗∗ ,⊗S) : (f∗M)⊗S N
ad(f∗,f∗)
−−−−−−→ f∗f

∗
(
(f∗M)⊗S N

)

= f∗
(
(f∗f∗M)⊗T f

∗N
) ad′(f∗,f∗)
−−−−−−→ f∗(M ⊗T f

∗N).



1. GENERAL DEFINITIONS AND AXIOMATIC 9

Remark 1.1.32. As in remark 1.1.25, these exchange transformations are compatible with
the identifications (fg)∗ = f∗g∗ and (fg)∗ = g∗f∗.
Moreover, there is a coherence relation when composing the exchange transformations of the kind
Ex(f∗∗ ,⊗) with exchange transformations of the kind Ex(∆∗

∗) as in loc. cit.
Finally, note another kind of coherence relations involving Ex(f∗∗ ,⊗), Ex(∆

∗
♯ ) (resp. Ex(f

∗
♯ ,⊗))

and Ex(∆♯∗).
We left the formulation of these coherence relations to the reader, on the model of the preceding
ones.

1.1.33. Monoidal exchange structures III.– Let M be a complete monoidal P-fibred category
and f : T → S be a morphism in S .

Because f∗ is monoidal, we get by adjunction a canonical isomorphism

HomS(M, f∗N)→ f∗HomT (f
∗M,N).

Assume that f is a P-morphism. Then from the P-projection formula, we get by adjunction two
canonical isomorphisms:

f∗HomS(M,N)→ HomT (f
∗M,f∗N),

HomS(f♯M,N)→ f∗HomT (M, f∗N)

These isomorphisms are generically called exchange isomorphisms.

1.1.c. Geometric sections.

1.1.34. Consider a weak P-fibred category M .
Let S be a scheme. For any P-morphism p : X → S, we put MS(X) := p♯(1X). According

to our conventions, this object is identified with p♯p
∗(1S). In particular, it defines a covariant

functor MS : P/S →M (S).
Consider a cartesian square in S

Y
g //

q

��
∆

X

p

��
T

f
// S

such that p is a P-morphism. With the notations of example 1.1.4, Y = f∗(X). Then we get a
natural exchange transformation

Ex(MT , f
∗) :MT (f

∗(X)) = q♯(1Y ) = q♯g
∗(1X)

Ex(∆∗
♯ )

−−−−−→ f∗p♯(1X) = f∗MS(X).

In other words, M defines a lax natural transformation P/?→M .
Consider P-morphisms p : X → S, q : Y → S. Let Z = X ×S Y be the cartesian product

and consider the cartesian square:

Z
p′ //

q′ �� Θ

Y
q��

X p // S.

Using the exchange transformations of the preceding paragraph, we get a canonical morphism

Ex(MS ,⊗S) :MS(X ×S Y ) −→MS(X)⊗S MS(Y )

as the composition

MS(X ×S Y ) = p♯q
′
♯p

′∗(1Y )
Ex(Θ∗

♯ )
−−−−−→ p♯p

∗q♯(1Y ) p♯(1X ⊗X p∗q♯(1Y ))

Ex(p♯,⊗X)
−−−−−−−→ p♯(1X)⊗S q♯(1Y ) =MS(X)⊗S MS(Y ).

In other words, the functor MS is symmetric colax monoidal.
Remark finally that for any P-morphism p : T → S, and any P-object Y over T , we obtain

according to convention an identification p♯MT (Y ) =MS(Y ).
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Definition 1.1.35. Given a monoidal pre-P-fibred category M over S , the lax natural
transformation M : P/?→M constructed above will be called the geometric sections of M .

The following lemma is obvious from the definitions above:

Lemma 1.1.36. let M be a monoidal P-fibred category. Let M : P/?→M be the geometric
sections of M . Then:

(i) For any morphism f : T → S in S , the exchange Ex(MT , f
∗) defined above is an

isomorphism.
(ii) For any scheme S, the exchange Ex(MS ,⊗S) defined above is an isomorphism.

In other words, M is a cartesian functor and MS is a (strong) symmetric monoidal functor.

1.1.37. In the situation of the lemma we thus obtain the following identifications:

• f∗MS(X) ≃MT (X ×S T ),
• p♯MT (Y ) ≃MS(Y ),
• MS(X ×S Y ) ≃MS(X)⊗S MS(Y ),

whenever it makes sense.

1.1.d. Twists.

1.1.38. Let M be a pre-P-fibred category of S . Recall that a cartesian section of M (i.e. a
cartesian functor A : S →M ) is the data of an object AS of M (S) for each object S of S and
of isomorphisms

f∗(AS)
∼
−→ AT

for each morphism f : T → S, subject to coherence identities; see [SGA1, Exp. VI].
If M is monoidal, the tensor product of two cartesian sections is defined termwise.

Definition 1.1.39. let M be a monoidal pre-P-fibred category. A set of twists τ for M

is a set of cartesian sections of M stable by tensor product. For short, we say also that M is
τ -twisted.

1.1.40. Let M be a monoidal pre-P-fibred category endowed with a set of twists τ .
The tensor product on τ induces a monoid structure that we will denote by + (the unit object

of τ will be written 0).
Consider an object i ∈ τ . For any object S of S , we thus obtain an object iS in M (S)

associated with i. Given any object M of M (S), we simply put:

M{i} =M ⊗S iS

and call this object the twist of M by i. We have, by definition: M{0} =M .
For any i, j ∈ τ , and any object M of M (S), we obtain M{i + j} = (M{i}){j} – using the

structural associativity isomorphism of the monoidal structure. Given a morphism f : T → S, an
objectM of M (S) and a twist i ∈ τ , we also obtain f∗(M{i}) = (f∗M){i}. If f is a P-morphism,
for any object M of M (T ), the exchange transformation Ex(f∗♯ ,⊗T ) of paragraph 1.1.6 induces
a canonical morphism

Ex(f♯, {i}) : f♯(M{i})→ (f♯M){i}.

We will say that f♯ commutes with τ -twists (or simply twists when τ is clear) if for any i ∈ I, the
natural transformation Ex(f♯, {i}) is an isomorphism.

Definition 1.1.41. Let M be a monoidal pre-P-fibred category with a set of twists τ and
M : P/?→M be the geometric sections of M .

We say M is τ -generated if for any object S of S , the family of functors

HomM (S)(MS(X){i},−) : M (S)→ Set

indexed by a P-object X/S and an element i ∈ τ is conservative.
Of course, we do not exclude the case where τ is trivial, but then, we shall simply say that

M is geometrically generated.
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We shall frequently use the following proposition to characterize complete monoidal P-fibred
categories over S :

Proposition 1.1.42. Let M : S → Cat⊗ be a 2-functor such that:

(1) For any P-morphism f : T → S, the pullback functor f∗ : M (S)→M (T ) is monoidal
and admits a left adjoint f♯ in C .

(2) For any morphism f : T → S, the pullback functor f∗ : M (S) →M (T ) admits a right
adjoint f∗ in C .

We consider M as a monoidal weak P-fibred category and denote byM : P/?→M its associated
geometric sections. Suppose given a set of twists τ such that M is τ -generated. Then, the following
assertions are equivalent:

(3) M satisfies properties (P-BC) and (P-PF)
( i.e. M is a complete monoidal P-fibred category.)

(3’) (a) M is a cartesian functor.
(b) For any object S of S , MS is (strongly) monoidal.
(c) For any P-morphism f , f♯ commutes with τ -twists.

Proof. (i)⇒ (ii): This is obvious (see Lemma 1.1.36).
(ii)⇒ (i): We use the following easy lemma:

Lemma 1.1.43. Let C1 and C2 be categories, F,G : C1 → C2 be two left adjoint functors and
η : F → G be a natural transformation. Let G be a class of objects of C1 which is generating in
the sense that the family of functors HomC1

(X,−) for X in G is conservative.
Then the following conditions are equivalent:

(1) η is an isomorphism.
(2) For all X in G, ηX is an isomorphism.

Given this lemma, to prove (P-BC), we are reduced to check that the exchange transformation
Ex(∆∗

♯ ) is an isomorphism when evaluated on an object MT (U){i} for an object U of P/T and

a twist i ∈ τ . Then it follows from (ii), 1.1.40 and example 1.1.11.32

To prove (P-PF), we proceed in two steps first proving the case M = MT (U){i} and N any
object of M (S) using the same argument as above with the help of 1.1.28. Then, we can prove
the general case by another application of the same argument. �

Suppose given a complete monoidal P-fibered category M with a set of twists τ . Let f :
T → S be a morphism of S . Then the exchange transformation 1.1.31 induces for any i ∈ τ an
exchange transformation

Ex(f∗, {i}) : (f∗M){i} → f∗(M{i}) .

Definition 1.1.44. In the situation above, we say that f∗ commutes with τ -twists (or simply
with twists when τ is clear) if for any i ∈ τ , the exchange transformation Ex(f∗, {i}) is an
isomorphism.

It will happen frequently that twists are ⊗-invertible. Then f∗ commutes with twists as its
right adjoint does.

1.2. Morphisms of P-fibred categories.
1.2.a. General case.

1.2.1. Consider two P-fibred categories M and M ′ over S , as well as a cartesian functor
ϕ∗ : M →M ′ between the underlying fibred categories: for any object S of S , we have a functor

ϕ∗
S : M (S)→M

′(S) ,

32The cautious reader will use remark 1.1.7 to check that the corresponding map

MX(U ×T Y ){i} →MX(U ×T Y ){i}

is the identity.
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and for any map f : T → S in S , we have an isomorphism of functors cf

M (S)

�����	 cf

ϕ∗
S //

f∗

��

M ′(S)

f∗

��
M (T )

ϕ∗
T

// M ′(T )

cf : f∗ ϕ∗
S

∼
−→ ϕ∗

T f
∗(1.2.1.1)

satisfying some cocycle condition with respect to composition in S .
For any P-morphism p : T → S, we construct an exchange morphism

Ex(p♯, ϕ
∗) : p♯ ϕ

∗
T −→ ϕ∗

S p♯

as the composition

p♯ϕ
∗
T

ad(p♯,p
∗)

−−−−−−→ p♯ϕ
∗
T p

∗p♯
c−1
p
−−→ p♯p

∗ϕ∗
Sp♯

ad′(p♯,p
∗)

−−−−−−→ ϕ∗
Sp♯.

Definition 1.2.2. Consider the situation above. We say that the cartesian functor

ϕ∗ : M →M
′

is a morphism of P-fibred categories if, for any P-morphism p, the exchange transformation
Ex(p♯, ϕ

∗) is an isomorphism.

Example 1.2.3. If M is a monoidal P-fibred category, then the geometric sections M :
P/?→M is a morphism of P-fibred categories (1.1.36).

Definition 1.2.4. Let M and M ′ be two complete P-fibred categories. A morphism of
complete P-fibred categories is a morphism of P-fibred categories

ϕ∗ : M →M
′

such that, for any object S of S , the functor ϕ∗
S : M (S)→M ′(S) has a right adjoint

ϕ∗,S : M
′(S)→M (S) .

When we want to indicate a notation for the right adjoint of a morphism as above, we use the
writing

ϕ∗ : M ⇄ N : ϕ∗

the left adjoint being in the left hand side.

1.2.5. Exchange structures III. Consider a morphism ϕ∗ : M → M ′ of complete P-fibred
categories.

Then for any morphism f : T → S in S , we define exchange transformations

Ex(ϕ∗, f∗) : ϕ
∗
Sf∗ −→ f∗ϕ

∗
T ,(1.2.5.1)

Ex(f∗, ϕ∗) : f
∗ϕ∗,S −→ ϕ∗,T f

∗,(1.2.5.2)

as the respective compositions

ϕ∗
Sf∗

ad(f∗,f∗)
−−−−−−→ f∗f

∗ϕ∗
Sf∗ ≃ f∗ϕ

∗
T f

∗f∗
ad′(f∗,f∗)
−−−−−−→ f∗ϕ

∗
T ,

f∗ϕ∗,S
ad(f∗,f∗)
−−−−−−→ f∗ϕ∗,Sf∗f

∗ ≃ f∗f∗ϕ∗,T f
∗ ad′(f∗,f∗)
−−−−−−→ ϕ∗,T f

∗.

Remark 1.2.6. We warn the reader that ϕ∗ : M ′ →M is not a cartesian functor in general,
meaning that the exchange transformation Ex(f∗, ϕ∗) is not necessarily an isomorphism, even
when f is a P-morphism.
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1.2.b. Monoidal case.

Definition 1.2.7. Let M and M ′ be monoidal P-fibred categories.
A morphisms of monoidal P-fibred categories is a morphism ϕ∗ : M → M ′ of P-fibred

categories such that for any object S of S , the functor ϕ∗
S : M (X)→ N (S) has the structure of

a (strong) symmetric monoidal functor, and such that the structural isomorphisms (1.2.1.1) are
isomorphisms of symmetric monoidal functors.

In the case where M and M ′ are complete monoidal P-fibred categories, we shall say that
such a morphism ϕ∗ is a morphism of complete monoidal P-fibred categories if ϕ∗ is also a
morphism of complete P-fibred categories.

Remark 1.2.8. If we denote by M(−,M ) and M(−,M ′) the geometric sections of M and
M ′ respectively, we have a natural identification:

ϕ∗
S(MS(X,M )) ≃MS(X,M

′) .

1.2.9. Monoidal exchange structures IV. Consider a a morphism ϕ∗ : M → M ′ of complete
monoidal P-fibred categories. For objects M (resp. N) of M (S) (resp. M ′(S)), we define an
exchange transformation

Ex(ϕ∗,⊗, ϕ
∗) : (ϕ∗,SM)⊗S N → ϕ∗,S(M ⊗T ϕ

∗
SN),

natural in M and N , as the following composite

(ϕ∗,SM)⊗S N
ad(ϕ∗,ϕ∗)
−−−−−−→ ϕ∗,Sϕ

∗
S((ϕ∗,SM)⊗S N)

= ϕ∗,S((ϕ
∗
Sϕ∗,SM)⊗T ϕ

∗
SN)

ad′(ϕ∗,ϕ∗)
−−−−−−−→ ϕ∗,S(M ⊗T ϕ

∗
SN).

As in remark 1.1.32, we get coherence relations between the various exchange transformations
associated with a morphism of monoidal P-fibred categories. We left the formulation to the
reader.
Note also that, because ϕ∗ is monoidal, we get by adjunction a canonical isomorphism:

HomM (S)(M,ϕ∗,SM
′)

∼
−→ ϕ∗,SHomM ′(S)(ϕ

∗
SM,M ′) .

1.2.10. Consider two monoidal P-fibred categories M , M ′ and a cartesian functor ϕ∗ : M →
M ′ such that, for any scheme S, ϕ∗

S : M (S)→M ′(S) is monoidal.
Given a cartesian section K = (KS)S∈S of M , we obtain for any morphism f : T → S in S

a canonical map
f∗ϕ∗

S(KS) = ϕ∗
T (f

∗(KS))→ ϕ∗
T (KT )

which defines a cartesian section of M ′, which we denote by ϕ∗(K).

Definition 1.2.11. Let (M , τ) and (M ′, τ ′) be twisted monoidal P-fibred categories. Let
ϕ∗ : M →M ′ be a cartesian functor as above (resp. a morphism of monoidal P-fibred categories).

We say that ϕ∗ : (M , τ) → (M ′, τ ′) is compatible with twists if for any i ∈ τ , the cartesian
section ϕ∗(i) is in τ ′ (up to isomorphism in M ′).

In particular, ϕ∗ induces a morphism of monoids τ → τ ′ (if we consider the isomorphism classes
of objects). Moreover, for any object K of M (S) and any twist i ∈ τ , we get an identification:

ϕ∗
S(K{i}) ≃ (ϕ∗

SK){ϕ∗(i)}.

Moreover, the exchange transformation Ex(ϕ∗,⊗) induces an exchange:

Ex(ϕ∗, {i}) : ϕ∗,S(K){i} → ϕ∗,S

(
K{ϕ∗(i)}

)
.

When this transformation is an isomorphism for any twist i ∈ τ , we say that ϕ∗ commutes with
twists.

Remark 1.2.12. In every examples, the morphism τ → τ ′ will be an explicit injection and we
will cancel it in the notations of twists.

Note finally that Lemma 1.1.43 allows to prove, as for Proposition 1.1.42, the following useful
lemma:
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Lemma 1.2.13. Consider two complete monoidal P-fibred categories M , M ′ and denote by
M(−,M ) and M(−,M ′) their respective geometric sections. Let ϕ∗ : M → M ′ be a cartesian
functor such that

(1) For any scheme S, ϕ∗
S : M (S)→M ′(S) is monoidal.

(2) For any scheme S, ϕ∗
S admits a right adjoint ϕ∗,S.

Assume M (resp. M ′) is τ -generated (resp. τ ′-twisted) and ϕ∗ commutes with twists. Then the
following conditions are equivalent:

(3) ϕ∗ is a morphism of complete monoidal P-fibred categories.
(3’) For any object X of P/S, the exchange transformation (cf. 1.2.1)

ϕ∗MS(X,M )→MS(X,M
′)

is an isomorphism.

1.3. Structures on P-fibred categories.
1.3.a. Abstract definition.

1.3.1. We fix a sub-2-category C of Cat with the following properties33:

(1) the 2-functor

Cat→ Cat′ , A 7→ Aop

sends C to C ′, where C ′ denotes the 2-category whose objects and maps are those of C

and whose 2-morphisms are the 2-morphisms of C , put in the reverse direction.
(2) C is closed under adjunction: for any functor u : A→ B in C , if a functor v : B → A is

a right adjoint or a left adjoint to u, then v is in C .
(3) the 2-morphisms of C are closed by transposition: if

u : A⇄ B : v and u′ : A⇄ B : v′

are two adjunctions in C (with the left adjoints on the left hand side), a natural trans-
formation u→ u′ is in C if and only if the corresponding natural transformation v′ → v
is in C .

We can then define and manipulate C -structured P-fibred categories as follows.

Definition 1.3.2. A C -structured P-fibred category (resp. C -structured complete P-fibred
category) M over S is simply a P-fibred category (resp. a complete P-fibred category) whose
underlying 2-functor M : S op → Cat factors through C .

If M and M ′ are C -structured fibred categories over S , a cartesian functor M →M ′ is C -
structured if the functors M (S)→M ′(S) are in C for any object S of S , and if all the structural
2-morphisms (1.2.1.1) are in C as well.

Definition 1.3.3. A morphism of C -structured P-fibred categories (resp. C -structured
complete P-fibred categories) is a morphism of P-fibred categories (resp. of complete P-fibred
categories) which is C -structured as a cartesian functor.

1.3.4. Consider a 2-category C as in the paragraph 1.3.1. In order to deal with the monoidal
case, we will consider also a sub-2-category C⊗ of C such that:

(1) The objects of C⊗ are objects of C equipped with a symmetric monoidal structure;
(2) the 1-morphisms of C⊗ are exactly the 1-morphisms of C which are symmetric monoidal

as functors;
(3) the 2-morphisms of C⊗ are exactly the 2-morphisms of C which are symmetric monoidal

as natural transformations.

Note that C⊗ satisfies condition (1) of 1.3.1, but it does not satisfies conditions (2) and (3) in
general. Instead, we get the following properties:

33See the following sections for examples.
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(2′) If u : A → B is a functor in C⊗, a right (resp. left) adjoint v is a lax34 (resp. colax)
monoidal functor in C .

(3′) Consider adjunctions

u : A⇄ B : v and u′ : A⇄ B : v′

in C (with the left adjoints on the left hand side). If u → u′ (resp. v → v′) is a 2-
morphism in C⊗ then v → v′ (resp. u→ u′) is a 2-morphism in C which is a symmetric
monoidal transformation of lax (resp. colax) monoidal functors.

We thus adopt the following definition:

Definition 1.3.5. A (C ,C⊗)-structured monoidal P-fibred category (resp. a (C ,C⊗)-structured
complete monoidal P-fibred category) is simply a monoidal P-fibred category (resp. a complete
monoidal P-fibred category) whose underlying 2-functor M : S op → Cat⊗ factors through C⊗.
Morphisms of such objects are defined in the same way.

Note that, with the hypothesis made on C , all the exchange natural transformations defined
in the preceding paragraphs lie in C and satisfy the appropriate coherence property with respect
to the monoidal structure.

1.3.b. The abelian case.

1.3.6. Let Ab be the sub-2-category of Cat made of the abelian categories, with the additive
functors as 1-morphisms, and the natural transformations as 2-morphisms. Obviously, it satisfies
properties of 1.3.1. When we will apply one of the definitions 1.3.2, 1.3.3 to the case C = Ab,
we will use the simple adjective abelian for Ab-structured. This allows to speak of morphisms of
abelian P-fibred categories.

Let Ab⊗ be the sub-2-category of Ab made of the abelian monoidal categories, with 1-
morphisms the symmetric monoidal additive functors and 2-morphisms the symmetric monoidal
natural transformations. It satisfies the hypothesis of paragraph 1.3.4. When we will apply def-
inition 1.3.5 to the case of (Ab,Ab⊗), we will use the simple expression abelian monoidal for
(Ab,Ab⊗)-structured monoidal. This allows to speak of morphisms of abelian monoidal P-fibred
categories.

Lemma 1.3.7. Consider an abelian P-fibred category A such that for any object S of S ,
A (S) is a Grothendieck abelian category. Then the following conditions are equivalent:

(i) A is complete.
(ii) For any morphism f : T → S in S , f∗ commutes with sums.

If in addition, A is monoidal, the following conditions are equivalent:

(i′) A is monoidal complete.
(ii′) (a) For any morphism f : T → S in S , f∗ is right exact.

(b) For any object S of S , the bifunctor ⊗S is right exact.

In view of this lemma, we adopt the following definition:

Definition 1.3.8. A Grothendieck abelian (resp. Grothendieck abelian monoidal) P-fibred
category A over S is an abelian P-fibred category which is complete (resp. complete monoidal)
and such that for any scheme S, A (S) is a Grothendieck abelian category.

Remark 1.3.9. Let A be a Grothendieck abelian monoidal P-fibred category. Convention-
ally, we will denote by MS(−,A ) its geometric sections. Note that if A is τ -twisted, then any
object of A is a quotient of a direct sum of objects of shape MS(X,A ){i} for a P-object X/S
and a twist i ∈ τ .

1.3.10. Consider an abelian category A which admits small sums. Recall the following defi-
nition:
An object X of T is finitely presented if the functor HomT (X,−) commutes with small filtering

34For any object a, a′ in A, F is lax if there exists a structural map F (a) ⊗ F (a′)
(1)
−−→ F (a ⊗ a′) satisfying

coherence relations (see [Mac98, XI. 2]). Colax is defined by reversing the arrow (1).
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colimits. A essentially small G of objects of A is called generating if for any object A of A there
exists an epimorphism of the form:

⊕

i∈I

Gi → A

where (Gi)i∈I is a family of objects if G.

Definition 1.3.11. Let A be an abelian P-fibred category over S .
Given a set of twists τ of A , we say A is finitely τ -presented if for any object S of S , for

any P-object X/S and any twist i ∈ τ , the object MS(X){i} is finitely presented and the class
of such objects form an essentially small generating family of A (S).

Remark 1.3.12.

1.3.c. The triangulated case.

1.3.13. Let T ri be the sub-2-category of Cat made of the triangulated categories, with the tri-
angulated functors as 1-morphisms, and the triangulated natural transformations as 2-morphisms.
Then T ri satisfies the properties of 1.3.1 (property (2) can be found for instance in [Ayo07a,
Lemma 2.1.23], and we leave property (3) as an exercise for the reader). When we will apply one
of the definitions 1.3.2, 1.3.3 to the case C = T ri, we will use the simple adjective triangulated
for T ri-structured. This allows to speak of morphisms of triangulated P-fibred categories.

Let T ri⊗ be the sub-2-category of T ri made of the triangulated monoidal categories, with 1-
morphisms the symmetric monoidal triangulated functors and 2-morphisms the symmetric monoidal
natural transformations. It satisfies the hypothesis of paragraph 1.3.4. When we will apply def-
inition 1.3.5 to the case of (T ri,T ri⊗), we will use the expression triangulated monoidal for
(T ri,T ri⊗)-structured monoidal. This allows to speak of morphisms of triangulated monoidal
P-fibred categories.

Convention 1.3.14. The set of twists of a triangulated monoidal P-fibred category T will
always be of the form Z× τ where the first factor corresponds to the cartesian sections defined by
suspensions 1[n], n ∈ Z. In the notation, we shall often make the abuse of only indicating τ . In
particular, the expression T is τ -generated will mean conventionally that T is (Z× τ)-generated
in the sense of definition 1.1.41.

1.3.15. Consider a triangulated category T which admits small sums. Recall the following
definitions:
An object X of T is called compact if the functor HomT (X,−) commutes with small sums. A
class G of objects of T is called generating if the family of functor HomT (X[n],−), X ∈ G, n ∈ Z,
is conservative.
The triangulated category T is called compactly generated if there exists a generating set G of
compact objects of T . This property of being compact has been generalized by A. Neeman to
the property of being α-small for some cardinal α (cf. [Nee01, 4.1.1]) – recall compact=ℵ0-
small. Then the property of being compactly generated has been generalized by Neeman to the
property of being well generated ; see [Kra01] for a convenient characterization of well generated
triangulated categories.

Definition 1.3.16. Let T be a triangulated P-fibred category over S . We say that T is
compactly generated (resp. well generated ) if for any object S of S , T (S) admits small sums
and is compactly generated (resp. well generated).

Given a set of twists τ for T , we say T is compactly τ -generated if it is compactly generated
in the above sense and for any P-object X/S, any twist i ∈ τ , MS(X){i} is compact.

1.3.17. For a triangulated category T which has small sums, given a family G of objects
of T , we denote by 〈G〉 the localizing subcategory of T generated by G, i.e. 〈G〉 is the smallest
triangulated full subcategory of T which is stable by small sums and which contains all the objects
in G. Recall that, in the case T is well generated (e.g. if T compactly generated), then the family
G generates T (in the sense that the family of functors {HomT (X,−)}X∈G is conservative) if and
only if T = 〈G〉. The following lemma is a consequence of [Nee01]:
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Lemma 1.3.18. Let T be a triangulated monoidal P-fibred category over S with geometric
sections M . Assume T is τ -generated.

If T is well generated, then for any object S of S ,

T (S) = 〈MS(X){i};X/S a P-object, i ∈ τ〉

Moreover, there exists a regular cardinal α such that all the objects of shape MS(X){i} are α-
compact.

Note finally that the Brown representability theorem of Neeman (cf. [Nee01]) gives the
following lemma (analog of 1.3.7):

Lemma 1.3.19. Consider a well generated triangulated P-fibred category T . Then the fol-
lowing conditions are equivalent:

(i) T is complete.
(ii) For any morphism f : T → S in S , f∗ commutes with sums.

If in addition, T is monoidal, the following conditions are equivalent:

(i′) T is monoidal complete.
(ii′) (a) For any morphism f : T → S in S , f∗ is right exact.

(b) For any object S of S , the bifunctor ⊗S is right exact.

We finish this section with a proposition which will constitute a useful trick:

Proposition 1.3.20. Consider an adjunction of triangulated categories

a : T ⇄ T
′ : b.

Assume that T admits a set of compact generators G such that any object in a(G) in compact in
T ′. Then b commutes with direct sums. If in addition T ′ is well generated then b admits a right
adjoint.

Proof. The second assertion follows from the first one according to a corollary of the Brown
representability theorem of Neeman (cf. [Nee01, 8.4.4]).

For the first one, we consider a family (Xi)i∈I of objects of T ′ and prove that the canonical
morphism

⊕i∈Ib(Xi)→ b (⊕i∈IXi)

is an isomorphism in T . To prove this, it is sufficient to apply the functor HomT (G,−) for any
object G of G. Then the result is obvious from the assumptions. �

We shall use often the following standard argument to produce equivalences of triangulated
categories.

Corollary 1.3.21. Let a : T → T ′ be a triangulated functor between triangulated categories.
Assume that the functor a preserves small sums, and that T admits a small set of compact
generators G, such that a(G) form a family of compact objects in T ′. Then a is fully faithful if
and only if, for any couple of objects G and G′ in G, the map

HomT (G,G′[n])→ HomT ′(a(G), a(G′)[n])

is bijective for any integer n. If a is fully faithful, then a is an equivalence of categories if and
only if a(G) is a generating family in T ′.

Proof. Let us prove that this is a sufficient condition. As T is in particular well generated,
by the Brown representability theorem, the functor b admits a right adjoint b : T ′ → T . By
virtue of the preceding proposition, the functor b preserves small sums. Let us prove that a is fully
faithful. We have to check that, for any object M of T , the map M → b(a(M)) is invertible. As
a and b are triangulated and preserve small sums, it is sufficient to check this when M runs over
a generating family of objects of T (e.g. G). As G is generating, it is sufficient to prove that the
map

HomT (G,M [n])→ HomT ′(a(G), a(M)[n]) = HomT ′(a(G), b(a(M))[n])
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is bijective for any integer n, which hold then by assumption. The functor a thus identifies T

with the localizing subcategory of T ′ generated by a(G); if moreover a(G) is a generating family
in T ′, then T ′ = 〈a(G)〉, which also proves the last assertion. �

1.3.d. The model category case.

1.3.22. We shall use Hovey’s book [Hov99] for a general reference to the theory of model
categories. Note that, following loc. cit., all the model categories we shall consider will have small
limits and small colimits.

Let M be the sub-2-category of Cat made of the model categories, with 1-morphisms the left
Quillen functors and 2-morphisms the natural transformations. When we will apply definition
1.3.2 (resp. 1.3.3) to C = M , we will speak of a P-fibred model category for a M -structured
P-fibred category M (resp. morphism of P-fibred model categories). Note that according to the
definition of left Quillen functors, M is then automatically complete.

Given a property (P ) of model categories (like being cofibrantly generated, left and/or right
proper, combinatorial, stable, etc), we will say that a P-fibred model category M over S has
the property (P ) if, for any object S of S , the model category M (S) has the property (P ).

For the monoidal case, we let M
⊗ be the sub-2-categories of M made of the symmetric

monoidal model categories (see [Hov99, Definition 4.2.6]), with 1-morphisms the symmetric
monoidal left Quillen functors and 2-morphisms the symmetric monoidal natural transformations,
following the conditions of 1.3.4. When we will apply definition 1.3.5 to the case of (M ,M⊗), we
will speak simply of a monoidal P-fibred model category (resp. morphism of monoidal P-fibred
model categories) for a (resp. morphism of) (M ,M⊗)-structured monoidal P-fibred category
M . Again, M is then monoidal complete.

Remark 1.3.23. Let M be a P-fibred model category over S . Then for any P-morphism
p : X → Y , the inverse image functor p∗ : M (Y )→M (X) has very strong exactness properties:
it preserves small limits and colimits (having both a left and a right adjoint), and it preserves
weak equivalences, cofibrations, and fibrations. The only non (completely) trivial assertion here
is about the preservation of weak equivalences. For this, one notices first that it preserves trivial
cofibrations and trivial fibrations (being both a left Quillen functor and a right Quillen functor). In
particular, by virtue of Ken Brown Lemma [Hov99, Lemma 1.1.12], it preserves weak equivalences
between cofibrant (resp. fibrant) objects. Given a weak equivalence u :M → N in M (Y ), we can
find a commutative square

M ′ u′

//

��

N ′

��
M u

// N

in which the two vertical maps are trivial fibrations, and where u′ is a weak equivalence between
cofibrant objects, from which we deduce easily that p∗(u) is a weak equivalence in M (X).

1.3.24. Consider a P-fibred model category M over S . By assumption, we get the following
pairs of adjoint functors:

(a) For any morphism f : X → S of S ,

Lf∗ : Ho(M (S)) ⇄ Ho(M (X)) : Rf∗

(b) For any P-morphism p : T → S, the pullback functor

Lp♯ : Ho(M (S)) ⇄ Ho(M (T )) : Lp∗ = p∗ = Rp∗

Moreover, the canonical isomorphism of shape (fg)∗ ≃ g∗f∗ induces a canonical isomorphism
R(fg)∗ ≃ Rg∗Rf∗. In the situation of the P-base change formula 1.1.9, we obtain also that the
base change map

Lq♯Lg
∗ → Lf∗Lp♯

is an isomorphism from the equivalent property of M . Thus, we have defined a complete P-fibred
category whose fiber over S is Ho(M (S)).
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Definition 1.3.25. Given a P-fibred model category M as above, the complete P-fibred
category defined above will be denoted by Ho(M ) and called the homotopy P-fibred category
associated with M .

1.3.26. Assume that M is a monoidal P-fibred model category over S . Then, for any object
S of S , Ho(M )(S) has the structure of a symmetric closed monoidal category; see [Hov99,
Theorem 4.3.2]. The (derived) tensor product of Ho(M )(S) will be denoted by M ⊗L

S N , and the
(derived) internal Hom will be written RHomS(M,N), while the unit object will be written 1S .

For any morphism f : T → S in S , the derived functor Lf∗ is symmetric monoidal as follows
from the equivalent property of its homologue f∗.

Moreover, for any P-morphism p : T → S and for any objectM in Ho(M )(T ) and any object
N in Ho(M )(S), the exchange map of 1.1.24

Lp♯(M ⊗
L p∗(N))→ Lp♯(M)⊗L N

is an isomorphism.

Definition 1.3.27. Given a monoidal P-fibred model category M as above, the complete
monoidal P-fibred category defined above will be denoted by Ho(M ) and called the homotopy
monoidal P-fibred category associated with M .

1.4. Premotivic categories. In the present article, we will focus on a particular type of
P-fibred category.

1.4.1. Let S be a scheme. Assume S is a full subcategory of the category of S-schemes. In
most of this work, we will denote by S ft the class of morphisms of finite type in S and by Sm be
the class of smooth morphisms of finite type in S . There is an exception to this rule: throughout
Part 3, S ft will be the class of separated morphisms of finite type in S and Sm will be the
class of separated smooth morphisms of finite type in S . However, the axiomatic which we will
present in the sequel can be applied identically in each cases so that the reader can freely use the
restriction that all morphisms of Sm and S ft are separated.

In any case, the classes Sm and S ft are admissible in S in the sense of 1.0 (this is automatic,
for instance, if S is stable by pullbacks).

Definition 1.4.2. Let P be an admissible class of morphisms in S .
A P-premotivic category over S – or simply P-premotivic category when S is clear – is

a complete monoidal P-fibred category over S . A morphism of P-premotivic categories is a
morphism of complete monoidal P-fibred categories over S .

As a particular case, when C is the 2-category T ri of triangulated categories (resp. Ab of
abelian categories), a P-premotivic triangulated (resp. abelian) category over S is a (C ,C⊗)-
structured complete monoidal P-fibred category over S (def. 1.3.5). Morphisms of P-premotivic
triangulated (resp. abelian) categories are defined accordingly.

We will also say: premotivic for Sm-premotivic and generalized premotivic for S ft-premotivic.
The sections of a P-premotivic category will be called premotives.

Example 1.4.3. Let S be the category of noetherian schemes of finite dimension.
For such a scheme S, recall H•(S) is the pointed homotopy category of Morel and Voevodsky;

cf. examples 1.1.5, 1.1.14, 1.1.30. Then, according to the fact recalled in these examples the
2-functor H• is a geometrically generated premotivic category (recall Definition 1.1.41).

For such a scheme S, consider the stable homotopy category SH(S) of Morel and Voevodsky
(see [Jar00, Ayo07b]). According to [Ayo07b], it defines a triangulated premotivic category
denoted by SH. Moreover, it is compactly (Z × Z)-generated in the sense of definition 1.1.41
where the first factor refers to the suspension and the second one refers to the Tate twist (i.e. as
a triangulated premotivic category, it is compactly generated by the Tate twists).

1.4.4. Let T be a P-premotivic triangulated category with geometric sections M and τ be a
set of twists for T (Definition 1.1.39).
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Recall from Convention 1.3.14 (resp. and Definition 1.3.16) that T is said to be τ -generated
(resp. compactly τ -generated) if for any scheme S, the family of isomorphism of classes of pre-
motives of the form MS(X){i} for a P-scheme X over S and a twist i ∈ τ is a set of generators
(resp. compact generators) for the triangulated category T (S) (in the respective case, we also
assume T (S) admits small sums).

Let E be a premotive over S and X be a P-scheme over S. For any (n, i) ∈ Z× τ , we define
the cohomology of X in degree n and twist i with coefficients in E as:

Hn,i
T

(X,E) = HomT (S)

(
MS(X), E{i}(n)

)
.

The fact T is τ -generated amounts to say that any such premotive E is determined by its coho-
mology.

Example 1.4.5. The premotivic triangulated category SH of the previous example is com-
pactly Z-generated where Z refers to the Tate twist (in other words it is compactly generated by
Tate twists).

Definition 1.4.6. Let M and M ′ be P-premotivic categories.
A morphism of P-premotivic categories (or simply a premotivic morphism) is a morphism

ϕ∗ : M →M ′ of complete monoidal P-fibred categories. We shall also say that

ϕ∗ : M ⇄ M
′ : ϕ∗

is a premotivic adjunction. When moreover M and M ′ are P-premotivic triangulated (resp.
abelian) categories, we will ask ϕ∗ is a compatible with the triangulated (resp. additive) structure
– as in Definition 1.3.3.

If we assume that M (resp. M ′) is τ -twisted (resp. τ ′-twisted), we will say as in Definition
1.2.11 that ϕ∗ is compatible with twists if for any i ∈ τ , ϕ∗(i) belongs up to isomorphism to τ ′.
We say ϕ∗ is strictly compatible with twists if the induced map ϕ∗ : τ → τ ′ is bijective.

Usually, premotivic categories comes equip with canonical twists (especially the Tate twist)
and premotivic morphisms are compatible with twists.

Example 1.4.7. With the hypothesis and notations of 1.4.3, we get a premotivic adjunction

Σ∞ : H• ⇄ SH : Ω∞

induced by the infinite suspension functor according to [Jar00].

1.4.8. Let T (resp. A ) be a triangulated P-premotivic category with geometric sections
M and set of twists τ . For any scheme S, we let Tτ,c(S) be the smallest triangulated thick35

subcategory of T (S) which contains premotives of shape MS(S){i} (resp. MS(X,A ){i}) for a
P-scheme X/S and a twist i ∈ τ . This subcategory is stable by the operations f∗, p♯ and ⊗. In
particular, Tτ,c defines a not necessarily complete triangulated (resp. abelian) P-fibred category
over S . We also obtain a morphism of triangulated (resp. abelian) monoidal P-fibred categories,
fully faithful as a functor,

ι : Tτ,c → T

Definition 1.4.9. Consider the notations introduced above. We will call Tτ,c the τ -constructible
part of T . For any scheme S, the objects of Tτ,c(S) will be called τ -constructible.

When τ is clear from the context, we will put Tc := Tτ,c and use the terminology constructible.

Remark 1.4.10. The condition of τ -constructibility is a good categorical notion of finiteness
which extends the notion of geometric motives as introduced by Voevodsky. In the triangulated
motivic case, it will be studied thoroughly in section 4.

Proposition 1.4.11. Let T be a τ -twisted P-premotivic triangulated category. Let S be a
scheme such that:

(1) The category T (S) admits finite sums.
(2) For any P-scheme X over S, and any twist i ∈ τ , the premotive MS(X){i} is compact.

35i.e. stable by direct factors.
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Then, a premotive M over S is τ -constructible if and only if it is compact.

Proof. If T is any compactly generated triangulated category, then, for any small family C
of compact generators, the thick triangulated category of T generated by C consists exactly of
the compact objects of T . �

Thus, when the conditions of this proposition are fulfilled, the category Tτ,c(S) does not
depend on the particular choice of τ . This will often be the case in practice (see 5.1.33, 5.2.39,
5.3.42).

Remark 1.4.12. The notion of compact objects in a triangulated category was heavily de-
veloped by A. Neeman. Its relation with finiteness conditions is particularly emphasized when
considering the derived category of complexes of quasi-coherent sheaves over a quasi-compact
separated scheme: in this triangulated category, being compact is equivalent to being perfect
([Nee96, Cor. 4.3]).

Definition 1.4.13. Consider a τ -generated premotivic category M .
An enlargement of M is the data of a τ ′-twisted generalized premotivic category M together

with a premotivic adjunction
ρ♯ : M −→ M : ρ∗

(where M is considered as a premotivic category in the obvious way), satisfying the following
properties:

(a) For any scheme S in S , the functor ρ♯,S : M (S)→ M (S) is fully faithful and its right
adjoint ρ∗S : M (S)→M (S) commutes with sums.

(b) ρ♯ induces an equivalence τ ≃ τ ′.

Again, this notion is defined similarly for a C -structured P-premotivic category.
Note that for any smooth S-scheme X, we get in the context of an enlargement as above the

following identifications:

ρ♯,S(MS(X)) ≃MS(X),

ρ∗S(MS(X)) ≃MS(X)

where M (resp. M) denote the geometric sections of M (resp. M ).
Remember also that for any morphism of schemes f and any smooth morphism p, ρ♯ commutes

with f∗ and p♯, while ρ
∗ commutes with f∗ and p∗.

2. Triangulated P-fibred categories in algebraic geometry

2.0. In this entire section, we fix a base scheme S assumed to be noetherian and a full
subcategory S of the category of noetherian S-schemes satisfying the following properties:

(a) S is closed under finite sums and pullback along morphisms of finite type.
(b) For any scheme S in S , any quasi-projective S-scheme belongs to S .

In sections 2.2 and 2.4, we will add the following assumption on S :

(c) Any separated morphism f : Y → X in S , admits a compactification in S in the sense
of [SGA4, 3.2.5], i.e. admits a factorization of the form

Y
j
−→ Ȳ

p
−→ X

where j is an open immersion, p is proper, and Ȳ belongs to S . Furthermore, if f is
quasi-projective, then p can be chosen to be projective.

(d) Chow’s lemma holds in S (i.e., for any proper morphism Y → X in S , there exists a
projective birational morphism p : Y0 → Y in S such that fp is projective as well).

A category S satisfying all these properties will be called adequate for future references.36

36For instance, the scheme S can be the spectrum of a prime field or of a Dedekind domain. The category
S might be the category of all noetherian S-schemes of finite dimension or simply the category of quasi-projective
S-schemes. In all these cases, property (c) is ensured by Nagata’s theorem (see [Con07]) and property (d) by
Chow’s lemma (see [EGA2, 5.6.1]).
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We also fix an admissible class P of morphisms in S and a complete triangulated P-fibred
category T . We will add the following assumptions:

(d) In section 2.2 and 2.3, P contains the open immersions.
(e) In section 2.4, P contains the smooth morphisms of S .

In the case T is monoidal, we denote by

M : P/?→ T

its geometric sections.
According to the convention of 1.4.2, we will speak of the premotivic case when P is the class

of smooth morphisms of finite type37 in S and T is a premotivic triangulated category.

2.1. Elementary properties.

Definition 2.1.1. We say that T is additive, if for any finite family (Si)i∈I of schemes in
S , the canonical map

T

(
∐

i

Si

)

→
∏

i

T (Si)

is an equivalence.

Recall this property implies in particular that T (∅) = 0.

Lemma 2.1.2. Let S be a scheme, p : A1
S → S be the canonical projection. The following

conditions are equivalent:

(i) The functor p∗ : T (S)→ T (A1
S) is fully faithful.

(ii) The counit adjunction morphism 1→ p∗p
∗ is an isomorphism.

In the premotivic case, these conditions are equivalent to the following ones:

(iii) The unit adjunction morphism p♯p
∗ → 1 is an isomorphism.

(iv) The morphism MS(A
1
S)

p∗
−→ 1S induced by p is an isomorphism.

(iv’) For any smooth S-scheme X, the morphism MS(A
1
X)

(1X×p)∗
−−−−−→ MS(X) is an isomor-

phism.

The only thing to recall is that in the premotivic case, p♯p
∗(M) =MS(A

1
S)⊗M and p∗p

∗(M) =
HomS(MS(A

1
S),M).

Definition 2.1.3. The equivalent conditions of the previous lemma will be called the homo-
topy property for T , denoted by (Htp).

2.1.4. Recall that a sieve R of a scheme X is a class of morphisms in S /X which is stable
by composition on the right by any morphism of schemes (see [SGA4, I.4]).

Given such a sieve R, we will say that T is R-separated if the class of functors f∗ for f ∈ R
is conservative. Given two sieves R, R′ of X, the following properties are immediate:

(a) If R ⊂ R′ then T is R-separated implies T is R′-separated.
(b) If T is R-separated and is R′-separated then T is (R ∪R′)-separated.

A family of morphisms (fi : Xi → X)i∈I of schemes defines a sieve R = 〈fi, i ∈ I〉 such that f is
in R if and only if there exists i ∈ I such that f can be factored through fi. Obviously,

(c) T is R-separated if and only if the family of functors (f∗i )i∈I is conservative.

Recall that a topology on S is the data for any scheme X of a set of sieves of X satisfying certain
stability conditions (cf. [SGA4, II, 1.1]), called t-covering sieves. A pre-topology t0 on S is the
data for any scheme X of a set of families of morphisms of shape (fi : Xi → X)i∈I satisfying
certain stability conditions (cf. [SGA4, II, 1.3]), called t0-covers. A pre-topology t0 generated a
unique topology t.

Definition 2.1.5. Let t be a Grothendieck topology on S . We say that T is t-separated if
the following property holds:

37or smooth separated morphisms of finite type when applying this section in Part 3
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(t-sep) For any t-covering sieve R, T is R-separated in the sense defined above.

Obviously, given two topologies t and t′ on S such that t′ is finer than t, if T is t-separated
then it is t′-separated.

If the topology t on S is generated by a pre-topology t0 then T is t-separated if and only
if for any t0-covers (fi)i∈I , the family of functors (f∗i )i∈I is conservative – use [SGA4, 1.4] and
2.1.4(a)+(c).

2.1.6. Recall that a morphism of schemes f : T → S is radicial if it is injective and for any
point t of T , the residual extension induced by f at t is radicial (cf. [EGA1, 3.5.4, 3.5.8])38 The
following definition is inspired by [Ayo07a, Def. 2.1.160].

Definition 2.1.7. We say that T is separated (resp. semi-separated) if T is separated for
the topology generated by surjective families of morphisms of finite type (resp. finite radicial
morphisms) in S . We also denote by (Sep) (resp. (sSep)) this property.

Remark 2.1.8. If T is additive, property (Sep) (resp. (sSep)) is equivalent to ask that for
any surjective morphism of finite type (resp. finite surjective radicial morphism) f : T → S in S ,
the functor f∗ is conservative.

Proposition 2.1.9. Assume T is semi-separated and satisfies the transversality property with
respect to finite surjective radicial morphisms.

Then for any finite surjective radicial morphism f : Y → X, the functor

f∗ : T (X)→ T (Y )

is an equivalence of categories.

Proof. We first consider the case when f = i is in addition a closed immersion. In this case,
we can consider the pullback square below.

Y Y

i
��

Y
i

// Z

Using the transversality property with respect to i, we see that the counit i∗i∗ → 1 is an iso-
morphism. It thus remains to prove that the unit map 1 → i∗i

∗ is an isomorphism. As i∗ is
conservative by semi-separability, it is sufficient to check that

i∗ → i∗i∗i
∗(M)

is an isomorphism. But this is a section of the map i∗ i∗i
∗(M)→ i∗(M), which is already known

to be an isomorphism.
Consider now the general case of a finite radicial extension f . We introduce the pullback

square

Y ×X Y
p //

q

��

Y

f
��

Y
f

// X

Consider the diagonal immersion i : Y → Y ×X Y . Because Y is noetherian and p is separable, i is
finite (cf. [EGA2, 6.1.5]) thus a closed immersion. As p is a universal homeomorphism, the same
is true for its section i. The preceding case thus implies that i∗ is an equivalence of categories.
Moreover, as pi = qi = 1Y , we see that p∗ and q∗ are both quasi-inverses to i∗, which implies that
they are isomorphic equivalences of categories. More precisely, we get canonical isomorphisms of
functors

i∗ ≃ p∗ ≃ q∗ and i∗ ≃ p
∗ ≃ q∗.

38It is equivalent to ask that f is universally injective. When f is surjective, this is equivalent to ask that f
is a universal homeomorphism.
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We check that the unit map 1 → f∗f
∗ is an isomorphism. Indeed, by semi-separability, it is

sufficient to prove this after applying the functor f∗, and we get, using the transversality property
for f :

f∗ ≃ i∗p∗f∗ ≃ q∗p
∗f∗ ≃ f∗f∗f

∗.

We then check that the counit map f∗f∗ → 1 is an isomorphism as well. In fact, using again the
transversality property for f , we have isomorphisms

f∗f∗(M) ≃ q∗p
∗(M) ≃ i∗i∗(M) ≃M.

�

2.1.10. Recall from [Voe10b] that a cd-structure on S is a collection P of commutative
squares of schemes

B //

�� Q

Y
f
��

A e
// X

which is closed under isomorphisms. We will say that a square Q in P is P -distinguished.
Voevodsky associates to P a topology tP , the smallest topology such that:

• for any P -distinguished square Q as above, the sieve generated by {f : A→ X, e : Y →
X} is tP -covering on X.
• the empty sieve covers the empty scheme.

Example 2.1.11. A Nisnevich distinguished square is a square Q as above such that Q is
cartesian, f is étale, e is an open embedding with reduced complement Z and the induced map
f−1(Z) → Z is an isomorphism. The corresponding cd-structure is called the upper cd-structure
(see section 2 of [Voe10c]). Because we work with noetherian schemes, the corresponding topology
is the Nisnevich topology (see proposition 2.16 of loc.cit.).

A proper cdh-distinguished square is a square Q as above such that Q is cartesian, f is
proper, e is a closed embedding with open complement U and the induced map f−1(U) → U is
an isomorphism. The corresponding cd-structure is called the lower cd-structure. The topology
associated with the lower cd-structure is called the proper cdh-topology.

The topology generated by the lower and upper cd-structures is by definition (according to
the preceding remark on Nisnevich topology) the cdh-topology.

All these three examples are complete cd-structures in the sense of [Voe10b, 2.3].

Lemma 2.1.12. Let P be a complete cd-structure (see [Voe10b, def 2.3]) on S and tP be the
associated topology. The following conditions are equivalent:

(i) T is tP -separated.
(ii) For any distinguished square Q for P of the above form, the pair of functors (e∗, f∗) is

conservative.

Proof. This follows from the definition of a complete cd-structure and 2.1.4(a). �

Remark 2.1.13. If we assume that S is stable by arbitrary pullback then any cd-structure
P on S such that P -distinguished squares are stable by pullback is complete (see [Voe10b, 2.4]).

2.2. Exceptional functors, following Deligne.
2.2.a. The support axiom.

2.2.1. Consider an open immersion j : U → S. Applying 1.1.15 to the cartesian square

U U

j

��
U

j
// S

we get a canonical natural transformation

γj : j♯ = j♯1∗
Ex(∆♯∗)
−−−−−→ j∗1♯ = j∗.
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Recall that the functors j♯ and j∗ are fully faithful (see Corollary 1.1.20).
Note that according to remark 1.1.7, this natural transformation is compatible with the iden-

tifications of the kind (jk)♯ = j♯k♯ and (jk)∗ = j∗k∗.

Lemma 2.2.2. Let S be a scheme, U and V be subschemes such that S = U ⊔ V . We let
h : U → S (resp. k : V → S) be the canonical open immersions.

Assume that the functor (h∗, k∗) : T (S)→ T (U)×T (V ) is conservative and that T (∅) = 0.
Then the natural transformation γh (resp. γk) is an isomorphism. Moreover, the functor (h∗, k∗)
is then an equivalence of categories.

Proof. As h♯ and h∗ are fully faithful, we have h∗h♯ ≃ h∗h∗. By P-base change, we also
get k∗h♯ ≃ k∗h∗ ≃ 0. It remains to prove the last assertion. The functor R = (h∗, k∗) has a left
adjoint L defined by L=h♯ ⊕ k♯:

L(M,N) = h♯(M)⊕ k♯(N) .

The natural transformation LR→ 1 is an isomorphism: to see this, is it sufficient to evaluate at h∗

and k∗, which gives an isomorphism in T (U) and T (V ) respectively. The natural transformation
1→ RL is also an isomorphism because h♯ and k♯ are fully faithful. �

Remark 2.2.3. Assume T is Zariski separated (definition 2.1.5). Then, as a corollary of this
lemma, T is additive (definition 2.1.1) if and only if T (∅) = 0.

2.2.4. Exchange structures V.– Assume T is additive. We consider a commutative square of
schemes

V
k //

q
��

∆

T
p
��

U
j

// S

(2.2.4.1)

such that j, k are an open immersions and p, q are a proper morphisms.
This diagram can be factored into the following commutative diagram:

V k

%%

q

((

l
NNN

''NNN

U ×S T j′ //

p′�� Θ

T
p
��

U j // S.

Then l is an open and closed immersion so that the previous lemma implies the canonical morphism
γl : l♯ → l∗ is an isomorphism. As a consequence, we get a natural exchange transformation

Ex(∆♯∗) : j♯q∗ = j♯p
′
∗l∗

Ex(Θ♯∗)
−−−−−→ p∗j

′
♯l∗

γ−1
l−−→ p∗j

′
♯l♯ = p∗k♯

using the exchange of 1.1.15. Note that, with the notations introduced in 2.2.1, the following
diagram is commutative.

j♯q∗
Ex(∆♯∗) //

γjq∗

��

p∗k♯

p∗γk

��
j∗q∗

∼ // (jq)∗ = (pk)∗ p∗k∗
∼oo

(2.2.4.2)

Indeed one sees first that it is sufficient to treat the case where ∆ is cartesian. Then, as j♯ is a
fully faithful left adjoint to j∗ it is sufficient to check that (2.2.4.2) commutes after having applied
j∗. Using the cotransversality property with respect to open immersions, one sees then that this
consists to verify the commutativity of (2.2.4.2) when j is the identity, in which case it is trivial.
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Definition 2.2.5. Let p : T → S be a proper morphism in S .
We say that the triangulated P-fibred category T satisfies the support property with respect

to p, denoted by (Suppp), if it is additive and for any commutative square of shape (2.2.4.1) the
exchange transformation Ex(∆♯∗) : j♯q∗ → p∗k♯ defined above is an isomorphism.

We say that T satisfies the support property, also denoted by (Supp), if it satisfies (Suppp)
for all proper morphism p in S .

By definition, it is sufficient to check the last property of property (Supp) in the case where ∆ is
cartesian.

2.2.b. Exceptional direct image.

2.2.6. We denote by S sep (resp. S open, S prop) the sub-category of the category S with
the same objects but morphisms are separated morphisms of finite type (resp. open immersions,
proper morphisms). We denote by

T∗ : S → T ri⊗

resp. T♯ : S
open → T ri⊗

the 2-functor defined respectively by morphisms of type f∗ and j♯ (f any morphism of schemes).
The proposition below is essentially based on a result of Deligne [SGA4, XVII, 3.3.2]:

Proposition 2.2.7. Assume T is a monoidal P-fibred category and satisfies property (Supp).
Then there exists a unique 2-functor

T! : S
sep → T ri⊗

with the property that
T!|S prop = T∗|S prop , T!|S open = T♯

and for any commutative square ∆ of shape (2.2.4.1) the composition of the structural isomor-
phisms

j♯q∗ = j!q! ≃ (jq)! = (pk)! ≃ p!k! = p∗k♯

is equal to the exchange transformation Ex(∆♯∗).

2.2.8. Under the assumptions of the proposition, for any separated morphism of finite type
f : Y → X, we will denote by f! : T (Y )→ T (X) the functor T!(f). The functor f! is called the
direct image functor with compact support or the left exceptional functor associated with f .

Proof. We recall the principle of the proof of Deligne. Let f : Y → X be a separated
morphism of finite type in S .

Let Cf be the category of compactifications of f in S , i.e. of factorizations of f of the form

(2.2.8.1) Y
j
−→ Ȳ

p
−→ X

where j is an open immersion, p is proper, and Ȳ belongs to S . Morphisms of Cf are given by
commutative diagrams of the form

Ȳ ′ p′

++WWWWWW
π��Y

j′ 33hhhhhh

j
++WWWWWWW X.
Ȳ p

33ggggggg
(2.2.8.2)

in S . To any compactification of f of shape (2.2.8.1), we associate the functor p∗j♯.
To any morphism of compactifications (2.2.8.2), we associate a natural isomorphism

p′∗j
′
♯ = p∗π∗j

′
♯

Ex(∆♯∗)
−1

−−−−−−−→ p∗j♯1∗ = p∗j♯.

where ∆ stands for the commutative square made by removing π in the diagram (2.2.8.2), and
Ex(∆♯∗) is the corresponding natural transformation (see 2.2.4). The compatibility of Ex(∆♯∗)
with composition of morphisms of schemes shows that we have defined a functor

Γf : C
op
f → Hom(T (Y ),T (X))

which sends all the maps of Cf to isomorphisms (by the support property).
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The category Cf is non-empty by the assumption 2.0(c) on S , and it is in fact left filtering;
see [SGA4, XVII, 3.2.6(ii)]. This defines a canonical functor f! : T (Y )→ T (X), independent of
any choice compactification of f , defined in the category of functors Hom(T (Y ),T (X)) by the
formula

f! = lim
−→
C

op

f

Γf .

If f = p is proper, then the compactification

Y
=
−→ Y

p
−→ X

is an initial object of Cf , which gives a canonical identification p! = p∗. Similarly, if f = j is an
open immersion, then the compactification

Y
j
−→ X

=
−→ X

is a terminal object of Cj , so that we get a canonical identification j! = j♯.
This construction is compatible with composition of morphisms. Let g : Z → Y and f : Y →

X be two separated morphisms of finite type in S . For any a couple of compactifications

Z
k
−→ Z̄

q
−→ Y and Y

j
−→ Ȳ

p
−→ X

of f and g respectively, we can choose a compactification

Z̄
h
−→ T

r
−→ Y

of jq, and we get a canonical isomorphism

f! g! ≃ p∗ j♯ q∗ k♯ ≃ p∗ r∗ h♯ k♯ ≃ (pr)∗ (hk)♯ ≃ (fg)! .

The independence of these isomorphic with respect to the choices of compactification follows from
[SGA4, XVII, 3.2.6(iii)]. The cocycle conditions (i.e. the associativity) also follows formally from
[SGA4, XVII, 3.2.6]. The uniqueness statement is obvious. �

2.2.9. This construction is functorial in the following sense.
Define a 2-functor with support on T to be a triple (D , a, b), where:

(i) D : S sep → T ri is a 2-functor (we shall write the structural coherence isomorphisms as

cg,f : D(gf)
∼
−→ D(g)D(f) for composable arrows f and g in S sep);

(ii) a : T∗|S prop → D |S prop and b : T♯ → D |S open are morphisms of 2-functors which agree
on objects, i.e. such that for any scheme S in S , we have

ψS = aS = bS : T (S)→ D(S) ;

(iii) for any commutative square of shape (2.2.4.1) in which j and k are open immersions,
while p and q are proper morphisms, the diagram below commutes.

ψS j♯q∗
ψSEx(∆♯∗) //

b q∗ ��

ψS p∗k♯

ak♯��
D(j)ψUq∗

D(j)a
��

D(p)ψT k♯

D(p)b
��

D(j)D(q)ψV
c−1
j,q // D(jq) = D(pk)ψV D(p)D(k)ψV

c−1
p,koo

Morphisms of 2-functors with support on T

(D , a, b)→ (D ′, a′, b′)

are defined in the obvious way: these are morphisms of 2-functors D → D ′ which preserve all the
structure on the nose.

Using the arguments of the proof of 2.2.7, one checks easily that the category of 2-functors
with support has an initial object, which is nothing else but the 2-functor T! together with the
identities of T∗|S prop and of T♯ respectively. In particular, for any 2-functor D : S sep → T ri, a
morphism of 2-functors T! → D is completely determined by its restrictions to S prop and S open,
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and by its compatibility with the exchange isomorphisms of type Ex(∆♯∗) in the sense described
in condition (iii) above.

Proposition 2.2.10. Assume that T satisfies the support property and consider the notations
of Proposition 2.2.7. For any separated morphism of finite type f in S , there exists a canonical
natural transformation

αf : f! → f∗ .

The collection of maps αf defines a morphism of 2-functors

α : T! → T∗|S sep , f 7→ (αf : f! → f∗)

whose restrictions to S prop and S open are respectively the identity and the morphism of 2-functors
γ : T♯ → T∗|S open defined in 2.2.1.

Proof. The identities f∗ = f∗ for f proper (resp. projective) and the exchange natural
transformations of type Ex(∆♯∗) turns T∗|S sep into a 2-functor with support (resp. restricted
support) on T (property (iii) of 2.2.9 is expressed by the commutative square (2.2.4.2)). �

Proposition 2.2.11. Let T ′ be another triangulated complete P-fibred category over S .
Assume that T and T ′ both have the support property, and consider given a triangulated morphism
of P-fibred categories ϕ∗ : T → T ′ (recall definition 1.2.2).

Then, there is a canonical family of natural transformations

Ex(ϕ∗, f!) : ϕ
∗
X f! → f! ϕ

∗
Y

for each separated morphism of finite type f : Y → X in S , which is functorial with respect to
composition in S (i.e. defines a morphism of 2-functors) and such that, the following conditions
are verified:

(a) if f is proper, then, under the identification f! = f∗, the map Ex(ϕ∗, f!) is the exchange
transformation Ex(ϕ∗, f∗) : ϕ

∗
X f∗ → f∗ ϕ

∗
Y defined in 1.2.5;

(b) if f is an open immersion, then, under the identification f! = f♯, the map Ex(ϕ∗, f!) is
the inverse of the exchange isomorphism Ex(f♯, ϕ

∗) : f♯ ϕ
∗
Y → ϕ∗

X f♯ defined in 1.2.1.

Proof. The exchange maps of type Ex(ϕ∗, f∗) define a morphism of 2-functors

a : T∗|S prop → T
′
∗ |S prop = T

′
! |S prop

while the inverse of the exchange isomorphisms of type Ex(f♯, ϕ
∗) define a morphism of 2-functors

b : T♯ → T
′
♯ = T

′
! |S open ,

in such a way that the triple (T ′
! , a, b) is a 2-functor with support on T . �

Corollary 2.2.12. Suppose T satisfies the support property and consider the notations of
proposition 2.2.7.

(1) For any cartesian square

Y ′
f ′

//

g′

��
∆

X ′

g
��

Y
f

// X,

such that f is separated of finite type, there exists a canonical natural transformation

Ex(∆∗
! ) : g

∗f! → f ′! g
′∗

compatible with horizontal and vertical compositions of squares, and satisfying the fol-
lowing identifications in T (X ′)

(a) f proper: (b) f open immersion:

g∗f!
Ex(∆∗

! ) // f ′! g
′∗ g∗f!

Ex(∆∗
! ) // f!g′

∗

g∗f∗
Ex(∆∗

∗) // f ′∗g
′∗, g∗f♯

Ex(∆∗
♯ )

−1

// f ′♯g
′∗.
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Moreover, when g is a P-morphism, Ex(∆∗
! ) is an isomorphism.

(2) For any cartesian square ∆ as in (1), assuming f is separated of finite type and g is a
P-morphism, there exists a canonical natural transformation

Ex(∆♯ !) : g♯f
′
! → f!g

′
♯

compatible with horizontal and vertical compositions of squares, and satisfying the fol-
lowing identifications in T (X ′)

(a) f proper: (b) f open immersion:

g♯f
′
!

Ex(∆♯!) // f!g′♯ g♯f
′
!

Ex(∆♯!) // f!g′♯

g♯f
′∗

Ex(∆♯∗) // f∗g′♯, g♯f
′
♯ f♯g

′
♯.

(3) If furthermore T is monoidal then for any separated morphism of finite type f : Y → X,
there is a natural transformation

Ex(f∗! ,⊗) : (f!K)⊗ L→ f!(K ⊗ f
∗L)

which is compatible with respect to composition in S , and such that, in each of the
following cases, we have the following identifications:

(a) f proper: (b) f open immersion:

(f!K)⊗ L
Ex(f∗

! ,⊗) // f!(K ⊗ f∗L) (f!K)⊗ L
Ex(f∗

! ,⊗) // f!(K ⊗ f∗L)

(f∗K)⊗ L
Ex(f∗

∗ ,⊗) // f∗(K ⊗ f∗L), (f♯K)⊗ L
Ex(f∗

♯ ,⊗)−1

// f♯(K ⊗ f∗L).

As in the previous analogous cases, the natural transformations Ex(∆∗
! ), Ex(∆♯,!) and Ex(f

∗
! ,⊗)

will be called exchange transformations.

Proof. To prove (1), consider a fixed map g : X ′ → X in S . We consider the triangulated
P/X-fibred categories T ′ and T ′′ over S /X defined by T ′(Y ) = T (Y ) and T ′′(Y ) = T (Y ′)
for any X-scheme Y (in S ), with g′ : Y ′ = Y ×X X ′ → Y the map obtained from Y → X by
pullback along g. The collection of functors

g′ ∗ : T (Y )→ T (Y ′)

define an exact morphism of triangulated P/X-fibred categories over S /X (by the P-base change
formula):

ϕ∗ : T
′ → T

′′ .

Applying the preceding proposition to the latter gives (1). The fact that we get an isomorphism
whenever g is a P-morphism follows from the P-base change formula and from paragraph 1.1.15.

For point (2), we consider the notations above assuming that g is a P-morphism. The
collection of functors

g′♯ : T (Y ′)→ T (Y )

associated with an X-scheme Y , g′ : Y ′ = Y ×XX
′ → Y obtained from g as above, define an exact

morphism of triangulated P/X-fibred categories over S /X (applying again the P-base change
formula):

ϕ∗ : T
′′ → T

′ .

Applying the preceding proposition to the latter gives (2).
The proof of (3) is similar: fix a scheme X in S , as well as an object L in T (X). Let T ′ be

the restriction of T to S /X as above. We can consider L as a cartesian section of T ′, and by the
P-projection formula, we then have an exact morphism of triangulated P/X-fibred categories
over S /X:

L⊗ (−) : T
′ → T

′ .

Here again, we can apply the preceding proposition and conclude.
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�

2.2.c. Further properties. We will be particularly interested in the following properties of the
triangulated P-fibred category T .

Definition 2.2.13. Let f : Y → X be a morphism in S . We introduced the following
properties for T , assuming in the third case that T is monoidal:

(Adjf ) The functor f∗ admits a right adjoint. Under this assumption, we denote by f ! the right
adjoint of f∗.

(BCf ) Any cartesian square of S of the form

Y ′
f ′

//

g′

��
∆

X ′

g
��

Y
f

// X,

is T -transversal (Def. 1.1.17) – i.e. the exchange transformation

Ex(∆∗
∗) : g

∗f∗ → f ′∗g
′∗

associated with ∆ is an isomorphism.
(PFf ) For any object premotive M over Y , and N over X, the exchange transformation (see

paragraph 1.1.31)

Ex(f∗∗ ,⊗X) : (f∗M)⊗X N → f∗(M ⊗Y f
∗N)

is an isomorphism.

We denote by (Adj) (resp. (BC), (PF)) the property (Adjf ) (resp. (BCf ), (PFf )) for any proper
morphism f in S and call it the adjoint property (resp. proper base change property, projection
formula).

We can summarize the construction and properties introduced in this section as follows:

Theorem 2.2.14. Assume T satisfies the properties (Supp) and (Adj).
Then for any separated morphism of finite type f : Y → X in S , there exists an essentially

unique pair of adjoint functors
f! : T (Y ) ⇄ T (X) : f !

called the exceptional functors, such that:

(1) There exists a structure of a covariant (resp. contravariant) 2-functor on f 7→ f! (resp.
f 7→ f !).

(2) There exists a natural transformation αf : f! → f∗ compatible with composition in f
which is an isomorphism when f is proper.

(3) For any open immersion j, j! = j♯ and j
! = j∗.

(4) For any cartesian square

Y ′
f ′

//

g′

��
∆

X ′

g
��

Y
f

// X,

in which f is separated and of finite type, there exists natural transformations

Ex(∆∗
! ) : g

∗f! → f ′! g
′∗,

Ex(∆!
∗) : g

′
∗f

′! → f !g∗

which are isomorphisms in the following three cases:
• f is an open immersion.
• g is a P-morphism.
• T satisfies the proper base change property (BC).

Assume that T is in addition monoidal. Then the following property holds:
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(5) For any separated morphism of finite type f : Y → X in S , there exists natural trans-
formations

Ex(f∗! ,⊗) : (f!K)⊗X L −→ f!(K ⊗Y f
∗L) ,

HomX(f!(L),K) −→ f∗HomY (L, f
!(K)) ,

f !HomX(L,M) −→ HomY (f
∗(L), f !(M)) .

which are isomorphisms in the following cases:
• f is an open immersion.
• T satisfies the projection formula (PF).

Indeed the existence of f! follows from Proposition 2.2.7 while that of f ! follows directly from
assumption (Adj). Assertions (1) and (3) follows from the construction, (2) is Proposition 2.2.10,
(4) (resp. (5)) follows from Corollary 2.2.12 and the definition of (BC) (resp. (PF)). Note also
that the second and third isomorphisms in (5) are obtained by transposition from Ex(f!,⊗).

2.2.15. While the properties (BCf ) and (PFf ) are only reasonable in practice for proper
morphisms, this is not the case for the property (Adjf ). Recall that an exact functor between
well generated triangulated categories admits a right adjoint if and only if it commutes with small
sums: this is an immediate consequence of the Brown representability theorem proved by Neeman
(cf. [Nee01, 8.4.4]).

Proposition 2.2.16. Assume that T is a compactly τ -generated triangulated premotivic cat-
egory over S .

Then, for any morphism of schemes f : T → S, the functor f∗ : T (T )→ T (S) admits a right
adjoint.

Proof. This follows directly from Proposition 1.3.20. �

2.3. The localization property.
2.3.a. Definition.

2.3.1. Consider a closed immersion i : Z → S in S . Let U = S − Z be the complement open
subscheme of S and j : U → S the canonical immersion. We will use the following consequence of
the triangulated P-fibred structure on T :

(a) The unit 1→ j∗j♯ is an isomorphism.
(b) The counit j∗j∗ → 1 is an isomorphism.
(c) i∗j♯ = 0.
(d) j∗i∗ = 0.

(e) The composite map j♯j
∗ ad′(j♯,j

∗)
−−−−−−→ 1

ad(i∗,i∗)
−−−−−→ i∗i

∗ is zero.

In fact, the first four relations all follow from the base change property (P-BC). Relation (e) is a
consequence of (d) once we have noticed that the following square is commutative

j♯j
∗ //

��

1

��
j♯j

∗i∗i
∗ // i∗i∗.

For the closed immersion i and the triangulated category T , we introduce the property (Loci)
made of the following assumptions:

(a) The pair of functors (j∗, i∗) is conservative.

(b) The counit i∗i∗
ad′(i∗,i∗)
−−−−−−→ 1 is an isomorphism.

Definition 2.3.2. We say that T satisfies the localization property, denoted by (Loc), if:

(1) T (∅) = 0.
(2) For any closed immersion i in S , (Loci) is satisfied.

The main consequence of the localization axiom is that it leads to the situation of the six
gluing functor (cf. [BBD82, prop. 1.4.5]):
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Proposition 2.3.3. Let i : Z → S be a closed immersion with complementary open immersion
j : U → S such that (Loci) is satisfied.

(1) The functor i∗ admits a right adjoint i!.
(2) For any K in T (S), there exists a unique map ∂i,K : i∗i

∗K → j♯j
∗K[1] such that the

triangle

j♯j
∗K

ad′(j♯,j
∗)

−−−−−−→ K
ad(i∗,i∗)
−−−−−→ i∗i

∗K
∂i,K
−−−→ j♯j

∗K[1]

is distinguished. The map ∂i,K is functorial in K.
(3) For any K in T (S), there exists a unique map ∂′i,K : j∗j

∗K → i∗i
!K[1] such that the

triangle

i∗i
!K

ad′(i∗,i
!)

−−−−−−→ K
ad(j∗,j∗)
−−−−−−→ j∗j

∗K
∂′
i,K
−−−→ i∗i

!K[1]

is distinguished. The map ∂′i,K is functorial in K.

Under the property (Loci), the canonical triangles appearing in (2) and (3) above are called
the localization triangles associated with i.

Proof. We first consider point (2). For the existence, we consider a distinguished triangle

j♯j
∗K

ad′(j♯,j
∗)

−−−−−−→ K
π
−−→ C

+1
−−→

Applying 2.3.1(e), we obtain a factorization

K
ad(i∗,i∗) //

π &&NNNNN i∗i
∗K

C w

66mmmmm

We prove w is an isomorphism. According to the above triangle, j∗C = 0. From 2.3.1(d),
j∗i∗i

∗K = 0 so that j∗w is an isomorphism. Applying i∗ to the above distinguished triangle, we
obtain from 2.3.1(c) that i∗π is an isomorphism. Thus, applying i∗ to the above commutative
diagram together with (Loci) (b), we obtain that i∗w is an isomorphism which concludes.

Consider a map K
u
−→ L in T (S) and suppose we have chosen maps a and b in the diagram:

j♯j
∗K

ad′(j♯,j
∗) //

u
��

K
ad(i∗,i∗) //

u

��

i∗i
∗K

a // j♯j∗K[1]

u
��

j♯j
∗L

ad′(j♯,j
∗) // L

ad(i∗,i∗) // i∗i∗L
b // j♯j∗L[1]

such that the horizontal lines are distinguished triangles. We can find a map h : i∗i
∗K → i∗i

∗L
completing the previous diagram into a morphism of triangles. Then the map w = h − i∗i

∗(u)
satisfy the relation w ◦ad(i∗, i∗) = 0. Thus it can be lifted to a map in Hom(j♯j

∗K[1], i∗i
∗L). But

this is zero by adjunction and the relation 2.3.1(d). This proves both the naturality of ∂i,K and
its uniqueness.

For point (1) and (3), for any object K of T (S), we consider a distinguished triangle

D → K
ad(j∗,j∗)
−−−−−−→ j∗j

∗K
+1
−−→

According to 2.3.1(b), j∗D = 0. Thus according to the triangle of point (2) applied toD, we obtain
D = i∗i

∗D. Arguing as for point (2), we thus obtain that D is unique and depends functorialy on
K so that, if we put i!K = i∗D, point (1) and (3) follows. �

Remark 2.3.4. Consider the hypothesis and notations of the previous proposition.

(1) By transposition from 2.3.1(d), we deduce that i!j∗ = 0.
(2) Assume that i is a P-morphism. Then the P-base change formula implies that i∗j∗ = 0.

Dually, we get that i!j♯ = 0. By adjunction, we thus obtain ∂i,K = 0 and ∂′i,K = 0 for
any object K so that both localization triangles are split. In that case, we get that
T (S) = T (Z)×T (U).39

39This remark explains why the localization property is too strong for generalized premotivic categories.
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The preceding proposition admits the following reciprocal statement:

Lemma 2.3.5. Consider a closed immersion i : Z → S in S with complementary open im-
mersion j : U → S. Then the following properties are equivalent:

(i) T satisfies (Loci).
(ii) (a) The functor i∗ is conservative.

(b) For any object K of T (S), there exists a map i∗i
∗(K)→ j♯j

∗(K)[1] which fits into
a distinguished triangle

j♯j
∗(K)

ad′(j♯,j
∗)

−−−−−−→ K
ad(i∗,i∗)
−−−−−→ i∗i

∗(K)→ j♯j
∗(K)[1]

Proof. The fact (i) implies (ii) follows from Proposition 2.3.3. Conversely, (ii)(b) implies
that the pair (i∗, j∗) is conservative and it remains to prove (Loci) (b). Let K be an object of
T (S). Consider the distinguished triangle given by (ii)(b):

j♯j
∗(K)

ad′(j♯,j
∗)

−−−−−−→ K
ad(i∗,i∗)
−−−−−→ i∗i

∗(K)→ j♯j
∗(K)[1].

If we apply i∗ on the left to this triangle, we get using 2.3.1(d) that the morphism

i∗(K)
ad(i∗,i∗).i∗
−−−−−−−→ i∗i

∗i∗(K)

is an isomorphism. Hence, by the zig-zag equation, the morphism

i∗i
∗i∗(K)

i∗.ad
′(i∗,i∗)

−−−−−−−−→ i∗(K)

is an isomorphism. Property (ii)(a) thus implies that i∗i∗(K) ≃ K. �

2.3.b. First consequences of localization. The following statement is straightforward.

Proposition 2.3.6. Assume T satisfies the localization property and consider a scheme S in
S .

(1) Let Sred be the reduced scheme associated with S. The canonical immersion Sred
ν
−→ S

induces an equivalence of categories:

ν∗ : T (S)→ T (Sred).

(2) For any any partition

(3) partition (Si
νi−→ S)i∈I of S by locally closed subsets, the family of functors (ν∗i )i∈I is

conservative (Si is considered with its canonical structure of a reduced subscheme of S).

Lemma 2.3.7. If T satisfies the localization property (Loc) then it is additive.

Proof. Note that, by assumption, T (∅) = 0. Then the assertion follows directly from
Lemma 2.2.2. �

Proposition 2.3.8. If T satisfies the localization property then it satisfies the cdh-separation
property.

Proof. Consider a cartesian square of schemes

B //

�� Q

Y
p
��

A e
// X.

According to Lemma 2.1.12, we have only to check that the pair of functors (e∗, p∗) is conservative
when Q is a Nisnevich (or respectively a proper cdh) distinguished square. Let ν : A′ → X be the
complementary closed (resp. open) immersion to e, where A′ has the induced reduced subscheme
(resp. induced subscheme) structure. Consider the cartesian square

Y
p
��

B′

q
��

oo

X A′
ν

oo
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By assumption on Q, q is an isomorphism. According to (Loc) (ii), (e∗, ν∗) is conservative. This
concludes. �

The following proposition can be found in a slightly less precise and general form in [Ayo07a,
2.1.162].40

Proposition 2.3.9. Assume T satisfies the localization property.
Then the following conditions are equivalent:

(i) T is separated.
(ii) For a morphism f : T → S in S , f∗ : T (S)→ T (T ) is conservative whenever f is:

(a) a finite étale cover;
(b) finite, faithfully flat and radicial.

Proof. Only (ii) ⇒ (i) requires a proof. Consider a surjective morphism of finite type
f : T → S in S . According to [EGA4, 17.16.4], there exists a partition (Si)i∈I of S by (affine)
subschemes and a family of maps of the form

S′′
i

gi
−→ S′

i
hi−→ Si

such that gi (resp. hi) satisfies assumption (a) (resp. (b)) above and such that for any i ∈ I,
f ×S S

′′
i admits a section. Thus, Proposition 2.3.6 concludes. �

2.3.c. Localization and exchange properties.

2.3.10. Consider a morphism of complete triangulated P-fibred categories over S :

ϕ∗ : T → T
′.

Recall that for any morphism f : Y → X, there is an exchange transformation (1.2.5.1):

Ex(ϕ∗, f∗) : ϕ
∗
Xf∗ −→ f∗ϕ

∗
Y .

If T and T ′ satisfies the support axiom and f is separated of finite type, we have constructed
(Proposition 2.2.11) another exchange transformation:

Ex(ϕ∗, f!) : ϕ
∗
Xf! −→ f!ϕ

∗
Y .

Proposition 2.3.11. Consider a morphism ϕ∗ : T → T ′ as above.

(1) Let i : Z → X be a closed immersion such that T and T ′ satisfy property (Loci).
Then the exchange Ex(ϕ∗, i∗) : ϕ

∗
X i∗ → i∗ϕ

∗
Z is an isomorphism.

(2) Assume T and T ′ satisfy property (Loc).
Then the following conditions are equivalent:
(i) For any integer n > 0 and any scheme X in S , the exchange Ex(ϕ∗, pn∗) is an

isomorphism where pn : Pn
X → X is the canonical projection.

(ii) For any proper morphism f : Y → X, the exchange Ex(ϕ∗, f∗) is an isomorphism.
(3) Assume T and T ′ satisfy properties (Loc) and (Supp).

Then conditions (i) and (ii) above are equivalent to the following one:
(iii) For any separated morphism f : Y → X of finite type, the exchange Ex(ϕ∗, f!) is

an isomorphism.

Remark 2.3.12. We will simply say that ϕ∗ commutes with f! when assertion (iii) is fulfilled.
For an important case where this happens, see Proposition 2.4.53.

Proof. Assertion (1) follows easily from the conservativity of (i∗, j∗) where j is the comple-
mentary open immersion and the relations of paragraph 2.3.1. Assertion (3) is an easy consequence
of the definition of f! and the exchange Ex(ϕ∗, f!).

Concerning assertion (2), we have to prove that (i) implies (ii). We fix a morphism f : Y → X
and prove that the exchange Ex(ϕ∗, f∗) : ϕ

∗
Y f∗ → f∗ϕ

∗
X is an isomorphism.

We first treat the case where f is projective. According to Proposition 2.3.8, T ′ satisfies the
Zariski separation property. Using the (P-BC) property, we see that the problem is local in X so

40A warning: the proof in loc. cit. seems to require that the schemes are excellent.
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that we can assume X is affine. Then X admits an ample line bundle and there exists an integer
n > 0 such that f can be factored ([EGA2, (5.5.4)(ii)]) into a closed immersion i : Y → Pn

X and
the projection pn : Pn

X → X. Thus, assertion (1) and assumption (i) allows to conclude.
To treat the general case, we argue by noetherian induction on Y , assuming that for any

proper closed subscheme T of Y , the result is known for the restriction of f to T . In fact, the case
T = ∅ is obvious because T (∅) = 0.

According to Chow’s lemma [EGA2, 5.6.2], there exists a morphism p : Y0 → Y such that:

(a) p and f ◦ p are projective morphisms.
(b) There exists a dense open subscheme V0 of Y over which p is an isomorphism.

Let T be the complement of V in Y equipped with its reduced subscheme structure. Let j and i
be the respective immersion of T and V in Y . According to point (3) of Proposition 2.3.3, it is
sufficient to prove that the following natural transformations are isomorphisms:

ϕ∗
Y f∗i∗ → f∗ϕ

∗
X i∗.(2.3.12.1)

ϕ∗
Y f∗j∗ → f∗ϕ

∗
Xj∗.(2.3.12.2)

Concerning the first one, we consider the following commutative diagram:

ϕ∗
Y f∗i∗

Ex(ϕ∗,f∗) // f∗ϕ∗
X i∗

Ex(ϕ∗,i∗) // f∗i∗ϕ∗
X

ϕ∗
Y (fi)∗

Ex(ϕ∗,(fi)∗) // (fi)∗ϕ∗
X .

Thus the result follows from assertion (1) and the induction hypothesis.
Concerning the natural transformation (2.3.12.2), we consider the pullback square

V0
l //

q ��

Y0
p��

V
j // Y.

Assumption (b) above says that q is an isomorphism which implies the relation: j∗ = p∗l∗q
∗.

In particular, it is sufficient to prove that the natural transformation ϕ∗
Y f∗p∗ → f∗ϕ

∗
Xp∗ is an

isomorphism. This follows from the commutativity of the following diagram

ϕ∗
Y f∗p∗

Ex(ϕ∗,f∗) // f∗ϕ∗
Xp∗

Ex(ϕ∗,p∗) // f∗p∗ϕ∗
X

ϕ∗
Y (fp)∗

Ex(ϕ∗,(fp)∗) // (fp)∗ϕ∗
X ,

according to the projective case treated above and assumption (b). The proof is complete. �

Corollary 2.3.13. In the next statements, we assume T is monoidal when it is needed.

(1) Let i : Z → X be a closed immersion such that T satisfies property (Loci).
Then T satisfies property (Suppi) (resp. (BCi), (PFi)).

(2) Assume T satisfies the localization property. Then the following properties of T are
equivalent:
(i) For any integer n > 0 and any scheme X in S , pn : Pn

X → X being the canonical
projection, T satisfies (Supppn) (resp. (BCpn), (PFpn)).

(ii) T satisfies (Supp) (resp. (BC), (PF)).
(3) Assume T is well generated and satisfies the localization property. Then the following

properties of T are equivalent:
(i’) For any integer n > 0 and any scheme X in S , pn : Pn

X → X being the canonical
projection, T satisfies (Adjpn).

(ii’) T satisfies (Adj).

Proof. As in the proof of Corollary 2.2.12, each respective case of assertions (1) and (2)
follows from the previous proposition applied to a particular type of morphisms ϕ∗ : T ′ → T ′′ of
complete P-fibred triangulated categories over a subcategory S ′ of S .
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For property (Supp), we proceed as follows. We fix an open immersion j : U → X and
let S ′ = S /X. For any Y/X, we let jY = Y ×X U → Y be the pullback of j. We put
T ′(Y ) = T (Y ×X U) and T ′′(Y ) = T (Y ) and let ϕ∗

Y be the functor:

jY ♯ : T (Y ×X U)→ T (Y ).

For the property (BC) (resp. (PF)), we refer the reader to the proof of assertion (1) (resp.
(2)) in Corollary 2.2.12.

Finally we consider assertion (3). It is sufficient to proce that (i’) implies (ii’).
According to the Brown representability theorem [Nee01, 8.4.4], the property (Adjf ) for a proper
morphism f is equivalent to ask that f∗ preserves small sum.
Consider an arbitrary set I. For any scheme S, we put T I(S) = T (S)I , that is the category of
families of object of T (S) indexed by I. Then T I is obviously a complete triangulated P-fibred
category over S (limits and colimits are computed termwise). For any scheme S, we consider the
functor:

ϕ∗
S : T

I(S)→ T (S), (Mi)i∈I 7→
∑

i∈I

Mi.

Then ϕ∗ : T i → T is obviously a morphism of complete P-fibred categories. Thus, given
condition (i’), the preceding proposition applied to ϕ∗ shows that for any proper morphism f , f∗
commutes with sums indexed by I. As this is true for any I, we obtain (ii’). �

2.3.d. Localization and monoidal structure.

2.3.14. Assume T is monoidal and letM denote its geometric sections. Fix a closed immersion
i : Z → S in S with complementary open immersion j : U → S. We fix an object MS(S/S − Z)
of T (S) and a distinguished triangle

(2.3.14.1) MS(S − Z)
j∗
−→ 1S

pi
−→MS(S/S − Z)

di−→MS(S − Z)[1].

Remark that according to 2.3.1(c), the map i∗(pi) : 1Z → i∗MS(S/S − Z) is an isomorphism.
Given any object K in T (S), we thus obtain an isomorphism

i∗(MS(S/S − Z)⊗S K) = i∗(MS(S/S − Z))⊗Z i
∗(K)

(i∗pi)
−1

−−−−−→ 1Z ⊗Z i
∗(K) = i∗(K)

which is natural in K. It induces by adjunction a map

(2.3.14.2) ψi,K :MS(S/S − Z)⊗S K → i∗i
∗(K)

which is natural in K.
For any P-scheme X/S, we put MS(X/X −XZ) =MS(S/S−Z)⊗SMS(X) so that we get from
(2.3.14.1) a canonical distinguished triangle:

MS(X −XZ)
jX∗
−−→MS(X)→MS(X/X −XZ)→MS(X −XZ)[1].

The map (2.3.14.2) for K =MS(X) gives a canonical map

(2.3.14.3) ψi,X :MS(X/X −XZ)→ i∗(MZ(XZ)).

Proposition 2.3.15. Consider the previous hypothesis and notations. Then the following
conditions are equivalent:

(i) T satisfies the property (Loci).
(ii) (a) The functor i∗ is conservative.

(b) The morphism ψi,S :MS(S/S − Z)→ i∗(1Z) is an isomorphism.
(c) For any object K of T (S), the exchange transformation

Ex(i∗∗,⊗) : (i∗1Z)⊗S K → i∗i
∗K

is an isomorphism.
(iii) (a) The functor i∗ is conservative.

(b) The morphism ψi,S :MS(S/S − Z)→ i∗(1Z) is an isomorphism.
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(c) For any objects K and L of T (S), the exchange transformation

Ex(i∗∗,⊗) : (i∗K)⊗S L→ i∗(K ⊗Z i
∗L)

is an isomorphism.

Assume in addition that T is well generated and τ -twisted as a triangulated P-fibred category.
Then the above conditions are equivalent to the following one:

(iv) (a) The functor i∗ is conservative, commutes with direct sums and with τ -twists.
(b) The morphism ψi,X : MS(X/X − XZ) → i∗(MZ(XZ)) is an isomorphism for any

P-scheme X/S.

In particular, (Loci) implies that for any object K of T (S), the localization triangle of 2.3.3

j♯j
∗(K)→ K → i∗i

∗(K)
∂K−−→ j♯j

∗(K)[1]

is canonically isomorphic (through exchange transformations) to the triangle (2.3.14.1) tensored
with K.

Proof. (i)⇒ (iii) : According to (Loci) (a), we need only to check that the maps in (iii)(b) and
(iii)(c) are isomorphisms after applying i∗ and j∗. This follows easily from (Loci) (b).
(iii)⇒ (ii) : Obvious
(ii) ⇒ (i) : According to (ii)(b), the distinguished triangle (2.3.14.1) is isomorphic to a triangle
of the form

j♯j
∗(1S)

ad′(j♯,j
∗)

−−−−−−→ 1S
ad(i∗,i∗)
−−−−−→ i∗i

∗(1S)→ j♯j
∗(1S).

According to (ii)(c), this latter triangle tensored with K is isomorphic through exchange transfor-
mations to a triangle of the form

j♯j
∗(K)

ad′(j♯,j
∗)

−−−−−−→ K
ad(i∗,i∗)
−−−−−→ i∗i

∗(K)→ j♯j
∗(K).

Thus Lemma 2.3.5 allows to conclude.
To end the proof, we remark by using the equations for the adjunction (i∗, i∗) that for any

object M of T (S), the following diagram is commutative:

i∗i
∗(1S)⊗K i∗(1Z)⊗K

Ex(i∗∗,⊗)

��

MS(S/S − Z)⊗K

ψi⊗1K 33ggggggggggg

ψi,K ++WWWWWWWWWWWWWW

i∗i
∗(K) i∗(1Z ⊗ i

∗i∗(K)).

Note that (i) implies that i∗ is conservative and commutes with direct sums (see 2.3.3) and (ii)(c)
implies it commutes with twists. According to the above diagram, (ii)(b) implies (iv)(b).
We prove that reciprocally that (iv) implies (ii). Because (ii)(b) (resp. (ii)(a)) is a particular case
of (iv)(b) (resp. (iv)(a)), we have only to prove (ii)(b). In view of the previous diagram, we are
reduced to prove that for any object K of T (S), the map ψi,K is an isomorphism. Consider the
full subcategory U of T (S) made of the objects K such that ψi,K is an isomorphism. Then U is
triangulated. Using (iv)(a), U is stable by small sums and τ -twists. By assumption, it contains
the objects of the form MS(X) for a P-scheme X/S. Thus, because T is well generated by
assumption, Lemma 1.3.18 concludes. �

Lemma 2.3.16. Consider a closed immersion i : Z → S. We assume the following conditions
are satisfied in addition to that of 2.0:

• T is well generated, τ -twisted and satisfies the Zariski separation property.
• For any P-scheme X0/Z and any point x0 of X0, there exists an open neighbourhood
U0 of x0 in X0 and a P-scheme U/S such that U0 = U ×S Z.

41

Then the functor i∗ is conservative.

41This property is trivial when P is the class of open immersions or the class of morphisms of finite type in
S . It is also true when P is the class of étale morphism or P = Sm (cf. [EGA4, 18.1.1]).
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Proof. Consider an object K of T (Z) such that i∗(K) = 0. We prove that K = 0.
Because T is τ -generated, it is sufficient to prove that for a P-morphism p0 : X0 → Z and a
twist (n,m) ∈ Z× τ ,

HomT (Z)(MZ(X0){m}[n],K) = 0.

Because MZ(X0) = p0♯(1X0), this equivalent to prove that

HomT (X0)(1X0
{m}[n], p∗0(K)) = 0.

Using the Zariski separation property on T , this latter assumption is local in X0. Thus, according
to the assumption on the class P, we can assume there exists a P-scheme X/S such that X0 =
X ×S Z. Thus MZ(X0){m}[n] = i∗(MS(X){m}[n]) and the initial assumption on K allows to
conclude. �

Note for future applications the following interesting corollaries:

Corollary 2.3.17. Assume T is a premotivic triangulated category which is compactly τ -
generated for a group of twists τ ( i.e. any twists in τ admits a tensor inverse) and which satisfies
the Zariski separation property.

Then, for any closed immersion i, the functor i∗ is conservative, commutes with sums and
with twists.

This is a consequence of lemmas 2.3.16 and 2.2.16. In fact, under these conditions, i∗ commutes
with arbitrary τ -twists because it is true for its (left) adjoint i∗.

Corollary 2.3.18. Assume T satisfies the assumptions of the preceding corollary. Then the
following conditions on a closed immersion i are equivalent:

(i) T satisfies the property (Loci).
(ii) For any scheme S in S and any smooth S-scheme X, the map (2.3.14.3)

ψi,X :MS(X/X −XZ)→ i∗MZ(XZ)

is an isomorphism.

We finish this section with the following useful result:

Proposition 2.3.19. Assume T is τ -twisted and consider a τ ′-twisted triangulated P-fibred
category T ′ and a morphism

ϕ∗ : (T , τ) ⇄ (T ′, τ ′) : ϕ∗

compatible with twists. We assume the following properties:

(a) The map τ → τ ′ induced by ϕ∗ is (essentially) surjective.
(b) T ′ is well generated.

We consider a closed immersion i : Z → S and further assume the following properties:

(c) T satisfies the property (Loci).
(d) The exchange transformation Ex(ϕ∗, i∗) : ϕ

∗i∗ → i∗ϕ
∗ is an isomorphism.

(e) The functor i∗ : T ′(Z)→ T ′(S) commutes with τ ′-twists.42

Then T ′ satisfies the property (Loci).

Proof. Note that, under the above assumptions, ϕ∗ is conservative (in fact, for any P-
scheme X/S and any twists i ∈ τ ′, the premotive MS(X){i} is in the essential image of ϕ∗).
Thus, if i∗ : T (Z)→ T (S) is conservative (resp. commute with sums), then i∗ : T ′(S)→ T ′(S)
is conservative (resp. commute with sums) using the isomorphism ϕ∗i∗ ≃ i∗ϕ∗.
Let M (resp. M ′) be the geometric sections of T (resp. T ′). As in 2.3.14, we fix a distinguished
triangle

MS(S − Z)
j∗
−→ 1S

pi
−→MS(S/S − Z)

di−→MS(S − Z)[1].

42This will be satisfied if any τ ′-twists is invertible because the left adjoint of i∗ commutes with τ ′-twists.
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and we putM ′
S(S/S−Z) = ϕ∗MS(S/S−Z). According to loc. cit., we thus get for any P-scheme

X/S canonical maps

ψi,X :MS(X/X −XZ)→ i∗MZ(XZ),

ψ′
i,X :M ′

S(X/X −XZ)→ i∗M
′
Z(XZ).

By construction, the following diagram is commutative:

ϕ∗MS(X/X −XZ)
ϕ∗ψi,X // ϕ∗i∗MZ(XZ)

Ex(ϕ∗,i∗) // i∗ϕ∗MZ(XZ)

M ′
S(X/X −XZ)

ψ′
i,X // M ′

Z(XZ)

Thus, Proposition 2.3.15 allows to conclude. �

2.4. Purity and the theorem of Ayoub. Recall we assume P = Sm in this section.
2.4.a. The stability property. The following section is directly inspired by the work of Ayoub

in [Ayo07a, §1.5].43 We claim no originality except for a closer look on the needed axioms.

Definition 2.4.1. A pointed smooth S-scheme will be a couple (f, s) of morphisms of S such
that f : X → S is a smooth separated morphism of finite type and s : S → X is a section of f .

We associate with a pointed smooth scheme (f, s) the following endofunctor of T (S)

T h(f, s) := f♯s∗

called the associated Thom transformation.
If T satisfies (Adjs) (recall: s∗ admits a right adjoint denoted by s!), we put

T h′(f, s) := s!f∗

and call it the associated adjoint Thom transformation.

Remark 2.4.2. Note that because f is separated, s is a closed immersion.

Example 2.4.3. (1) Let p : E → X be a vector bundle and s0 be its zero section. Fol-
lowing [Ayo07a], we put T h(E) := T h(p, s0) and call it simply the Thom transformation
associated with E/X.

(2) Consider a pointed smooth S-scheme (f, s) such that f is étale. Then s is an open
and closed immersion. Thus, if T is additive, s∗ = s♯ according to Lemma 2.2.2. In
particular, T h(f, s) = IdS .

Definition 2.4.4. We will say that T satisfies the stability property, denoted by (Stab), if for
any point smooth scheme (f, s), the Thom transformation T h(f, s) is an equivalence of categories.

2.4.5. Consider a commutative diagram in S of the form

S
t

##G
GG

GG
GG

G

t′

��
Y ′ s′ //

p′

��
∆

Y
g

##F
FFFFFF

p
��

S s
// X

f
// S

(2.4.5.1)

such that ∆ is a cartesian square, (f, s), (g, t) are smooth pointed schemes and g is a smooth
separated morphism of finite type. Then we get a canonical exchange morphism:

(2.4.5.2) T h(g, t) = f♯p♯s
′
∗t

′
∗

Ex(∆♯∗)
−−−−−−−→ f♯s∗p

′
♯t

′
∗ = T h(f, s)T h(p′, t′).

This is an isomorphism as soon as Ex(∆♯∗) is an isomorphism. The following lemma gives a
sufficient condition for this to happen.

43See also [Del01, §5].
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Lemma 2.4.6. Consider the above notations. If T satisfies (Locs) then the natural transfor-
mations Ex(∆♯∗) is an isomorphism for any square ∆ as above.

This lemma follows easily from the definition of (Locs), the relations of paragraph 2.3.1 and
the P-base change formula (P-BC). It motivates the next definition:

Definition 2.4.7. We say that T satisfies the weak localization property (wLoc) if it satisfies
(Locs) for any closed immersion s which admits a smooth retraction.

Proposition 2.4.8. Assume that T satisfies the Nisnevich separation property. Then the
following conditions are equivalent:

(i) T satisfies (wLoc).
(ii) For any scheme S and any closed immersion i : Z → X between smooth S-schemes, T

satisfies (Loci).

Proof. Of course, (ii) implies (i). We prove the reciprocal statement. The Nisnevich sepa-
ration property says that for any Nisnevich cover f : X ′ → X, the functor f∗ is conservative. We
deduce from that point the properties (Loci) (a) and (Loci) (b) are local in X with respect to
the Nisnevich topology – for (b), one also uses the smooth projection formula. Thus, we can con-
clude as locally for the Nisnevich topology, i admits a smooth retraction (see for example [Dég07,
4.5.11]). �

Applying the second point of Example 2.4.3, we easily deduce from that construction the
following kind of excision property:

Lemma 2.4.9. Assume that T satisfies (wLoc).
Then, given any diagram (2.4.5.1) satisfying the assumption as above and such that p is étale,

the natural transformation (2.4.5.2) gives an isomorphism:

T h(g, t)
∼
−−→ T h(f, s).

2.4.10. To any short exact sequence of vector bundles over a scheme S

(σ) 0→ E′ ν
−→ E

π
−→ E′′ → 0,

we can associate a commutative diagram

S

!!C
CC

CC
CC

��
E′ ν //

��
∆

E

  A
AA

AA
A
π
��

S // E′′ // S

where the non labeled map are either the canonical projections or the zero sections of the rel-
evant vector bundles, and ∆ is cartesian. Using the notation of Example 2.4.3, the exchange
transformation (2.4.5.2) associated with this diagram has the following form:

T h(σ) : T h(E) −→ T h(E′′) ◦ T h(E′).

Recall from the above that this natural transformation is an isomorphism as soon as T satisfies
(wLoc).

Proposition 2.4.11. Assume T satisfies (wLoc) and (Zar-sep). Then the following conditions
are equivalent:

(i) The complete triangulated Sm-fibred category T satisfies the stability property.
(ii) For any scheme S, the Thom transformation T h(A1

S) is an equivalence of categories.

Proof. We have to prove that (ii) implies (i). Note that according to the above paragraph,
we already now that for any scheme S and any integer n ≥ 0, T h(An

S) ≃ T h(A
1
S)

◦,n is an
equivalence.
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We consider a smooth pointed scheme (f : X → S, s) and we prove that T h(f, s) is an
equivalence.

Recall that (Locs) implies (Adj) s (first point of Proposition 2.3.3). In particular, T h(f, s)
admits a right adjoint T h′(f, s) and we have to prove that the adjunction morphisms are isomor-
phisms.

Consider an open immersion j : U → S and let (f0, s0) be the restriction of the smooth S-
point (f, s) over U . Property (Locs) implies (BCs) (Corollary 2.3.13). Thus, using also property
(P-BC), we obtain a canonical isomorphism:

j∗T h(f, s)
∼
−−→ T h(f0, s0)j

∗.

Recall also that (Locs) implies (Supps) (again Corollary 2.3.13). Thus we get a canonical isomor-
phism:

j♯T h(f0, s0)
∼
−−→ T h(f, s)j♯

which gives by adjunction an isomorphism:

T h′(f0, s0)j
∗ ∼
−−→ j∗T h′(f, s).

Thus, (Zar-sep) shows that the property for T h(f, s) to be an equivalence is Zariski local in S.
Consider a point a ∈ S, x = s(a). As X is smooth over S, there exists an open subscheme

U ⊂ X, an integer n ≥ 0 and an étale S-morphism π : U → An
S which fits into the following

cartesian square:

S0
//

��

U
π��

S
ν // An

S

where ν is the zero section (cf. [EGA4, 17.12.2]). Note that the scheme S0 = s−1(U) is an open
neighborhood of a in S. Let us put X0 = f−1(S0) and U0 = U ∩X0. Then we get the following
commutative diagram:

X0
f0

''OOOOOOOOO

S0

s0
77ooooooooo

ν0 ''NNNNNNNNN s′0
// U0

?�

OO

π0��

f ′
0

// S0

An
S0

77ppppppppp

where π0 is the restriction of π above S0 and ν0 is again the zero section. According to Lemma
2.4.9, we get isomorphisms

T h(f0, s0) ≃ T h(f
′
0, s

′
0) ≃ T h(A

n
S).

Thus, according to the beginning of the proof, T h(f0, s0) is an equivalence. This concludes because
S0 is an open neighborhood of a in S. �

Definition 2.4.12. Assume that T is monoidal.

(1) For any smooth pointed scheme (f : X → S, s), we put MS

(
X/X − s(S)

)
:= f♯s∗(1S).

(2) For any vector bundle E/S with projection f and zero section s, we define the Thom
premotive associated with E over S as MThS(E) = f♯s∗(1S).

2.4.13. We assume T is monoidal and satisfies properties (wLoc) and (Zar-sep).
In each case of the previous definition, if we apply f♯ to the distinguished triangle obtained

from point (2) of Proposition 2.3.3 applied to s, we get the following canonical distinguished
triangles:

MS

(
X − s(S)

)
→MS(X)→MS

(
X/X − s(S)

) +1
−−→

MS(E
×)→MS(E)→MThS(E)

+1
−−→

where the first map is induced by the obvious open immersion.
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Moreover, property (Locs) implies (PFs) (see Corollary 2.3.13). Thus for any premotive K
over S, the following composite map is an isomorphism:

T h(f, s).K = f♯s∗(K) = f♯s∗(1S ⊗S s
∗f∗(K))

Ex(s∗∗,⊗)−1

−−−−−−−−→ f♯(s∗(1S)⊗X f∗(K))

Ex(f∗
♯ ,⊗)

−−−−−−→ (f♯s∗(1S))⊗S K =MS(X/X − s(S))⊗S K

(2.4.13.1)

Similarly, in the case of a vector bundle E/S, we get a canonical isomorphism:

T h(E).K
∼
−−→MThS(E)⊗S K.

From these isomorphisms, we deduce easily the following corollary of the previous proposition:

Corollary 2.4.14. Consider the above notations and assumptions. Then the following prop-
erties are equivalent:

(i) T satisfies the stability property.
(ii) For any smooth pointed scheme (X → S, s), the premotive MS(X/X − s(S)) is ⊗-

invertible.
(iii) For any vector bundle E/S the Thom premotive MThS(E) is ⊗-invertible.
(iv) For any scheme S, the premotive MThS(A

1
S) is ⊗-invertible.

Remark 2.4.15. Assume that T satisfies the assumptions and the equivalent conditions of
the previous corollary. Then, under the notations of Paragraph 2.4.10, we associate with the exact
sequence (σ) a canonical isomorphism

(2.4.15.1) ThS(σ) :MThS(E)→MThS(E
′′)⊗S MThS(E

′).

Recall that Deligne introduced in [Del87, 4.12] the Picard category K(S) of virtual vector bundle
over a scheme S.

Then, it follows from the above isomorphism and the universal properties ofK(S) (see [Del87,
4.3]) that the functor MThS can be extended uniquely to a symmetric monoidal functor:

MThS : K(S)→ T (S).

The reader is refered to [Ayo07a, th. 1.5.18] for a detailed argument.

2.4.16. Assume T is monoidal. For any scheme S, the canonical projection p : P1
S → S

is a split epimorphism. A splitting is given by the inclusion of the infinite point ν : S → P1
S .

The induced map p∗ : MS(P
1
S) → 1S is a split epimorphism. Thus it admits a kernel K in the

triangulated category T (S).

Definition 2.4.17. Under the above assumption and notations, we define the Tate premotive
over S as the object 1S(1) = K[−2] of T (S).

The monoid generated by the cartesian section (1S)S defines a canonical N-twist on T called
the Tate twist. The n-th Tate twist of an object K is denoted by K(n).

2.4.18. Consider again the assumption of Paragraph 2.4.13.
According to Lemma 2.4.9, we get a canonical isomorphism

MThS(A
1
S) =MS(A

1
S/A

1
S − {0})→MS(P

1
S/P

1
S − {0}).

On the other hand, 1S(1)[2] is by definition the cokernel of the monomorphism ν∗ : 1S →
MS(P

1
S). Thus we get a canonical morphism:

(2.4.18.1) 1S(1)[2]→MS(P
1
S/P

1
S − {0})

∼
−−→MThS(A

1
S).

From this definition and Corollary 2.4.14 the following result is obvious:

Corollary 2.4.19. Consider the above assumption and notations. Then the following con-
ditions are equivalent:

(i) T satisfies the homotopy property.
(ii) For any scheme S, the arrow (2.4.18.1) is an isomorphism.

When these equivalent assertions are satisfied, the following conditions are equivalent:
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(iii) T satisfies the stability property.
(iv) For any scheme S, the Tate premotive 1S(1) is ⊗-invertible.

If 1S(1) is ⊗-invertible, we will consider the Tate twist on T as a Z-twist.
2.4.b. The purity property.

2.4.20. Let f : X → S be a smooth proper morphism in S . We consider the following
cartesian square:

X ×S X
f ′′

//

f ′

��
∆

X

f

��
X

f
// S

(2.4.20.1)

where f ′ (resp. f ′′) is the projection on the first (resp. second) factor. Let δ : X → X ×S X be
the diagonal embedding. Note that (f ′, δ) is a smooth pointed scheme which depends only on f .
We put:

Σf := T h(f ′, δ) = f ′♯δ∗.

We then define a canonical morphism:

pf : f♯ = f♯f
′′
∗ δ∗

Ex(∆♯∗)
−−−−−→ f∗f

′
♯δ∗ = f∗ ◦ Σf

using the exchange transformation introduced in paragraph 1.1.15.

Definition 2.4.21. We say that f is T -pure, or simply pure when T is clear, when the
following conditions are satisfied:

(1) The natural transformation Σf is an equivalence.
(2) The morphism pf : f♯ → f∗ ◦ Σf is an isomorphism.

Then pf is called the purity isomorphism associated with f . We say also that f is universally
T -pure if f is pure after any base change along a morphism of S .

We introduce the following properties on T :

• T satisfies the purity property (Pur) if any proper smooth morphism is pure.
• T satisfies the weak purity property (wPur) if for any scheme S and any integer n > 0,
the canonical projection pn : Pn

S → S is pure.

Remark 2.4.22. Consider the above notations and assume f is pure.
Then f∗ admits a right adjoint f ! and we deduce by transposition from pf a canonical iso-

morphism:
p′f : f∗ → Σ−1

f ◦ f
!.

Recall also that, when δ∗ admits a right adjoint δ!, Σf admits as a right adjoint the transformation

Ωf := δ!f∗. In particular, Ωf = Σ−1
f .

The following lemma shows the importance of the purity property.

Lemma 2.4.23. Assume that T satisfies (wLoc). Let f : Y → X be a proper smooth morphism.
If f is universally pure then the following conditions hold:

(1) T satisfies (Suppf ) and (BCf ).
(2) For any cartesian square

Z
f̃ //

h �� ∆

Y
g
��

X
f

// S

such that g is smooth, the exchange transformation:

Ex(∆♯∗) : g♯f̃∗ → f∗h♯

is an isomorphism.
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(3) If moreover T is monoidal then T satisfies (PFf ).

Proof. We first prove condition (2). By assumption, the natural transformation Σf̃ is an

equivalence. for f and f̃ : by assumption the natural transformations Σf = f ′♯δ∗ and Σf̃ = f̃ ′δ̃∗)
are equivalences. Thus, it is sufficient to prove that the natural transformation

g♯f̃∗Σf̃
Ex(∆♯∗)
−−−−−→ f∗h♯Σf̃

is an isomorphism.
For matter of notations, let us also introduce the following cartesian squares:

Z
δ̃ //

h
��

Γ

Z ×Y Z
f̃ ′

//

k
��

Θ

Z

h
��

X
δ

// X ×S X
f ′

// X

using the notations of 2.4.20. Thus, by definition: Σf = f ′♯δ∗, Σf̃ = f̃ ′δ̃∗. Then we consider the
following diagram of exchange transformations:

g♯f̃♯
pf̃ // g♯f̃∗f̃ ′♯δ̃∗

Ex(∆♯∗)

��
f♯h♯

pf // f∗f ′♯δ∗h♯ f∗f
′
♯k♯δ̃∗

Ex(Γ♯∗)oo f∗h♯f̃
′
♯δ̃∗

Note that it only involves exchange transformations of type Ex(?♯∗): it is commutative by compat-
ibility of these exchange transformations with composition. By assumption, the transformations
pf and pf̃ are isomorphisms. Moreover the property (Locδ) is satisfied and it implies (Suppδ)

according to Corollary 2.3.13. Thus Ex(Γ♯∗) is an isomorphism and this concludes the proof of
(2).

For condition (1), we note that (2) already implies (Suppf ). Thus we have only to prove
(BCf ). We consider a square of shape ∆ as in the statement of the lemma without assuming that
g is smooth. We have to prove that

Ex(∆∗
∗) : g

∗f∗ → f̃∗h
∗

is an isomorphism. We proceed as for condition (2). It is sufficient to prove that Ex(∆∗
∗) is an

isomorphism after composition on the right with Σf . Then we consider the following commutative
diagram of exchange transformations:

g∗f♯

Ex(∆∗
♯ )

��

pf // g∗f∗f ′♯δ∗

Ex(∆∗
∗)

��
f̃♯h

∗
pf̃ // f̃∗f̃ ′♯δ̃∗h

∗ f̃∗f̃
′
♯k

∗δ∗
Ex(Γ∗

∗)oo f̃∗h
∗f ′♯δ∗

Ex(Θ∗
♯ )oo

According to (P-BC), Ex(∆∗
♯ ) and Ex(Θ∗

♯ ) are isomorphisms. By assumption, pf and pf̃ are

isomorphisms. Moreover, property (Locδ) is satisfied and this implies Ex(Γ∗
∗) is an isomorphism

according to Corollary 2.3.13. Condition (1) is proved.
It remains to prove (3). We consider again the notations of the cartesian diagram (2.4.20.1).

For any premotives K over X and L over S, we consider the following commutative diagram of
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exchange transformations (see Remark 1.1.32):

f♯
(
K ⊗ f∗(L)

)

Ex(f∗
♯ ,⊗)

��

pf // f∗f ′♯δ∗
(
K ⊗ δ∗f ′∗f∗(L)

)

f∗f
′
♯

(
δ∗(K)⊗ f ′∗f∗(L)

)

Ex(f ′∗
♯ ,⊗)

��

Ex(δ∗∗ ,⊗)

OO

f∗
(
f ′♯δ∗(K)⊗ f∗(L)

)

f♯(K)⊗ L
pf // f∗f ′♯δ∗(K)⊗ L.

Ex(f∗
∗ ,⊗)

OO

By definition, the exchanges Ex(f∗♯ ,⊗) and Ex(f ′∗♯ ,⊗) are isomorphisms. By assumption, the

arrows labeled pf are isomorphisms. Moreover, the property (Locδ) is satisfied: Corollary 2.3.13
implies that Ex(δ∗∗ ,⊗) is an isomorphism. We deduce from this that the arrow Ex(f∗∗ ,⊗) is an
isomorphism. This concludes the proof of (3) as the functor Σf = f ′♯δ∗ is an equivalence according
to the hypothesis on f . �

2.4.24. Assume that T satisfies the support property (Supp). Then we can extend Definition
2.4.21 to the case of a smooth separated morphism of finite type f : X → S. We still consider
the cartesian square (2.4.20.1) and the diagonal embedding δ : X → X ×S X. Again, (f ′, δ) is a
smooth pointed scheme so that we can put

Σf := T h(f ′, δ) = f ′♯δ∗

and we define a canonical morphism:

(2.4.24.1) pf : f♯ = f♯f
′′
! δ!

Ex(∆♯ !)
−−−−−→ f!f

′
♯δ! = f! ◦ Σf .

using the exchange transformation of point (2) in Corollary 2.2.12.

Definition 2.4.25. Using the notations above, we say that f is T -pure, or simply pure when
T is clear, when the following conditions are satisfied:

(1) The natural transformation Σf is an equivalence.
(2) The morphism pf : f♯ → f! ◦ Σf is an isomorphism.

We can easily deduce from the construction of the exchange transformation Ex(∆♯ !) that,
when T satisfies properties (Stab) and (Pur), any smooth separated morphism of finite type f is
pure. The following theorem is a consequence of the formalism developed previously.

Theorem 2.4.26. Assume that T satisfies the localization and weak purity properties. Then
the following conditions hold:

(1) T satisfies the stability property.
(2) T satisfies the support and base change properties.

If moreover T is monoidal, it satisfies the projection formula.
(3) Any smooth separated morphism of finite type is pure.
(4) For any projective morphism f , the property (Adjf ) holds.

If moreover T is well generated, then the adjoint property holds in general.

Proof. We start by proving condition (1). As (Loc) implies (Zar-sep), we can apply Propo-
sition 2.4.11 and we have only to prove that for any scheme S, T h(A1

S) is an equivalence. Let
s : S → A1

S be the zero section and j : A1
S → P1

S be the canonical open immersion. Put t = j ◦ s.
According to Lemma 2.4.9, j induces an isomorphism T h(A1

S) ≃ T h(p1, s). Consider now the
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following cartesian squares:

S
s //

s
��

P1
S

p1 //

s′��
∆

S

s
��

P1
S δ

// P1
S ×S P1

S p′1

// P1
S

where p′1 (resp. δ) is the projection on the first factor (resp. diagonal embedding). The property
(Locs) implies that s∗s∗ = 1 and that the exchange transformation Ex(∆♯∗) is an isomorphism
according to Corollary 2.3.13. Thus we get an isomorphism of functors:

T h(p1, s) = p1♯s∗ = s∗s∗p1♯s∗
Ex(∆♯∗)

−1

−−−−−−−→ s∗p′1♯s
′
∗s∗ = s∗p′1♯δ∗s∗ = s∗Σp1s∗

and this proves (1) because p1 is pure.
Condition (2) follows simply from Corollary 2.3.13. In fact, for any scheme S, the weak purity

assumption on T implies that pn : Pn
S → S is universally pure. Thus, Lemma 2.4.23 implies

properties (Supppn) and (BCpn) so that we can apply Corollary 2.3.13 to get (Supp) and (BC).
The same argument applies to the property (PF) in the monoidal case.

For condition (3), we consider a smooth separated morphism of finite type g : Y → S and we
prove it is pure. According to (1), Σg is an equivalence. Thus, by definition of pg, it is sufficient
to prove that for any cartesian square:

Z
f̃ //

h �� ∆

Y
g
��

X
f

// S

with f separated of finite type, the exchange transformation

Ex(∆♯ !) : g♯f̃! → f!h♯

is an isomorphism.
To do this, we apply Proposition 2.3.11, as in the case of Corollary 2.3.13. We consider the
obvious complete Sm-fibred triangulated categories T ′ and T ′′ over S /S which to an S-scheme
Y associates:

• T ′(Y ) = T (Y ×S X).
• T ′′(Y ) = T (Y ).

We consider the morphism ϕ∗ : T ′ → T ′′ such that for any S-scheme Y , ϕ∗
Y = (Y ×S p)♯. As for

any scheme S, pn : Pn
S → S is universally pure, Lemma 2.4.23 shows that ϕ∗ satisfies condition

(i) of Proposition 2.3.11. According to that Proposition, (i) is equivalent to condition (iii), and
(iii) is precisely what we want.

It remains only to prove condition (4). According to property (Pur), any smooth proper
morphism f satisfies (Adjf ). According to (Loc) and Proposition 2.3.3 any closed immersion i
satisfies (Adji). It follows easily that any projective morphism f satisfies (Adjf ). When T is well
generated, we simply apply point (4) of Corollary 2.3.13. �

Remark 2.4.27. In particular, in the assumption of the previous theorem, if T satisfies
properties (Loc), (wPur) and (Adj)44, we can apply Theorem 2.2.14 to T so that we get a complete
formalism of operations (f∗, f∗, f!, f

!) satisfying all the desired formulas.
Thus the preceding theorem gives another look at the main result of [Ayo07a, 1.4.2]. In fact,

the proof given here is simpler as the assumptions of our theorem are stronger. However, we do
not use the homotopy property in our theorem.

We end up this section with the theorem of Ayoub [Ayo07a, 1.4.2], which can be stated in a
simpler form according to the preceding theorem:

44Note that under the assumptions of the previous theorem, we know that for any proper smooth morphism
f , f∗ admits a right adjoint. The same is true for a proper morphism which can be factorized as a closed immersion
followed by a smooth proper morphism according to (Loc).
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Theorem 2.4.28 (Ayoub). Assume T satisfies the localization, homotopy and stability prop-
erties.

Then T is weakly pure.

In fact, this theorem is proved explicitly in op. cit., Theorem 1.7.9.

Remark 2.4.29. Recall that Ayoub proves more than just this theorem: indeed he constructs
the whole formalism of the 6 functors for quasi-projective morphisms for his monoidal homotopy
stable functors – see again [Ayo07a]. The work we have done here is to isolate the crucial
properties of purity and weak purity. Also, using the construction of Deligne, we have showed how
to avoid the assumption of quasi-projectiveness made by Ayoub. Finally, the interest of Theorem
2.4.26 is to give a possible approach to the 6 functors formalism without requiring the homotopy
property ; this is a question which has been indirectly adressed by many mathematicians (Bloch,
Esnault, Barbieri-Viale, ...)

2.4.c. Duality, purity and orientation.

2.4.30. This section is concerned with the relation between purity and duality. We will assume
that T is premotivic.

Recall that an object M of a monoidal category M is called strongly dualizable if there exists
an object M ′ such that (M ′ ⊗ −) is both right and left adjoint to (M ⊗ −). Then, M ′ is called
the strong dual of M .

In case M is closed monoidal, we will say that a morphism of the form

µ :M ⊗M ′ → 1

is a perfect pairing if the natural transformation

(M ⊗−)→ Hom(M ′,−)

obtained from µ by adjunction is an isomorphism. Then M is strongly dualizable with dual M ′.

Proposition 2.4.31. Let f : X → S be a smooth proper morphism.
If f is pure then the premotive MS(X) is strongly dualizable in T (S) with dual:

f∗(1X) ≃ f♯
(
Ωf (1X)

)

where Ωf denotes the inverse of Σf .

Proof. By assumption, Σf is an automorphism of the category T (X). Moreover, the identi-
fication (2.4.13.1) can be rewritten as Σf (M) = Σf (1X)⊗XM for any premotive M over X. The
fact Σf is an equivalence means that Σf (1X) is a ⊗-invertible object, whose inverse is T := Ωf (1S).
In particular, we get: Ωf (M) = T ⊗M .

According to the Sm-projection formula, the functor MS(X)⊗ . is isomorphic to f♯f
∗. Thus,

its right adjoint is f∗f
∗. As f is pure by assumption, this last functor is isomorphic to f♯Ωff

∗.
Using the observation at the beginning of the proof and the Sm-projection formula again, we
obtain:

f♯Ωff
∗(N) = f♯(T ⊗ f

∗(N)) = f♯(T )⊗N.

Moreover, the right adjoint of f♯Ωff
∗ is f∗Σff

∗. Using again the purity isomorphism for f , this
last functor can be identified with f♯f

∗ and this concludes. �

2.4.32. Assume again that the premotivic triangulated category T satisfies properties (wLoc)
and (Nis-sep).

Let S be a scheme. A smooth closed S-pair will be pair (X,Z) of smooth S-schemes such that
Z is closed subscheme of X. We consider the canonical projection p : X → S and the immersion
i : Z → X associated with (X,Z). Note that according to Proposition 2.4.8, T satisfies property
(Loci). Then we define the premotive of (X,Z) as follows:

(2.4.32.1) MS(X/X − Z) := p♯i∗(1Z).

According to property (Loci), we thus get a canonical distinguished triangle:

(2.4.32.2) MS(X − Z)
j∗
−→MS(X)→MS(X/X − Z)

+1
−−→
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Note that given any smooth morphism p : S → S0, we get obviously:

(2.4.32.3) p♯MS(X/X − Z) =MS0
(X/X − Z).

Moreover, given any morphism f : T → S, we get an exchange isomorphism:

(2.4.32.4) f∗MS(X/X − Z)
∼
−→MT (XT /XT − ZT ).

A morphism of smooth closed S-pairs (Y, T ) → (X,Z) will be a couple (f, g) which fits into a
commutative diagram

T
k //

g
�� ∆

Y
f��

Z
i
// X,

with i, k the canonical immersions, and such that T = f−1(Z) as a set. We can associate with
(f, g) a morphism of premotives:

MS(Y/Y − T ) = q♯k∗g
∗(1Z)

Ex(∆∗
∗)

−1

−−−−−−−→ q♯f
∗i∗(1Z)

Ex∗
♯

−−−→ 1∗p♯i∗(1Z) =MS(X/X − Z).

Indeed, the exchange map Ex(∆∗
∗) is an isomorphism according to (Loci) and Corollary 2.3.13.

It is easy to check that the triangle (2.4.32.2) is functorial with respect to morphisms of closed
S-pairs. Before proving the next theorem, we state the following lemma.

Lemma 2.4.33. Consider the assumptions and notations above.
Let (f, g) : (Y, T ) → (X,Z) be a morphism of smooth closed S-pairs such that f is étale and

g is an isomorphism. Then the induced map MS(Y/Y − T )→MS(X/X −Z) is an isomorphism.

Proof. According to the identification 2.4.32.3, it is sufficient to treat the case where X = Z.
Let U = X − Z and j : U → X be the obvious immersion. Then (f, j) is a Nisnevich cover of X.
According to (Nis-sep), it is sufficient to prove that the pullback ofMX(Y/Y −T )→MX(X/X−Z)
along f and j is an isomorphism. This is obvious using 2.4.32.4. �

2.4.34. We consider again the assumption of the paragraph preceding the above lemma.
Fix a smooth closed S-pair (X,Z). Let BZX (resp. BZ(A

1
X) be the blow-up of X (resp. A1

X)
with center in Z (resp. {0} × Z). We define the deformation space associated with (X,Z) as the
S-scheme DZX = BZ(A

1
X) − BZX. Note also DZZ = A1

Z is a closed subscheme of DZX ; the
couple (DZX,A

1
Z) is a smooth closed S-pair.

Let NZX be the normal bundle of Z in X. The scheme DZX is fibered over A1. Moreover, the
0-fiber of (DZX,A

1) is the closed pair (NZX,Z) corresponding to the zero section and the 1-fiber
is the closed pair (X,Z). In particular, we get the following morphisms of closed pairs:

(2.4.34.1) (X,Z)
d1−→ (DZX,A

1
Z)

d0←− (NZX,Z)

We are now ready to state the purity theorem for smooth closed pairs in our abstract formalism.
Though our assumptions are more general, this theorem follows exactly from the method of Morel
and Voevodsky used to prove this result in the homotopy category H (see [MV99, §3, 2.24]):

Theorem 2.4.35. Consider the above assumptions and notations and suppose that T satisfies
the homotopy property. Then the morphisms

MS(X/X − Z)
d1∗−−→MS(DZX/DZX −A1

Z)
d0∗←−−MS(NZX/N

×
ZX) =:MThS(NZX).

are isomorphisms.

Proof. By noetherian induction and the preceding lemma, the statement is local in X for
the Nisnevich topology. Thus, because (X,Z) is a smooth closed S-pair, we can assume that there
exists an étale map π : X → An+c

S such that π−1(Ac
S) = Z – cf. [EGA4, 17.12.2]. Consider the

pullback square

X ′
p //

q ��

X
π��

An × Z
1×π|Z // An ×Ac

S .
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There is an obvious closed immersion Z → X ′ and its image is contained in q−1(Z). As q is étale,
Z is a direct factor of q−1(Z). Put W = q−1(Z) − Z and Ω = X ′ − W . Thus Ω is an open
subscheme of X ′, and the reader can check that p and q induces morphisms of smooth closed
S-pairs

(X,Z)← (Ω, Z)→ (An
Z , Z).

Applying again the preceding lemma, these morphisms induces isomorphisms on the associated
premotives. Thus we are reduced to the case of the closed S-pair (An

Z , Z). A direct computation
shows that DZ(A

n
Z) ≃ A1 × An

Z . Under this isomorphism d0 (resp. d1) corresponds to the 0-
section (resp. 1-section) of A1 ×An

Z corresponding to the first factor. Thus, we conclude using
the homotopy property. �

2.4.36. The interest of the previous theorem is to simplify the purity isomorphism. Let us
restate the assumptions on the triangulated premotivic category T :

• T satisfies properties (Nis-sep), (wLoc) and (Htp).

Then applying the above theorem, we get for any smooth closed S-pair (X,Z) a canonical isomor-
phism

(2.4.36.1) pX,Z :MS(X/X − Z)→MThS(NZX)

Corollary 2.4.37. Consider the assumptions and notations above.

(1) For any smooth pointed S-scheme (f, s) and any premotive K over S, we get a canonical
isomorphism

T h(f, s).K ≃MS(X/X − s(S))⊗S K
pX,S
−−−→MThS(Ns)⊗S K.

where the first isomorphism is given by the map (2.4.13.1) and Ns is the normal bundle
of s.

(2) For any smooth separated morphism of finite type f : X → S with tangent bundle45 Tf ,
and any premotive K over X, we get a canonical isomorphism:

pXX,X : Σf (K)
∼
−−→MThX(Tf )⊗X K

– here, (XX,X) stands for the closed pair corresponding to the diagonal embedding of
X/S.

In the assumption of point (2), we thus get a canonical map:

(2.4.37.1) f♯(K)
pf
−→ f!(ΣfK)

∼
−−→ f!

(
MThX(Tf )⊗X K

)

that we will still denote by pf and call the purity isomorphism associated with f .

Definition 2.4.38. Assume the triangulated premotivic category T satisfies (wLoc). As
usual, M(1) denotes the Tate twist of a premotive M .

An orientation t of T will be the data for each smooth scheme X and each vector bundle
E/X of rank n of an isomorphism

tE :MThX(E)→ 1X(n)[2n],

called the Thom isomorphism, satisfying the following coherence properties:

(a) Given a scheme X and an isomorphism of vector bundles ϕ : E → F of ranks n over X,
the following diagram is commutative:

MThX(E)

tE ))RRRRRRRRR

ϕ∗ // MThX(F ).

tFuukkkkkkkkk

1X(n)[2n]

45We define Tf as the normal bundle of the diagonal immersion δ : X → X ×S X.
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(b) For any morphism f : Y → X of schemes, and any vector bundle E/X of rank n with
pullback F over Y , the following diagram commutes:

f∗(MThX(E))

∼
��

f∗tE // f∗(1X(n)[2n])

∼
��

MThY (F )
tF // 1Y (n)[2n]

where the vertical maps are the canonical isomorphisms.
(c) For any scheme X and any exact sequence (σ) of vector bundles over X

0→ E′ ν
−→ E

π
−→ E′′ → 0,

if n (resp. m) denotes the rank of the vector bundle E′ (resp. E′′), the following diagram
commutes:

MThX(E)

tE

��

ThX(σ) // MThX(E′)⊗MThX(E′′)

tE′⊗tE′′

��
1X(n+m)[2n+ 2m] // 1X(n)[2n]⊗ 1X(m)[2m]

where the map ThX(σ) is the isomorphism (2.4.15.1) associated with (σ) and the bottom
vertical one is the obvious identification.

We will also say that T is oriented when the choice of one particular orientation is not essential.

Note that the Thom isomorphism can be viewed as a cohomology class in

H2n,n
T

(ThX(E)) := HomT (X)

(
MThX(E),1S(n)[2n]

)

which in classical homotopy theory is called the Thom class.

2.4.39. Suppose the triangulated premotivic category T satisfies the following properties:

• T satisfies properties (Nis-sep), (wLoc), (Htp).
• T admits an orientation t.

Consider a smooth closed S-pair (X,Z) of codimension n. Let p (resp. q) be the structural
morphism of X/S (resp. Z/S) and i : Z → X the associated immersion. Then we associate with
(X,Z) the following form of the purity isomorphism:

(2.4.39.1) ptX,Z :MS(X/X − Z)
pX,Z
−−−→MThS(NZX)

q♯(tNZX)
−−−−−−→MS(Z)(n)[2n]

where pX,Z is the isomorphism (2.4.36.1). For future reference, note that we deduce from this the
so-called Gysin morphism:

(2.4.39.2) i∗ :MS(X)
π
−→MS(X/X − Z)

pt

X,Z
−−−→MS(Z)(n)[2n]

where π is the following map:

MS(X) = p♯(1X)
ad(i∗,i∗)
−−−−−→ p♯i∗i

∗(1X) =MS(X/X − Z).

As a particular case, we get using the notation of Corollary 2.4.37, point (2), an isomorphism:

ptXX,X : Σf (K)
pXX,X
−−−−→MThX(Tf )⊗K

tTf
−−→ K(d)[2d]

In particular, when T satisfies property (Supp), the purity comparison map associated with f
can be rewritten as:

(2.4.39.3) ptf : f♯
pf
−−−→ f! ◦ Σf

pt

XX,X
−−−−−→ f!(d)[2d]

Example 2.4.40. Assume as in the above definition that T is premotivic and satisfies prop-
erties (wLoc) and (Nis-sep).

We suppose the following two additional conditions are fulfilled:
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(a’) There exists a morphism of triangulated premotivic categories:

ϕ∗ : SH ⇆ T : ϕ∗

where SH is the stable homotopy category of Morel and Voevodsky – see Example 1.4.3.
(b’) For any scheme X, let Pic(X) be the Picard group of X. We assume there exists an

application

c1 : Pic(X)→ H2,1
T

(X) := HomT (X)(M(X),1S(1)[2])

which is natural with respect to contravariant functoriality – we do not require c1 is a
morphism of abelian groups.

Then one can apply the results of [Dég08] to T (X) for any scheme X. All the references
which follows will be within loc. cit.: according to section 2.3.2, the triangulated category T (X)
satisfies the axioms of Paragraph 2.1.46 Then the existence of the Thom isomorphism follows
from Proposition 4.3 and, more explicitly, from Paragraph 4.4. Property (a) and (b) of the above
definition are easy – explicitly, this is a consequence of 4.10 – and Property (c) follows from Lemma
4.30.

To sum up, the assumptions (a’) and (b’) guarantees the existence of a canonical orientation of
T in the sense of the above definition. Moreover, the purity isomorphism (2.4.39.1) as well as the
Gysin morphism (2.4.39.2) associated in the preceding paragraph for this particular orientation
coincide with the one defined in [Dég08] (see in particular the unicity statement of [Dég08, Prop.
4.3]).

Note moreover that assuming T satisfies all the properties above except (b’), the data of an
orientation of T is equivalent to the data of a map c1 as in (b’). Indeed, if t is an orientation of
T , given any line bundle L/X with zero section s, we put c1(L) = ρ(tL) where ρ is the following
composite map:

H2,1
T

(ThX(L))→ H2,1
T

(L)
s∗
−→ H2,1

T
(X)

where the first map is induced by the canonical projectionMX(L)→MThX(L). Then c1 depends
only on the isomorphism classes of L/X – property (a) of the above definition – and it is compatible
with pullbacks – property (c) of the above definition.

2.4.41. We now assume the following conditions on the triangulated premotivic category T :

• T satisfies properties (Nis-sep), (wLoc), (Htp) and (Stab).
• T admits an orientation t.

Let f : X → S be a smooth proper morphism of dimension d. Note we do not need that T

satisfies property (Supp) to rewrite the purity comparison map as follows:

(2.4.41.1) ptf : f♯ → f∗(d)[2d]

(see Paragraph 2.4.39).
Note also that using the Gysin morphism (2.4.39.2) associated with the diagonal immersion

δ : X → X ×S X, we get the following morphism:

(2.4.41.2) µt
f :MS(X)⊗MS(X)(−d)[−2d] =MS(X ×S X)(−d)[−2d]

δ∗
−−→MS(X)

f∗
−−−→ 1S .

Theorem 2.4.42. Consider the assumptions and notations above. Then the following condi-
tions are equivalent:

(i) f is pure: pf is an isomorphism.
(i’) The natural transformation pf .f

∗ is an isomorphism.
(ii) The premotive MS(X) is strongly dualizable and µt

f is a perfect pairing.

46Note in particular that for any smooth closed S-pair, we obtain a canonical isomorphism in T (S) of the

form:

ϕ∗(Σ∞X/X − Z) ≃MS(X/X − Z)

where one the left hand side X/X −Z stands for the homotopy cofiber of the open immersion (X −Z) → X while
the left hand side is defined by Equality (2.4.32.1).
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Proof. In this proof, we put τ(K) = K(d)[2d]. As T satisfies property (Stab), f∗ com-
mutes with Tate twist (def. 1.1.44). This means we the following exchange transformation is an
isomorphism:

(2.4.42.1) Exτ : τf∗ → f∗τ.

We first prove that (i) is equivalent to (i’). One implication is obvious so that we have only
to prove that (i’) implies (i). Guided by a method of Ayoub (see [Ayo07a, 1.7.14, 1.7.15], we will
construct a right inverse φ1 and a left inverse φ2 to the morphism ptf as the following composite
maps:

φ1 :f∗τ
ad(f∗,f∗)
−−−−−−→ f∗f

∗f∗τ
Ex−1

τ−−−→ f∗f
∗τf∗ = f∗τf

∗f∗
(pt

f .f
∗f∗)

−1

−−−−−−−−→ f♯f
∗f∗

ad′(f∗,f∗)
−−−−−−→ f♯

φ2 :f∗τ
βf
−→ f∗τf

∗f♯
(pt

f .f
∗f♯)

−1

−−−−−−−−→ f♯f
∗f♯

ad′(f♯,f
∗)

−−−−−−→ f♯.

Let us check that ptf ◦ φ1 = 1. To prove this relation, we prove that the following diagram is
commutative:

f∗τ
ad(f∗,f∗)// f∗f∗f∗τ

Ex−1
τ // f∗τf∗f∗

(pt

ff
∗f∗)

−1

// f♯f∗f∗
ad′(f∗,f∗) //

(1)

f♯
pt

f // f∗τ

f∗τf
∗f∗

(pt

ff
∗f∗)

−1

//

(2)

f♯f
∗f∗

pt

ff
∗f∗ // f∗τff∗

ad′(f∗,f∗)// f∗τ

f∗f
∗f∗τ

Ex−1
τ //

(3)

f∗τf
∗f∗ ad′(f∗,f∗) // f∗τ

f∗τ
ad(f∗,f∗)// f∗f∗f∗τ ad′(f∗,f∗) // f∗τ.

The commutativity of (1) and (2) is obvious and the commutativity of (3) follows from Formula
(2.4.42.1) defining Exτ . Then the result follows from the usual formula between the unit and
counit of an adjunction. The relation φ2 ◦ p

t
f = 1 is proved using the same kind of computations.

It remains to prove that (i) and (i’) are equivalent to (ii). We already know from Proposition
2.4.31 that (i) implies the premotive MS(X) is strongly dualizable. Saying that µt

f is a perfect
pairing amounts to prove that the natural transformation obtained by adjunction

dtf : (MS(X)⊗−)→ Hom(MS(X),−(d)[2d])

is an isomorphism. On the other hand, as we have already seen previously, the smooth projection
formula implies an identification of functors:

f♯f
∗ ≃ (MS(X)⊗−),

f∗f
∗ ≃ Hom(MS(X),−).

(2.4.42.2)

Thus, to finish the proof, it will be enough to show that the map

f♯f
∗

pt

ff
∗

−−−→ f∗τf
∗ = f∗f

∗τ.

is equal to dtf through the identifications (2.4.42.2).
Let us consider the following cartesian square

X ×S X
f ′′

//

f ′

��
∆

X

f

��
X

f
// S
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and put g = f ◦ f ′′. According to the definition of µt
f , and notably Formula (2.4.39.2) for the

Gysin map δ∗, the natural transformation of functors (µt
f ⊗−) can be described as the following

compositum:

f♯f
∗f♯f

∗
Ex(∆∗

♯ )
−−−−−→ f♯f

′
♯f

′′∗f∗ = g♯g
∗ ad(δ∗,δ∗)
−−−−−−→g♯δ∗δ

∗g∗

=f♯f
′
♯δ∗f

∗
pt

XX,X
−−−−→ f♯τf

∗ = f♯f
∗τ

ad′(f♯,f
∗)

−−−−−−→ τ.

Note in particular that the base change map Ex(∆∗
♯ ) corresponds to the first identification in

Formula (2.4.41.2). Thus we have to prove the preceding composite map is equal to the following
one, obtained by adjunction from ptf :

f♯f
∗f♯f

∗ = f♯f
∗f♯f

′′
∗ δ∗f

∗ Ex(∆♯∗)
−−−−−→f♯f

∗f∗f
′
♯δ∗f

∗

pt

XX,X
−−−−→ f♯f

∗f∗τf
∗ = f♯f

∗f∗f
∗τ

ad′(f∗,f∗)
−−−−−−→ f♯f

∗τ
ad′(f♯,f

∗)
−−−−−−→ τ

This amounts to prove, after some easy cancellation, the commutativity of the following diagram:

f∗f♯

Ex(∆∗
♯ )

��

f∗f♯f
′′
∗ δ∗

Ex(∆♯∗) // f∗f∗f ′′♯ δ∗

ad′(f∗,f∗)

��
f ′♯f

′′∗ ad(δ∗,δ∗) // f ′♯δ∗δ
∗f ′′∗ f ′♯δ∗.

According to the definition of the exchange transformation Ex(∆♯∗) (cf Paragraph 1.1.14), we can
divide this diagram into the following pieces:

f∗f♯

Ex(∆∗
♯ )

��

f∗f♯f
′′
∗ δ∗

ad(f∗,f∗) //

Ex(∆∗
♯ )

��

f∗f∗f
∗f♯f

′′
∗ δ∗

Ex(∆∗
♯ ) // f∗f∗f ′♯f

′′∗f ′′∗ δ∗
ad′(f ′′∗,f ′′

∗ )//

ad′(f∗,f∗)

��

f∗f∗f
′′
♯ δ∗

ad′(f∗,f∗)

��
f ′♯f

′′∗ f ′♯f
′′∗f ′′∗ δ∗

ad(f∗,f∗)

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
f ′♯f

′′∗f ′′∗ δ∗
ad′(f ′′∗,f ′′

∗ ) // f ′♯δ∗

f ′♯f
′′∗

ad(δ∗,δ∗) //

(∗)

f ′♯δ∗.

Every part of this diagram is obviously commutative except for part (∗). As f ′′δ = 1, the axioms
of a 2-functors (for f∗ and f∗ say) implies that the unit map

α : f ′♯f
′′∗ → f ′♯f

′′∗(f ′′δ)∗(f
′′δ)∗

is the canonical identification that we get using 1∗ = 1 and 1∗ = 1. We can consider the following
diagram:

f ′♯f
′′∗ α f ′♯f

′′∗(f ′′δ)∗(f
′′δ)∗ f ′♯f

′′∗f ′′∗ δ∗

ad′(f ′′∗,f ′′
∗ )

��

f ′♯f
′′∗ ad(f ′′∗,f ′′

∗ ) // f ′♯f
′′∗f ′′♯ f

′′∗ ad(δ∗,δ∗) //

ad′(f ′′∗,f ′′
∗ )

��

f ′♯f
′′∗(f ′′δ)∗(f

′′δ)∗

ad′(f ′′∗,f ′′
∗ )

��
f ′♯f

′′∗ f ′♯f
′′∗ ad(δ∗,δ∗) // f ′♯δ∗δ

∗f ′′∗ f ′♯δ∗

for which each part is obviously commutative. This concludes. �
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As a corollary, together with the results of [Dég08], we get the following theorem:

Corollary 2.4.43. Let us assume the following conditions on the triangulated premotivic
category T :

(a) T satisfies properties (Nis-sep), (wLoc), (Htp) and (Stab).
(b) T admits an orientation t.
(c) There exists a morphism of triangulated premotivic categories:

ϕ∗ : SH ⇆ T : ϕ∗ .

Then any smooth projective morphism is T -pure. In particular, T is weakly pure.

Proof. According to Example 2.4.40, one can apply the results of [Dég08] to the triangulated
category T (X). Then it follows from [Dég08, 5.23] that condition (ii) of the above theorem is
satisfied. �

Remark 2.4.44. This theorem is to be compared with the result of Ayoub recalled in Theorem
2.4.28. On the one hand, if T satisfies the localization property, we get another proof of this result
under the additional assumption that T is oriented. On the other hand, the above theorem does
not require the assumption that T satisfies (Loc); this is important as we can only prove (wLoc)
for the category DMΛ introduced in Definition 11.1.1.

2.4.d. Motivic categories. This section summarizes the main constructions of this part and
draws a conclusive theorem.

Definition 2.4.45. A motivic triangulated category over S is a premotivic triangulated cat-
egory over S which satisfies the homotopy, stability, localization and adjoint property.

Remark 2.4.46. Without the adjoint property, this definition corresponds to what Ayoub
called a monoidal stable homotopy 2-functor (cf [Ayo07a, def. 2.3.1]). We think our shorter
terminology fits well in the spirit of the current theory of mixed motives.

Remark 2.4.47. Assume T is a premotivic triangulated category such that:

(1) T is well generated.
(2) T satisfies the homotopy and stability properties.
(3) T satisfies the localization property.

Then T is a motivic triangulated category in the above sense. Indeed, property (Adj) is proved
under the above assumptions in point (4) of Theorem 2.4.26. Note also that if T is compactly
τ -generated, we simply obtain property (Adj) from Lemma 2.2.16.47

Example 2.4.48. According to the previous remark, the premotivic category SH of example
1.4.3 is a motivic category. In fact, property (1) is proved in [Ayo07a, 4.5.67], property (2) follows
by definition and property (3) is proved in [Ayo07a, 4.5.44].

2.4.49. In the next theorem, we summarize what is now called the Grothendieck 6 functors
formalism. In fact, this is a consequence of the axioms in the above definition, as a result of the
work done in previous sections. More precisely:

• We apply Theorem 2.4.26 using the theorem of Ayoub recalled in 2.4.28, and use the
generalized theorem of Morel and Voevodsky, Theorem 2.4.35, to get the form (2.4.37.1)
of the purity isomorphism.
• In the case where T is oriented, we use the form (2.4.41.1) of the purity isomorphism.
Recall that, when T satisfies assumption (c) of Corollary 2.4.43, then we have given a
different proof of the Theorem of Ayoub and the theorem below follows from 2.4.26 and
2.4.43.

47In our examples, (1) will always be satisfied, (2) will be obtained by construction and (3) will be the hard
point.
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Theorem 2.4.50. Let T be a motivic triangulated category.
Then, for any separated morphism of finite type f : Y → X in S , there exists a pair of adjoint

functors, the exceptional functors,

f! : T (Y ) ⇄ T (X) : f !

such that:

(1) There exists a structure of a covariant (resp. contravariant) 2-functor on f 7→ f! (resp.
f 7→ f !).

(2) There exists a natural transformation αf : f! → f∗ which is an isomorphism when f is
proper. Moreover, α is a morphism of 2-functors.

(3) For any smooth separated morphism of finite type f : X → S in S with tangent bundle
Tf , there are canonical natural isomorphisms

pf : f♯ −→ f!
(
MThX(Tf )⊗X .

)

p′f : f∗ −→MThX(−Tf )⊗X f !

which are dual to each other – the Thom premotive MThX(Tf ) is ⊗-invertible with
inverse MThX(−Tf ).

If T admits an orientation t and f has dimension d then there are canonical natural
isomorphisms

ptf : f♯ −→ f!(d)[2d]

p′tf : f∗ −→ f !(−d)[−2d]

which are dual to each other.
(4) For any cartesian square:

Y ′
f ′

//

g′

��
∆

X ′

g
��

Y
f

// X,

such that f is separated of finite type, there exist natural isomorphisms

g∗f!
∼
−→ f ′! g

′∗ ,

g′∗f
′! ∼
−→ f !g∗ .

(5) For any separated morphism of finite type f : Y → X in S , there exist natural isomor-
phisms

Ex(f∗! ,⊗) : (f!K)⊗X L
∼
−−→ f!(K ⊗Y f

∗L) ,

HomX(f!(L),K)
∼
−−→ f∗HomY (L, f

!(K)) ,

f !HomX(L,M)
∼
−−→ HomY (f

∗(L), f !(M)) .

Remark 2.4.51. It is important to precise that in the case where the morphisms in S are
assumed to be quasi-projective, this theorem is proved by Ayoub in [Ayo07a] if we except the
case where T is oriented in point (3).48

With regards to this theorem, our contribution is to extend the result of Ayoub to the non
quasi-projective case and to consider the oriented case – which is crucial in the theory of motives.
Recall also we have given another proof of this result in the case where the motivic category T

satisfies in addition the assumptions of Corollary 2.4.43 – which will always be the case for the
different categories of motives introduced here.

48This theorem was first announced by Voevodsky but only notes covering the basic setting were to be found
by the time Ayoub wrote the proof.
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Remark 2.4.52. The purity isomorphism is compatible with composition. Given smooth
separated morphisms of finite type

Y
g
−→ X

f
−→ S

we obtain (cf. [EGA4, 17.2.3]) an exact sequence of vector bundles over Y

(σ) 0→ g−1Tf → Tfg → Tg → 0.

which according to Remark 2.4.15 induces an isomorphism:

ǫσ :MThY (Tfg)
MThY (σ)
−−−−−−→MThY (Tg)⊗Y MThY (g

−1Tf )
∼
−→ g∗MThX(Tf )⊗Y MThY (Tg).

One can check the following diagram is commutative:

(fg)♯(K)

pfg

��

f♯g♯(K)

pf◦pg

��

f!

(

MThX(Tf )⊗X g!
(
MThY (Tg)⊗Y K

))

Ex(g∗! ,⊗)−1

��
f!g!
(
g∗MThY (Tf )⊗Y MThY (Tg)⊗Y K

)

ǫ−1
σ

��
(fg)!(MTh(Tfg)⊗K) f!g!(MTh(Tfg)⊗K).

This is not an easy check.49 In fact, this is one of the key technical point in the proof of the main
Theorem of Ayoub ([Ayo07a, 1.4.2]). We refer the reader to [Ayo07a, 1.5] for details.

Note also that given the commutativity of the above diagram, if T admits an orientation t,
it readily follows from axiom (c) of Definition 2.4.38 that the following diagram is commutative:

(fg)♯(K)

pt

fg

��

f♯g♯(K)

pt

f◦p
t

g

��
(fg)!(K)(n+m)[2n+ 2m] f!g!(K)(n+m)[2n+ 2m]

where n (resp. m) is the relative dimension of f (resp. g).

Morphisms of triangulated motivic categories are compatible with Grothendieck 6 operations
in the following sense:

Proposition 2.4.53. Let T and T ′ be motivic triangulated categories and

ϕ∗ : T ⇄ T
′ : ϕ∗

be an adjunction of premotivic categories.
Then ϕ∗ (resp. ϕ∗) commutes with the operations f∗ (resp. f∗) for any morphism of schemes

f , p! (resp. p
!) for any separated morphism p of finite type.

Moreover, ϕ∗ is monoidal and for any premotive M ∈ T (S), N ∈ T ′(S), the canonical map

Hom(M,ϕ∗(N))→ ϕ∗Hom(ϕ∗(M), N)

is an isomorphism.

Proof. The only thing to prove is that ϕ∗ commutes with p! as the other statements follows
either from the definitions or by adjunction. This follows from Proposition 2.3.11, the purity
property in T and T ′ (property (3) in the above theorem) and the fact ϕ∗ commutes with p♯
when p is smooth by assumption. �

49The main point is to check that the isomorphism of Theorem 2.4.35 is compatible with composition (of
closed immersions). On that particular point, see [Dég08, Th. 4.32, Cor. 4.33].
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Remark 2.4.54. With additional assumptions on T and T ′ and over a field, we will see that
ϕ∗ commutes with all of the six operations (see Theorem 4.4.25).

3. Descent in P-fibred model categories

3.0. In this section, S is an abstract category and P an admissible class of morphisms in S .
In section 3.3 however, we will consider as in 2.0 a noetherian base scheme S and we will

assume that S is an adequate category of S-schemes satisfying the following condition on S :

(a) Any scheme in S is finite dimensional.

Moreover, in sections 3.3.c and 3.3.d, we will even assume:

(a′) Any scheme in S is quasi-excellent and finite dimensional.

We fix an admissible class P of morphisms in S which contains the class of étale morphisms
in S and a stable combinatorial P-fibred model category M over S .
In section 3.3.d, we will assume furthermore that:

(b) The stable model P-fibred category M is Q-linear (see 3.2.14).

3.1. Extension of P-fibred categories to diagrams.
3.1.a. The general case.

3.1.1. Assume given a P-fibered category M over S . Then M can be extended to S -
diagrams (i.e. functors from a small category to S ) as follows. Let I be a small category, and
X a functor from I to S . For an object i of I, we will denote by Xi the fiber of X at i (i.e.
the evaluation of X at i), and, for a map u : i→ j in I, we will still denote by u : Xi → Xj the
morphism induced by u. We define the category M (X , I) as follows.

An object of M (X , I) is a couple (M,a), where M is the data of an object Mi in M (Xi) for
any object i of I, and a is the data of a morphism au : u∗(Mj)→Mi for any morphism u : i→ j
in I, such that, for any object i of I, the map a1i is the identity of Mi (we will always assume
that 1∗i is the identity functor), and, for any composable morphisms u : i→ j and v : j → k in I,
the following diagram commutes.

u∗v∗(Mk)

u∗(av)

��

≃ // (vu)∗(Mk)

avu

��
u∗(Mj) au

// Mi

A morphism p : (M,a)→ (N, b) is a collection of morphisms

pi :Mi → Ni

in M (Xi), for each object i in I, such that, for any morphism u : i→ j in I, the following diagram
commutes.

u∗(Mj)
u∗(pj) //

au

��

u∗(Nj)

bu

��
Mi pi

// Ni

In the case where M is a monoidal P-fibred category, the category M (X , I) is naturally endowed
with a symmetric monoidal structure. Given two objects (M,a) and (N, b) of M (X , I), their
tensor product

(M,a)⊗ (N, b) = (M ⊗N, a⊗ b)

is defined as follows. For any object i of I,

(M ⊗N)i =Mi ⊗Ni ,

and for any map u : i→ j in I, the map (a⊗ b)u is the composition of the isomorphism u∗(Mj ⊗
Nj) ≃ u

∗(Mj)⊗ u
∗(Nj) with the morphism

au ⊗ bu : u∗(Mj)⊗ u
∗(Nj)→Mi ⊗Ni .
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Note finally that if M is a complete monoidal P-fibred category, then M (X , I) admits an internal
Hom.

3.1.2. Evaluation functors. Assume now that for any S, M (S) admits small sums.
For each object i of I, we have a functor

(3.1.2.1)
i∗ : M (X , I)→M (Xi)

(M,a) 7−→Mi

called the evaluation functor associated with i. This functor i∗ has a left adjoint

(3.1.2.2) i♯ : M (Xi)→M (X , I)

defined as follows. If M is an object of M (Xi), then i♯(M) is the data (M ′, a′) such that for any
object j of I,

(3.1.2.3) (i♯(M))j =M ′
j =

∐

u∈HomI(j,i)

u∗(M) ,

and, for any morphism v : k → j in I, the map a′v is the canonical map induced by the collection
of maps

(3.1.2.4) v∗u∗(M) ≃ (uv)∗(M)→
∐

w∈HomI(k,i)

w∗(M)

for u ∈ HomI(j, i).
If we assume that M is a complete P-fibred category and that M (S) admits small products

for any S, then i∗ has a right adjoint

(3.1.2.5) i∗ : M (Xi)→M (X , I)

given, for any object M of M (Xi) by the formula

(3.1.2.6) (i∗(M))j =
∏

u∈HomI(i,j)

u∗(M),

with transition map given by the dual formula of 3.1.2.4.

3.1.3. Functoriality. Assume that M if a P-fibred category suth that for any object S of S ,
M (S) has small colimits.

Remember that, if X and Y are S -diagrams, indexed respectively by small categories I and
J , a morphism of S -diagrams ϕ : (X , I) → (Y , J) is a couple ϕ = (α, f), where f : I → J is a
functor, and α : X → f∗(Y ) is a natural transformation (where f∗(Y ) = Y ◦ f). In particular,
for any object i of I, we have a morphism

αi : Xi → Yf(i)

in S . This turns S -diagrams into a strict 2-category: the identity of (X , I) is the couple
(1X , 1I), and, if ϕ = (α, f) : (X , I) → (Y , J) and ψ = (β, g) : (Y , J) → (Z ,K) are two
composable morphisms, the morphism ψ ◦ ϕ : (X , I) → (Z ,K) is the couple (gf, γ), where for
each object i of I, the map

γi : Xi → Zg(f(i))

is the composition

Xi
αi−−−→ Yf(i)

βf(i)
−−−→ Zg(f(i)) .

There is also a notion of natural transformation between morphisms of S -diagrams: if ϕ = (α, f)
and ϕ′ = (α′, f ′) are two morphisms from (X , I) to (Y , J), a natural transformation t from ϕ to
ϕ′ is a natural transformation t : f → f ′ such that the following diagram of functors commutes.

X

α

||xxxxxxxx
α′

##G
GGGGGGG

Y ◦ f
t

// Y ◦ f ′
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This makes the category of S -diagrams a (strict) 2-category.
To a morphism of diagrams ϕ = (α, f) : (X , I)→ (Y , J), we associate a functor

ϕ∗ : M (Y , J)→M (X , I)

as follows. For an object (M,a) of M (Y ), ϕ∗(M,a) = (ϕ∗(M), ϕ∗(a)) is the object of M (X )
defined by ϕ∗(M)i = α∗

i (Mf(i)) for i in I, and by the formula

ϕ∗(a)u = α∗
i (af(u)) : α

∗
i f(u)

∗(Mf(j)) = u∗ α∗
j (Mf(j))→ α∗

i (Mf(i))

for u : i→ j in I.
We will say that a morphism ϕ : (X , I)→ (Y , J) is a P-morphism if, for any object i in I,

the morphism αi : Xi → Yf(i) is a P-morphism. For such a morphism ϕ, the functor ϕ∗ has a
left adjoint which we denote by

ϕ♯ : M (X , I)→M (Y , J) .

For instance, given a S -diagram X indexed by a small category I, each object i of I defines a
P-morphism of diagrams i : Xi → (X , I) (where Xi is indexed by the terminal category), so
that the corresponding the functor i♯ corresponds precisely to (3.1.2.2).

Assume that M is a complete P-fibred category such that M (S) has small limits for any
object S of S . Then the functor ϕ∗ has a right adjoint which we denote by

ϕ∗ : M (X , I)→M (Y , J) .

In the case where ϕ is the morphism i : Xi → (X , I) defined by an object i of I, i∗ corresponds
precisely to (3.1.2.5).

Remark 3.1.4. This construction can be applied in particular to any Grothendieck abelian
(monoidal) P-fibred category (cf. definition 1.3.8). The triangulated case cannot be treated in
general without assuming a thorough structure – this is the purpose of the next section.

3.1.b. The model category case.

3.1.5. Let M be a P-fibred model category over S (cf. 1.3.22). Given a S -diagram X

indexed by a small category I, we will say that a morphism of M (X , I) is a termwise weak
equivalence (resp. a termwise fibration, resp. a termwise cofibration) if, for any object i of I, its
image by the functor i∗ is a weak equivalence (resp. a fibration, resp. a cofibration) in M (Xi).

Proposition 3.1.6. If M is a cofibrantly generated P-fibred model category over S , then, for
any S -diagram X indexed by a small category I, the category M (X , I) is a cofibrantly generated
model category whose weak equivalences (resp. fibrations) are the termwise weak equivalences (resp.
the termwise fibrations). This model category structure on M (X , I) will be called the projective
model structure.

Moreover, any cofibration of M (X , I) is a termwise cofibration, and the family of functors

i∗ : Ho(M )(X , I)→ Ho(M )(Xi) , i ∈ Ob(I) ,

is conservative.
If M is left proper (resp. right proper, resp. combinatorial, resp. stable), then so is the

projective model category structure on M (X ).

Proof. Let X δ be the S -diagram indexed by the set of objects of I (seen as a discrete
category), whose fiber at i is Xi. Let ϕ : (X δ,Ob I) → (X , I) be the inclusion (i.e. the map
which is the identity on objects and which is the identity on each fiber). As ϕ is clearly a P-
morphism, we have an adjunction

ϕ♯ : M (X δ,Ob I) ≃
∏

i

M (Xi) ⇄ M (X , I) : ϕ∗ .

The functor ϕ♯ can be made explicit: it sends a family of objects (Mi)i (with Mi in M (Xi))
to the sum of the i♯(Mi)’s indexed by the set of objects of I. Note also that this proposition is
trivially verified whenever X δ = X . Using the explicit formula for i♯ given in 3.1.2, it is then
straightforward to check that the adjunction (ϕ♯, ϕ

∗) satisfies the assumptions of [Cra95, Theorem
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3.3], which proves the existence of the projective model structure on M (X , I). Furthermore, the
generating cofibrations (resp. trivial cofibrations of M (X , I)) can be described as follows. For
each object i of I, let Ai (resp. Bi) be a generating set of cofibrations (resp. of trivial cofibrations
in M (Xi). The class of termwise trivial fibrations (resp. of termwise fibrations) of M (X , I) is the
class of maps which have the right lifting property with respect to the set A = ∪i∈I i♯(Ai) (resp.
to the set B = ∪i∈I i♯(Bi)). Hence, the set A (resp. B) generates the class of cofibrations (resp.
of trivial cofibrations). In particular, as any element of A is a termwise cofibration (which follows
immediately from the explicit formula for i♯ given in 3.1.2), and as termwise cofibrations are stable
by pushouts, transfinite compositions and retracts, any cofibration is a termwise cofibration (by
the small object argument).

As any fibration (resp. cofibration) of M (X , I) is a termwise fibration (resp. a termwise
cofibration), it is clear that, whenever the model categories M (Xi) are right (resp. left) proper,
the model category M (X , I) has the same property.

The functor ϕ∗ preserves fibrations and cofibrations, while it also preserves and detects weak
equivalences (by definition). This implies that the induced functor

ϕ∗ : Ho(M )(X , I)→ Ho(M )(X δ,Ob I) ≃
∏

i

Ho(M )(Xi)

is conservative (using the facts that the set of maps from a cofibrant object to a fibrant object in
the homotopy category of a model category is the set of homotopy classes of maps, and that a
morphism of a model category is a weak equivalence if and only if it induces an isomorphism in
the homotopy category). As ϕ∗ commutes to limits and colimits, this implies that it commutes
to homotopy limits and to homotopy colimits (up to weak equivalences). Using the conservativity
property, this implies that a commutative square of M (X , I) is a homotopy pushout (resp. a
homotopy pullback) if and only if it is so in M (X δ,Ob I). Remember that stable model categories
are characterized as those in which a commutative square is a homotopy pullback square if and
only if it is a homotopy pushout square. As a consequence, if all the model categories M (Xi) are
stable, as M (X δ,Ob I) is then obviously stable as well, the model category M (X , I) has the
same property.

It remains to prove that, if M (X, I) is a combinatorial model category for any object X of
S , then M (X , I) is combinatorial as well. For each object i in I, let Gi be a set of accessible
generators of M (Xi). Note that, for any object i of I, the functor i♯ has a left adjoint i∗ which
commutes to colimits (having itself a right adjoint i∗). It is then easy to check that the set of
objects of shape i♯(M), for M in Gi and i in I, is a small set of accessible generators of M (X , I).
This implies that M (X , I) is accessible and ends the proof. �

Proposition 3.1.7. Let M be a combinatorial P-fibred model category over S . Then, for
any S -diagram X indexed by a small category I, the category M (X , I) is a combinatorial model
category whose weak equivalences (resp. cofibrations) are the termwise weak equivalences (resp.
the termwise cofibrations). This model category structure on M (X , I) will be called the injective
model structure50. Moreover, any fibration of the injective model structure on M (X , I) is a
termwise fibration.

If M is left proper (resp. right proper, resp. stable), then so is the injective model category
structure on M (X , I).

Proof. See [Bar10, Theorem 2.28] for the existence of such a model structure (if, for any
object X in S , all the cofibrations of M (X) are monomorphisms, this can also be done following
mutatis mutandis the proof of [Ayo07a, Proposition 4.5.9]). Any trivial cofibration of the pro-
jective model structure being a termwise trivial cofibration, any fibration of the injective model
structure is a fibration of the projective model structure, hence a termwise fibration.

The assertions about properness follows from their analogs for the projective model structure
and from [Cis06, Corollary 1.5.21] (or can be proved directly; see [Bar10, Proposition 2.31]).

50Quite unfortunately, this corresponds to the ‘semi-projective’ model structure introduced in [Ayo07a, Def.
4.5.8].
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Similarly, the assertion on stability follows from their analogs for the projective model structure.
�

3.1.8. From now on, we assume that a combinatorial P-fibred model category M over S is
given. Then, for any S -diagram (X , I), we have two model category structures on M (X , I), and
the identity defines a left Quillen equivalence from the projective model structure to the injective
model structure. This fact will be used for the understanding of the functorialities coming from
morphisms of diagrams of S-schemes.

3.1.9. The category of S -diagrams admits small sums. If {(Yj , Ij)}j∈J is a small family of
S -diagrams, then their sum is the S -diagram (X , I), where

I =
∐

j∈J

Ij ,

and X is the functor from I to S defined by

Xi = Yj whenever i ∈ Ij .

Proposition 3.1.10. For any small family of S -diagrams {(Yj , Ij)}j∈J , the canonical functor

Ho(M )
(∐

j∈J

Yj

)

→
∏

j∈J

Ho(M )(Yj)

is an equivalence of categories.

Proof. The functor

M

(∐

j∈J

Yj

)

→
∏

j∈J

M (Yj)

is an equivalence of categories. It thus remains an equivalence after localization. To conclude, it
is sufficient to see that the homotopy category of a product of model categories is the product of
their homotopy categories, which follows rather easily from the explicit description of the homotopy
category of a model category; see e.g. [Hov99, Theorem 1.2.10]. �

Proposition 3.1.11. Let ϕ = (α, f) : (X , I)→ (Y , J) be a morphism of S -diagrams.

(i) The adjunction ϕ∗ : M (Y , J) ⇄ M (X , I) : ϕ∗ is a Quillen adjunction with respect to
the injective model structures. In particular, it induces a derived adjunction

Lϕ∗ : Ho(M )(Y , J) ⇄ Ho(M )(X , I) : Rϕ∗ .

(ii) If ϕ is a P-morphism, then the adjunction ϕ♯ : M (X , I) ⇄ M (Y , J) : ϕ∗ is a Quillen
adjunction with respect to the projective model structures, and the functor ϕ∗ preserves
weak equivalences. In particular, we get a derived adjunction

Lϕ♯ : Ho(M )(X , I) ⇄ Ho(M )(Y , J) : Lϕ∗ = ϕ∗ = Rϕ∗ .

Proof. The functor ϕ∗ obviously preserves termwise cofibrations and termwise trivial cofi-
brations (we reduce to the case of a morphism of S using the explicit description of ϕ∗ given
in 3.1.3), which proves the first assertion. Similarly, the second assertion follows from the fact
that, under the assumption that ϕ is a P-morphism, the functor ϕ∗ preserves termwise weak
equivalences (see Remark 1.3.23), as well as termwise fibrations. �

3.1.12. The computation of the (derived) functors Rϕ∗ (and Lϕ♯ whenever it makes sense)
given by Proposition 3.1.11 has to do with homotopy limits (and homotopy colimits). It is easier
to first understand this in the non derived version as follows.

Consider first the trivial case of a constant S -diagram: let X be an object of S , and I a
small category. Then, seeing X as the constant functor I → S with value X, we have a projection
map pI : (X, I) → X. From the very definition, the category M (X, I) is simply the category of
presheaves on I with values in M (X), so that the inverse image functor

(3.1.12.1) p∗I : M (X)→M (X, I) = M (X)I
op
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is the ‘constant diagram functor’, while its right adjoint

(3.1.12.2) lim
←−
Iop

= pI,∗ : M (X, I)→M (X)

is the limit functor, and its left adjoint,

(3.1.12.3) lim
−→
Iop

= pI,♯ : M (X, I)→M (X)

is the colimit functor.
Let S be an object of S . A S -diagram over S is the data of a S -diagram (X , I), together

with a morphism of S -diagrams p : (X , I)→ S (i.e. its a S /S-diagram). Such a map p factors
as

(3.1.12.4) (X , I)
π
→ (S, I)

pI→ S ,

where π = (p, 1I). Then one checks easily that, for any object M of M (X , I), and for any object
i of I, one has

(3.1.12.5) π∗(M)i ≃ pi,∗(Mi) ,

where pi : Xi → S is the structural map, from which we deduce the formula

(3.1.12.6) p∗(M) ≃ lim
←−
i∈Iop

π∗(M)i ≃ lim
←−
i∈Iop

pi,∗(Mi) ,

Remark that, if I is a small category with a terminal object ω, then any S -diagram X indexed by
I is a S -diagram over Xω, and we deduce from the computations above that, if p : (X , I)→Xω

denotes the canonical map, then, for any object M of M (X , I),

(3.1.12.7) p∗(M) ≃Mω .

Consider now a morphism of S -diagrams ϕ = (α, f) : (X , I) → (Y , J). For each object j,
we can form the following pullback square of categories.

I/j
uj //

f/j

��

I

f

��
J/j

vj
// J

(3.1.12.8)

in which J/j is the category of objects of J over j (which has a terminal object, namely (j, 1j),
and vj is the canonical projection; the category I/j is thus the category of pairs (i, a), where i is
an object of I, and a : f(i)→ j a morphism in J . From this, we can form the following pullback
of S -diagrams

(X /j, I/j)
µj //

ϕ/j

��

(X , I)

ϕ

��
(Y /j, J/j)

νj
// (Y , J)

(3.1.12.9)

in which X /j = X ◦ uj , Y /j = Y ◦ vj , and the maps µj and νj are the one induced by uj and
vj respectively. For an object M of M (X , I) (resp. an object N of M (Y , J)), we define M/j
(resp. N/j) as the object of M (X /j, I/j) (resp. of M (Y /j, J/j)) obtained as M/j = µ∗

j (M)
(resp. N/j = ν∗j (N)). With these conventions, for any object M of M (X , I) and any object j of
the indexing category J , one gets the formula

(3.1.12.10) ϕ∗(M)j ≃ (ϕ/j)∗(M/j)(j,1j) ≃ lim
←−

(i,a)∈I/jop
αi,∗(Mi) .

This implies that the natural map

(3.1.12.11) ϕ∗(M)/j = ν∗j ϕ∗(M)→ (ϕ/j)∗ µ
∗
j (M) = (ϕ/j)∗(M/j)
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is an isomorphism: to prove this, it is sufficient to obtain an isomorphism from (3.1.12.11) after
evaluating by any object (j′, a : j′ → j) of J/j, which follows readily from (3.1.12.10) and from
the obvious fact that (I/j)/(j′, a) is canonically isomorphic to I/j′.

In order to deduce from the computations above their derived versions, we need two lemmata.

Lemma 3.1.13. Let X be a S -diagram indexed by a small category I, and i an object of I.
Then the evaluation functor

i∗ : M (X , I)→M (Xi)

is a right Quillen functor with respect to the injective model structure, and it preserves weak
equivalences.

Proof. Proving that the functor i∗ is a right Quillen functor is equivalent to proving that its
left adjoint (3.1.2.2) is a left Quillen functor with respect to the injective model structure, which
follows immediately from its computation (3.1.2.3), as, in any model category, cofibrations and
trivial cofibrations are stable by small sums. The last assertion is obvious from the very definition
of the weak equivalences in M (X , I). �

Lemma 3.1.14. For any pullback square of S -diagrams of shape (3.1.12.9), the functors

µ∗
j : M (X , I)→M (X /j, I/j) , M 7→M/j

ν∗j : M (Y , I) →M (Y /j, J/j) , N 7→ N/j

are right Quillen functors with respect to the injective model structure, and they preserve weak
equivalences.

Proof. It is sufficient to prove this for the functor µ∗
j (as ν∗j is simply the special case where

I = J and f is the identity). The fact that µ∗
j preserves weak equivalences is obvious, so that it

remains to prove that it is a right Quillen functor. We thus have to prove that left adjoint of µ∗
j ,

µj,♯ : M (X /j, I/j)→M (X , I) ,

is a left Quillen functor. In other words, we have to prove that, for any object i of I, the functor

i∗µj,♯ : M (X , I)→M (X )

is a left Quillen functor. For any object M of M (X , I), we have a natural isomorphism

i∗µj,♯(M) ≃
∐

a∈HomJ (f(i),j)

(i, a)♯(Mi) .

But we know that the functors (i, a)♯ are left Quillen functors, so that the stability of cofibrations
and trivial cofibrations by small sums and this description of the functor i∗µj,♯ achieves the
proof. �

Proposition 3.1.15. Let S be an object of S , and p : (X , I) → S a S -diagram over S,
and consider the canonical factorization (3.1.12.4). For any object M of Ho(M )(X , I), there are
canonical isomorphisms and Ho(M )(S):

Rπ∗(M)i ≃ Rpi,∗(Mi) and Rp∗(M) ≃ R lim
←−
i∈Iop

Rpi,∗(Mi) .

In particular, if furthermore the category I has a terminal object ω, then

Rp∗(M) ≃ Rpω,∗(Mω) .

Proof. This follows immediately from (3.1.12.5) and (3.1.12.6) and from the fact that deriv-
ing (right) Quillen functors is compatible with composition. �

Proposition 3.1.16. We consider the pullback square of S -diagrams (3.1.12.9) (as well as
the notations thereof). For any object M of Ho(M )(X , I), and any object j of J , we have natural
isomorphisms

Rϕ∗(M)j ≃ R lim
←−

(i,a)∈I/jop
Rαi,∗(Mi) and Rϕ∗(M)/j ≃ R(ϕ/j)∗(M/j)

in Ho(M )(Yj) and in Ho(M )(Y /j, J/j) respectively.
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Proof. Using again the fact that deriving right Quillen functors is compatible with compo-
sition, by virtue of Lemma 3.1.13 and Lemma 3.1.14, this is a direct translation of (3.1.12.10) and
(3.1.12.11). �

Proposition 3.1.17. Let u : T → S be a P-morphism of S , and p : (X , I) → S a S -
diagram over S. Consider the pullback square of S -diagrams

(Y , I)
ϕ //

q

��

(X , I)

p

��
T u

// S

(i.e. Yi = T ×S Xi for any object i of I). Then, for any object M of Ho(M )(X , I), the canonical
map

Lu∗ Rp∗(M)→ Rq∗ Lv
∗(M)

is an isomorphism in Ho(M )(T ).

Proof. By Remark 1.3.23, the functor ν∗ is both a left and a right Quillen functor which
preserves weak equivalences, so that the functor Lν∗ = ν∗ = Rν∗ preserves homotopy limits.
Hence, by Proposition 3.1.15, one reduces to the case where I is the terminal category, i.e. to the
transposition of the isomorphism given by the P-base change formula (P-BC) for the homotopy
P-fibred category Ho(M ) (see 1.1.19). �

3.1.18. A morphism of S -diagrams ν = (α, f) : (Y ′, J ′) → (Y , J), is cartesian if, for any
arrow i→ j in J ′, the induced commutative square

Y ′
i

//

αi

��

Y ′
j

αj

��
Yf(i) // Yf(j)

is cartesian.
A morphism of S -diagrams ν = (α, f) : (Y ′, J ′)→ (Y , J) is reduced if J = J ′ and f = 1J .

Proposition 3.1.19. Let ν : (Y ′, J) → (Y , J) be a reduced cartesian P-morphism of S -
diagrams, and ϕ = (α, f) : (X , I) → (Y , J) a morphism of S -diagrams. Consider the pullback
square of S -diagrams

(X ′, I)
µ //

ψ

��

(X , I)

ϕ

��
(Y ′, J)

ν
// (Y , J)

(i.e. X ′
i = Y ′

f(i) ×Yf(i)
Xi for any object i of I). Then, for any object M of Ho(M )(X , I), the

canonical map
Lν∗ Rϕ∗(M)→ Rψ∗ Lµ

∗(M)

is an isomorphism in Ho(M )(Y ′, J).

Proof. By virtue of Proposition 3.1.6, it is sufficient to prove that the map

j∗Lν∗ Rϕ∗(M)→ j∗Rψ∗ Lµ
∗(M)

is an isomorphism for any object j of J . Let p : (X /j, I/j) → Yj and q : (X ′/j, J, j) → Y ′
j be

the canonical maps. As ν is cartesian, we have a pullback square of S -diagrams

(X ′/j, I/j)
µ/j //

q

��

(X /j, I/j)

p

��
Y ′
j νj

// Yj
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But νj being a P-morphism, by virtue of Proposition 3.1.17, we thus have an isomorphism

Lν∗j Rp∗(M/j) ≃ Rq∗ L(µ/j)
∗(M/j) = Rq∗(Lµ

∗(M)/j) .

Applying Proposition 3.1.16 and the last assertion of Proposition 3.1.15 twice, we also have canon-
ical isomorphisms

j∗Rϕ∗(M) ≃ Rp∗(M/j) and j∗Rψ∗ Lµ
∗(M) ≃ Rq∗(Lµ

∗(M)/j) .

The obvious identity j∗Lν∗ = Lν∗j j
∗ achieves the proof. �

Corollary 3.1.20. Under the assumptions of Proposition 3.1.19, for any object N of the
category Ho(M )(Y ′, j), the canonical map

Lµ♯ Lψ
∗(N)→ Lϕ∗ Lν♯(N)

is an isomorphism in Ho(M )(X , I).

Remark 3.1.21. The class of cartesian P-morphisms form an admissible class of morphisms
in the category of S -diagrams, which we denote by Pcart . Proposition 3.1.11 and the preceding
corollary thus asserts that Ho(M ) is a Pcart -fibred category over the category of S -diagrams.

3.1.22. We shall deal sometimes with diagrams of S -diagrams. Let I be a small category,
and F a functor from I to the category of S -diagrams. For each object i of I, we have a S -
diagram (F (i), Ji), and, for each map u : i → i′, we have a functor fu : Ji → Ji′ as well as a
natural transformation αu : F (i) → F (i′) ◦ fu, subject to coherence identities. In particular,
the correspondance i 7→ Ji defines a functor from I to the category of small categories. Let
IF be the cofibred category over I associated to it; see [SGA1, Exp. VI]. Explicitely, IF is
described as follows. The objects are the couples (i, x), where i is an object of I, and x is an
object of Ji. A morphism (i, x) → (i′, x′) is a couple (u, v), where u : i → i′ is a morphism of
I, and v : fu(x) → x′ is a morphism of Ji′ . The identity of (i, x) is the couple (1i, 1x), and,
for two morphisms (u, v) : (i, x) → (i′, x′) and (u′, v′) : (i′, x′) → (i′′, x′′), their composition
(u′′, v′′) : (i, x)→ (i′′, x′′) is defined by u′′ = u′ ◦ u, while v′′ is the composition of the map

fu′′(x) = fu′(fu(x))
fu′ (v)
−−−−→ fu′(x′)

v′
−−→ x′′ .

The functor p : IF → I is simply the projection (i, x) 7→ i. For each object i of I, we get a
canonical pullback square of categories

Ji

q

��

ℓi // IF

p

��
e

i
// I

(3.1.22.1)

in which i is the functor from the terminal category e which corresponds to the object i, and ℓi is
the functor defined by ℓi(x) = (i, x).

The functor F defines a S -diagram (
∫

F , IF ): for an object (i, x) of IF , (
∫

F )(i,x) = F (i)x,
and for a morphism (u, v) : (i, x)→ (i′, x′), the map

(u, v) : (
∫

F )(i,x) = F (i)x → (
∫

F )(i′,x′) = F (i′)x′

is simply the morphism induced by αu and v. For each object i of I, there is a natural morphism
of S -diagrams

(3.1.22.2) λi : (F (i), Ji)→ (
∫

F , IF ) ,

given by λi = (1F(i), ℓi)
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Proposition 3.1.23. Let X be an object of S , and f : F → X a morphism of functors (where
X is considered as the constant functor from I to S -diagrams with value the functor from e to S

defined by X). Then, for each object i of I, we have a canonical pullback square of S -diagrams

(F (i), Ji)
λi //

ϕi

��

(
∫

F , IF )

ϕ

��
X

i
// (X, I)

in which ϕ and ϕi are the obvious morphisms induced by f (where, this time, (X, I) is seen as the
constant functor from I to S with value X).

Moreover, for any object M of Ho(M )(
∫

F , IF ), the natural map

i∗ Rϕ∗(M) = Rϕ∗(M)i → Rϕi,∗ λ
∗
i (M)

is an isomorphism. In particular, if we also write by abuse of notation f for the induced map of
S -diagrams from (

∫
F , IF ) to X, we have a natural isomorphism

Rf∗(M) ≃ R lim
←−
i∈Iop

Rϕi,∗ λ
∗
i (M) .

Proof. This pullback square is the one induced by (3.1.22.1). We shall prove first that the
map

i∗ Rϕ∗(M) = Rϕ∗(M)i → Rϕi,∗ λ
∗
i (M)

is an isomorphism in the particular case where I has a terminal object ω and i = ω. By virtue of
Propositions 3.1.15 and 3.1.16, we have isomorphisms

(3.1.23.1) ω∗ Rϕ∗(M) ≃ R lim
←−
i∈Iop

Rϕ∗(M)i ≃ R lim
←−

(i,x)∈Iop
F

Rϕi,x,∗ (M(i,x)) ,

where ϕi,x : F (i)x → X denotes the map induced by f . We are thus reduced to prove that the
canonical map

(3.1.23.2) R lim
←−

(i,x)∈Iop
F

Rϕi,x,∗ (M(i,x))→ R lim
←−
x∈Jop

ω

Rϕω,x,∗ (M(ω,x)) ≃ Rϕω,∗ λ
∗
ω(M)

is an isomorphim. As IF is cofibred over I, and as ω is a terminal object of I, the inclusion
functor ℓω : Jω → IF has a left adjoint, whence is coaspherical in any weak basic localizer (i.e.
is homotopy cofinal); see [Mal05, 1.1.9, 1.1.16 and 1.1.25]. As any model category defines a
Grothendieck derivator ([Cis03, Thm. 6.11]), it follows from [Cis03, Cor. 1.15] that the map
(3.1.23.2) is an isomorphism.

To prove the general case, we proceed as follows. Let F/i be the functor obtained by com-
posing F with the canonical functor vi : I/i→ I. Then, keeping track of the conventions adopted
in 3.1.12, we check easily that (I/i)F/i = (IF )/i and that

∫
(F/i) = (

∫
F )/i. Moreover, the

pullback square (3.1.22.1) is the composition of the following pullback squares of categories.

Ji
ai //

q

��

IF/i
ui //

p/i

��

IF

p

��
e

(i,1i)
// I/i

vi
// I

The pullback square of the proposition is thus the composition of the following pullback squares.

(F (i), Ji)
αi //

ϕi

��

(
∫

F/i, IF/i)
µi //

ϕ/i

��

(
∫

F , IF )

ϕ

��
X

(i,1i)
// (X, I/i)

vi
// (X, I)
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The natural transformations

(i, 1i)
∗ R(ϕ/i)∗ → Rϕi,∗ α

∗
i and v∗i Rϕ∗ → R(ϕ/i)∗ µ

∗
i

are both isomorphisms: the first one comes from the fact that (i, 1i) is a terminal object of I/i,
and the second one from Proposition 3.1.16. We thus get:

i∗ Rϕ∗(M) ≃ (i, 1i)
∗ v∗i Rϕ∗(M)

≃ (i, 1i)
∗ R(ϕ/i)∗ µ

∗
i (M)

≃ Rϕi,∗ α
∗
i µ

∗
i (M)

≃ Rϕi,∗ λ
∗
i (M) .

The last assertion of the proposition is then a straightforward application of Proposition 3.1.15. �

Proposition 3.1.24. If M is a monoidal P-fibred combinatorial model category over S ,
then, for any S -diagram X indexed by a small category I, the injective model structure turns
M (X , I) into a symmetric monoidal model category. In particular, the categories Ho(M )(X , I)
are canonically endowed with a closed symmetric monoidal structure, in such a way that, for any
morphism of S -diagrams ϕ : (X , I)→ (Y , J), the functor Lϕ∗ : Ho(M )(Y , J)→ Ho(M )(X , I)
is symmetric monoidal.

Proof. This is obvious from the definition of a symmetric monoidal model category, as
the tensor product of M (X , I) is defined termwise, as well as the cofibrations and the trivial
cofibrations. �

Proposition 3.1.25. Assume that M is a monoidal P-fibred combinatorial model category
over S , and consider a reduced cartesian P-morphism ϕ = (α, f) : (X , I) → (Y , I). Then, for
any object M in Ho(M )(X , I) and any object N in Ho(M )(Y , I), the canonical map

Lϕ♯(M ⊗
L ϕ∗(N))→ Lϕ♯(M)⊗L N

is an isomorphism.

Proof. Let i be an object of I. It is sufficient to prove that the map

i∗Lϕ♯(M ⊗
L ϕ∗(N))→ i∗Lϕ♯(M)⊗L N

is an isomorphism in Ho(M )(Xi). Using Corollary 3.1.20, we see that this map can be identified
with the map

Lϕi,♯(Mi ⊗
L ϕ∗

i (Ni))→ Lϕi,♯(Mi)⊗
L Ni ,

which is an isomorphism according to the P-projection formula for the homotopy P-fibred cate-
gory Ho(M ). �

3.1.26. Let (X , I) be a S -diagram. An object M of M (X , I) is homotopy cartesian if, for
any map u : i→ j in I, the structural map u∗(Mj)→Mi induces an isomorphism

Lu∗(Mi) ≃Mj

in Ho(M )(X , I) (i.e. if there exists a weak equivalence M ′
j → Mj with M ′

j cofibrant in M (Xj)
such that the map u∗(M ′

j)→Mi is a weak equivalence in M (Xi)).
We denote by Ho(M )(X , I)hcart the full subcategory of Ho(M )(X , I) spanned by homotopy

cartesian sections.

Definition 3.1.27. A cofibrantly generated model category V is tractable if there exist sets
I and J of cofibrations between cofibrant objects which generate the class of cofibrations and the
class of trivial cofibrations respectively.

Remark 3.1.28. If M is a combinatorial and tractable P-fibred model category over S , then
so are the projective and the injective model structures on M (X , I); see [Bar10, Thm. 2.28 and
2.30].
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Proposition 3.1.29. If M is tractable, then the inclusion functor

Ho(M )(X , I)hcart → Ho(M )(X , I)

admits a right adjoint.

Proof. This follows from the fact that the cofibrant homotopy cartesian sections are the
cofibrant objects of a right Bousfield localization of the injective model structure on M (X , I);
see [Bar10, Theorem 5.25]. �

Definition 3.1.30. Let M and M ′ two P-fibred model categories over S . A Quillen
morphism γ from M to M ′ is a morphism of P-fibred categories γ : M → M ′ such that
γ∗ : M (X)→M ′(X) is a left Quillen functor for any object X of S .

Remark 3.1.31. If γ : M → M ′ is a Quillen morphism between P-fibred combinatorial
model categories, then, for any S -diagram (X , I), we get a Quillen adjunction

γ∗ : M (X , I) ⇄ M
′(X , I) : γ∗

(with the injective model structures as well as with the projective model structures).

Proposition 3.1.32. For any Quillen morphism γ : M →M ′, the derived adjunctions

Lγ∗ : Ho(M )(X) ⇄ Ho(M ′)(X) : Rγ∗

define a morphism of P-fibred categories Ho(M ) → Ho(M ′) over S . If moreover M and M ′

are combinatorial, then the morphism Ho(M ) → Ho(M ′) extends to a morphism of Pcart -fibred
categories over the category of S -diagrams.

Proof. This follows immediately from [Hov99, Theorem 1.4.3]. �

3.2. Hypercovers, descent, and derived global sections.

3.2.1. Let S be an essentially small category, and P an admissible class of morphisms in
S . We assume that a Grothendieck topology t on S is given. We shall write S ∐ for the full
subcategory of the category of S -diagrams whose objects are the small families X = {Xi}i∈I of
objects of S (seen as functors from a discrete category to S ). The category S ∐ is equivalent to
the full subcategory of the category of presheaves of sets on S spanned by sums of representable
presheaves. In particular, small sums are representable in S ∐ (but note that the functor from
S to S ∐ does not preserve sums). Finally, we remark that the topology t extends naturally to
a Grothendieck topology on S ∐ such that the topology t on S is the topology induced from the
inclusion S ⊂ S ∐. The covering maps for this topology on S ∐ will be called t-covers (note that
the inclusion S ⊂ S ∐ is continuous and induces an equivalence between the topos of t-sheaves
on S and the topos of t-sheaves on S ∐).

Let ∆ be the category of non-empty finite ordinals. Remember that a simplicial object of S ∐

is a presheaf on ∆ with values in S ∐. For a simplicial set K and an object X of S ∐, we denote
by K ×X the simplicial object of S ∐ defined by

(K ×X)n =
∐

x∈Kn

X , n ≥ 0 .

We write ∆n for the standard combinatorial simplex of dimension n, and in : ∂∆n → ∆n for its
boundary inclusion.

A morphism p : X → Y between simplicial objects of S ∐ is a t-hypercover if, locally for
the t-topology, it has the right lifting property with respect to boundary inclusions of standard
simplices, which, in a more precise way, means that, for any integer n ≥ 0, any object U of S ∐,
and any commutative square

∂∆n × U
x //

in×1

��

X

p

��
∆n × U y

// Y ,
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there exists a t-covering q : V → U , and a morphism of simplicial objects z : ∆n × V → X , such
that the diagram bellow commutes.

∂∆n × V
x(1×q)//

in×1

��

X

p

��
∆n × V

y(1×q)
//

z

::uuuuuuuuu
Y

A t-hypercover of an object X of S ∐ is a a t-hypercover p : X → X (where X is considered as a
constant simplicial object).

Remark 3.2.2. This definition of t-hypercover is equivalent to the one given in [SGA4,
Exp. V, 7.3.1.4].

3.2.3. Let X be a simplicial object of S ∐. It is in particular a functor from the category
∆op to the category of S -diagrams, so that the constructions and considerations of 3.1.22 apply
to X . In particular, there is a S -diagram X̃ associated to X , namely X̃ = (

∫
X , (∆op)X ).

More explicitely, for each integer n ≥ 0, there is a family {Xn,x}x∈Kn
of objects of S , such that

(3.2.3.1) Xn =
∐

x∈Kn

Xn,x .

In fact, the sets Kn form a simplicial set K, and the category (∆op)X can be identified over ∆op to
the category (∆/K)

op
, where ∆/K is the fibred category over ∆ whose fiber over n is the set Kn

(seen as a discrete category), i.e. the category of simplices of K. We shall call K the underlying
simplicial set of X , while the decomposition (3.2.3.1) will be called the local presentation of X .

The construction X 7→ X̃ is functorial. If p : X → Y is a morphism of simplicial objects of S ∐,
we shall denote by p̃ : X̃ → Ỹ the induced morphism of S -diagrams. However, for a morphism
of p : X → X, where X is an object of S ∐, we shall still denote by p : X̃ → X the corresponding
morphism of S -diagrams.

Let M be a P-fibred combinatorial model category over S . Given a simplicial object X of
S ∐, we define the category Ho(M )(X ) by the formula:

(3.2.3.2) Ho(M )(X ) = Ho(M )(
∫

X , (∆op)X ) .

Given an object X of S ∐ and a morphism p : X → X, we have a derived adjunction

(3.2.3.3) Lp∗ : Ho(M )(X) ⇄ Ho(M )(X ) : Rp∗ .

Proposition 3.2.4. Consider an object X of S , a simplicial object X of S ∐, as well as a
morphism p : X → X. Denote by K the underlying simplicial set of X , and for each integer
n ≥ 0 and each simplex x ∈ Kn, write pn,x : Xn,x → X for the morphism of S ∐ induced by
the local presentation of X (3.2.3.1). Then, for any object M of Ho(M )(X), there are canonical
isomorphisms

Rp∗Rp
∗(M) ≃ R lim

←−
n∈∆

Rpn,∗Lp
∗
n(M) ≃ R lim

←−
n∈∆

( ∏

x∈Kn

Rpn,x,∗Lp
∗
n,x(M)

)

.

Proof. The first isomorphism is a direct application of the last assertion of Proposition 3.1.23
for F = X , while the second one follows from the first one by Proposition 3.1.10. �

Definition 3.2.5. Given an object Y of S ∐, an objectM of Ho(M )(Y ) will be said to satisfy
t-descent if it has the following property: for any morphism f : X → Y and any t-hypercover
p : X → X, the map

Rf∗ Lf
∗(M)→ Rf∗ Rp∗ Lp

∗ Lf∗(M)

is an isomorphism in Ho(M )(Y ).
We shall say that M (or by abuse, that Ho(M )) satisfies t-descent if, for any object Y of

S ∐, any object of Ho(M )(Y ) satisfies t-descent.



70

Proposition 3.2.6. If Y = {Yi}i∈I is a small family of objects of S (seen as an object
of S ∐), then an object M of Ho(M )(Y ) satisfies t-descent if and only if, for any i ∈ I, any
morphism f : X → Yi of S , and any t-hypercover p : X → X, the map

Rf∗ Lf
∗(Mi)→ Rf∗ Rp∗ Lp

∗ Lf∗(Mi)

is an isomorphism in Ho(M )(Yi).

Proof. This follows from the definition and from Proposition 3.1.10. �

Corollary 3.2.7. The P-fibred model category M satisfies t-descent if and only if, for any
object X of S , and any t-hypercover p : X → X, the functor

Lp∗ : Ho(M )(X)→ Ho(M )(X )

is fully faithful.

Proposition 3.2.8. If M satisfies t-descent, then, for any t-cover f : Y → X, the functor

Lf∗ : Ho(M )(X)→ Ho(M )(Y )

is conservative.

Proof. Let f : Y → X be a t-cover, and u : M → M ′ a morphism of Ho(M )(X) whose
image by Lf∗ is an isomorphism. We can consider the Čech t-hypercover associated to f , that is
the simplicial object Y over X defined by

Yn = Y ×X Y ×X · · · ×X Y
︸ ︷︷ ︸

n+ 1 times

.

Let p : Y → X be the canonical map. For each n ≥ 0, the map pn : Yn → X factor through f ,
from wich we deduce that the functor

Lp∗n : Ho(M )(X)→ Ho(M )(Yn)

sends u to an isomorphism. This implies that the functor

Lp∗ : Ho(M )(X)→ Ho(M )(Y )

sends u to an isomorphism as well. But, as Y is a t-hypercover of X, the functor Lp∗ is fully
faithful, from which we deduce that u is an isomorphism by the Yoneda Lemma. �

3.2.9. Let V be a complete and cocomplete category. For an objectX of S , define PSh (S /X,V )
as the category of presheaves on S /X with values in V . Then PSh (C/−,V ) is a P-fibred cate-
gory (where, by abuse of notations, S denotes also the class of all maps in S ): this is a special
case of the constructions explained in 3.1.2 applied to V , seen as a fibred category over the ter-
minal category. To be more explicit, for each object X of S ∐, we have a V -enriched Yoneda
embedding

(3.2.9.1) S
∐/X × V → PSh (S /X,V ) , (U,M} 7→ U ⊗M ,

where, if U = {Ui}i∈I is a small family of objects of S /X, U ⊗M is the presheaf

(3.2.9.2) V 7→
∐

i∈I

∐

a∈HomS/S(V,Ui)

M .

For a morphism f : X → Y in S , the functor

f∗ : PSh (S /Y,V )→ PSh (S /X,V )

is the functor defined by composition with the corresponding functor S /X → S /Y . The functor
f∗ has always a left adjoint

f♯ : PSh (S /X,V )→ PSh (S /Y,V ) ,

which is the unique colimit preserving functor defined by

f♯(U ⊗M) = U ⊗M ,
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where, on the left hand side U is considered as an object over X, while, on the right hand side,
U is considered as an object over Y by composition with f . Similary, if all the pullbacks by f are
representable in S (e.g. if f is a P-morphism), the functor f∗ can be described as the colimit
preserving functor defined by the formula

f∗(U ⊗M) = (X ×Y U)⊗M .

If V is a cofibrantly generated model category, then, for each object X of S , the category
PSh (S /X,V ) is naturally endowed with the projective model category structure, i.e. with the
cofibrantly generated model category structure whose weak equivalences and fibrations are defined
termwise (this is Proposition 3.1.6 applied to V , seen as a fibred category over the terminal
category). The cofibrations of the projective model category structure on PSh (S /X,V ) will be
called the projective cofibrations. If moreover V is combinatorial (resp. left proper, resp. right
proper, resp. stable), so is PSh (S /X,V ). In particular, if V is a combinatorial model category,
then PSh (S /−,V ) is a P-fibred combinatorial model category over S .

According to Definition 3.2.5, it thus makes sense to speak of t-descent in PSh (S /−,V ).
If U = {Ui}i∈I is a small family of objects of S over X, and if F is a presheaf over S /X, we

define

(3.2.9.3) F (U) =
∏

i∈I

F (Ui) .

the functor F 7→ F (U) is a right adjoint to the functor E 7→ U ⊗ E.
We remark that a termwise fibrant presheaf F on S /X satisfies t-descent if and only if, for

any object Y of S ∐, and any t-hypercover Y → Y over X, the map

F (Y )→ R lim
←−
n∈∆

F (Yn)

is an isomorphism in Ho(V ).

Proposition 3.2.10. If V is combinatorial and left proper, then the category of presheaves
PSh (S /X,V ) admits a combinatorial model category structure whose cofibrations are the projec-
tive cofibrations, and whose fibrant objects are the termwise fibrant objects which satisfy t-descent.
This model category structure will be called the t-local model category structure, and the corre-
sponding homotopy category will be denoted by Hot(PSh (S /X,V )).

Moreover, any termwise weak equivalence is a weak equivalence for the t-local model structure,
and the induced functor

a∗ : Ho(PSh (S /X,V ))→ Hot(PSh (S /X,V ))

admits a fully faithful right adjoint

a∗ : Hot(PSh (S /X,V ))→ Ho(PSh (S /X,V ))

whose essential image consists precisely of the full subcategory of Ho(PSh (S /X,V )) spanned by
the presheaves which satisfy t-descent.

Proof. Let H be the class of maps of shape

(3.2.10.1) hocolim
n∈∆op

Yn ⊗ E → Y ⊗ E ,

where Y is an object of S ∐ over X, Y → Y is a t-hypercover, and E is a cofibrant replacement of
an object which is either a source or a target of a generating cofibration of V . Define the t-local
model category structure as the left Bousfield localization of Pr(S /X,V ) by H; see [Bar10,
Theorem 4.7]. We shall call t-local weak equivalences the weak equivalences of the t-local model
category structure. For each object Y over X, the functor Y ⊗ (−) is a left Quillen functor from
V to Pr(S /X,V ). We thus get a total left derived functor

Y ⊗L (−) : Ho(V )→ Hot(PSh (S /X,V ))
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whose right adjoint is the evaluation at Y . For any object E of V and any t-local fibrant presheaf
F on S /X with values in V , we thus have natural bijections

(3.2.10.2) Hom(E,F (Y )) ≃ Hom(Y ⊗L E,F ) ,

and, for any simplicial object Y of S /X, identifications

(3.2.10.3) Hom(E, R lim
←−
n∈∆

F (Yn)) ≃ Hom( L lim
−→
n∈∆

Yn ⊗
L E,F ) ,

One sees easily that, for any t-hypercover Y → Y and any cofibrant object E of V , the map

(3.2.10.4) L lim
−→
n∈∆

Yn ⊗
L E → Y ⊗L E

is an isomorphism in the t-local homotopy category Hot(PSh (S /X,V )): by the small object ar-
gument, the smallest full subcategory of Ho(PSh (S /X,V )) which is stable by homotopy colimits
and which contains the source and the targets of the generating cofibrations is Hot(PSh (S /X,V ))
itself, and the class of objects E of V such that the map (3.2.10.4) is an isomorphism in Ho(V )
is sable by homotopy colimits. Similarly, we see that, for any object E, the functor (−) ⊗L E
preserves sums. As a consequence, we get from (3.2.10.2) and (3.2.10.3) that the fibrant objects of
the t-local model category structure are precisely the termwise fibrant objects F of the projective
model structure which satisfy t-descent. The last part of the proposition follows from the general
yoga of left Bousfield localizations. �

3.2.11. Let M be a P-fibred combinatorial model category over S , and S an object of S .
Denote by

S : S /S → S

the canonical forgetful functor. Then there is a canonical morphism of S -diagrams

(3.2.11.1) σ : (S ,S /S)→ (S,S /S)

(where (S,S /S) stands for the constant diagram with value S). This defines a functor

(3.2.11.2) Rσ∗ : Ho(M )(S ,S /S)→ Ho(M )(S,S /S) = Ho(PSh (S /S,M (S))) .

For an object M of Ho(M )(S), one defines the presheaf of geometric derived global sections of
M over S by the formula

(3.2.11.3) RΓgeom(−,M) = Rσ∗ Lσ
∗(M) .

This is a presheaf on S /S with values in M (S) whose evaluation on a morphism f : X → S is,
by virtue of Propositions 3.1.15 and 3.1.16,

(3.2.11.4) RΓgeom(X,M) ≃ Rf∗ Lf
∗(M) .

Proposition 3.2.12. For an object M of Ho(M )(S), the following conditions are equivalent.

(a) The object M satisfies t-descent.
(b) The presheaf RΓgeom(−,M) satisfies t-descent.

Proof. For any morphism f : X → S and any t-hypercover p : X → X over S, we have, by
Proposition 3.2.4 and formula (3.2.11.4), an isomorphism

Rf∗Rp∗ Lp
∗ Lf∗(M) ≃ R lim

←−
n∈∆

RΓgeom(Xn,M) .

From there, we see easily that conditions (a) and (b) are equivalent. �

3.2.13. The preceding proposition allows to reduce descent problems in a fibred model category
to descent problems in a category of presheaves with values in a model category. On can even
go further and reduce the problem to category of presheaves with values in an ‘elementary model
category’ as follows.

Consider a model category V . Then one can associate to V its corresponding prederivator
Ho(V ), that is the strict 2-functor from the 2-category of small categories to the 2-category of
categories, defined by

(3.2.13.1) Ho(V )(I) = Ho(V Iop ) = Ho(PSh (I,V ))



3. DESCENT IN P-FIBRED MODEL CATEGORIES 73

for any small category I. More explicitly: for any functor u : I → J , one gets a functor

u∗ : Ho(V )(J)→ Ho(V )(I)

(induced by the composition with u), and for any morphism of functors

I

u

''

v

77
�� ��
�� α J ,

one has a morphism of functors

Ho(V )(I) Ho(V )(J)

v∗
ll

u∗

rr
� �� �
KS

α∗ .

Moreover, the prederivator Ho(V ) is then a Grothendieck derivator; see [Cis03, Thm. 6.11]. This
means in particular that, for any functor between small categories u : I → J , the functor u∗ has
a left adjoint

(3.2.13.2) Lu♯ : Ho(V )(I)→ Ho(V )(J)

as well as a right adjoint

(3.2.13.3) Ru∗ : Ho(V )(I)→ Ho(V )(J)

(in the case where J = e is the terminal category, then Lu♯ is the homotopy colimit functor, while
Ru∗ is the homotopy limit functor).

If V and V ′ are two model categories, a morphism of derivators

Φ : Ho(V )→ Ho(V ′)

is simply a morphism of 2-functors, that is the data of functors

ΦI : Ho(V )(I)→ Ho(V ′)(I)

together with coherent isomorphisms

u∗(ΦJ(F )) ≃ ΦI(u
∗(F ))

for any functor u : I → J and any presheaf F on J with values in V (see [Cis03, p. 210] for a
precise definition).

Such a morphism Φ is said to be continuousmorphism!continuous if, for any functor u : I → J ,
and any object F of Ho(V )(I), the canonical map

(3.2.13.4) ΦJ Ru∗(F )→ Ru∗ ΦI(F )

is an isomorphism. One can check that a morphism of derivators Φ is continuous if and only if
it commutes with homotopy limits (i.e. if and only if the maps (3.2.13.4) are isomorphisms in
the case where J = e is the terminal category); see [Cis08, Prop. 2.6]. For instance, the total
right derived functor of any right Quillen functor defines a continuous morphism of derivators; see
[Cis03, Prop. 6.12].

Dually a morphism Φ of derivators is cocontinuous if, for any functor u : I → J , and any
object F of Ho(V )(I), the canonical map

(3.2.13.5) Lu! ΦI(F )→ ΦJ Lu!(F )

is an isomorphism.

3.2.14. We shall say that a stable model category V is Q-linear if all the objects of the
triangulated category Ho(V ) are uniquely divisible.
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Theorem 3.2.15. Let V be a model category (resp. a stable model category, resp. a Q-linear
stable model category), and denote by S the model category of simplicial sets (resp. the stable
model category of S1-spectra, resp. the Q-linear stable model category of complexes of Q-vector
spaces). Denote by 1 the unit object of the closed symmetric monoidal category Ho(S).

Then, for each object E of Ho(V ), there exists a unique continuous morphism of derivators

RHom(E,−) : Ho(V )→ Ho(S)

such that, for any object F of Ho(V ), there is a functorial bijection

HomHo(S)(1,RHom(E,F )) ≃ HomHo(V )(E,F )) .

Proof. Note that the stable Q-linear case follows from the stable case and from the fact
that the derivator of complexes of Q-vector spaces is (equivalent to) the full subderivator of the
derivator of S1-spectra spanned by uniquely divisible objects.

It thus remains to prove the theorem in the case where V be a model category (resp. a stable
model category) and S is the model category of simplicial sets (resp. the stable model category of
S1-spectra). The existence of RHom(E,−) follows then from [Cis03, Prop. 6.13] (resp. [CT11,
Lemma A.6]).

For the unicity, as we don’t really need it here, we shall only sketch the proof (the case of
simplicial sets is done in [Cis03, Rem. 6.14]). One uses the universal property of the derivator
Ho(S): by virtue of [Cis08, Cor. 3.26] (resp. of [CT11, Thm. A.5]), for any model category (resp.
stable model category) V ′ there is a canonical equivalence of categories between the category
of cocontinous morphisms from Ho(S) to Ho(V ′) and the homotopy category Ho(V ). As a
consequence, the derivator Ho(S) admits a unique closed symmetric monoidal structure, and any
derivator (resp. triangulated derivator) is naturally and uniquely enriched in Ho(S); see [Cis08,
Thm. 5.22]. More concretely, this universal property gives, for any object E in Ho(V ′), a unique
cocontinuous morphism of derivators

Ho(S)→ Ho(V ′) , K 7→ K ⊗ E

such that 1 ⊗ E = E. For a fixed K in Ho(S)(I), this defines a cocontinuous morphism of
derivators

Ho(V ′)→ Ho(V ′Iop ) , E 7→ K ⊗ E

which has a right adjoint

Ho(V ′Iop )→ Ho(V ′) , F 7→ FK .

Let

RHom(E,−) : Ho(V )→ Ho(S)

be a continuous morphism such that, for any object F of V , there is a functorial bijection

iF : HomHo(S)(1,RHom(E,F )) ≃ HomHo(V )(E,F )) .

Then, for any object K of Ho(S)(I), and any object F of Ho(V )(I) a canonical isomorphism

RHom(E,FK) ≃ RHom(E,F )K

which is completely determined by being the identity for K = 1 (this requires the full univer-
sal property of Ho(S) given by by [Cis08, Thm. 3.24] (resp. by the dual version of [CT11,
Thm. A.5])). We thus get from the functorial bijections iF the natural bijections:

HomHo(S)(I)(K,RHom(E,F )) ≃HomHo(S)(1,RHom(E,F )K)

≃HomHo(S)(1,RHom(E,FK))

≃HomHo(V )(E,F
K)

≃HomHo(V )(I)(K ⊗ E,F ) .

In other words, RHom(E,−) has to be a right adjoint to (−)⊗ E. �
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Remark 3.2.16. The preceding theorem mostly holds for abstract derivators. The only prob-
lem is for the existence of the morphism RHom(E,−) (the unicity is always clear). However, this
problem disapears for derivators which have a Quillen model (as we have seen above), as well as
for triangulated derivators (see [CT11, Lemma A.6]). Hence Theorem 3.2.15 holds in fact for any
triangulated Grothendieck derivator.

In the case when V is a combinatorial model category (which, in practice, will essentially
always be the case), the enrichment over simplicial sets (resp, in the stable case, over spectra) can
be constructed via Quillen functors by Dugger’s presentation theorems [Dug01] (resp. [Dug06]).

Corollary 3.2.17. Let M be a P-fibred combinatorial model category (resp. a stable P-
fibred combinatorial model category, resp. a Q-linear stable P-fibred combinatorial model category)
over S , and S the model category of simplicial sets (resp. the stable model category of S1-spectra,
resp. the Q-linear stable model category of complexes of Q-vector spaces).

Consider an object S of S , a morphism f : X → S, and a morphism of S -diagrams p :
(X , I)→ X over S. Then, for an object M of Ho(M )(S), the following conditions are equivalent.

(a) The map

Rf∗ Lf
∗(M)→ Rf∗ Rp∗ Lp

∗ Lf∗(M)

is an isomorphism in Ho(M )(S).
(b) The map

RΓgeom(X,M)→ R lim
←−
i∈Iop

RΓgeom(Xi,M)

is an isomorphism in Ho(M )(S).
(c) For any object E of Ho(M )(S), the map

RHom(E,RΓgeom(X,M))→ R lim
←−
i∈Iop

RHom(E,RΓgeom(Xi,M))

is an isomorphism in Ho(S).

Proof. The equivalence between (a) and (b) follows from Propositions 3.1.15 and 3.1.16,
which give the formula

Rf∗ Rp∗ Lp
∗ Lf∗(M) ≃ R lim

←−
i∈Iop

RΓgeom(Xi,M) .

The identification

HomHo(S)(1,RHom(E,F )) ≃ HomHo(M )(S)(E,F )

and the Yoneda Lemma show that a map in Ho(M )(S) is an isomorphism if and only its image
by RHom(E,−) is an isomorphism for any object E of Ho(M )(S). Moreover, as RHom(E,−)
is continuous, for any small category I and any presheaf F on I with values in M (S), there is a
canonical isomorphism

RHom(E, R lim
←−
i∈Iop

Fi)) ≃ R lim
←−
i∈Iop

RHom(E,Fi)) .

This proves the equivalence between contitions (b) and (c). �

Corollary 3.2.18. Under the assumptions of Corollary 3.2.17, given an object S of S , an
objectM of Ho(M )(S) satisfies t-descent if and only if, for any object E of Ho(M )(S) the presheaf
of simplicial sets (resp. of S1-spectra, resp. of complexes of Q-vector spaces)

RHom(E,RΓgeom(−,M))

satisfies t-descent over S /S.

Proof. This follows from the preceding corollary, using the formula given by Proposition
3.2.4. �
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Remark 3.2.19. We need the category S to be small in some sense to apply the two preceding
corollaries because we need to make sense of the model projective category structure of Proposition
3.2.10. However, we can use these corollaries even if the site S is not small as well: we can either
use the theory of universes, or apply these corollaries to all the adequate small subsites of S . As
a consequence, we shall feel free to use Corollaries 3.2.17 and 3.2.18 for non necessarily small sites
S , leaving to the reader the task to avoid set-theoretic difficulties according to her/his taste.

Definition 3.2.20. For an S1-spectrum E and an integer n, we define its nth cohomology
group Hn(E) by the formula

Hn(E) = π−n(E) ,

where πi stands for the ith stable homotopy group functor.
Let M be a monoidal P-fibred stable combinatorial model category over S . Given an object

S of S as well as an object M of Ho(M )(S), we define the presheaf of absolute derived global
sections of M over S by the formula

RΓ(−,M) = RHom(1S ,RΓgeom(−,M)) .

For a map X → S of S , we thus have the absolute cohomology of X with coefficients in M ,
RΓ(X,M), as well as the cohomology groups of X with coefficients in M :

Hn(X,M) = Hn(RΓ(X,M)) .

We have canonical isomorphisms of abelian groups

Hn(X,M) ≃ HomHo(M )(S)(1S ,Rf∗ Lf
∗(M))

≃ HomHo(M )(X)(1X ,Lf
∗(M)) .

Note that, if moreover M is Q-linear, the presheaf RΓ(−,M) can be considered as a presheaf
of complexes of Q-vector spaces on S /S.

3.3. Descent over schemes. The aim of this section is to give natural sufficient conditions
for M to satisfy descent with respect to various Grothendieck topologies51.

3.3.a. Localization and Nisnevich descent.

3.3.1. Recall from example 2.1.11 that a Nisnevich distinguished square is a pullback square
of schemes

V
l //

g

��

Y

f

��
U

j
// X

(3.3.1.1)

in which f is étale, j is an open immersion with reduced complement Z and the induced morphism
f−1(Z)→ Z is an isomorphism.

For any scheme X in S , we denote by XNis the small Nisnevich site of X.

Theorem 3.3.2 (Morel-Voevodsky). Let V be a (combinatorial) model category and T a
scheme in S . For a presheaf F on TNis with values in V , the following conditions are equivalent.

(i) F (∅) is a terminal object in Ho(V ), and for any Nisnevich distinguished square (3.3.1.1)
in TNis, the square

F (X) //

��

F (Y )

��
F (U) // F (V )

is a homotopy pullback square in V .

51In fact, using remark 3.2.16, all of this section (results and proofs) holds for an abstract algebraic prederivator
in the sense of Ayoub [Ayo07a, Def. 2.4.13] without any changes (note that the results of 3.1.b are in fact a proof
that (stable) combinatorial fibred model categories over S give rise to algebraic prederivators). The only interest
of considering a fibred model category over S is that it allows to formulate things in a little more naive way.
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(ii) The presheaf F satisfies Nisnevich descent on TNis.

Proof. By virtue of corollaries 3.2.17 and 3.2.18, it is sufficient to prove this in the case
where V is the usual model category of simplicial sets, in which case this is precisely Morel and
Voevodsky’s theorem; see [MV99, Voe10b, Voe10c]. �

3.3.3. Consider a Nisnevich distinguished square (3.3.1.1) and put a = jg = fl. According to
our general assumption 3.0, the maps a, j and f are P-morphisms. For any object M of M (X),
we obtain a commutative square in M (which is well defined as an object in the homotopy of
commutative squares in M (X)):

La♯a
∗M //

��

Lf♯f
∗(M)

��
Lj♯j

∗(M) // M.

(3.3.3.1)

We also obtain another commutative square in M by appyling the functor RHomX(−,1X):

M //

��

Rf∗ f
∗(M)

��
Rj∗ j

∗(M) // Ra∗ a∗(M).

(3.3.3.2)

Proposition 3.3.4. If the category Ho(M ) has the localization property, then for any Nis-
nevich distinguished square (3.3.1.1) and any object M of Ho(M )(X), the squares (3.3.3.1) and
(3.3.3.2) are homotopy cartesians.

Proof. Let i : Z → X be the complement of the open immersion j (Z being endowed with
the reduced structure) and p : f−1(Z)→ Z the map induced by f .

We have only to prove that one of the squares (3.3.3.1), (3.3.3.2) are cartesian. We choose the
square (3.3.3.1).

Because the pair of functor (Li∗, j∗) is conservative on Ho(M )(X), we have only to check that
the pullback of (3.3.3.1) along j∗ or Li∗ is homotopy cartesian. But, using the P-base change
property, we see that the image of (3.3.3.1) by j∗ is (canonically isomorphic to) the commutative
square

Lg♯a
∗(M)

��

Lg♯a
∗(M)

��
j∗(M) j∗(M)

which is obviously homotopy cartesian.
Using again the P-base change property, we obtain that the image of (3.3.3.1) by Li∗ is

isomorphic in Ho(M ) to the square

0 // p♯p∗Li∗(M)

��
0 // Li∗(M)

which is again obviously homotopy cartesian because p is an isomorphism (note for this last reason,
p♯ = Lp♯). �

Corollary 3.3.5. If Ho(M ) has the localization property then it satisfies Nisnevich descent.

Proof. This corollary thus follows immediately from Corollary 3.2.17, Theorem 3.3.2 and
Proposition 3.3.4. �
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Remark 3.3.6. Note that using Theorem 3.3.2, if we assume only that Ho(M ) satisfies Nis-
nevich descent, then the squares (3.3.3.1) and (3.3.3.2) are homotopy cartesians for any Nisnevich
distinguished square (3.3.1.1).

Assume that M is monoidal with geometric sections M . Let S be a base scheme and consider
a Nisnevich distinguished square (3.3.1.1) of smooth S-schemes. Then the fact that the square
(3.3.3.1) is homotopy cartesian implies there exists a canonical distinguished triangle:

MS(V )
g∗+l∗
−−−−→MS(U)⊕MS(Y )

f∗+j∗
−−−−→MS(X) −→MS(V )[1]

It is called the Mayer-Vietoris triangle associated with the square (3.3.1.1).

3.3.b. Proper base change isomorphism and descent by blow-ups.

3.3.7. Recall from example 2.1.11 that a cdh-distinguished square is a pullback square of
schemes

T
k //

g

��

Y

f

��
Z

i
// X

(3.3.7.1)

in which f is proper surjective, i a closed immersion and the induced map f−1(X − Z)→ X − Z
is an isomorphism.

Recall from Example 2.1.11 the cdh-topology is the Grothendieck topology on the category of
schemes generated by Nisnevich coverings and by coverings of shape {Z → X,Y → X} for any
cdh-distinguished square (3.3.7.1).

Theorem 3.3.8 (Voevodsky). Let V be a (combinatorial) model category. For a presheaf F
on S with values in V , the following conditions are equivalent.

(i) The presheaf F satisfies cdh-descent on S .
(ii) The presheaf F satisfies Nisnevich descent and, for any cdh-distinguished square (3.3.7.1)

of S , the square

F (X) //

��

F (Y )

��
F (Z) // F (T )

is a homotopy pullback square in V .

Proof. It is sufficient to prove this in the case where V is the usual model category of simpli-
cial sets; see corollaries 3.2.17 and 3.2.18. As the distinguished cdh-squares define a bounded reg-
ular and reduced cd-structure on S , the equivalence between (i) and (ii) follows from Voevodsky’s
theorems on descent with respect to topologies defined by cd-structures [Voe10b, Voe10c]. �

3.3.9. Consider a cdh-distinguished square (3.3.7.1) and put a = ig = fk. For any object
M of M (X), we obtain a commutative square in M (which is well defined as an object in the
homotopy of commutative squares in M (X)):

M //

��

Rf∗ Lf
∗(M)

��
Ri∗ Li

∗(M) // Ra∗ La∗(M)

(3.3.9.1)

Proposition 3.3.10. Assume Ho(M ) satisfies the localization property and the transversality
property with respect to proper morphisms. Then the following conditions hold:

(i) For any cdh-distinguished square (3.3.7.1), and any object M of Ho(M )(X) the commu-
tative square (3.3.9.1) is homotopy cartesian.

(ii) The P-fibred model category Ho(M ) satisfies cdh-descent.



3. DESCENT IN P-FIBRED MODEL CATEGORIES 79

Proof. We first prove (i). Consider a cdh-distinguished square (3.3.7.1) and let j : U → X be
the complement open immersion of i. As the pair of functor (Li∗, j∗) is conservative on Ho(M )(X),
we have only to check that the image of (3.3.9.1) under Li∗ and j∗ is homotopy cartesian.

Using projective transversality, we see that the image of (3.3.9.1) by the functor Li∗ is (iso-
morphic to) the homotopy pullback square

Li∗(M) // Rg∗ Lg∗ Li∗(M)

Li∗(M) // Rg∗ Lg∗ Li∗(M) .

Let h : f−1(U) → U be the pullback of f over U . As j is an open immersion, it is by
assumption a P-morphism and the P-base change formula implies that the image of (3.3.9.1) by
j∗ is (isomorphic to) the commutative square

Lj∗(M) //

��

Rh∗Lh
∗Lj∗(M)

��
0 0

which is obviously homotopy cartesian because h is an isomorphism.
We then prove (ii). We already know that M satisfies Nisnevich descent (Corollary 3.3.5).

Thus, by virtue of the equivalence between conditions (i) and (ii) of Theorem 3.3.8, the computa-
tion above, together with corollaries 3.2.17 and 3.2.18 imply that M satisfies cdh-descent. �

3.3.11. To any cdh-distinguished square (3.3.7.1), one associates a diagram of schemes Y over
X as follows. Let be the category freely generated by the oriented graph

a //

��

b

c

(3.3.11.1)

Then Y is the functor from to S /X defined by the following diagram.

T
k //

g

��

Y

Z

(3.3.11.2)

We then have a canonical map ϕ : Y → X, and the second assertion of Theorem 3.3.10 can be
reformulated by saying that the adjunction map

M → Rϕ∗ Lϕ
∗(M)

is an isomorphism for any object M of Ho(M )(X): indeed, by virtue of Proposition 3.1.15,
Rϕ∗ Lϕ

∗(M) is the homotopy limit of the diagram

Rf∗ Lf
∗(M)

��
Ri∗ Li

∗(M) // Ra∗ La∗(M)

in Ho(M )(X). In other words, if M has the properties of localization and of projective transver-
sality, then the functor

Lϕ∗ : Ho(M )(X)→ Ho(M )(Y , )

is fully faithful.
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3.3.c. Proper descent with rational coefficients I: Galois excision. From now on, we assume
that any scheme in S is quasi-excellent52 (in fact, we shall only use the fact that the normalization
of a quasi-excellent schemes gives rise to a finite surjective morphism, so that, in fact, universally
japanese schemes would be enough). We fix a scheme S in S , and we shall work with S-schemes
in S (assuming these form an essentially small category).

3.3.12. The h-topology (resp. the qfh-topology) is the Grothendieck topology on the category of
schemes associated to the pretopology whose coverings are the universal topological epimorphisms
(resp. the quasi-finite universal topological epimorphisms). This topology has been introduced
and studied by Voevodsky in [Voe96].

The h-topology is finer than the cdh-topology and, of course, finer than the qfh-topology. The
qfh-topology is in turn finer than the étale topology. An interesting feature of the h-topology (resp.
of the qfh-topology) is that any proper (resp. finite) surjective map is an h-cover. In fact, the
h-topology (resp. the qfh-topology) can be described as the topology generated by the Nisnevich
coverings and by the proper (resp. finite) surjective maps; see Lemma 3.3.28 (resp. Lemma 3.3.27)
below for a precise statement.

3.3.13. Consider a morphism of schemes f : Y → X. Consider the group of automorphisms
G = AutY (X) of the X-scheme Y .

Assuming X is connected, we say according to [SGA1, exp. V] that f is a Galois cover if it
is finite étale (thus surjective) and G operates transitively and faithfully on any (or simply one)
of the geometric fibers of Y/X. Then G is called the Galois group of Y/X.53

When X is not connected, we will still say that f is a Galois cover if it is so over any connected
component of X. Then G will be called the Galois group of X. If (Xi)i∈I is the family connected
components of X, then G is the product of the Galois groups Gi of f ×X Xi for each i ∈ I. The
group Gi is equal to the Galois group of any residual extension over a generic point of Xi.

The following definition is an extension of the definition 5.5 of [SV00b]:

Definition 3.3.14. A pseudo-Galois cover is a finite surjective morphism of schemes f : Y →
X which can be factored as

Y
f ′

−→ X ′ p
−→ X

where f ′ is a Galois cover and p is radicial54 (such a p is automatically finite and surjective).

Note that the group G defined by the Galois cover f ′ is independent of the choice of the
factorization. In fact, if X̄ denotes the semi-localization of X at its generic points, considering the
cartesian squares

Ȳ //

��

X̄ ′ //

��
X̄

��
Y

f ′

// X ′
p // X

then G = AutX̄(Ȳ ) – for any point y ∈ Ȳ , x′ = f ′(y), x = f(y), κx′/κx is the maximal radicial
sub-extension of the normal extension κy/κx. It will be called the Galois group of Y/X.

Remark also that Y is a G-torsor over X locally for the qfh-topology (i.e. it is a Galois object
of group G in the qfh-topos of X): this comes from the fact that finite radicial epimorphisms are
isomorphisms locally for the qfh-topology (any universal homeomorphism has this property by
[Voe96, prop. 3.2.5]).

Let f : Y → X be a finite morphism, and G a finite group acting on Y over X. Note that, as
Y is affine on X, the scheme theoretic quotient Y/G exists; see [SGA1, Exp. V, Cor. 1.8]. Such
scheme-theoretic quotients are stable by flat pullbacks; see [SGA1, Exp. V, Prop. 1.9].

52See 4.1.1 below for a reminder on quasi-excellent schemes.
53The map f induces a one to one correspondence between the generic points of Y and that of X. For any

generic point y ∈ Y , x = f(y), the residual extension κy/κx is a Galois extension with Galois group G.
54See 2.1.6 for a reminder on radicial morphisms.
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Definition 3.3.15. Let G be finite group. A qfh-distinguished square of group G is a pullback
square of S-schemes of shape

T
h //

g

��

Y

f

��
Z

i
// X

(3.3.15.1)

in which Y is endowed with an action of G over X, and satisfying the following three conditions.

(a) The morphism f is finite and surjective.
(b) The induced morphism f−1(X − Z)→ f−1(X − Z)/G is flat.
(c) The morphism f−1(X − Z)/G→ X − Z is radicial.

Immediate examples of qfh-distinguished squares of trivial group are the following. The scheme
Y might be the normalization of X, and Z is a nowhere dense closed subscheme out of which f is
an isomorphism; or Y is dense open subscheme of X which is the disjoint union of its irreducible
components; or Y is a closed subscheme of X inducing an isomorphism Yred ≃ Xred .

A qfh-distinguished square of group G (3.3.15.1) will be said to be pseudo-Galois if Z is
nowhere dense in X and if the map f−1(X − Z)→ X − Z is a pseudo-Galois cover of group G.

The main examples of pseudo-Galois qfh-distinguished squares will come from the following
situation.

Proposition 3.3.16. Consider an irreducible normal scheme X, and a finite extension L of
its field of functions k(X). Let K be the inseparable closure of k(X) in L, and assume that L/K
is a Galois extension of group G. Denote by Y the normalization of X in L. Then the action of
G on k(Y ) = L extends naturally to an action on Y over X. Furthermore, there exists a closed
subscheme Z of X, such that the pullback square

T //

��

Y

f

��
Z

i
// X

is a pseudo-Galois qfh-distinguished square of group G.

Proof. The action of G on L extends naturally to an action on Y over X by functoriality.
Furthermore, Y/G is the normalization ofX inK, so that Y/G→ X is finite radicial and surjective
(see [Voe96, Lemma 3.1.7] or [Bou98, V, §2, no 3, lem. 4]). By construction, Y is generically a
Galois cover over Y/G, which implies the result (see [EGA4, Cor. 18.2.4]). �

3.3.17. For a given S-scheme T , we shall denote by L(T ) the corresponding representable
qfh-sheaf of sets (remember that the qfh-topology is not subcanonical, so that L(T ) has to be
distinguished from T itself). Beware that, in general, there is no reason that, given a finite group G
acting on T , the scheme-theoretic quotient L(T/G) (whenever defined) and the qfh-sheaf-theoretic
quotient L(T )/G would coincide.

Lemma 3.3.18. Let f : Y → X be a separated morphism, G a finite group acting on Y over
X, and Z a closed subscheme of X such that f is finite and surjective over X −Z, and such that
the quotient map f−1(X − Z)→ f−1(X − Z)/G is flat, while the map f−1(X − Z)/G→ X − Z
is radicial. For g ∈ G, write g : Y → Y for the corresponding automorphism of Y , and define Yg
as the image of the diagonal Y → Y ×X Y composed with the automorphism 1Y ×X g : Y ×X Y →
Y ×X Y . Then, if T = Z ×X Y , we get a qfh-cover of Y ×X Y by closed subschemes:

Y ×X Y = (T ×Z T ) ∪
⋃

g∈G

Yg .

Proof. Note that, as f is separated, the diagonal Y → Y ×X Y is a closed embedding, so
that the Yg’s are closed subschemes of Y ×X Y . As the map Y ×Y/G Y → Y ×X Y is a universal
homeomorphism, we may assume that Y/G = X. It is sufficient to prove that, if y and y′ are two
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geometric points of Y whose images coincide in X and do not belong to Z, there exists an element
g of G such that y′ = gy (which means that the pair (y, y′) belongs to Yg). For this purpose,
we may assume, without loss of generality, that Z = ∅. Then, by assumption, Y is flat over X,
from which we get the identification (Y ×X Y )/G ≃ Y ×X (Y/G) ≃ Y (where the action of G on
Y ×X Y is trivial on the first factor and is induced by the action on Y on the second factor). This
achieves the proof. �

Proposition 3.3.19. For any qfh-distinguished square of group G (3.3.15.1), the commutative
square

L(T )/G //

��

L(Y )/G

��
L(Z) // L(X)

is a pullback and a pushout in the category of qfh-sheaves. Moreover, if X is normal and if Z is
nowhere dense in X, then the canonical map L(Y )/G → L(Y/G) ≃ L(X) is an isomorphism of
qfh-sheaves (which implies that L(T )/G→ L(Z) is an isomorphism as well).

Proof. Note that this commutative square is a pullback because it was so before taking the
quotients by G (as colimits are universal in any topos). As f is a qfh-cover, it is sufficient to prove
that

L(T )×L(Z) L(T )/G //

��

L(Y )×L(X) L(Y )/G

��
L(T ) // L(Y )

is a pushout square. This latter square fits into the following commutative diagram

L(T ) //

��

L(Y )

��
L(T )×L(Z) L(T )/G //

��

L(Y )×L(X) L(Y )/G

��
L(T ) // L(Y )

in which the two vertical composed maps are identities (the vertical maps of the upper commutative
square are obtained from the diagonals by taking the quotients under the natural action of G on
the right component). It is thus sufficient to prove that the upper square is a pushout. As the
lower square is a pullback, the upper one shares the same property; moreover, all the maps in the
upper commutative square are monomorphisms of qfh-sheaves, so that it is sufficient to prove that
the map (L(T )×L(Z) L(T )/G) ∐ L(Y )→ L(Y )×L(X) L(Y )/G is an epimorphism of qfh-sheaves.
According to Lemma 3.3.18, this follows from the commutativity of the diagram

L(T ×Z T )∐
(
∐

g∈G L(Yg)
)

//

��

L(Y ×X Y )

��
(L(T )×L(Z) L(T )/G)∐ L(Y ) // L(Y )×L(X) L(Y )/G

in which the vertical maps are obviously epimorphic.
Assume now that X is normal and that Z is nowhere dense in X, and let us prove that the

canonical map L(Y )/G → L(X) is an isomorphism of qfh-sheaves. This is equivalent to prove
that, for any qfh-sheaf of sets F , the map f∗ : F (X)→ F (Y ) induces a bijection

F (X) ≃ F (Y )G .
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Let F be a qfh-sheaf. The map f∗ : F (X)→ F (Y ) is injective because f is a qfh-cover, and it is
clear that the image of f∗ lies in F (Y )G.

Let a be a section of F over Y which is invariant under the action of G. Denote by pr1, pr2 :
Y ×X Y → Y the two canonical projections. With the notations introduced in Lemma 3.3.18, we
have

pr∗1(a)|Yg
= a = a.g = pr∗2(a)|Yg

for every element g in G. As Z does not contain any generic point of X, the scheme T ×Z T does
not contain any generic point of Y ×X Y neither: as any irreducible component of Y dominates
an irreducible component of X, and, as X is normal, the finite map Y → X is universally open; in
particular, the projection pr1 : Y ×X Y → Y is universally open, which implies that any generic
point of Y ×X Y lies over a generic point of Y . By virtue of [Voe96, prop. 3.1.4], Lemma 3.3.18
thus gives a qfh-cover of Y ×X Y by closed subschemes of shape

Y ×X Y =
⋃

g∈G

Yg .

This implies that

pr∗1(a) = pr∗2(a) .

The morphism Y → X being a qfh-cover and F a qfh-sheaf, we deduce that the section a lies in
the image of f∗. �

Corollary 3.3.20. For any qfh-distinguished square of group G (3.3.15.1), we get a bicarte-
sian square of qfh-sheaves of abelian groups

Zqfh(T )G //

��

Zqfh(Y )G

��
Zqfh(Z) // Zqfh(X)

(where the subscript G stands for the coinvariants under the action of G). In other words, there
is a canonical short exact sequence of sheaves of abelian groups

0→ Zqfh(T )G → Zqfh(Z)⊕ Zqfh(Y )G → Zqfh(X)→ 0 .

Proof. As the abelianization functor preserves colimits and monomorphisms, the preceding
proposition implies formally that we have a short exact sequence of shape

Zqfh(T )G → Zqfh(Z)⊕ Zqfh(Y )G → Zqfh(X)→ 0 ,

while the left exactness follows from the fact that Z → X being a monomorphism, the map
obtained by pullback, L(T )/G→ L(Y )/G, is a monomorphism as well. �

3.3.21. Let V be a Q-linear stable model category (see 3.2.14).
Consider a finite group G, and an object E of V , endowed with an action of G. By viewing G

as a category with one object we can see E as functor from G to V and take its homotopy limit
in Ho(V ), which we denote by EhG (in the literature, EhG is called the object of homotopy fixed
points under the action of G on E). One the other hand, the category Ho(V ) is, by assumption,
a Q-linear triangulated category with small sums, and, in particular, a Q-linear pseudo-abelian
category so that we can define EG as the object of Ho(V ) defined by

(3.3.21.1) EG = Im p ,

where p : E → E is the projector defined in Ho(V ) by the formula

(3.3.21.2) p(x) =
1

#G

∑

g∈G

g.x .

The inclusion EG → E induces a canonical isomorphism

(3.3.21.3) EG
∼
→ EhG
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in Ho(V ): to see this, by virtue of Theorem 3.2.15, we can assume that V is the model category
of complexes of Q-vector spaces, in which case it is obvious.

Corollary 3.3.22. Let C be a presheaf of complexes of Q-vector spaces on the category of
S-schemes. Then, for any qfh-distinguished square of group G (3.3.15.1), the commutative square

RΓqfh(X,Cqfh) //

��

RΓqfh(Y,Cqfh)
G

��
RΓqfh(Z,Cqfh) // RΓqfh(T,Cqfh)

G

is a homotopy pullback square in the derived category of Q-vector spaces. In particular, we get a
long exact sequence of shape

Hn
qfh(X,Cqfh)→ Hn

qfh(Z,Cqfh)⊕H
n
qfh(Y,Cqfh)

G → Hn
qfh(T,Cqfh)

G → Hn+1
qfh (X,Cqfh)

If furthermore X is normal and Z is nowhere dense in X, then the maps

Hn
qfh(X,Cqfh)→ Hn

qfh(Y,Cqfh)
G and Hn

qfh(Z,Cqfh)→ Hn
qfh(T,Cqfh)

G

are isomorphisms for any integer n.

Proof. Let Cqfh → C ′ be a fibrant resolution in the qfh-local injective model category struc-
ture on the category of qfh-sheaves of complexes of Q-vector spaces; see for instance [Ayo07a,
Cor. 4.4.42]. Then for U = Y, T , we have a natural isomorphism of complexes

Hom(Qqfh(U)G, C
′) = C ′(U)G

which gives an isomorphism

RHom(Qqfh(U)G, Cqfh) ≃ RΓqfh(U,Cqfh)
G

in the derived category of the abelian category of Q-vector spaces. This corollary thus follows
formally from Corollary 3.3.20 by evaluating at the derived functor RHom(−, Cqfh).

If furthermoreX is normal, then one deduces the isomorphismHn
qfh(X,Cqfh) ≃ H

n
qfh(Y,Cqfh)

G

from the fact that L(Y )/G ≃ L(Y/G) ≃ X (Proposition 3.3.19), which implies that Zqfh(Y )G ≃
Zqfh(X). The isomorphism Hn

qfh(Z,Cqfh) ≃ H
n
qfh(T,Cqfh)

G then comes as a byproduct of the long
exact sequence above. �

Theorem 3.3.23. Let X be a scheme, and C be a presheaf of complexes of Q-vector spaces
on the small étale site of X. Then C satisfies étale descent if and only if it has the following
properties.

(a) The complex C satisfies Nisnevich descent.
(b) For any étale X-scheme U and any Galois cover V → U of group G, the map C(U) →

C(V )G is a quasi-isomorphism.

Proof. These are certainly necessary conditions. To prove that they are sufficient, note
that the Nisnevich cohomological dimension and the rational étale cohomological dimension of
a noetherian scheme are bounded by the dimension; see [MV99, proposition 1.8, page 98] and
[Voe96, Lemma 3.4.7]. By virtue of [SV00a, Theorem 0.3], for τ = Nis, ét, we have strongly
convergent spectral sequences

Ep,q2 = Hp
τ (U,H

q(C)τ )⇒ Hp+q
τ (U,Cτ ) .

Condition (a) gives isomorphisms Hp+q(C(U)) ≃ Hp+q
Nis (U,CNis), so that it is sufficient to prove

that, for each of the cohomology presheaves F = Hq(C), we have

Hp
Nis(U,FNis) ≃ H

p
ét(U,Fét) .

As the rational étale cohomology of any henselian scheme is trivial in non-zero degrees, it is
sufficient to prove that, for any local henselian scheme U (obtained as the henselisation of an étale
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X-scheme at some point), FNis(U) ≃ Fét(U). Let G be the absolute Galois group of the closed
point of U . Then we have

FNis(U) = F (U) and Fét(U) = lim
−→
α

F (Uα)
Gα ,

where the Uα’s run over all the Galois covers of U corresponding to the finite quotients G→ Gα.
But it follows from (b) that F (U) ≃ F (Uα)

Gα for any α, so that FNis(U) ≃ Fét(U). �

Lemma 3.3.24. Any qfh-cover admits a refinement of the form Z → Y → X, where Z → Y
is a finite surjective morphism, and Y → X is an étale cover.

Proof. This property being clearly local on X with respect to the étale topology, we can
assume that X is strictly henselian, in which case this follows from [Voe96, Lemma 3.4.2]. �

Theorem 3.3.25. A presheaf of complexes of Q-vector spaces C on the category of S-schemes
satisfies qfh-descent if and only if it has the following two properties:

(a) the complex C satisfies Nisnevich descent;
(b) for any pseudo-Galois qfh-distinguished square of group G (3.3.15.1), the commutative

square

C(X) //

��

C(Y )G

��
C(Z) // C(T )G

is a homotopy pullback square in the derived category of Q-vector spaces.

Proof. Any complex of presheaves of Q-vector spaces satisfying qfh-descent satisfies prop-
erties (a) and (b): property (a) follows from the fact that the qfh-topology is finer than the étale
topology; property (b) is Corollary 3.3.22.

Assume now that C satisfies these two properties. Let ϕ : C → C ′ be a morphism of presheaves
of complexes of Q-vector spaces which is a quasi-isomorphism locally for the qfh-topology, and
such that C ′ satisfies qfh-descent (such a morphism exists thanks to the qfh-local model category
structure on the category of presheaves of complexes of Q-vector spaces; see Proposition 3.2.10).
Then the cone of ϕ also satisfies conditions (a) and (b). Hence it is sufficient to prove the theorem
in the case where C is acyclic locally for the qfh-topology.

Assume from now on that Cqfh is an acyclic complex of qfh-sheaves, and denote by Hn(C)
the nth cohomology presheaf associated to C. We know that the associated qfh-sheaves vanish,
and we want to deduce that Hn(C) = 0.

We shall prove by induction on d that, for any S-scheme X of dimension d and for any integer
n, the group Hn(C)(X) = Hn(C(X)) vanishes. The case where d < 0 follows from the fact,
that by (a), the presheaves Hn(C) send finite sums to finite direct sums, so that, in particular,
Hn(C)(∅) = 0. Before going further, notice that condition (b) implies Hn(C)(Xred) = Hn(C)(X)
for any S-scheme X (consider the case where, in the diagram (3.3.15.1), Z = Y = T = Xred), so
that it is always harmless to replace X by its reduction. Assume now that d ≥ 0, and that the
vanishing of Hn(C)(X) is known whenever X is of dimension < d and for any integer n. Under
this inductive assumption, we have the following reduction principle.

Consider a pseudo-Galois qfh-distinguished square of group G (3.3.15.1). If Z and T are of
dimension < d, then by condition (b), the map Hn(C)(X) → Hn(C)(Y )G is an isomorphism:
indeed, we have an exact sequence of shape

Hn−1(C)(T )G → Hn(C)(X)→ Hn(C)(Z)⊕Hn(C)(Y )G → Hn(C)(T )G ,

which implies our assertion by induction on d.
We shall prove now the vanishing of Hn(C)(T ) for normal S-schemes T of dimension d. Let

a be a section of Hn(C) over such a T . As Hn(C)qfh(T ) = 0, there exists a qfh-cover g : Y → T
such that g∗(a) = 0. But, by virtue of Lemma 3.3.24, we can assume g is the composition of a
finite surjective morphism f : Y → X and of an étale cover e : X → T . We claim that e∗(a) = 0.
To prove it, as, by (a), the presheaf Hn(C) sends finite sums to finite direct sums, we can assume
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that X is normal and connected. Refining f further, we can assume that Y is the normalization
of X in a finite extension of k(X), and that k(Y ) is a Galois extension of group G over the
inseparable closure of k(X) in k(Y ). By virtue of Proposition 3.3.16, we get by the reduction
principle the identification Hn(C)(X) = Hn(C)(Y )G, whence e∗(a) = 0. As a consequence, the
restriction of the presheaf of complexes C to the category of normal S-schemes of dimension ≤ d is
acyclic locally for the étale topology (note that this is quite meaningful, as any étale scheme over
a normal scheme is normal; see [EGA4, Prop. 18.10.7]). But C satisfies étale descent (by virtue
of Theorem 3.3.23 this follows formally from property (a) and from property (b) for Z = ∅), so
that Hn(C)(T ) = Hn

ét(T,Cét) = 0 for any normal S-scheme T of dimension ≤ d and any integer
n.

Consider now a reduced S-scheme X of dimension ≤ d. Let p : T → X be the normalization of
X. As p is birational (see [EGA2, Cor. 6.3.8]) and finite surjective (because X is quasi-excellent),
we can apply the reduction principle and see that the pullback map p∗ : Hn(C)(X)→ Hn(C)(T ) =
0 is an isomorphism for any integer n, which achieves the induction and the proof. �

Lemma 3.3.26. Étale coverings are finite étale coverings locally for the Nisnevich topology:
any étale cover admits a refinement of the form Z → Y → X, where Z → Y is a finite étale cover
and Y → X is a Nisnevich cover.

Proof. This property being local on X for the Nisnevich topology, it is sufficient to prove
this in the case where X is local henselian. Then, by virtue of [EGA4, Cor. 18.5.12 and Prop.
18.5.15], we can even assume that X is the spectrum of field, in which case this is obvious. �

Lemma 3.3.27. Any qfh-cover admits a refinement of the form Z → Y → X, where Z → Y
is a finite surjective morphism, and Y → X is a Nisnevich cover.

Proof. As finite surjective morphisms are stable by pullback and composition, this follows
immediately from lemmata 3.3.24 and 3.3.26. �

Lemma 3.3.28. Any h-cover of an integral scheme X admits a refinement of the form

U → Z → Y → X ,

where U → Z is a finite surjective morphism, Z → Y is a Nisnevich cover, Y → X is a proper
surjective birational map, and Y is normal.

Proof. By virtue of [Voe96, Theorem 3.1.9], any h-cover admits a refinement of shape

W → V → X ,

where W → V is a qfh-cover, and V → X is a proper surjective birational map. By replacing V
by its normalization Y , we get a refinement of shape

W ×V Y → Y → X

where W ×V Y → Y is a qfh-cover, and Y → X is proper surjective birational map. We conclude
by Lemma 3.3.27. �

Lemma 3.3.29. Let C be a presheaf of complexes of Q-vector spaces on the category of S-
schemes satisfying qfh-descent. Then, for any finite surjective morphism f : Y → X with X
normal, the map f∗ : Hn(C)(X)→ Hn(C)(Y ) is a monomorphism.

Proof. It is clearly sufficient to prove this when X is connected. Then, up to refinement, we
can assume that f is a map as in Proposition 3.3.16. In this case, by virtue of Corollary 3.3.22,
the Q-vector space Hn(C)(X) ≃ Hn(C)(Y )G is a direct factor of Hn(C)(Y ). �

Theorem 3.3.30. A presheaf of complexes of Q-vector spaces on the category of S-schemes
satisfies h-descent if and only if it satisfies qfh-descent and cdh-descent.
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Proof. This is certainly a necessary condition, as the h-topology is finer than the qfh-
topology and the cdh-topology. For the converse, as in the proof of Theorem 3.3.25, it is suf-
ficient to prove that any presheaf of complexes of Q-vector spaces C on the category of S-schemes
satisfying qfh-descent and cdh-descent, and which is acyclic locally for the h-topology, is acyclic.
We shall prove by noetherian induction that, given such a complex C, for any integer n, and any
S-scheme X, for any section a of Hn(C) over X, there exists a cdh-cover X ′ → X on which a
vanishes. In other words, we shall get that C is acyclic locally for the cdh-topology, and, as C sat-
isfies cdh-descent, this will imply that Hn(C)(X) = Hn

cdh(X,Ccdh) = 0 for any integer n and any
S-scheme X. Note that the presheaves Hn(C) send finite sums to finite direct sums (which follows,
for instance, from the fact that C satisfies Nisnevich descent). In particular, Hn(C)(∅) = 0 for
any integer n.

Let X be an S-scheme, and a ∈ Hn(C)(X). We have a cdh-cover of X of shape X ′∐X ′′ → X,
where X ′ is the sum of the irreducible components of Xred and X ′′ is a nowhere dense closed
subscheme of X, so that we can assume X is integral. Let a be a section of the presheaf Hn(C)
over X. As Hn(C)h = 0, by virtue of Lemma 3.3.28, there exists a proper surjective birationnal
map p : Y → X with Y normal, a Nisnevich cover q : Z → Y , and a surjective finite morphism
r : U → Z such that r∗(q∗(p∗(a))) = 0 in Hn(C)(U). But then, Z is normal as well (see [EGA4,
Prop. 18.10.7]), so that, by Lemma 3.3.29, we have q∗(p∗(a)) = 0 in Hn(C)(Z). Let T be a
nowhere dense closed subscheme of X such that p is an isomorphism over X − T . By noetherian
induction, there exists a cdh-cover T ′ → T such that a|T ′ vanishes. Hence the section a vanishes
on the cdh-cover T ′ ∐ Z → X. �

3.3.d. Proper descent with rational coefficients II: separation. From now on, we assume that
Ho(M ) is Q-linear.

Proposition 3.3.31. Let f : Y → X be a morphism of schemes in S , and G a finite group
acting on Y over X. Denote by Y the scheme Y considered a functor from G to the category of
S-schemes, and denote by ϕ : (Y , G) → X the morphism induced by f . Then, for any object M
of Ho(M )(X), there are canonical isomorphisms

(Rf∗ Lf
∗(M))G ≃ (Rf∗ Lf

∗(M))hG ≃ Rϕ∗ Lϕ
∗(M) .

Proof. The second isomorphism comes from Proposition 3.1.15, and the first, from (3.3.21.3).
�

Theorem 3.3.32. If Ho(M ) satisfies Nisnevich descent, the following conditions are equiva-
lent:

(i) Ho(M ) satisfies étale descent.
(ii) for any finite étale cover f : Y → X, the functor

Lf∗ : Ho(M )(X)→ Ho(M )(Y )

is conservative;
(iii) for any finite Galois cover f : Y → X of group G, and for any object M of Ho(M )(X),

the canonical map

M → (Rf∗ Lf
∗(M))G

is an isomorphism.

Proof. The equivalence between (i) and (iii) follows from Theorem 3.3.23 by corollaries 3.2.17
and 3.2.18, and Proposition 3.2.8 shows that (i) implies (ii). It is thus sufficient to prove that (ii)
implies (iii). Let f : Y → X be a finite Galois cover of group G. As the functor f∗ = Lf∗ is
conservative by assumption, it is sufficient to check that the map M → (Rf∗ Lf

∗(M))G becomes
an isomorphism after applying f∗. By virtue of Proposition 3.1.17, this just means that it is
sufficient to prove (iii) when f has a section, i.e. when Y is isomorphic to the trivial G-torsor over
X. In this case, we have the (equivariant) identification

⊕

g∈GM ≃ Rf∗ Lf
∗(M), where G acts

on the left term by permuting the factors. Hence M ≃ (Rf∗ Lf
∗(M))G. �
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Proposition 3.3.33. Assume that Ho(M ) has the localization property. The following con-
ditions are equivalent:

(i) Ho(M ) is separated.
(ii) Ho(M ) is semi-separated and satisfies étale descent.

Proof. This follows from Proposition 2.3.9 and Theorem 3.3.32. �

Corollary 3.3.34. Assume that all the residue fields of S are of characteristic zero, and that
M has the property of localization. Then the following conditions are equivalent:

(i) Ho(M ) is separated.
(ii) Ho(M ) satisfies étale descent.

Proof. In this case, a finite surjective morphism f : Y → X is radicial if and only if it induces
an isomorphism after reduction Yred ≃ Xred . But it is clear that, by the localization property,
such a morphism f induces an equivalence of categories Lf∗, so that Ho(M ) is automatically
semi-separated. We conclude by Proposition 3.3.33. �

Proposition 3.3.35. Assume that Ho(M ) is separated, satisfies the localization property the
proper transversality property. Then, for any pseudo-Galois cover f : Y → X of group G, and for
any object M of Ho(M )(X), the canonical map

M → (Rf∗ Lf
∗(M))G

is an isomorphism.

Proof. By Proposition 3.3.33, this is an easy consequence of Proposition 2.1.9 and of condi-
tion (iii) of Theorem 3.3.32. �

3.3.36. From now on, we assume furthermore that any scheme in S is quasi-excellent.

Theorem 3.3.37. Assume that Ho(M ) satisfies the localization and proper transversality prop-
erties. Then the following conditions are equivalent:

(i) Ho(M ) is separated;
(ii) Ho(M ) satisfies h-descent;
(iii) Ho(M ) satisfies qfh-descent;
(iv) for any qfh-distinguished square (3.3.15.1) of group G, if we write a = fh = ig : T → X

for the composed map, then, for any object M of Ho(M )(X), the commutative square

M //

��

(Rf∗ Lf
∗(M))G

��
Ri∗ Li

∗(M) // (Ra∗ La∗(M))G

(3.3.37.1)

is homotopy cartesian;
(v) the same as condition (iv), but only for pseudo-Galois qfh-distinguished squares.

Proof. As M satisfies cdh-descent (Theorem 3.3.10), the equivalence between conditions (ii)
and (iii) follows from Theorem 3.3.30 by Corollary 3.2.18. Similarly, Theorem 3.3.25 and corollaries
3.3.22, 3.2.17 and 3.2.18 show that conditions (iii), (iv) and (v) are equivalent. As étale surjective
morphisms as well as finite radicial epimorphisms are qfh-coverings, it follows from Proposition
3.2.8, Theorem 3.3.32 and Proposition 3.3.33, that condition (iii) implies condition (i). It thus
remains to prove that condition (i) implies condition (v). So let us consider a pseudo-Galois qfh-
distinguished square (3.3.15.1) of group G, and prove that (3.3.37.1) is homotopy cartesian. Using
proper transversality, we see that the image of (3.3.37.1) by the functor Li∗ is (isomorphic to) the
homotopy pullback square

Li∗(M) // (Rg∗ Lg∗ Li∗(M))G

Li∗(M) // (Rg∗ Lg∗ Li∗(M))G .
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Write j : U → X for the complement open immersion of i, and b : f−1(U) → U for the map
induced by f . As j is étale, we see, using Proposition 3.1.17, that the image of (3.3.9.1) by
j∗ = Lj∗ is (isomorphic to) the square

j∗(M) //

��

(Rb∗ Lb
∗ j∗(M))G

��
0 0 .

in which the upper horizontal map is an isomorphism by Proposition 3.3.35. Hence it is a homotopy
pullback square. Thus, because the pair of functors (Li∗, j∗) is conservative on Ho(M )(X), the
square (3.3.37.1) is homotopy cartesian. �

Corollary 3.3.38. Assume that all the residue fields of S are of characteristic zero, and that
Ho(M ) has the localization and proper transversality properties. Then Ho(M ) satisfies h-descent
if and only if it satisfies étale descent.

Proof. This follows from Corollary 3.3.34 and Theorem 3.3.37. �

Corollary 3.3.39. Assume that Ho(M ) is separated and has the localization and proper
transversality properties. Let f : Y → X be a finite surjective morphism, with X normal, and G a
group acting on Y over X, such that the map Y/G→ X is generically radicial (i.e. radicial over
a dense open subscheme of X). Consider at last a pullback square of the following shape.

Y ′ //

f ′

��

Y

f

��
X ′ // X

Then, for any object M of Ho(M )(X ′), the natural map

M → (Rf ′∗ Lf
′∗(M))G

is an isomorphism.

Proof. For any presheaf C of complexes ofQ-vector spaces on S /X, one has an isomorphism

RΓqfh(X
′, Cqfh) ≃ RΓqfh(Y

′, Cqfh)
G .

This follows from the fact that we have an isomorphism of qfh-sheaves of sets L(Y )/G ≃ L(X)
(the map Y → Y/G being generically flat, this is Proposition 3.3.19), which implies that the map
L(Y ′)/G→ L(X ′) is an isomorphism of qfh-sheaves (by the universality of colimits in topoi), and
implies this assertion (as in the proof of 3.3.22).

By virtue of Theorem 3.3.37, Ho(M ) satisfies qfh-descent, so that the preceding computations
imply the result by corollaries 3.2.17 and 3.2.18. �

Corollary 3.3.40. Assume that Ho(M ) is separated and has the localization and proper
transversality properties. Then for any finite surjective morphism f : Y → X with X normal, the
morphism

M → Rf∗ Lf
∗(M)

is a monomorphism and admits a functorial splitting in Ho(M )(X). Furthermore, this remains
true after base change by any map X ′ → X.

Proof. It is sufficient to treat the case where X is connected. We may replace Y by a
normalization of X in a suitable finite extension of its field of function, and assume that a finite
group G acts on Y over X, so that the properties described in the preceding corollary are fulfilled
(see 3.3.16). �
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Remark 3.3.41. The condition (iv) of Theorem 3.3.37 can be reformulated in a more global
way as follows (this won’t be used in these notes, but this might be useful for the reader who might
want to formulate all this in terms of (pre-)algebraic derivators [Ayo07a, Def. 2.4.13]). Given a
qfh-distinguished square (3.3.15.1) of group G, we can form a functor F from category I =
(3.3.11.1) to the category of diagrams of S-schemes corresponding to the diagram of diagrams of
S-schemes

(T , G)
(h,1G) //

g

��

(Y , G)

Z

in which T and Y correspond to T anf Y respectively, seen as functor from G to S /X. The
construction of 3.1.22 gives a diagram of X-schemes (

∫
F , IF ) which can be described explicitely

as follows. The category IF is the cofibred category over associated to the functor from to
the category of small categories defined by the diagram

G
1G //

��

G

e

in which e stands for the terminal category, and G for the category with one object associated to
G. It has thus three objects a, b, c (see (3.3.11.1)), and the morphisms are determined by

HomIF
(x, y) =







* if y = c;

∅ if x 6= y and x = b, c;

G otherwise.

The functor F sends a, b, c to T, Y, Z respectively, and simply encodes the fact that the diagram

T
h //

g

��

Y

Z

is G-equivariant, the action on Z being trivial. Now, by propositions 3.1.23 and 3.3.31, if
ϕ : (F , IF ) → (X, ) denotes the canonical map, for any object M of Ho(M )(X), the ob-
ject Rϕ∗ Lϕ

∗(M) is the functor from = op to M (X) corresponding to the diagram below (of
course, this is well defined only in the homotopy category of the category of functors from to
M (X)).

(Rf∗ Lf
∗(M))G

��
Ri∗ Li

∗(M) // (Ra∗ La∗(M))G

As a consequence, if ψ : (
∫

F , IF ) → X denotes the structural map, the object Rψ∗ Lψ
∗(M) is

simply the homotopy homotopy limit of the diagram of M (X) above, so that condition (iv) of
Theorem 3.3.37 can now be reformulated by saying that the map

M → Rψ∗ Lψ
∗(M)

is an isomorphism, i.e. that the functor

Lψ∗ : Ho(M )(X)→ Ho(M )(
∫

F , IF )

is fully faithful.
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4. Constructible motives

4.0. Consider as in 2.0 a base scheme S and a sub-category S of the category of S-schemes.
In section 4.4, and for the main theorem of section 4.2, we will assume:

(a) Any scheme in S is quasi-excellent.55

Apart in Definition 4.3.2 and the subsequent proposition, where we will consider an abstract
situation, we will be concerned with the study of a fixed premotivic triangulated category T over
S (recall Definition 2.4.45) such that:

(b) T is motivic (see Definition 2.4.45).
(c) T is τ -generated for a set of twists τ (see Paragraph 1.4.4) which is stable under negative

Tate twists.
(d) T is the homotopy category associated with a stable combinatorial Sm-fibred model

category M over S .56

As usual, the geometric section of T will be denoted by M .
Unless explicitly referring to the underlying model category M , we will not indicate in the

notation of the six operations that the functors are derived functors.

4.1. Resolution of singularities. The aim of this subsection is to gather the results from
the theory of resolution of singularities that will be used subsequently.

4.1.1. In [EGA4, IV, 7.8.2], Grothendieck defined the notion of an excellent ring. Matsumura
introduced in [Mat70] the weaker notion of a quasi-excellent ring A. Recall A is quasi-excellent
if the following conditions hold:

(1) A is noetherian.

(2) For any prime ideal p, Âp being the completion of A at p, the canonical morphism

A→ Âp is regular (see 4.1.4 below).
(3) For any A-algebra B of finite type, the regular locus of Spec (B) is open.

Then a ring A is excellent if it is quasi-excellent and universally catenary. Following Gabber, we
say a scheme X is quasi-excellent (resp. excellent) if it admits an open cover by affine schemes
whose ring is quasi-excellent (resp. excellent).

Theorem 4.1.2 (Gabber’s weak local uniformisation). Let X be a quasi-excellent scheme, and
Z ⊂ X a nowhere dense closed subscheme. Then there exists a finite h-cover {fi : Yi → X}i∈I
such that for all i in I, fi is a morphism of finite type, the scheme Yi is regular, and f−1

i (Z) is
either empty or the support of a strict normal crossing divisor in Yi.

See [Ill08] for a sketch of proof. A complete argument can be found in [ILO]. Note that, if we
are only interested in schemes of finite type over Spec (R), for R either a field, a complete discrete
valuation ring, or a Dedekind domain whose field of functions is a global field, this is an immediate
consequence of de Jong’s resolution of singularities by alterations; see [dJ96]. One can also deduce
the case of schemes of finite type over an excellent noetherian scheme of dimension lesser or equal
to 2 from [dJ97]; see Theorem 4.1.10 and Corollary 4.1.11 below for a precise statement.

Remark 4.1.3. This theorem will be used in the proof of Lemma 4.2.14 which is the key point
for the proof of Theorem 4.2.16.

4.1.4. Recall that a morphism of rings u : A → B is regular if it is flat, and if, for any
prime ideal p in A, with residue field κ(p), the κ(p)-algebra κ(p) ⊗A B is geometrically regular
(equivalently, this means that, for any prime ideal q of B, the A-algebra Bq is formally smooth
for the q-adic topology). We recall the following great generalization of Neron’s desingularisation
theorem:

Theorem 4.1.5 (Popescu-Spivakovsky). A morphism of noetherian rings u : A→ B is regular
if and only if B is a filtered colimit of smooth A-algebras of finite type.

55See Paragraph 4.1.1. The reader can safely restrict his attention to the more classical notion of an excellent
scheme ([EGA4, IV, 7.8.5]).

56We use this assumption to use freely the descent theory described in section 3.3.
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Proof. See [Spi99, theorems 1.1 and 1.2]. �

4.1.6. Recall that an alteration is a proper surjective morphism p : X ′ → X which is generically
finite, i.e. such that there exists a dense open subscheme U ⊂ X over which p is finite.

Definition 4.1.7 (de Jong). Let X be a noetherian scheme endowed with an action of a finite
group G. A Galois alteration of the couple (X,G) is the data of a finite group G′, of a surjective
morphism of groups G′ → G, of an alteration X ′ → X, and of an action of G′ on X ′, such that:

(i) the map X ′ → X is G′-equivariant;
(ii) for any irreducible component T of X, there exists a unique irreducible component T ′ of

X ′ over T , and the corresponding finite field extension

k(T )G ⊂ k(T ′)G
′

is purely inseparable.

In practice, we shall keep the morphism of groups G′ → G implicit, and we shall say that (X ′ →
X,G′) is a Galois alteration of (X,G).

Given a noetherian scheme X, a Galois alteration of X is a Galois alteration (X ′ → X,G)
of (X, e), where e denotes the trivial group. In this case, we shall say that X ′ → X is a Galois
alteration of X of group G.

Remark 4.1.8. If p : X ′ → X is a Galois alteration of group G over X, then, if X and X ′ are
normal, irreducible and quasi-excellent, p can be factored as a radicial finite surjective morphism
X ′′ → X, followed by a Galois alteration X ′ → X ′′ of group G, such that k(X ′′) = k(X ′)G (just
define X ′′ as the normalization of X in k(X ′)G). In other words, up to a radicial finite surjective
morphism, X is generically the quotient of X ′ under the action of G.

Definition 4.1.9. A noetherian scheme S admits canonical dominant resolution of singu-
larities up to quotient singularities if, for any Galois alteration S′ → S of group G, and for
any G-equivariant nowhere dense closed subscheme Z ′ ⊂ S′, there exists a Galois alteration
(p : S′′ → S′, G′) of (S′, G), such that S′′ is regular and projective over S, and such that the
inverse image of Z ′ in S′′ is contained in a G′-equivariant strict normal crossing divisor (i.e. a
strict normal crossing divisor whose irreducible components are stable under the action of G′).

A noetherian scheme S admits canonical resolution of singularities up to quotient singularities
if any integral closed subscheme of S admits canonical dominant resolution of singularities up to
quotient singularities.

A noetherian scheme S admits wide resolution of singularities up to quotient singularities if,
for any separated S-scheme of finite type X, and any nowhere dense closed subscheme Z ⊂ X,
there exists a projective Galois alteration p : X ′ → X of group G, with X ′ regular, such that,
in each connected component of X ′, Z ′ = p−1(Z) is either empty, either the support of a strict
normal crossing divisor.

Theorem 4.1.10 (de Jong). If an excellent noetherian scheme of finite dimension S admits
canonical resolution of singularities up to quotient singularities, then any separated S-scheme of
finite type admits canonical resolution of singularities up to quotient singularities.

Proof. LetX be an integral separated S-scheme of finite type. There exists a finite morphism
S′ → S, with S′ integral, an integral dominant S′-scheme X ′ and a radicial extension X ′ → X
over S, such that X ′ has a geometrically irreducible generic fiber over S′. It follows then from
(the proof of) [dJ97, theorem 5.13] that X ′ admits canonical dominant resolution of singularities
up to quotient singularities, which implies that X has the same property. �

Corollary 4.1.11 (de Jong). Let S be an excellent noetherian scheme of dimension lesser
or equal to 2. Then any separated scheme of finite type over S admits canonical resolution of
singularities up to quotient singularities. In particular, S admits wide resolution of singularities
up to quotient singularities.

Proof. See [dJ97, corollary 5.15]. �
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4.2. Finiteness theorems. The aim of this section is to study the notion of τ -constructibility
in the triangulated motivic case and to study its stability properties under Grothendieck six op-
erations. Recall the following particular case of Definition 1.4.9:

Definition 4.2.1. For a scheme X in S , we denote by Tc(X) the thick triangulated sub-
category of T (X) generated by premotives of the form MX(Y ){i} for a smooth X-scheme Y and
a twist i ∈ τ . We will say that a premotive in Tc(X) is constructible.

Remark 4.2.2. Let us mention that our main examples:

• the stable homotopy category SH (cf. Example 1.4.3),
• the category of Voevodsky motives DM (cf. Definition 11.1.1),
• the category of Beilinson motives DMB (cf. Definition 14.2.1)

are all generated by the Tate twists (i.e. τ = Z). Recall also Proposition 1.4.11: it applies to all
these examples so that constructible premotives coincides with compact objects.57

Proposition 4.2.3. If M and N are constructible in T (X), so is M ⊗X N .

Proof. For a fixed M , the full subcategory of T (X) spanned by objects such that M ⊗X N
is constructible is a thick triangulated subcategory of T (X). In the caseM is of shapeMX(Y ){n}
for Y smooth over X and n ∈ τ , this proves that M ⊗X N is constructible whenever N is. By the
same argument, using the symmetry of the tensor product, we get to the general case. �

Similarly, one has the following conservation property.

Proposition 4.2.4. For any morphism f : X → Y of schemes, the functor

f∗ : T (Y )→ T (X)

preserves constructible objects. If moreover f is smooth, the functor

f♯ : T (X)→ T (Y )

also preserves constructible objects.

Corollary 4.2.5. The categories Tc(X) form a thick triangulated monoidal Sm-fibred sub-
category of T .

Proposition 4.2.6. Let X a scheme, and X =
⋃

i∈I Ui a cover of X by open subschemes.
An object M of T (X) is constructible if and only if its restriction to Ui is constructible in T (Ui)
for all i ∈ I.

Proof. This is a necessary condition by 4.2.4. For the converse, as X is noetherian, it is
sufficient to treat the case where I is finite. Proceeding by induction on the cardinal of I it is
sufficient to treat the case of a cover by two open subschemes X = U ∪V . For an open immersion
j :W → X, write MW = j♯ j

∗(M). If the restrictions of M to U and V are constructible, then so
is its restriction to U ∩ V . According to Proposition 3.3.4, we get a distinguished triangle

MU∩V →MU ⊕MV →M →MU∩V [1]

in which MW is constructible for W = U, V, U ∩ V (using 4.2.4 again). Thus the premotive M is
constructible. �

Corollary 4.2.7. For any scheme X and any vector bundle E over X, the functors T h(E)
and T h(−E) preserve constructible objects in T (X).

Proof. To prove that T h(E) and T h(−E) preserves constructible objects, by virtue of the
preceding proposition, we may assume that E is trivial of rank r. It is thus sufficient to prove that
M(r) is constructible whenever M is so for any integer r. For we may assume that M = 1X{n}
for some n ∈ τ (using 4.2.4), this is true by assumption on τ ; see 4.0(c). �

57Notice however this fact is not true for étale motivic complexes.
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Corollary 4.2.8. Let f : X → Y a morphism of finite type. The property that the functor

f∗ : T (X)→ T (Y )

preserves constructible objects is local on Y with respect to the Zariski topology.

Proof. Consider a finite Zariski cover {vi : Yi → Y }i∈I , and write fi : Xi → Yi for the
pullback of f along vi for each i in I. Assume that the functors fi,∗ preserves constructible
objects; we shall prove that f∗ has the same property. Let M be a constructible object in T (X).
Then for i ∈ I, using the smooth base change isomorphism (for open immersions), we see that the
restriction of f∗(M) to Yi is isomorphic to the image by fi,∗ of the restriction of M to Xi, hence
is constructible. The preceding proposition thus implies that f∗(M) is constructible. �

Proposition 4.2.9. For any closed immersion i : Z → X, the functor

i∗ : T (Z)→ T (X)

preserves constructible objects.

Proof. It is sufficient to prove that for any smooth Z-scheme Y0 and any twist n ∈ τ , the
premotive i∗(MZ(Y0){n}) is constructible in T (X). According to the Mayer-Vietoris triangle (see
Remark 3.3.6), this assertion is local in X. Thus we can assume there exists a smooth X-scheme
Y such that Y0 = Y ×X Z (apply [EGA4, 18.1.1]). Put U = X − Z and let j : U → X be the
obvious open immersion. From the localization property, we get a distinguished triangle

MX(Y ×X U){n} →MX(Y ){n} → i∗(MZ(Y0){n})→MX(Y ×X U){n}[1]

and this concludes. �

Corollary 4.2.10. Let i : Z → X be a closed immersion with open complement j : U → X.
an object M of T (X) is constructible if and only if j∗(M) and i∗(M) are constructible in T (U)
and T (Z) respectively.

Proof. We have a distinguished triangle

j♯ j
∗(M)→M → i∗ i

∗(M)→ j♯ j
∗(M)[1] .

Hence this assertion follows from propositions 4.2.4 and 4.2.9. �

Proposition 4.2.11. If f : X → Y is proper, then the functor

f∗ : T (X)→ T (Y )

preserves constructible objects.

Proof. We shall first consider the case where f is projective. As this property is local on
Y (Corollary 4.2.8), we may assume that f factors as a closed immersion i : X → Pn

Y followed
by the canonical projection p : Pn

Y → Y . By virtue of Proposition 4.2.9, we can assume that
f = p. In this case, the functor p∗ is isomorphic to p♯ composed with the quasi-inverse of the
Thom endofunctor associated to the cotangent bundle of p; see 2.4.50 (3). Therefore, the functor
p∗ preserves constructible objects by virtue of Proposition 4.2.4 and of Corollary 4.2.7. The case
where f is proper follows easily from the projective case, using Chow’s lemma and cdh-descent
(the homotopy pullback squares (3.3.9.1)), by induction on the dimension of X. �

Corollary 4.2.12. If f : X → Y is separated of finite type, then the functor

f! : T (X)→ T (Y )

preserves constructible objects.

Proof. It is sufficient to treat the case where f is either an open immersion, either a proper
morphism, which follows respectively from 4.2.4 and 4.2.11. �

Proposition 4.2.13. Let X be a scheme. The category of constructible objects in T (X) is
the smallest thick triangulated subcategory which contains the objects of shape f∗(1X′{n}), where
f : X ′ → X is a (strictly) projective morphism, and n ∈ τ .
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Proof. See [Ayo07a, lemma 2.2.23]. �

The following lemma is the key geometrical point for the finiteness Theorem 4.2.16

Lemma 4.2.14. Let j : U → X be a dense open immersion such that X is quasi-excellent.
Then, there exists the following data:

(i) a finite h-cover {fi : Yi → X}i∈I such that for all i in I, fi is a morphism of finite type,
the scheme Yi is regular, and f−1

i (U) is either Yi itself or the complement of a strict
normal crossing divisor in Yi; we shall write

f : Y =
∐

i∈I

Yi → X

for the induced global h-cover;
(ii) a commutative diagram

X ′′′
g //

q

��

Y

f

��
X ′′ u // X ′

p // X

(4.2.14.1)

in which: p is a proper birational morphism, X ′ is normal, u is a Nisnevich cover, and
q is a finite surjective morphism.

Let T (resp. T ′) be a closed subscheme of X (resp. X ′) and assume that for any irreducible
component T0 of T , the following inequality is satisfied:

(4.2.14.2) codimX′(T ′) ≥ codimX(T0),

Then, possibly after shrinking X in an open neighbourhood of the generic points of T in X, one
can replace X ′′ by an open cover and X ′′′ by its pullback along this cover, in such a way that we
have in addition the following properties:

(iii) p(T ′) ⊂ T and the induced map T ′ → T is finite and pseudo-dominant;58

(iv) if we write T ′′ = u−1(T ′), the induced map T ′′ → T ′ is an isomorphism.

Proof. The existence of f : Y → X as in (i) follows from Gabber’s weak uniformisation
theorem (see 4.1.2), while the commutative diagram (4.2.14.1) satisfying property (ii) is ensured
by Lemma 3.3.28.

Consider moreover closed subschemes T ⊂ X and T ′ ⊂ X ′ satisfying (4.2.14.2).
We first show that, by shrinking X in an open neighbourhood of the generic points of T

and by replacing the diagram (4.2.14.1) by its pullback over this neighbourhood, we can assume
that condition (iii) is satisfied. Note that shrinking X in this way does not change the condition
(4.2.14.2) because codimX(T0) does not change and codimX′(T ′) can only increase.59

Note first that, by shrinking X, we can assume that any irreducible component T ′
0 of T ′

dominates an irreducible component T0 of T . In fact, given an irreducible component T ′
0 which

does not satisfies this condition, p(T ′
0) is a closed subscheme of X disjoint from the set of generic

points of T and replacing X by X − f(T ′
0), we can throw out T ′

0.
Further, shrinking X again, we can assume that for any pair (T ′

0, T0) as in the preceding
paragraph, p(T ′

0) ⊂ T0. In fact, in any case, as p(T ′
0) is closed we get that T0 ⊂ p(T ′

0). Let Z be
the closure of p(T ′

0)− T0 in X. Then Z does not contain any generic point of T (because p(T ′
0) is

irreducible), and p(T ′
0)∩ (X −Z) ⊂ T0. Thus it is sufficient to replace X by X −Z to ensure this

assumption.

58Recall from 8.1.3 that this means that any irreducible component of T ′ dominates an irreducible component
of T .

59Remember that for any scheme X, codimX(∅) = +∞.
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Consider again a pair (T ′
0, T0) as in the two preceding paragraphs and the induced commutative

square:

T ′
0

//

p0
��

X ′

p

��
T0 // X

(4.2.14.3)

We show that the map p0 is generically finite. In fact, this will conclude the first step, because
if it is true for any irreducible component T ′

0 of T ′, we can shrink X again so that the dominant
morphism p0 : T ′

0 → T0 becomes finite.
Denote by c′ (resp. c) the codimension of T0 in X (resp. T ′

0 in X ′). Note that (4.2.14.2) gives
the inequality c′ ≥ c. Let t0 be the generic point of T0, Ω the localization of X at t0 and consider
the pullback of (4.2.14.3):

W ′ //

q0
��

Ω′

q

��
{t0} // Ω.

(4.2.14.4)

We have to prove that dim(W ′) = 0. Consider an irreducible component Ω′
0 of Ω′ containing W ′.

As q is still proper birational, Ω′
0 corresponds to a unique irreducible component Ω0 of Ω such that

q induces a proper birational map Ω′
0 → Ω0. According to [EGA4, 5.6.6], we get the inequality

dim(Ω′
0) ≤ dim(Ω0).

Thus, we obtain the following inequalities:

dim(W ′) ≤ dim(Ω′
0)− codimΩ′

0
(W ′) ≤ dim(Ω0)− codimΩ′

0
(W ′) ≤ dim(Ω)− codimΩ′

0
(W ′).

As this is true for any irreducible component Ω′
0 of Ω′, we finally obtain:

dim(W ′) ≤ dim(Ω)− codimΩ′(W ′) ≤ c− c′

and this concludes the first step.
Keeping T ′ and T as above, as the map from T ′′ to T ′ is a Nisnevich cover, it is a split

epimorphism in a neighbourhood of the generic points of T ′ in X ′. Hence, as the map X ′ → X
is proper and birational, we can find a neighbourhood of the generic points of T in X over which
the map T ′′ → T ′ admits a section s : T ′ → T ′′. Let S be a closed subset of X ′′ such that
T ′′ = s(T ′) ∐ S (which exists because X ′′ → X ′ is étale). The map (X ′′ − T ′′) ∐ (X ′′ − S)→ X ′

is then a Nisnevich cover. Replacing X ′′ by (X ′′ − T ′′) ∐ (X ′′ − S) (and X ′′′ by the pullback of
X ′′′ → X ′′ along (X ′′−T ′′)∐ (X ′′−S)→ X ′), we may assume that the induced map T ′′ → T ′ is
an isomorphism, without modifying further the data f , p, T and T ′. This gives property (iv) and
ends the proof the lemma. �

4.2.15. Let T0 be a full Open-fibred subcategory of T (where Open stands for the class of
open immersions). We assume that T0 has the following properties.

(a) for any scheme X in S , T0(X) is a thick subcategory of T (X) which contains the
objects of the form 1X{n}, n ∈ τ ;

(b) for any separated morphism of finite type f : X → Y in S , T0 is stable under f!;
(c) for any dense open immersion j : U → X, with X regular, which is the complement of a

strict normal crossing divisor, j∗(1U{n}) is in T0(U) for any n ∈ τ .

Properties (a) and (b) have the following consequences: any constructible object belongs to T0;
given a closed immersion i : Z → X with complement open immersion j : U → X, an object M of
T (X) belongs to T0(X) if and only if j∗(M) and i∗(M) belongs to T0(U) and T0(Z) respectively;
for any scheme X in S , the condition that an object of T (X) belongs to T0(X) is local on X for
the Zariski topology.

Theorem 4.2.16. Consider the above hypothesis and assume that T is Q-linear and separated.
Let Y be a quasi-excellent scheme and f : X → Y be a morphism of finite type.
Then for any constructible object M of T (X), the object f∗(M) belongs to T0(Y ).
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Proof. It is sufficient to prove that, for any dense open immersion j : U → X, and for any
n ∈ τ , the object j∗(1U{n}) is in T0. Indeed, assume this is known. We want to prove that
f∗(M) is in T0(Y ) whenever M is constructible. We deduce from property (b) of 4.2.15 and from
Proposition 4.2.13 that it is sufficient to consider the case where M = 1X{n}, with n ∈ τ . Then,
as this property is assumed to be known for dense open immersions, by an easy Mayer-Vietoris
argument, we see that the condition that f∗(1X{n}) belongs to T0 is local on X with respect to
the Zariski topology. Therefore, we may assume that f is separated. Consider a compactification
of f , i.e. a commutative diagram

Y
j //

f

��

Ȳ

f̄��~~
~~

~~
~

X

with j a dense open immersion, and f̄ proper. By property (b) of 4.2.15, we may assume that
f = j is a dense open immersion.

Let j : U → X be a dense open immersion. We shall prove by induction on the dimension
of X that , for any n ∈ τ , the object j∗(1U{n}) is in T0. The case where X is of dimension ≤ 0
follows from the fact the map j is then an isomorphism, which implies that j♯ ≃ j∗, and allows to
conclude (because T0 is Open-fibred).

Assume that dimX > 0. Following an argument used by Gabber [Ill07] in the context of
ℓ-adic sheaves, we shall prove by induction on c ≥ 0 that there exists a closed subscheme T ⊂ X of
codimension > c such that, for any n ∈ τ , the restriction of j∗(1U{n}) to X − T is in T0(X − T ).
As X is of finite dimension, this will obviously prove Theorem 4.2.16.

The case where c = 0 is clear: we can choose T such that X − T = U . If c > 0, we choose a
closed subscheme T of X, of codimension > c− 1, such that the restriction of j∗(1U{n}) to X−T
is in T0. It is then sufficient to find a dense open subscheme V of X, which contains all the generic
points of T , and such that the restriction of j∗(1U{n}) to V is in T0: for such a V , we shall obtain
that the restriction of j∗(1U{n}) to V ∪ (X − T ) is in T0, the complement of V ∪ (X − T ) being
the support of a closed subscheme of codimension > c in X. In particular, using the smooth base
change isomorphism (for open immersions), we can always replace X by a generic neighbourhood
of T . It is sufficient to prove that, possibly after shrinking X as above, the pullback of j∗(1U{n})
along T → X is in T0 (as we already know that its restriction to X − T is in T0).

We may assume that T is purely of codimension c. We may assume that we have data as in
points (i) and (ii) of Lemma 4.2.14. We let j′ : U ′ → X ′ denote the pullback of j along p : X ′ → X.
Then, we can find, by induction on c, a closed subscheme T ′ in X ′, of codimension > c− 1, such
that the restriction of j′∗(1U ′{n}) to X ′ − T ′ is in T0. By shrinking X, we may assume that
conditions (iii) and (iv) of Lemma 4.2.14 are fulfilled as well.

For an X-scheme w :W → X and a closed subscheme Z ⊂W , we shall write

ϕ(W,Z) = w∗ i∗ i
∗ jW,∗ j

∗
W (1W {n}) ,

where i : Z → W denotes the inclusion, and jW : WU → W stands for the pullback of j along w.
This construction is functorial with respect to morphisms of pairs of X-schemes: if W ′ →W is a
morphism of X-schemes, with Z ′ and Z two closed subschemes of W ′ and W respectively, such
that Z ′ is sent to Z, then we get a natural map ϕ(W,Z) → ϕ(W ′, Z ′). Remember that we want
to prove that ϕ(X,T ) is in T0. This will be done via the following lemmas (which hold assuming
all the conditions stated in Lemma 4.2.14 as well as our inductive assumptions).

Lemma 4.2.17. The cone of the map ϕ(X,T )→ ϕ(X ′, T ′) is in T0.

The map ϕ(X,T )→ ϕ(X ′, T ′) factors as

ϕ(X,T )→ ϕ(X ′, p−1(T ))→ ϕ(X ′, T ′) .

By the octahedral axiom, it is sufficient to prove that each of these two maps has a cone in T0.
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We shall prove first that the cone of the map ϕ(X ′, p−1(T )) → ϕ(X ′, T ′) is in T0. Given an
immersion a : S → X ′, we shall write

MS = a! a
∗(M) .

We then have distinguished triangles

Mp−1(T )−T ′ →Mp−1(T ) →MT ′ →Mp−1(T )−T ′ [1] .

For M = j′∗(1U ′{n}) (recall j′ is the pullback of j along p) the image of this triangle by p∗ gives
a distinguished triangle

p∗(Mp−1(T )−T ′)→ ϕ(X ′, p−1(T ))→ ϕ(X ′, T ′)→ p∗(Mp−1(T )−T ′)[1] .

As the restriction of M = j′∗(1U ′{n}) to X ′ − T ′ is in T0 by assumption on T ′, the object
Mp−1(T )−T ′ is in T0 as well (by property (b) of 4.2.15 and because T0 is Open-fibred), from which
we deduce that p∗(Mp−1(T )−T ′) is in T0 (using the condition (iii) of Lemma 4.2.14 and the property
(b) of 4.2.15).

Let V be a dense open subscheme of X such that p−1(V ) → V is an isomorphism. We
may assume that V ⊂ U , and write i : Z → U for the complement closed immersion. Let
pU : U ′ = p−1(U)→ U be the pullback of p along j, and let Z̄ be the reduced closure of Z in X.
We thus get the commutative squares of immersions below,

Z
k //

i

��

Z̄

l

��
U

j
// X

and

Z ′ k′ //

i′

��

Z̄ ′

l′

��
U ′

j′
// X ′

where the square on the right is obtained from the one on the left by pulling back along p : X ′ → X.
As p is an isomorphism over V , we get by cdh-descent (Proposition 3.3.10) the homotopy pullback
square below.

1U{n} //

��

pU,∗(1U ′{n})

��
i∗ i

∗(1Z{n}) // i∗ i∗ pU,∗(1U ′{n})

If a : T → X denotes the inclusion, applying the functor a∗ a
∗ j∗ to the commutative square above,

we see from the proper base change formula and from the identification j∗ i∗ ≃ l∗ k∗ that we get
a commutative square isomorphic to the following one

ϕ(X,T ) //

��

ϕ(X ′, p−1(T ))

��
ϕ(Z̄, Z̄ ∩ T ) // ϕ(Z̄ ′, p−1(Z̄ ∩ T )) ,

which is thus homotopy cartesian as well. It is sufficient to prove that the two objects ϕ(Z̄, Z̄ ∩T )
and ϕ(Z̄ ′, p−1(Z̄ ∩ T )) are in T0. It follows from the proper base change formula that the object
ϕ(Z̄, Z̄ ∩ T ) is canonically isomorphic to the restriction to T of l∗ k∗(1Z{n}). As dim Z̄ < dimX,
we know that the object k∗(1Z{n}) is in T0. By property (b) of 4.2.15, we obtain that ϕ(Z̄, Z̄∩T )
is in T0. Similarly, the object ϕ(Z̄ ′, p−1(Z̄ ∩ T )) is canonically isomorphic to the restriction of
p∗ l

′
∗ k

′
∗(1Z′{n}) to T , and, as dim Z̄ ′ < dimX ′ (because, p being an isomorphism over the dense

open subscheme V of X, Z̄ ′ does not contain any generic point of X ′), k′∗(1Z′{n}) is in T0. We
deduce again from property (b) of 4.2.15 that ϕ(Z̄ ′, p−1(Z̄ ∩ T )) is in T0 as well, which achieves
the proof of the lemma.

Lemma 4.2.18. The map ϕ(X ′, T ′)→ ϕ(X ′′, T ′′) is an isomorphism in T (X).
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Condition (iv) of Lemma 4.2.14 can be reformulated by saying that we have the Nisnevich distin-
guished square below.

X ′′ − T ′′ //

��

X ′′

v

��
X ′ − T ′ // X ′

This lemma follows then by Nisnevich excision (Proposition 3.3.4) and smooth base change (for
étale maps).

Lemma 4.2.19. Let T ′′′ be the pullback of T ′′ along the finite surjective morphism X ′′′ → X ′′.
The map ϕ(X ′′, T ′′)→ ϕ(X ′′′, T ′′′) is a split monomorphism in T (X).

We have the following pullback squares

T ′′′ t //

r

��

X ′′′

q

��

U ′′′
j′′′oo

qU

��
T ′′ s // X ′′ U ′

j′′oo

in which j′′ and j′′′ denote the pullback of j along pu and puq respectively, while s and t are the
inclusions. By the proper base change formula applied to the left hand square, we see that the
map ϕ(X ′′, T ′′)→ ϕ(X ′′′, T ′′′) is isomorphic to the image of the map

j′′∗ (1U ′′{n})→ q∗ q
∗ j′′∗ (1U ′′{n})→ q∗ j

′′′
∗ (1U ′′′{n}) .

by f∗ s
∗, where f : T ′′ → T is the map induced by p (note that f is proper as T ′′ ≃ T ′ by

assumption). As q∗ j
′′′
∗ ≃ j

′′
∗ qU,∗, we are thus reduced to prove that the unit map

1U ′′{n} → qU,∗(1U ′′′{n})

is a split monomorphism. As X ′′ is normal (because X ′ is so by assumption, while X ′′ → X ′ is
étale), this follows immediately from Corollary 3.3.40.

Now, we can finish the proof of Theorem 4.2.16. Consider the Verdier quotient

D = T (X)/T (X) .

We want to prove that, under the conditions stated in Lemma 4.2.14, we have ϕ(X,T ) ≃ 0 in D.
Let π : T ′′′ → T be the map induced by puq : X ′′′ → X. If a : T ′′′ → Y denotes the map induced
by g : X ′′′ → Y , and jY : YU → Y the pullback of j by f , we have the commutative diagram
below.

ϕ(X,T ) //

((PPPPPPPPPPPP
ϕ(X ′′′, T ′′′)

π∗ a
∗ jY,∗(1YU

{n})

66mmmmmmmmmmmmm

By virtue of lemmas 4.2.17, 4.2.19, and 4.2.18, the horizontal map is a split monomorphism in D.
It is thus sufficient to prove that this map vanishes in D, for which it will be sufficient to prove
that π∗ a

∗ jY,∗(1YU
{n}) is in T0. The morphism π is finite (by construction, the map T ′′ → T ′

is an isomorphism, while the maps T ′′′ → T ′′ and T ′ → T are finite). Under this condition, T0

is stable under the operations π∗ and a∗. To finish the proof of the theorem, it remains to check
that jY,∗(1YU

{n}) is in T0, which follows from property (c) of 4.2.15 (and additivity). �

Definition 4.2.20. We shall say that T is τ -compatible if it satisfies the following two con-
ditions.

(a) For any closed immersion i : Z → X between regular schemes in S , the image of 1X{n},
n ∈ τ , by the exceptional inverse image functor i! : T (X)→ T (Z) is constructible.

(b) For any scheme X, any n ∈ τ , and any constructible object M in T (X), the object
HomX(1X{n},M) is constructible.

As usual, when τ is the monoid generated by the Tate twist, we say compatible with Tate twists.
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Remark 4.2.21. Condition (b) of the definition above will come essentially for free if the
objects 1X{n} are ⊗-invertible with constructible ⊗-quasi-inverse (which will hold in practice,
essentially by definition).

Example 4.2.22. In pratice, condition (a) of the definition above will be a consequence of the
absolute purity theorem. In particular, the category of Beilinson motives DMB is compatible with
Tate twist as a corollary of the fact the Tate twist is invertible and Theorem 14.4.1.

Lemma 4.2.23. Assume that T is τ -compatible. Let i : Z → X a closed immersion, with X
regular, and Z the support of a strict normal crossing divisor. Then i!(1X{n}) is constructible
for any n ∈ τ . As a consequence, if j : U → X denotes the complement open immersion, then
j∗(1U{n}) is constructible for any n ∈ τ .

Proof. The first assertion follows easily by induction on the number of irreducible compo-
nents of Z, using Proposition 4.2.6. The second assertion follows from the distinguished triangles

i∗ i
!(M)→M → j∗ j

∗(M)→ i∗ i
!(M)[1]

and from Lemma 4.2.9. �

Theorem 4.2.24. Assume that T is Q-linear, separated, and τ -compatible.
Then, for any morphism of finite type f : X → Y such that Y is quasi-excellent, the functor

f∗ : T (X)→ T (Y )

preserves constructible objects.

Proof. By virtue of propositions 4.2.4 and 4.2.11 as well as of Lemma 4.2.23, if T is τ -
compatible, we can apply Theorem 4.2.16, where T stands for the subcategory of constructible
objects. �

Corollary 4.2.25. Under the assumptions of the above theorem, for any quasi-excellent
scheme X, and for any couple of constructible objectsM and N in T (X), the object HomX(M,N)
is constructible.

Proof. It is sufficient to treat the case where M = f♯(1Y {n}), for n ∈ τ and f : Y → X a
smooth morphism. But then, we have, by transposition of the Sm-projection formula, a natural
isomorphism:

HomX(M,N) ≃ f∗ Hom(1Y {n}, f
∗(N)) .

This corollary follows then immediately from Proposition 4.2.4 and from Theorem 4.2.24. �

Corollary 4.2.26. Under the assumptions of the above theorem, for any closed immersion
i : Z → X such that X is quasi-excellent, the functor

i! : T (X)→ T (Z)

preserves constructible objects.

Proof. Let j : U → X be the complement open immersion. For an object M of T (X), we
have the following distinguished triangle.

i∗ i
!(M)→M → j∗ j

∗(M)→ i∗ i
!(M)[1] .

By virtue of Proposition 4.2.6 and Theorem 4.2.24, if M is constructible, then j∗ j
∗(M) have the

same property, which allows to conclude. �

Lemma 4.2.27. Let f : X → Y be a separated morphism of finite type. The condition that the
functor f ! preserves constructible objects in T is local over X and over Y for the Zariski topology.

Proof. If u : X ′ → X is a Zariski cover, then we have, by definition, u∗ = u!, so that, by
Proposition 4.2.6, the condition that f ! preserves τ -constructibility is equivalent to the condition
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that u∗ f ! ≃ (fu)! preserves τ -constructibility. Let v : Y ′ → Y be a Zariski cover, and consider
the following pullback square.

X ′ u //

g

��

X

f

��
Y ′

v
// Y

We then have a natural isomorphism u∗ f ! ≃ g! v∗, and, as u is still a Zariski cover, we deduce
again from Proposition 4.2.6 that, if g! preserves τ -constructibility, so does f !. �

Corollary 4.2.28. Under the assuptions of the above theorem, for any separated morphism
of finite type f : X → Y , the functor

f ! : T (Y )→ T (X)

preserves constructible objects.

Proof. By virtue of the preceding lemma, we may assume that f is affine. We can then
factor f as an immersion i : X → An

Y followed by the canonical projection p : An
Y → Y . The case

of an immersion is reduced to the case of an open immersion (4.2.4) and to the case of a closed
immersion (4.2.26). Thus we may assume that f = p, in which case p! ≃ p∗(−)(n)[2n] (according
to point (3) of Theorem 2.4.50), so that we conclude by 4.2.4 and 4.2.9. �

In conclusion, we have proved the following finiteness theorem:

Theorem 4.2.29. Assume the motivic triangulated category T is Q-linear, separated and
τ -compatible.60

Then constructible objects of T are closed under the six operations of Grothendieck when
restricted to the subcategory S ′ of S made of quasi-excellent schemes and morphisms of finite
type. In particular, Tc is a motivic category over S ′.

4.3. Continuity.

4.3.1. For the next definition, we consider an admissible class P of morphisms in S and an
abstract symmetric monoidal P-fibred model category M over S .

Let (Sα)α∈A be a projective system of schemes in S , with affine dominant transition maps,
and such that S = lim

←−α∈A
Sα is representable in S (we assume that A is a partially ordered set to

keep the notations simple). For each index α, we denote by pα : S → Sα the canonical projection.
Given an index α0 ∈ A and an object Eα0

in Ho(M )(Sα0
), we write Eα for the pullback of Eα0

along the map Sα → Sα0
, and put E = Lp∗α(Eα).

Definition 4.3.2. Consider the assumptions above and let τ be a set of twists of Ho(M ).
We say that Ho(M ) is τ -continuous if given any projective system of schemes {Sα} as above,

for any index α0, any object Eα0 in Ho(M )(Sα0), and any twist n ∈ τ , the canonical map

lim
−→
α≥α0

HomHo(M )(Sα)(1Sα
{n}, Eα)→ HomHo(M )(S)(1S{n}, E),

is bijective.
We will simply say continuous instead of τ -continuous in one of the following situations:

• τ = ∅;
• Ho(M ) is a motivic triangulated category and τ = Z is the group generated by the Tate
twist.

Example 4.3.3. The main examples of τ -continuous categories will be seen afterwards:

• the A1-derived category DA1,Λ (Example 6.1.13);

• the category of motivic complexes DMΛ, and its effective counterpart DMeff
Λ (Theorem

11.1.24);
• the motivic category DMB of Beilinson motives (Proposition 14.3.1).

60Remember also that T is associated with a combinatorial stable premotivic model category.
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The interest of this property is to allow a description of constructible objects over S in terms
of constructible objects over the Sα’s.

Proposition 4.3.4. Assume, under the hypothesis of 4.3.1, that Ho(M ) is τ -continuous.
Consider a scheme S in S , as well as a projective system of schemes {Sα} in S with affine
transition maps and such that S = lim

←−α
Sα.

Then, for any index α0, and for any objects Cα0
and Eα0

in Ho(M )(Sα0
), if Cα0

is con-
structible, then the canonical map

(4.3.4.1) lim
−→
α≥α0

HomHo(M )(Sα)(Cα, Eα)→ HomHo(M )(S)(C,E)

is bijective. Moreover, the canonical functor

(4.3.4.2) 2- lim
−→
α

Ho(M )c(Sα)→ Ho(M )c(S)

is an equivalence of monoidal triangulated categories.

Proof. To prove the first assertion, we may assume, without loss of generality, that Cα0 =
MSα0

(Xα0
){n} for some some smooth Sα0

-scheme of finite type Xα0
, and n ∈ τ . Consider an

object Eα0
in Ho(M )(Sα0

). For α ≥ α0, write Xα (resp. Eα) for the pullback of Xα0
(resp. of

Eα0
) along the map Sα → Sα0

. Similarly, write X (resp. E) for the pullback of Xα0
(resp. of

Eα0) along the map S → Sα0 . We shall also write E′
α (resp. E′) for the pullback of Eα (resp. E)

along the smooth map Xα → Sα (resp. X → S). Then, {Xα} is a projective system of schemes
in S , with affine transition maps, such that X = lim

←−α
Xα. Therefore, by continuity, we have the

following natural isomorphism, which proves the first assertion.

lim
−→
α

HomHo(M )(Sα)(MSα
(Xα){n}, Eα) ≃ lim

−→
α

HomHo(M )(Xα)(1Xα
{n}, E′

α)

≃HomHo(M )(X)(1X{n}, E
′)

≃HomHo(M )(S)(MS(X){n}, E)

Note that the first assertion implies that the functor (4.3.4.2) is fully faithful. Note that pseudo-
abelian triangulated categories are stable by filtered 2-colimits. In particular, the source of the
functor (4.3.4.2) can be seen as a thick subcategory of Ho(M )(S). The essential surjectivity of
(4.3.4.2) follows from the fact that, for any smooth S-scheme of finite type X, there exists some
index α, and some smooth Sα-scheme Xα, such that X ≃ S ×Sα Xα; see [EGA4, 8.8.2 and
17.7.8]: this implies that the essential image of the fully faithful functor (4.3.4.2) contains all the
objects of shape MS(X){n} for n ∈ τ and X smooth over S, so that it contains Ho(M )c(S), by
definition. �

4.3.5. Before showing how the assumption of continuity can be used in the case of motivic
categories, we state a proposition which later on will allow us to show continuity in concrete cases.

We consider again the assumptions and notations of 4.3.1 assuming the transition maps of
the pro-scheme (Sα) are P-morphisms. For each index α ∈ A, we choose a small set Iα (resp.
Jα) of generating cofibrations (resp. of generating trivial cofibration) in Ho(M )(Sα). We also
choose a small set I (resp. J) of generating cofibrations (resp. of generating trivial cofibration) in
Ho(M )(S).

Consider the following assumptions:

(a) We have I ⊂
⋃

α∈A p
∗
α(Iα) and J ⊂

⋃

α∈A p
∗
α(Jα).

(b) For any index α0, if Cα0 and Eα0 are two objects of M (Sα0), with Cα0 either a source
or a target of a map in Iα0 ∪ Jα0 , the natural map

lim
−→
α∈A

HomM (Sα)(Cα, Eα)→ HomM (S)(C,E)

is bijective.
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Proposition 4.3.6. Under the assumptions of 4.3.5, for any index α0 ∈ A, the pullback
functor p∗α0

: M (Sα0) → M (S) preserves fibrations and trivial fibrations. Moreover, given an
index α0 ∈ A, as well as two objects Cα0 and Eα0 in M (Sα0), if Cα0 belongs to smallest full
subcategory of Ho(M )(Sα0

) which is closed under finite homotopy colimits and which contains the
source and targets of Iα0

, then, the canonical map

lim
−→
α∈A

HomHo(M )(Sα)(Cα, Eα)→ HomHo(M )(S)(C,E)

is bijective.

Proof. We shall prove first that, for any index α0 ∈ A, the pullback functor p∗α0
preserves

fibrations and trivial fibrations. By assumption, for any α ≥ α0, the pullback functor along the
P-morphism Sα → Sα0

is both a left Quillen functor and a right Quillen functor. Let Eα0
→ Fα0

be a trivial fibration (resp. a fibration) of M (Sα0
). Let i : C → D a generating cofibration (resp.

a generating trivial cofibration) in M (S). By condition (a) of 4.3.5, we may assume that there
exists α1 ∈ A, a cofibration (resp. a trivial cofibration) iα1 : Cα1 → Dα1 , such that i = p∗α1

(iα1).
We want to prove that the map

Hom(D,E)→ Hom(C,E)×Hom(C,F ) Hom(D,F )

is surjective. But, by condition (b) of 4.3.5, this map is isomorphic to the filtered colimit of the
surjective maps

Hom(Dα, Eα)→ Hom(Cα, Eα)×Hom(Cα,Fα) Hom(Dα, Fα)

with α ≥ sup(α0, α1), which proves the first assertion.
To prove the second assertion, we may assume that Cα0 is cofibrant and that Eα0 if fibrant.

The set of maps from a cofibrant object to a fibrant object in the homotopy category of a model
category can be described as homotopy classes of maps. Therefore, using the fact that p∗α0

preserves
cofibrations and fibrations, as well as the trivial ones, we see it is sufficient to prove that the map

lim
−→
α∈A

HomM (Sα)(Cα, Eα)→ HomM (S)(C,E)

is bijective for some nice cofibrant replacement of Cα0 . But the assumptions on Cα0 imply that
it is weakly equivalent to an object C ′

α0
such that the map ∅ → C ′

α0
belongs to the smallest

class of maps in M (Sα0
), which contains Iα0

, and which is closed under pushouts and (finite)
compositions. We may thus assume that Cα0

= C ′
α0
. In that case, Cα0

is in particular contained
in the smallest full subcategory of M (Sα0) which is stable by finite colimits and which contains
the source and targets of Iα0 . As filtered colimits commute with finite limits in the category of
sets, we conclude by using again condition (a) of 4.3.5. �

We now go back to the situation of a motivic triangulated category T satisfying our general
assumptions 4.0

Lemma 4.3.7. Let a : X → Y be a morphism in S . Assume that X = lim
←−α

Xα, where {Xα}
is a projective system of smooth affine Y -schemes. If T is τ -continuous, then, for any objects E
and F in T (Y ), with E constructible, there is a canonical isomorphism

a∗ HomY (E,F ) ≃ HomX(a∗(E), a∗(F )) .

Proof. We have

a∗ HomX(a∗(E), a∗(F )) ≃ HomY (E, a∗ a
∗(F )) ,

so that the map F → a∗ a
∗(F )) induces a map

HomY (E,F )→ a∗ HomX(a∗(E), a∗(F )) ,

hence, by adjunction, a map

a∗ HomY (E,F )→ HomX(a∗(E), a∗(F )) .

We already know that the later is an isomorphism whenever a is smooth.
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Let us write aα : Xα → Y for the structural maps. Let C be a constructible object in T (X).
By Proposition 4.3.4, we may assume that there exists an index α0, and a constructible object
Cα0 in T (Xα0), such that, if we write Cα for the pullback of Cα0 along the map Xα → Xα0 for
α ≥ α0, we have isomorphisms:

Hom(C, a∗ HomY (E,F )) ≃ lim
−→
α

Hom(Cα, a
∗
αHomY (E,F ))

≃ lim
−→
α

Hom(Cα,HomX(a∗α(E), a∗α(F )))

≃ lim
−→
α

Hom(Cα ⊗Xα
a∗α(E), a∗α(F ))

≃Hom(C ⊗X a∗(E), a∗(F ))

≃Hom(C,HomX(a∗(E), a∗(F ))) .

As constructible objects generate T (X), this proves the lemma. �

4.3.8. Let X be a scheme in S . Assume that, for any point x of X, the corresponding
morphism ix : Spec

(
Oh
X,x

)
→ X is in S (where Oh

X,x denotes the henselisation of OX,x). Consider
at last a scheme of finite type Y over X, and write

ax : Yx = Spec
(
O
h
X,x

)
×X Y → Y

for the morphism obtained by pullback. Finally, for an object E of T (Y ), let us write

Ex = a∗x(E) .

Proposition 4.3.9. Under the assumptions of 4.3.8, if moreover T is τ -continuous, then,
the family of functors

T (Y )→ T (Yx) , E 7−→ Ex , x ∈ X ,

is conservative.

Proof. Let E be an object of T (Y ) such that Ex ≃ 0 for any point x of X. For any
constructible object C of T (Y ), we have a presheaf of S1-spectra on the small Nisnevich site of
X:

F : U 7−→ F (U) = Hom(MY (U ×X Y ),HomY (C,E)) .

It is sufficient to prove that F (X) is acyclic. As T satisfies Nisnevich descent (3.3.4), it is sufficient
to prove that F is acyclic locally for the Nisnevich topology, i.e. that, for any point x of X, the
spectrum F (Spec

(
Oh
X,x

)
) is acyclic. Writing Spec

(
Oh
X,x

)
as the projective limit of the Nisnevich

neighbourhoods of x in X, we see easily, using Proposition 4.3.4 and Lemma 4.3.7, that, for any
integer i, πi(F (Spec

(
Oh
X,x

)
) ≃ Hom(Cx, Ex[i]) ≃ 0. �

Proposition 4.3.10. Let S be a quasi-excellent noetherian and henselian scheme. Write Ŝ
for its completion along its closed point, and assume that both S and Ŝ are in S . Consider an
S-scheme of finite type X, and write i : Ŝ ×S X → X for the induced map. If T is τ -continuous,
then the pullback functor

i∗ : T (X)→ T (Ŝ ×S X)

is conservative.

Proof. As S is quasi-excellent, the map Ŝ → S is regular. By Popescu’s theorem, we can
then write Ŝ = lim

←−α
Sα, where {Sα} is a projective system of schemes with affine transition maps,

and such that each scheme Sα is smooth over S. Moreover, as Ŝ and S have the same residue
field, and as S is henselian, each map Sα has a section. Write Xα = Sα ×S X, so that we have
X = lim

←−α
Xα. Consider a constructible object C and an object E in T (X). Then, as the maps

Xα → X have sections, it follows from the first assertion of Proposition 4.3.4 that the map

HomT (X)(C,E)→ Hom
T (Ŝ×SX)(i

∗(C), i∗(E))

is a monomorphism (as a filtered colimit of such things). Hence, if i∗(E) ≃ 0, for any constructible
object C in T (X), we have HomT (X)(C,E) ≃ 0. Therefore, as τ -constructible objects generate
T (X), we get E ≃ 0. �
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Proposition 4.3.11. Let a : X → Y be a regular morphism in S . If T is τ -continuous,
then, for any objects E and F in T (Y ), with E constructible, there is a canonical isomorphism

a∗ HomY (E,F ) ≃ HomX(a∗(E), a∗(F )) .

Proof. We want to prove that the canonical map

a∗ HomY (E,F )→ HomX(a∗(E), a∗(F ))

is an isomorphism, while we already know it is so whenever a is smooth. Therefore, to prove the
general case, we see that the problem is local on X and on Y with respect to the Zariski topology.
In particular, we may assume that both X and Y are affine. By Pospecu’s Theorem 4.1.5, we thus
have X = lim

←−α
Xα, where {Xα} is a projective system of smooth affine Y -schemes. We conclude

by Lemma 4.3.7. �

Proposition 4.3.12. Consider the following pullback square in S .

X ′ a //

g

��

X

f

��
Y ′

b
// Y

Assume that f is separated of finite type and that b is regular. Then, if T is τ -continuous, for
any object E in T (Y ), there is a canonical isomorphism in T (X ′):

a∗ f !(E) ≃ g! b∗(E) .

Proof. We have a canonical map

f !(E)→ a∗ g
! b∗(E) ≃ f ! b∗ b

∗(E) ,

which gives, by adjunction, a natural morphism

a∗ f !(E)→ g! b∗(E) .

The latter is invertible whenever b is smooth: this is obvious in the case of an open immersion, so
that, by Zariski descent, it is sufficient to treat the case where b is smooth with trivial cotangent
bundle of rank d; in this case, by relative purity (2.4.50 (3)), this reduces to the canonical isomor-
phism a!f ! ≃ g!b! evaluated at E(−d)[−2d]. To prove the general case, as the condition is local on
X and on Y for the Zariski topology, we may assume that f factors as an immersion X → Pn

Y ,
followed by the canonical projection Pn

Y → Y . We deduce from there that it is sufficient to treat
the case where f is either a closed immersion, either a smooth morphism of finite type. The case
where f (hence also g) is smooth follows by relative purity (2.4.50): we can then replace f ! and
g! by f∗ and g∗ respectively, and the formula follows from the fact that a∗f∗ ≃ g∗b∗. We may
thus assume that f is a closed immersion. As g is a closed immersion as well, the functor g! is
conservative (it is fully faithful). Therefore, it is sufficient to prove that the map

b∗ f! f
!(E) ≃ g! a

∗ f !(E)→ g! g
! b∗(E)

is invertible. Then, using Proposition 4.3.11 (which makes sense because f! preserves τ -construc-
tibility by 4.2.11), and the projection formula, we have

b∗ f! f
!(E) ≃ b∗HomY (f!(1X), E)

≃ HomY ′(b∗ f!(1X), b∗(E))

≃ HomY ′(g!(1X′), b∗(E))

≃ g! g
! b∗(E) ,

which achieves the proof. �
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Lemma 4.3.13. Let f : X → Y be a morphism in S . Assume that X = lim
←−α

Xα and

Y = lim
←−α

Yα, where {Xα} and {Yα} are projective systems fo schemes with affine transition maps,

while f is induced by a system of morphisms fα : Xα → Yα. Let α0 be some index, Cα0
a

constructible object of T (Yα0
), and Eα0

an object of T (Xα0
). If T is τ -continuous, then we have

a natural isomorphism of abelian groups

lim
−→
α≥α0

HomT (Yα)(Cα, fα,∗(Eα)) ≃ HomT (Y )(C, f∗(E)) .

Proof. By virtue of Proposition 4.3.4, we have a natural isomorphism

lim
−→
α≥α0

HomT (Xα)(f
∗
α(Cα), Eα) ≃ HomT (Y )(f

∗(C), E) .

The expected formula follows by adjunction. �

Proposition 4.3.14. Consider the following pullback square in S .

X ′ a //

g

��

X

f

��
Y ′

b
// Y

with b regular. If T is τ -continuous, then, for any object E in T (X), there is a canonical
isomorphism in T (Y ′):

b∗ f∗(E) ≃ g∗ a
∗(E) .

Proof. This proposition is true in the case where b is smooth (by definition of Sm-fibred
categories), from which we deduce, by Zariski separation, that this property is local on Y and on
Y ′ for the Zariski topology. In particular, we may assume that both Y and Y ′ are affine. Then, by
Popescu’s Theorem 4.1.5, we may assume that Y ′ = lim

←−α
Y ′
α, where {Y

′
α} is a projective system

of smooth Y -algebras. Then, using the preceding lemma as well as Proposition 4.3.4, we reduce
easily the proposition to the case where b is smooth. �

Proposition 4.3.15. Assume that T is τ -continuous, Q-linear and semi-separated, and con-
sider a field k, with inseparable closure k′, such that both Spec (k) and Spec (k′) are in S . Given
a k-scheme X write X ′ = k′⊗kX, and f : X ′ → X for the canonical projection. Then the functor

f∗ : T (X)→ T (X ′)

is an equivalence of categories.

Proof. It follows immediately from Proposition 4.3.4 and from Proposition 2.1.9 that the
functor

f∗ : Tc(X)→ Tc(X
′)

is an equivalence of categories. Similarly, for any objects C and E in T (X), if C is constructible,
the map

HomT (X)(C,E)→ HomT (X)(f
∗(C), f∗(E))

is bijective. As constructible objects generate T (X), this implies that the functor

f∗ : T (X)→ T (X ′)

is fully faithful. As the latter is essentially surjective on a set of generators, this implies that it is
an equivalence of categories (see 1.3.21). �
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4.4. Duality. The aim of this section is to prove a local duality theorem in Ho(M ) (see
4.4.21 and 4.4.24).

If we work with rational coefficients, resolution of singularities up to quotient singularities is
almost as good as classical resolution of singularities: we have the following replacement of the
blow-up formula.

Theorem 4.4.1. Assume that Ho(M ) is Q-linear and separated. Let X be a scheme in S .
Consider a Galois alteration p : X ′ → X of group G, as well as a closed subscheme Z ⊂ X, such
that U = X − Z is normal, and such that the induced map pU : U ′ = p−1(U) → U is a finite
morphism. Then the pullback square

Z ′ i′ //

q

��

X ′

p

��
Z

i // X

(4.4.1.1)

induces an homotopy pullback square

M //

��

(Rp∗ Lp
∗(M))G

��
Ri∗ Li

∗(M) // (Ri∗Rq∗ Lq∗ Li∗(M))G

(4.4.1.2)

for any object M of Ho(M )(X).

Proof. We already know that, for any object N of Ho(M )(U), the map

N → (RpU∗ Lp
∗
U (N))G

is an isomorphism (Corollary 3.3.39). The proof is then similar to the proof of condition (iv) of
Theorem 3.3.37. �

Remark 4.4.2. Under the assumptions of the preceding theorem, applying the total derived
functor RHomX(−, E) to the homotopy pullback square (4.4.1.2) for M = 1X , we obtain the
homotopy pushout square

(i! q! q
! i!(E))G //

��

(p! p
!(E))G

��
i! i

!(E) // E

(4.4.2.1)

for any object E of Ho(M )(X) .

Corollary 4.4.3. Assume that Ho(M ) is Q-linear and separated. Let B be a scheme in
S , admitting wide resolution of singularities up to quotient singularities. Consider a separated
B-scheme of finite type S, endowed with a closed subscheme T ⊂ S. The category of constructible
objects in Ho(M )(S) is the smallest thick triangulated subcategory which contains the objects of
shape Rf∗(1X{n}) for n ∈ τ , and for f : X → S a projective morphism, with X regular and
connected, such that f−1(T )red is either empty, either X itself, either the support of a strict
normal crossing divisor.

Proof. Let Ho(M )(S)′ be the smallest thick triangulated subcategory of Ho(M )(S) which
contains the objects of shape Rf∗(1X{n}) for n ∈ τ and f : X → S a projective morphism with
X regular and connected, while f−1(T )red is empty, or X itself, or the support of a strict normal
crossing divisor. We clearly have Ho(M )(S)′ ⊂ Ho(M )c(S) (Proposition 4.2.11). To prove the
reverse inclusion, by virtue of Proposition 4.2.13, it is sufficient to prove that, for any n ∈ τ , and
any projective morphism f : X → S, the object Rf∗(1X{n}) belongs to Ho(M )(S)′. We shall
proceed by induction on the dimension of X. If X is of dimension ≤ 0, we may replace it by
its reduction, which is regular. If X is of dimension > 0, by assumption on B, there exists a
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Galois alteration p : X ′ → X of group G, with X ′ regular and projective over S (and in which
T becomes either empty, either X ′ itself, either the support of a strict normal crossing divisor, in
each connected component of X ′). Choose a closed subscheme Z ⊂ X, such that U = X − Z is
a normal dense open subscheme, and such that the induced map r : U ′ = p−1(U)→ U is a finite
morphism, and consider the pullback square (4.4.1.1). As Z and Z ′ = p−1(Z) are of dimension
smaller than the dimension of X, we conclude from the homotopy pullback square obtained by
appyling the functor Rf∗ to (4.4.1.2) for M = 1X{n}, n ∈ τ . �

Definition 4.4.4. Let S be a scheme in S . An object R of Ho(M )(S) is τ -dualizing if it
satisfies the following conditions.

(i) The object R is constructible.
(ii) For any constructible object M of Ho(M )(S), the natural map

M → RHomS(RHomS(M,R), R)

is an isomorphism.

Remark 4.4.5. If Ho(M ) is τ -compatible, Q-linear and separated, then, in particular, the six
operations of Grothendieck preserve τ -constructibility in Ho(M ) (4.2.29). Under this assumtion,
for any scheme X in S , and any ⊗-invertible object U in Ho(M )(X) which is constructible, its
quasi-inverse is constructible: the quasi-inverse of U is simply its dual U∧ = RHom(U,1X), which
is constructible by virtue of 4.2.25.

Proposition 4.4.6. Assume that Ho(M ) is τ -compatible, Q-linear and separated, and con-
sider a scheme X in S .

(i) Let R be a τ -dualizing object, and U be a constructible ⊗-invertible object in Ho(M )(X).
Then U ⊗L

S R is τ -dualizing.
(ii) Let R and R′ be two τ -dualizing objects in Ho(M )(X). Then the evaluation map

RHomS(R,R
′)⊗L

S R→ R′

is an isomorphism.

Proof. This follows immediately from [Ayo07a, 2.1.139]. �

Proposition 4.4.7. Consider an open immersion j : U → X in S . If R is a τ -dualizing
object in Ho(M )(X), then j!(R) is τ -dualizing in Ho(M )(U).

Proof. If M is a constructible object in Ho(M )(U), then j!(M) is constructible, and the
map

(4.4.7.1) j!(M)→ RHomX(RHomX(j!(M), R), R)

is an isomorphism. Using the isomorphisms of type

M ≃ j∗ j!(M) = j! j!(M) and j∗RHomX(A,B) ≃ RHomU (j
∗(A), j∗(B)) ,

we see that the image of the map (4.4.7.1) by the functor j∗ = j! is isomorphic to the map

(4.4.7.2) M → RHomU (RHomU (M, j!(R)), j!(R)) ,

which proves the proposition. �

Proposition 4.4.8. Let X be a scheme in S , and R an object in Ho(M )(X). Assume there
exists an open cover X =

⋃

i∈I Ui such that the restriction of R on each of the open subschemes
Ui is τ -dualizing in Ho(M )(Ui). Then R is τ -dualizing.

Proof. We already know that the property of τ -constructibility is local with respect to the
Zariski topology (4.2.6). Denote by ji : Ui → X the corresponding open immersions, and put
Ri = j!i(R). Let M be a constructible object in Ho(M )(X). Then, for all i ∈ I, the image by
j∗i = j!i of the map

M → RHomX(RHomX(M,R), R)
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is isomorphic to the map

j∗i (M)→ RHomUi
(RHomUi

(j∗i (M), Ri), Ri) .

This proposition thus follows from the property of separation with respect to the Zariski topology.
�

Corollary 4.4.9. Let f : X → Y be a separated morphism of finite type in S . Given an
object R of Ho(M )(Y ), the property for f !(R) of being a τ -dualizing object in Ho(M )(X) is local
over X and over Y for the Zariski topology.

Proposition 4.4.10. Assume that Ho(M ) is τ -compatible. Let i : Z → X be a closed
immersion and R be a τ -dualizing object in Ho(M )(X). Then i!(R) is τ -dualizing in Ho(M )(Z).

Proof. As Ho(M ) is τ -compatible, we already know that i!(R) is constructible. For any
objects M and R of Ho(M )(Z) and Ho(M )(X) respectively, we have the identification:

i! RHomZ(M, i!(R)) ≃ RHomX(i!(M), R) .

Let j : U → X be the complement immersion. Then we have

j!RHomX(i!(M), R) ≃ RHomU (j
∗ i!(M), j!(R)) ≃ 0 ,

so that
RHomX(i!(M), R) ≃ i! Li

∗RHomX(i!(M), R) .

As i! is fully faithful, this provides a canonical isomorphism

Li∗RHomX(i!(M), R) ≃ i!RHomX , (i!(M), R) .

Under this identification, we see easily that the map

i!(M)→ RHomX(RHomX(i!(M), R), R)

is isomorphic to the image by i! of the map

M → RHomZ(RHomZ(M, i!(R)), i!(R)) .

As i! is fully faithful, it is conservative, and this ends the proof. �

Proposition 4.4.11. Assume that Ho(M ) is τ -compatible, Q-linear and separated, and con-
sider a scheme B in S which admits wide resolution of singularities up to quotient singularities.
Consider a separated B-scheme of finite type S, and a constructible object R in Ho(M )(S). The
following conditions are equivalent.

(i) For any separated morphism of finite type f : X → S, the object f !(R) is τ -dualizing.
(ii) For any projective morphism f : X → S, the object f !(R) is τ -dualizing.
(iii) For any projective morphism f : X → S, with X regular, the object f !(R) is τ -dualizing.
(iv) For any projective morphism f : X → S, with X regular, and for any n ∈ τ , the map

(4.4.11.1) 1X{n} → RHomX(RHomX(1X{n}, f
!(R)), f !(R))

is an isomorphism in Ho(M )(X).

If, furthermore, for any regular separated B-scheme of finite type X, and for any n ∈ τ , the object
1X{n} is ⊗-invertible, then these conditions are equivalent to the following one.

(v) For any projective morphism f : X → S, with X regular, the map

(4.4.11.2) 1X → RHomX(f !(R), f !(R))

is an isomorphism in Ho(M )(X).

Proof. It is clear that (i) implies (ii), which implies (iii), which implies (iv). Let us check
that condition (ii) also implies condition (i). Let f : X → S be a morphism of separated B-
schemes of finite type, with S regular. We want to prove that f !(1S) is τ -dualizing, while we
already know it is true whenever f is projective. In the general case, by virtue of Corollary 4.4.9,
we may assume that f is quasi-projective, so that f = pj, where p is projective, and j is an open
immersion. As f ! ≃ j! p!, we conclude with Proposition 4.4.7. Under the additional assumption,
the equivalence between (iv) and (v) is obvious. It thus remains to prove that (iv) implies (ii). It
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is in fact sufficient to prove that, under condition (iv), the object R itself is τ -dualizing. To prove
that the map

(4.4.11.3) M → RHomX(RHomX(M,R), R)

is an isomorphism for any constructible objectM of Ho(M )(S), it is sufficient to consider the case
where M = Rf∗(1X{n}) = f!(1X{n}), where n ∈ τ and f : X → S is a projective morphism with
X regular (Corollary 4.4.3). For any object A of Ho(M )(X), we have canonical isomorphisms

RHomS(f!(A), R) ≃ Rf∗ RHomX(A, f !(R))

= f! RHomX(A, f !(R)) ,

from which we get a natural isomorphism:

RHomS(RHomS(f!(A), R), R) ≃ f! RHomX(RHomX(A, f !(R)), f !(R)) .

Under these identifications, the map (4.4.11.3) for M = f!(1X{n}) is the image of the map
(4.4.11.1) by the functor f!. As (4.4.11.1) is invertible by assumption, this proves that R is
τ -dualizing. �

Lemma 4.4.12. Let X be a scheme in S , and R be an object of Ho(M )(X). The property for
R of being ⊗-invertible is local over X with respect to the Zariski topology.

Proof. Let R∧ = RHom(R,1X) be the dual of R. The object R is ⊗-invertible if and only
if the evaluation map

R∧ ⊗L
X R→ 1X

is invertible. Let j : U → X be an open immersion. Then, for any objectsM and N in Ho(M )(X),
we have the identification

j∗RHomX(M,N) ≃ RHomU (j
∗(M), j∗(N)) .

In particular, we have j∗(R∧) ≃ j∗(R)∧. As j∗ is monoidal, the lemma follows from the fact that
Ho(M ) has the property of separation with respect to the Zariski topology. �

Definition 4.4.13. We shall say that Ho(M ) is τ -dualizable if it satisfies the following con-
ditions:

(i) Ho(M ) is τ -compatible (4.2.20);
(ii) for any closed immersion between regular schemes i : Z → S in S , the object i!(1S) is
⊗-invertible (i.e. the functor i!(1S)⊗

L
S (−) is an equivalence of categories);

(ii) for any regular scheme X in S , and for any n ∈ τ , the map

1X{n} → RHomX(RHomX(1X{n},1X),1X)

is an isomorphism.

As in other similar situations, we simply say dualizable with respect to Tate twist when the
set of twists τ is generated by the Tate twist.

Example 4.4.14. In practice, the property of being dualizable with respect to Tate twist is a
consequence of the absolute purity theorem. Our main example is the motivic category DMB of
Beilinson motives over excellent noetherian schemes, as a consequence of Theorem 14.4.1.

Remark 4.4.15. Note that, whenever the objects 1X{n} are ⊗-invertible (which will be the
case in practice), conditions (i) and (ii) of the preceding definition are equivalent to the condition
that i!(1X) is constructible and ⊗-invertible for any closed immersion i between regular separated
schemes in S , while condition (iii) is then automatic. This principle gives easily the property of
τ -purity when S is made of schemes of finite type over some field:

Proposition 4.4.16. Assume that S consists exactly of schemes of finite type over a field k,
and that one of the following conditions is satisfied:

(a) the field k is perfect;
(b) Ho(M ) is semi-separated (2.1.7).

If the objects 1{n} are ⊗-invertible in Ho(M )(Spec (k)) for all n ∈ τ , then Ho(M ) is τ -dualizable.



4. CONSTRUCTIBLE MOTIVES 111

Proof. For any k-scheme of finite type f : X → Spec (k), as the functor Lf∗ is symmetric
monoidal, the objects 1X{n} are ⊗-invertible in Ho(M )(X) for all n ∈ τ . Therefore, as stated in
remark 4.4.15, we have only to prove that, for any closed immersion i : Z → X between regular
k-schemes of finite type, the object i!(1X) is ⊗-invertible and constructible. We may assume that
X and Z are smooth (under condition (a), this is clear, and under condition (b), by virtue of
Proposition 2.1.9, we may replace k by any of its finite extensions). Using 4.4.12 and 4.2.6, we
may also assume that X is quasi-projective and that Z is purely of codimension c in X, while the
normal bundle of i is trivial. This proposition is then a consequence of relative purity (2.4.50),
which gives a canonical isomorphism i!(1X) ≃ 1Z(−c)[−2c]. �

Proposition 4.4.17. Assume that S consists of schemes of finite type over a field k and that
Ho(M ) has the following properties:

(a) it is τ -dualizable;
(b) for any n ∈ τ , 1{n} is rigid;
(c) either k is perfect, either Ho(M ) is continuous.

Then, any constructible object of Ho(M )(k) is rigid.

Proof. By 4.3.15, it is sufficient to treat the case where k is perfect. It is well known that
rigid objects form a thick subcategory of Ho(M ). Thus we conclude easily from Corollary 4.4.3
and Proposition 2.4.31. �

Lemma 4.4.18. Assume that Ho(M ) is τ -dualizable. Then, for any projective morphism
f : X → S between regular schemes in S , the object f !(1S) is ⊗-invertible and constructible.

Proof. As, for any open immersion j : U → X, one has j∗ = j!, we deduce easily from
Lemma 4.4.12 (resp. Proposition 4.2.6) that the property for f !(1S) of being ⊗-invertible (resp.
constructible) is local on S for the Zariski topology. Therefore, we may assume that S is separated
over B and that f factors as a closed immersion i : X → Pn

S followed by the canonical projection
p : Pn

S → S. Using relative purity for p, we have the following computations:

f !(1S) ≃ i
! p!(1S) ≃ i

!(1Pn
S
(n)[2n]) ≃ i!(1Pn

S
)(n)[2n] .

As i is a closed immersion between regular schemes, the object i!(1Pn
S
) is ⊗-invertible and con-

structible by assumption on Ho(M ), which implies that f !(1S) is ⊗-invertible and constructible
as well. �

Definition 4.4.19. Let B a scheme in S . We shall say that local duality holds over B in
Ho(M ) if, for any separated morphism of finite type f : X → S, with S regular and of finite type
over B, the object f !(1S) is τ -dualizing in Ho(M )(X).

Remark 4.4.20. By definition, if Ho(M ) is τ -compatible, and if local duality holds over B in
Ho(M ), then the restriction of Ho(M ) to the category of B-schemes of finite type is τ -dualizable.
A convenient sufficient condition for local duality to hold in Ho(M ) is the following (in particular,
using the result below as well as Proposition 4.4.16, local duality holds almost systematically over
fields).

Theorem 4.4.21. Assume that Ho(M ) is τ -dualizable, Q-linear and separated, and consider
a scheme B in S which admits wide resolution of singularities up to quotient singularities (e.g.
B might be any scheme which is separated and of finite type over an excellent noetherian scheme
of dimension lesser or equal to 2 in S ; see 4.1.11). Then local duality holds over B in Ho(M ).

Proof. Let S be a regular separated B-scheme of finite type. Then, for any separated mor-
phism of finite type f : X → S, the object f !(1S) is τ -dualizing: Lemma 4.4.18 implies immediately
condition (iv) of Proposition 4.4.11. The general case (without the separation assumption on S)
follows easily from Corollary 4.4.8. �

Proposition 4.4.22. Consider a scheme B in S . Assume that Ho(M ) is τ -dualizable, and
that local duality holds over B in Ho(M ). Consider a regular B-scheme of finite type S.

(i) An object of Ho(M )(S) is τ -dualizing if and only if it is constructible and ⊗-invertible.
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(ii) For any separated morphism of S-schemes of finite type f : X → Y , and for any τ -
dualizing object R in Ho(M )(Y ), the object f !(R) is τ -dualizing in Ho(M )(X).

Proof. As the unit of Ho(M )(S) is τ -dualizing by assumption, Proposition 4.4.6 implies
that an object of Ho(M )(S) is τ -dualizing if and only if it is constructible and ⊗-invertible.

Consider a regular B-scheme of finite type S, as well as a separated morphism of S-schemes
of finite type f : X → Y , as well as a τ -dualizing object R in Ho(M )(Y ). To prove that f !(R) is
τ -dualizing, by virtue of Corollary 4.4.8, we may assume that Y is separated over S. Denote by
u and v the structural maps from X and Y to S respectively. As we already know that v!(1S) is
τ -dualizing, by virtue of Proposition 4.4.6, there exists a constructible and ⊗-invertible object U
in Ho(M )(Y ) such that U⊗L

Y R ≃ v
!(1S). As the functor Lf∗ is symmetric monoidal, it preserves

⊗-invertible objects and their duals, from which we deduce the following isomorphisms:

u!(1S) ≃ f
! v!(1S)

≃ f !(U ⊗L
Y R)

≃ f ! RHomY (U
∧, R)

≃ RHomX(Lf∗(U∧), f !(R))

≃ RHomX(Lf∗(U)∧, f !(R))

≃ Lf∗(U)⊗L
X f !(R) .

The object a!(1S) being τ -dualizing, while Lf
∗(U) is constructible and invertible, we deduce from

Proposition 4.4.6 that f !(R) is τ -dualizing as well. �

4.4.23. Assume that Ho(M ) is τ -dualizable, Q-linear and separated.
Consider a scheme B in S , such that local duality holds over B in Ho(M ) – this is the case

if B admits wide resolution of singularities up to quotient singularities according to the above
Theorem. Consider a fixed regular B-scheme of finite type S, as well as a constructible and ⊗-
invertible object R in Ho(M )(S) (in the case S is of pure dimension d, it might be wise to consider
R = 1S(d)[2d], but an arbitrary R as above is eligible by 4.4.22). Then, for any separated S-scheme
of finite type f : X → S, we define the local duality functor

DX : Ho(M )(X)
op → Ho(M )(X)

by the formula

DX(M) = RHomX(M, f !(R)) .

This functor DX is right adjoint to itself.

Corollary 4.4.24. Under the above assumptions, we have the following properties of the
motivic triangulated category Ho(M ):

(a) For any separated S-scheme of finite type X, the functor DX preserves constructible
objects.

(b) For any separated S-scheme of finite type X, the natural map

M → DX(DX(M))

is an isomorphism for any constructible object M in Ho(M )(X).
(c) For any separated S-scheme of finite type X, and for any objectsM and N in Ho(M )(X),

if N is constructible, then we have a canonical isomorphism

DX(M ⊗L
X DX(N)) ≃ RHomX(M,N) .
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(d) For any morphism between separated S-schemes of finite type f : Y → X, we have
natural isomorphisms

DY (f
∗(M)) ≃ f !(DX(M))

f∗(DX(M)) ≃ DY (f
!(M))

DX(f!(N)) ≃ f∗(DY (N))

f!(DY (N)) ≃ DX(f∗(N))

for any constructible objects M and N in Ho(M )(X) and Ho(M )(Y ) respectively.

This corollary sums up what must be called the Grothendieck duality property for the motivic
triangulated category Ho(M ) with respect to the set of twists τ .

Proof. Assertions (a) and (b) are only stated for the record61; see 4.2.25. To prove (c), we
see that we have an obvious isomorphism

DX(M ⊗L
X P ) ≃ RHomX(M,DX(P ))

for any objectsM and P . If N is constructible, we may replace P by DX(N) and get the expected
formula using (b). The identification DY f

∗ ≃ f !DX is a special case of the formula

RHomY (f
∗(A), f !(B)) ≃ f ! RHomX(A,B) .

Therefore, we also get:

f∗DX ≃ D
2
Y f

∗DX ≃ DY f
!D2

X ≃ DY f
! .

The two other formulas of (d) follow by adjunction. �

Theorem 4.4.25. Assume that S consists of schemes of finite type over a field k, and consider
a τ -twisted motivic triangulated category T ′ over S , as well as a premotivic morphism compatible
with τ -twists

ϕ∗ : T = Ho(M )→ T
′ .

We suppose that the following properties hold:

(a) T is τ -dualizable and Q-linear and separated;
(b) the object 1{i} is rigid in T (k) for any i ∈ τ .

Then, the premotivic morphism

ϕ∗ : Tc → T
′
c

commutes with the six operations.

Remark 4.4.26. Remark that, as a corollary, we obtain immediately in the condition of the
theorem that the functor ϕ∗ commutes with the duality functor on T and T ′ respectively obtained
by applying the above corollary in the case B = Spec (k).

Proof. Given a morphism of finite type f : X → Spec (k), let us consider the following
property.

(∗)f For any constructible object M in T (X), the natural exchange map

ϕ∗ f∗(M)→ f∗ ϕ
∗(M)

is invertible.

61We have put to a lot of assumptions here: in fact, if Ho(M ) is τ -dualizable and if local duality holds over B
in Ho(M ), the six Grothendieck operations preserve constructible objects on the restriction of Ho(M ) to B-schemes
of finite type; we leave this as a formal exercice for the reader.
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We will first prove the theorem assuming that property (∗)f holds for any f .
Let u : X → Y be a k-morphism of finite type. We claim that the exchange map

ϕ∗ u∗(M)→ u∗ ϕ
∗(M)

is invertible for any τ -constructible object M of T (X).
It is sufficient to prove that, for any smooth separated k-morphism of finite type g : T → X,

any constructible object M in T (X) and any twist i, the natural map

HomT ′(X)(g♯(1T {i}), ϕ
∗ u∗(M))→ HomT ′(X)(g♯(1T {i}), u∗(M))

is bijective. Consider the following commutative diagram of morphisms of schemes:

V
v //

h
��

T
g
��

X

a !!C
CC

CC
u // Y

b}}||
||

|

Spec (k)

in which the square is cartesian. Recall that the functor v∗ preserves constructible objects by
virtue of Theorem 4.2.16. Then we conclude by the computations below:

HomT ′(Y )(g♯(1T {i}), ϕ
∗ u∗(M)) = HomT ′(T )(1Y {i}, g

∗ ϕ∗ u∗(M))

= HomT ′(T )(1Y {i}, ϕ
∗ g∗ u∗(M))

= HomT ′(T )(g
∗b∗(1k{i}), ϕ

∗ g∗ u∗(M))

= HomT ′(T )(g
∗b∗(1k{i}), ϕ

∗ v∗ h
∗(M))

= HomT ′(k)(1k{i}, (bg)∗ ϕ
∗ v∗ h

∗(M))

= HomT ′(k)(1k{i}, ϕ
∗ (bg)∗ v∗ h

∗(M)) (by (∗)bg)

= HomT ′(k)(1k{i}, (bgv)∗ ϕ
∗ h∗(M)) (by (∗)bgv)

= HomT ′(k)(1k{i}, (bg)∗ g
∗ u∗ ϕ

∗(M))

= HomT ′(Y )(g♯(1T {i}), u∗ ϕ
∗(M))

From there, we see that, for any k-scheme of finite type X and any τ -constructible objects M and
N of T (X), the natural map

ϕ∗(HomX(M,N))→ HomX(ϕ∗(M), ϕ∗(N))

is invertible in T ′(X). For this, we may assume that M = f♯(1Y {i}) for a smooth morphism of
finite type f : Y → X and a twist i, in which case we have

ϕ∗(HomX(M,N)) = ϕ∗ f∗ f
∗(N) ≃ f∗ f

∗ ϕ∗(N) = HomX(ϕ∗(M), ϕ∗(N)).

It remains to prove that for any separated k-morphism f : X → Y of finite type and any con-
structible object N in T (X), the exchange map:

ϕ∗ f !(N)→ f ! ϕ∗(N)

is an isomorphism. It is sufficient to prove that for any constructible object M in T (X), the
induced map:

HomT ′(Y )(ϕ
∗(M), ϕ∗ f !(N))→ HomT ′(Y )(ϕ

∗(M), f ! ϕ∗(N))

is bijective, because ϕ∗ is essentially surjective on the family of generators of T ′
c (Y ) of the form

g♯(1W {i}) for a smooth morphism g and a twist i. This follows formally by applying the functor
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HomT ′(Y )(1Y ,−) to the isomorphisms:

f∗HomX(ϕ∗(M), ϕ∗f !(N)) = ϕ∗ f∗ HomX(M,f !(N))

= ϕ∗ HomX(f!(M), N)

= HomX(f! ϕ
∗(M), ϕ∗(N))

= f∗HomX(ϕ∗(M), f ! ϕ∗(N))

It remains to prove property (∗)f for any morphism f of finite type.
We claim it is sufficient to prove that, for any k-scheme of finite type X with structural

morphism f , the following property holds:

(∗∗)X For any twist i ∈ τ , the natural exchange map

ϕ∗ f∗(1X{i})→ f∗ ϕ
∗(1X{i})

is invertible.

Indeed, by virtue of Theorem 4.2.13, we may assume that M = w∗(1W {i}) for w : W → X a
projective k-morphism, and i ∈ τ . As the exchange map ϕ∗ w∗ → w∗ ϕ

∗ is invertible (Proposition
2.4.53), we see that we may assume that M = 1X{i} for some twist i.

Let us prove property (∗∗)X in the case X is in addition smooth over k. As ϕ∗ is monoidal,
for any rigid object M of T (k), we get the identification:

ϕ∗(M∨) = ϕ∗(M)∨.

On the other hand, according to assumption (b), the object f♯(1X) is rigid in T (k) as well as in
T ′(k) (because the functor ϕ∗ is symmetric monoidal and commutes with the operations of the
form f♯ for f smooth). Thus we get:

f∗(1X{i}) = Homk(f♯(1X),1k{i}) = f♯(1X)∨{i}.

Then property (∗∗)X readily follows.
We finally prove property (∗∗)X for any algebraic k-scheme X. We will proceed by induction

on the dimension of X.
In case dim(X) < 0, the result is obvious. Let us assume dim(X) ≥ 0. According to the

localization property, we can assume that X is reduced. Let k̄ be an inseparable closure of k and
X̄ = X⊗k k̄. According to De Jong theorem applied to X̄ (see Th. 4.1.10 for S = Spec

(
k̄
)
), there

exists a Galois alteration X̄ ′ → X̄ of group G such that X̄ ′ is smooth over k̄.
We can assume that such a smooth alteration exists over a finite inseparable extension field

E/k. Because T (resp. T ′) is Q-linear and separated, the base change functor φ∗ associated with
the finite morphism φ : Spec (E)→ Spec (k) and relative to the premotivic category T (resp. T ′)
is an equivalence of categories (see Proposition 2.1.9). Thus we can replace k by E and assume
that there exists a Galois alteration p : X ′ → X of group G such that X ′ is a smooth k-scheme.
Using the localization property, we can assume X is reduced. Then there exists a nowhere dense
closed subscheme ν : Z → X such that U = X −Z is regular (thus normal) and the induced map
p|U : p−1(U)→ U is finite. Thus we can apply Theorem 4.4.1 to the cartesian square:

Z ′ ν′

//

q

��

X ′

p

��
Z

ν // X

and we get the distinguished triangle in T (X) (thus in T ′(X) as well, as the functor ϕ∗ is
monoidal and commutes with the operations of the form u∗ for any proper morphism u) of the
form:

1X{i} → p∗(1X′{i})G ⊕ ν∗(1Z{i})→ (νq)∗(1Z′{i})G
+1
−−→

for any twist i. If we consider the triangles in T (k) and T ′(k) obtained by applying the functor f∗,
where f is the structural morphism of X/k, we deduce that property (∗∗)X follows from properties
(∗∗)X′ , (∗∗)Z , (∗∗)Z′ . Thus we can conclude applying either the case of a smooth k-scheme treated
above or the induction hypothesis as dim(Z) = dim(Z ′) < dim(X). �





Part 2

Construction of fibred categories



5. Fibred derived categories

5.0. In this entire section, we fix a full subcategory S of the category of noetherian S-schemes
satisfying the following properties:

(a) S is closed under finite sums and pullback along morphisms of finite type.
(b) For any scheme S in S , any quasi-projective S-scheme belongs to S .

We fix an admissible class of morphisms P of S . All our P-premotivic categories (cf.
definition 1.4.2) are defined over S . Moreover, for any abelian P-premotivic category A in this
section, we assume the following:

(c) A is a Grothendieck abelian P-premotivic category (see definition 1.3.8 and the recall
below).

(d) A is given with a generating set of twists τ . We sometimes refer to it as the twists of A .
(e) We will denote by MS(X,A ), or simply by MS(X), the geometric section over a P-

scheme X/S.

Without precision, any scheme will be assumed to be an object of S .
In section 5.2, except possibly for 5.2.a, we assume further:

(f) P contains the class of smooth finite type morphisms.

In section 5.3, we assume (f) and instead of (d) above.

5.0.27. We will refer sometimes to the canonical dg-structure of the category of complexes
C(A ) over an abelian category A . Recall that to any complexes K and L over A , we associate
a complex of abelian groups Hom•

A (K,L) whose component in degree n ∈ Z is
∏

p∈Z

HomA (Kp, Lp+n)

and whose differential in degree n ∈ Z is defined by the formula:

(fp)p∈Z 7→
(
dL ◦ fp − (−1)n.fp+1 ◦ dK)

)

p∈Z
.

In other words, this is the image of the bicomplex HomA (K,L) by the Tot-product functor
which we denote by Totπ. Of course, the associated homotopy category is the category K(A )
of complexes up to chain homotopy equivalence.

5.1. From abelian premotives to triangulated premotives.
5.1.a. Abelian premotives: recall and examples. Consider an abelian P-premotivic category

A . According to the convention of 5.0, for any scheme S, AS is a Grothendieck abelian closed
symmetric monoidal category. Moreover, if τ denotes the twists of A , the essentially small family

(
MS(X){i}

)

X∈P/S,i∈τ

is a family of generators of AS in the sense of [Gro57].

Example 5.1.1. Consider a fixed ring Λ. Let PSh(P/S,Λ) be the category of Λ-presheaves
(i.e. presheaves of Λ-modules) on P/S. For any P-scheme X/S, we let ΛS(X) be the free
Λ-presheaf on P/S represented by X. Then PSh(P/S,Λ) is a Grothendieck abelian category
generated by the essentially small family

(
ΛS(X)

)

X∈P/S
.

There is a unique symmetric closed monoidal structure on PSh(P/S,Λ) such that

ΛS(X)⊗S ΛS(Y ) = ΛS(X ×S Y ).

Finally the existence of functors f∗, f∗ and, in the case when f is a P-morphism, of f♯, follows
from general sheaf theory (cf. [SGA4]).

Thus, PSh(P,Λ) defines an abelian P-premotivic category.

5.1.2. Consider an abstract abelian P-premotivic category A . To any premotive M of AS ,
we can associate a presheaf of abelian groups

X 7→ HomAS
(MS(X),M)
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which we denote by γ∗(M).
This defines a functor γ∗ : AS → PSh(P/S,Z). It admits the following left adjoint:

γ∗ : PSh(P/S,Z)→ AS , F 7→ lim
−→
X/F

MS(X,A )

where the colimit runs over the category of representable presheaves over F .
It is now easy to check we have defined a morphism of (complete) abelian P-premotivic

categories:

(5.1.2.1) γ∗ : PSh(P,Z) ⇄ A : γ∗.

Moreover PSh(P,Z) appears as the initial abelian P-premotivic category.
Remark that the functor γ∗ : AS → PSh(P/S,Z) is conservative if the set of twists τ of A is

trivial.

Definition 5.1.3. A P-admissible topology t is a Grothendieck pretopology t on the category
S , such that any t-covering family consists of P-morphisms.

Note that, for any scheme S in S , such a topology t induces a pretopology on P/S (which
we denote by the same letter). For any morphism (resp. P-morphism) f : T → S, the functor f∗

(resp. f♯) preserves t-covering families.
As P is fixed in all this section, we will simply say admissible for P-admissible.

Example 5.1.4. Let t be an admissible topology. We denote by Sht(P/S,Λ) the category
of t-sheaves of Λ-modules on P/S. Given a P-scheme X/S, we let ΛtS(X) be the free Λ-linear
t-sheaf represented by X. Then, Sht(P/S,Λ) is an abelian Grothendieck category with generators
(ΛtS(X))X∈P/S .

As in the preceding example, the category Sht(P/S,Λ) admits a unique closed symmetric
monoidal structure such that ΛtS(X) ⊗S ΛtS(Y ) = ΛtS(X ×S Y ). Finally, for any morphism f :
T → S of schemes, the existence of functors f∗, f∗ (resp. f♯ when f is a P-morphism) follows from
the general theory of sheaves (see again [SGA4]: according to our assumption on t and [SGA4,
III, 1.6], the functors f∗ : P/S →P/T and f♯ : P/T →P/S (for f in P) are continuous).

Thus, Sht(P,Λ) defines an abelian P-premotivic category (with trivial set of twists).
The associated t-sheaf functor induces a morphism

(5.1.4.1) a∗t : PSh(P,Λ) ⇄ Sht(P,Λ) : at,∗.

Remark 5.1.5. Recall the abelian category Sht(P/S,Z) is a localization of the category
PSh(S,Z) in the sense of Gabriel-Zisman. In particular, given an abstract abelian P-premotivic
category A , the canonical morphism

γ∗ : PSh(P/S,Z) ⇄ AS : γ∗

induces a unique morphism
Sht(P/S,Z) ⇄ AS

if and only if for any presheaf of abelian groups F on P/S such that at(F ) = Ft = 0, one has
γ∗(F ) = 0.

We leave to the reader the exercise which consists to formulate the universal property of the
abelian P-premotivic category Sht(P,Z).62

5.1.b. The t-descent model category structure.

5.1.6. Consider an abelian P-premotivic category A with set of twists τ .
We let C(A ) be the P-fibered abelian category over S whose fibers over a scheme S is the

category C(AS) of (unbounded) complexes in AS . For any scheme S, we let ιS : AS → C(AS)
the embedding which sends an object of AS to the corresponding complex concentrated in degree
zero.

If A is τ -twisted, then the category C(AS) is obviously (Z× τ)-twisted. The following lemma
is straightforward :

62We will formulate a derived version in the paragraph on descent properties for derived premotives (cf. 5.2.9).
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Lemma 5.1.7. With the notations above, there is a unique structure of abelian P-premotivic
category on C(A ) such that the functor ι : A → C(A ) is a morphism of abelian P-premotivic
categories.

5.1.8. For a scheme S, let (P/S)∐ be the category introduced in 3.2.1. The functor MS(−)
can be extended to (P/S)∐ by associating to a family (Xi)i∈I of P-schemes over S the premotive

⊕

i∈I

MS(Xi).

If X is a simplicial object of (P/S)∐, we denote by MS(X ) the complex associated with the
simplicial object of AS obtained by applying degreewise the above extension of MS(−).

Definition 5.1.9. Let A be an abelian P-premotivic category and t be an admissible topol-
ogy.

Let S be a scheme and C be an object of C(AS) :

(1) The complex C is said to be local (with respect to the geometric section) if, for any
P-scheme X/S and any pair (n, i) ∈ Z× τ , the canonical morphism

HomK(AS)(MS(X){i}[n], C)→ HomD(AS)(MS(X){i}[n], C)

is an isomorphism.
(2) The complex C is said to be t-flasque if for any t-hypercover X → X in P/S, for any

(n, i) ∈ Z× τ , the canonical morphism

HomK(AS)(MS(X){i}[n], C)→ HomK(AS)(MS(X ){i}[n], C)

is an isomorphism.

We say the abelian P-premotivic category A satifies cohomological t-descent if for any t-hypercover
X → X of a P-scheme X/S, and for any i ∈ τ , the map

MS(X ){i} →MS(X){i}

is a quasi-isomorphism (or equivalently, if any local complex is t-flasque).
We say that A is compatible with t if A satisfies cohomological t-descent, and if, for any

scheme S, any t-flasque complex of AS is local.

Example 5.1.10. Consider the notations of 5.1.4.
Consider the canonical dg-structure on C(Sht(P/S,Λ)) (see 5.1.1). By definition, for any

complexes D and C of sheaves, we get an equality:

HomK(Sht(P/S,Λ))(D,C) = H0(Hom•
Sht(P/S,Λ)(D,C)) = H0(Totπ HomSht(P/S,Λ)(D,C)).

In the case where D = ΛtS(X) (resp. D = ΛtS(X )) for a P-scheme X/S (resp. a simplicial
P-scheme over S) we obtain the following identification:

HomK(Sht(P/S,Λ))(Λ
t
S(X), C) = H0(C(X)).

(resp. HomK(Sht(P/S,Λ))(Λ
t
S(X ), C) = H0(Totπ C(X )) ).

Thus, we get the following equivalences:

C is local⇔ for any P-scheme X/S, Hn
t (X,C) ≃ H

n(C(X)).

C is t-flasque⇔ for any t-hypercover X → X, Hn(C(X)) ≃ Hn(Totπ C(X )).

According to the computation of cohomology with hypercovers (cf. [Bro74]), if the complex
C is t-flasque, it is local. In other words, we have the expected property that the abelian P-
premotivic category Sht(P,Λ) is compatible with t.

5.1.11. Consider an abelian P-premotivic category A and an admissible topology t.
Fix a base scheme S. A morphism p : C → D of complexes on AS is called a t-fibration if its

kernel is a t-flasque complex and if for any P-scheme X/S, any i ∈ τ and any integer n ∈ Z, the
map of abelian groups

HomAS
(MS(X){i}, Cn)→ HomAS

(MS(X){i}, Dn)
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is surjective.
For any object A of AS , we let SnA (resp. DnA) be the complex with only one non trivial

term (resp. two non trivial terms) equal to A in degree n (resp. in degree n and n+ 1, with the
identity as only non trivial differential). We define the class of cofibrations as the smallest class
of morphisms of C(AS) which :

(1) contains the map Sn+1MS(X){i} → DnMS(X){i} for any P-scheme X/S, any i ∈ τ ,
and any integer n;

(2) is stable by pushout, transfinite composition and retract.

A complex C is said to be cofibrant if the canonical map 0→ C is a cofibration. For instance, for
any P-scheme X/S and any i ∈ τ , the complex MS(X){i}[n] is cofibrant.

Let GS be the essentially small family made of premotives MS(X){i} for a P-scheme X/S
and a twist i ∈ τ , and HS be the family of complexes of the form Cone(MS(X ){i} →MS(X){i})
for any t-hypercover X → X and any twist i ∈ τ . By the very definition, as A is compatible
with t (definition 5.1.9), (GS ,HS) is a descent structure on AS in the sense of [CD09, def. 2.2].
Moreover, it is weakly flat in the sense of [CD09, par. 3.1]. Thus the following proposition is a
particular case of [CD09, theorem 2.5, proposition 3.2, and corollary 5.5] :

Proposition 5.1.12. Let A be an abelian P-premotivic category, which we assume to be
compatible with an admissible topology t. Then for any scheme S, the category C(AS) with the
preceding definition of fibrations and cofibrations, with quasi-isomorphisms as weak equivalences
is a proper symmetric monoidal model category.

5.1.13. We will call this model structure on C(AS) the t-descent model category structure (over
S). Note that, for any P-scheme X/S and any twist i ∈ τ , the complex MS(X){i} concentrated
in degree 0 is cofibrant by definition, as well as any of its suspensions and twists. They form a
family of generators for the triangulated category D(AS).
Observe also that the fibrant objects for the t-descent model category structure are exactly the
t-flasque complexes in AS . Moreover, essentially by definition, a complex of AS is local if and
only if it is t-flasque (see [CD09, 2.5]).

5.1.14. Consider again the notations and hypothesis of 5.1.11.
Consider a morphism of schemes f : T → S. Then the functor

f∗ : C(AS)→ C(AT )

sends GS in GT , and HS in HT because the topology t is admissible. This means it satisfies
descent according to the definition of [CD09, 2.4]. Applying theorem 2.14 of op. cit., the functor
f∗ preserves cofibrations and trivial cofibrations, i.e. the pair of functors (f∗, f∗) is a Quillen
adjunction with respect to the t-descent model category structures.

Assume that f is a P-morphism. Then, similarly, the functor

f♯ : C(AT )→ C(AS)

sends GS (resp. HS) in GT (resp. HT ) so that it f♯ also satisfies descent in the sense of op. cit.
Therefore, it preserves cofibrations and trivial cofibrations, and the pair of adjoint functors (f♯, f

∗)
is a Quillen adjunction for the t-descent model category structures.

In other words, we have obtained the following result.

Corollary 5.1.15. Let A be an abelian P-premotivic category compatible with an admis-
sible topology t. The P-fibred category C(A ) with the t-descent model category structure defined
in 5.1.12 is a symmetric monoidal P-fibred model category. Moreover, it is stable, proper and
combinatorial.

5.1.16. Recall the following consequences of this corollary (see also 1.3.24 for the general
theory). Consider a morphism f : T → S of schemes. Then the pair of adjoint functors (f∗, f∗)
admits total left/right derived functors

Lf∗ : D(AS) ⇄ D(AT ) : Rf∗.
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More precisely, f∗ (resp. f∗) preserves t-local (resp. cofibrant) complexes. For any complex K
on AS , Rf∗(K) = f∗(K

′) (resp. Lf∗(K) = f∗(K ′′)) where K ′ → K (resp. K → K ′′) is a t-local
(resp. cofibrant) resolution of K.63

When f is a P-morphism, the functor f∗ is even exact and thus preserves quasi-isomorphisms.
This implies that Lf∗ = f∗. The functor f♯ admits a total left derived functor

Lf♯ : D(AT ) ⇄ D(AS) : Rf
∗

defined by the formula Lf♯(K) = f♯(K
′′) for a complex K on AT and a cofibrant resolution

K ′′ → K.
Note also that the tensor product (resp. internal Hom) of C(AS) admits a total left derived

functor (resp. total right derived functor). For any complexes K and L on AS , this derived
functors are defined by the formula:

K ⊗L
S L = K ′′ ⊗S L

′′

RHomS(K,L) = HomS(K
′′, L′)

where K → K ′′ and L→ L′′ are cofibrant resolutions and L′ → L is a t-local resolution.
It is now easy to check that these functors define a triangulated P-premotivic category D(A ),

which is τ -generated according to 5.1.13.

Definition 5.1.17. Let A be an abelian P-premotivic category compatible with an admis-
sible topology t.

The triangulated P-premotivic category D(A ) defined above is called the derived P-premotivic
category associated with A .64

The geometric section of a P-scheme X/S in the category D(A ) is the complex concentrated
in degree 0 equal to the object MS(X). The triangulated P-fibred category is τ -generated and
well generated in the sense of 1.3.16. Recall this means that D(AS) is equal to the localizing65

subcategory generated by the family

(5.1.17.1) {MS(X){i};X/S P-scheme, i ∈ τ}.

Example 5.1.18. Given any admissible topology t, the abelian P-premotivic category Sht(P,Λ)
introduced in example 5.1.4 is compatible with t (cf. 5.1.10) and defines the derived P-premotivic
category D(Sht(P,Λ)).

Remark also that the abelian P-premotivic category PSh(P,Λ) introduced in example 5.1.1 is
compatible with the coarse topology and gives the derived P-premotivic category D(PSh(P,Λ)).

Remark 5.1.19. Recall from 5.0.27 there exists a canonical dg-structure on C(AS). Then we
can define a derived dg-structure by defining for any complexes K and L of AS , the complex of
morphisms:

RHomAS
(K,L) = Hom•

AS
(Q(K), R(L))

where R and Q are respectively some fibrant and cofibrant (functorial) resolutions for the t-descent
model structure. The homotopy category associated with this new dg-structure on C(AS) is the
derived category D(AS). Moreover, for any morphism (resp. P-morphism) of schemes f , the
pair (Lf∗,Rf∗) (resp. (Lf♯, f

∗)) is a dg-adjunction. The same is true for the pair of bifunctors
(⊗L

S ,RHomS).

5.1.20. Consider an abelian P-premotivic category A compatible with a topology t. Accord-
ing to section 3.1.b, the 2-functor D(A ) can be extended to the category of S -diagrams: to any
diagram of schemes X : I → S indexed by a small category I, we can associate a symmetric
monoidal closed triangulated category D(A )(X , I) which coincides with D(A )(X) when I = e,
X = X for a scheme X.

63Recall also that fibrant/cofibrant resolutions can be made functorially, because our model categories are
cofibrantely generated, so that the left or right derived functors are in fact defined at the level of complexes.

64Indeed remark that D(A ) does not depend on the topology t.
65i.e. triangulated and stable by sums.
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Let us be more specific. The fibred category A admits an extension to S -diagrams: a section
of A over a diagram of schemes X : I → S , indexed by a small category I, is the following data:

(1) A family (Ai)i∈I such that Ai is an object of AXi
.

(2) A family (au)u∈Fl(I) such that for any arrow u : i → j in I, au : u∗(Aj) → Ai is a
morphism in AXi

and this family of morphisms satisfies a cocyle condition (see paragraph
3.1.1).

Then, D(A )(X , I) is the derived category of the abelian category A (X , I). In particular, objects
of D(A )(X , I) are complexes of sections of A over (X , I) (or, what amount to the same thing,
families of complexes (Ki)i∈I with transition maps (au) as above, relative to the fibred category
C(A )).

Recall that a morphism of S -diagrams ϕ : (X , I) → (Y , J) is given by a functor f : I → J
and a natural transformation ϕ : X → Y ◦ f . We say that ϕ is a P-morphism if for any i ∈ I,
ϕi : Xi → Yf(i) is a P-morphism. For any morphism (resp. P-morphism) ϕ, we have defined in
3.1.3 adjunctions of (abelian) categories:

ϕ∗ : A (Y , J) ⇄ A (X , I) : ϕ∗

resp. ϕ♯ : A (X , I) ⇄ A (Y , J) : ϕ∗

which extends the adjunctions we had on trivial diagrams.
According to Proposition 3.1.11, these respective adjunctions admits left/right derived func-

tors as follows:

Lϕ∗ : D(A )(Y , J) ⇄ D(A )(X , I) : Rϕ∗(5.1.20.1)

resp. Lϕ♯ : D(A )(X , I) ⇄ D(A )(Y , J) : Lϕ∗ = ϕ∗(5.1.20.2)

Again, these adjunctions coincide on trivial diagrams with the map we already had.
Note also that the symmetric closed monoidal structure on C(A (X , I)) can be derived and

induces a symmetric monoidal structure on D(A )(X , I) (see Proposition 3.1.24).66

Recall from 3.2.5 and 3.2.7 that, given a topology t′ (not necessarily admissible) over S , we
say that D(A ) satisfies t′-descent if for any t′-hypercover p : X → X (here X is considered as a
S -diagram), the functor

(5.1.20.3) Lp∗ : D(A )(X)→ D(A )(X )

is fully faithful (see Corollary 3.2.7).

Proposition 5.1.21. Consider the notations and hypothesis introduced above. Let t′ be an
admissible topology on S . Then the following conditions are equivalent:

(i) D(A ) satisfies t′-descent.
(ii) A satisfies cohomological t′-descent.

Proof. We prove (i) implies (ii). Consider a t′-hypercover p : X → X in P/S. This is
a P-morphism. Thus, by the fully faithfulness of (5.1.20.3), the counit map Lp♯p

∗ → 1 is an
isomorphism. By applying the latter to the unit object 1X of D(AX), we thus obtain that

MX(X )→ 1X

is an isomorphism in D(AX). If π : X → S is the structural P-morphism, by applying the functor
Lπ♯ to this isomorphism, we obtain that

MS(X )→MS(X)

is an isomorphism in D(AS) and this concludes.
Reciprocally, to prove (i), we can restrict to t′-hypercovers p : X → X which are P-

morphisms because t′ is admissible. Because Rp∗ = p∗ admits a left adjoint Lp♯, we have to
prove that the counit

Lp♯p
∗ → 1

66In fact, D(A ) is then a monoidal Pcart -fibred category over the category of S -diagrams (remark 3.1.21).
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is an isomorphism. This is a natural transformation between triangulated functors which commutes
with small sums. Thus, according to (5.1.17.1), we have only to check this is an isomorphism
when evaluated at a complex of the form MX(Y ){i} for a P-scheme Y/X and a twist i ∈ τ .
But the resulting morphism is then MX(X ×X Y ){i} →MX(Y ){i} and we can conclude because
X ×X Y → Y is a t′-hypercover in P/S (again because t′ is admissible). �

5.1.22. . Consider the situation of 5.1.20 Let S be a scheme. An interesting particular case
is given for constant S -diagrams over S; for a small category I, we let IS be the constant S -
diagram I → S , i 7→ S, u 7→ 1S . Then the adjunctions (5.1.20.1) for this kind of diagrams define
a Grothendieck derivator

I 7→ D(A )(IS).

Recall that, if f : I → e is the canonical functor to the terminal category and ϕ = fX : IX → X
the corresponding morphism of S -diagrams, for any I-diagram K• = (Ki)i∈I of complexes over
AS , we get right derived limits and left derived colimits:

Rϕ∗(K•) = R lim
←−
i∈I

Ki.

Lϕ♯(K•) = L lim
−→
i∈I

Ki.

5.1.23. The associated derived P-premotivic category is functorial in the following sense.
Consider an adjunction

ϕ : A ⇄ B : ψ

of abelian P-premotivic categories. Let τ (resp. τ ′) be the set of twists of A (resp. B), and
recall that ϕ induces a morphisms of monoid τ → τ ′ still denoted by ϕ. Consider two topologies
t and t′ such that t′ is finer than t. Suppose A (resp. B) is compatible with t (resp. t′) and let
(GA
S ,H

A
S ) (resp. (GB

S ,H
B
S )) be the descent structure on AS (resp. BS) defined in 5.1.11.

For any scheme S, consider the evident extensions

ϕS : C(AS) ⇄ C(BS) : ψS

of the above adjoint functors to complexes. Recall that for any P-scheme X/S and any twist
i ∈ τ , ϕS(MS(X,A ){i}) =MS(X,B){ϕ(i)} by definition. Thus, ϕS sends GA

S to GA
S . Because t′

is finer than t, it sends also HA
S to HB

S . In other words, it satifies descent in the sense of [CD09,
par. 2.4] so that the pair (ϕS , ψS) is a Quillen adjunction with respect to the respective t-descent
and t′-descent model structure on C(AS) and C(BS).

Considering the derived functors, it is now easy to check we have obtained a P-premotivic
adjunction67

Lϕ : D(A ) ⇄ D(B) : Rψ.

Example 5.1.24. Let t be an admissible topology. Consider an abelian P-premotivic category
A compatible with t. Then the morphism of abelian P-premotivic categories (5.1.2.1) induces a
morphism of triangulated P-premotivic categories:

(5.1.24.1) Lγ∗ : D(PSh(P,Z)) ⇄ D(A ) : Rγ∗

Similarly, the morphism (5.1.4.1) induces a morphism of triangulated P-premotivic categories

(5.1.24.2) a∗t : D(PSh(P,Λ)) ⇄ D(Sht(P,Λ)) : Rat,∗.

Note that a∗t = La∗t on objects, because the functor a∗t is exact.

67Remark also that this adjunction extends on S -diagrams considering the situation described in 5.1.20: for
any diagram X : I → S , we get an adjunction

LϕX : D(A )(X ) ⇄ D(B)(X ) : RψX

and this defines a morphism of triangulated monoidal Pcart -fibred categories over the S -diagrams (cf. Proposition
3.1.32).
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Example 5.1.25. Consider an admissible topology t. Let ϕ : Λ→ Λ′ be a morphism of rings.
For any scheme S, it induces a pair of adjoint functors:

(5.1.25.1) ϕ∗ : Sht(PS ,Λ) ⇆ Sht(PS ,Λ
′) : ϕ∗

such that ϕ∗ (resp. ϕ∗) is induced by the obvious extension (resp. restriction) of scalars functor.
By definition, for any P-scheme X/S, the functor ϕ∗ sends the representable sheaf of Λ-modules
ΛtS(X) to the representable sheaf of Λ′-modules Λ′t

S(X). Thus (ϕ∗, ϕ∗) defines an adjunction of
abelian P-premotivic categories. Applying the results of Paragraph 5.1.23, one deduces a P-
premotivic adjunction:

Lϕ∗ : D(Sht(P,Λ)) ⇆ D(Sht(P,Λ′)) : Rϕ∗.

The functor ϕ∗ is exact so that Rϕ∗ = ϕ∗. Similarly when Λ′/Λ is flat, Lϕ∗ = ϕ∗.

The following result can be used to check the compatibility to a given admissible topology:

Proposition 5.1.26. Let t be an admissible topology. Consider a morphism of abelian P-
premotivic categories

ϕ : A ⇄ B : ψ

such that:

(a) For any scheme S, ψS is exact.
(b) The morphism ϕ induces an isomorphism of the underlying set of twists of A and B.

According to the last property, we identify the set of twists of A and B to a monoid τ in such a
way that ϕ acts on τ by the identity.

Assume that A is compatible with t. Then the following conditions are equivalent:

(i) B is compatible with t.
(ii) B satisfies cohomological t-descent,

Proof. The fact (i) implies (ii) is clear from the definition and we prove the converse using
the following lemma :

Lemma 5.1.27. Consider a morphism of P-premotivic abelian categories

ϕ : A ⇄ B : ψ

satisfying conditions (a) and (b) of the above proposition and a base scheme S.
Given a simplicial P-scheme X over S, a twist i ∈ τ and a complex C over BS, we denote

by

ǫX ,i,C : HomC(BS)

(
MS(X ,B){i}, C

)
→ HomC(AS)

(
MS(X ,A ){i}, ψS(C)

)

the adjunction isomorphism obtained for the adjoint pair (ϕS , ψS).
Then there exists a unique isomorphism ǫ′X ,i,C making the following diagram commutative:

HomC(BS)

(
MS(X ,B){i}, C

) ǫX ,i,C //

��

HomC(AS)

(
MS(X ,A ){i}, ψS(C)

)

��
HomK(BS)

(
MS(X ,B){i}, C

) ǫ′X ,i,C // HomK(AS)

(
MS(X ,A ){i}, ψS(C)

)
.

Assume moreover that B satisfies cohomological t-descent.
Then there exists an isomorphism ǫ′′X ,i,C making the following diagram commutative:

HomK(BS)

(
MS(X ,B){i}, C

) ǫ′X ,i,C //

πB

X ,i,C

��

HomK(AS)

(
MS(X ,A ){i}, ψS(C)

)

πA

X ,i,C

��
HomD(BS)

(
MS(X ,B){i}, C

) ǫ′′X ,i,C // HomD(AS)

(
MS(X ,A ){i}, ψS(C)

)
,

(5.1.27.1)

where πA
X ,i,C and πB

X ,i,C are induced by the obvious localization functors.
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The existence and unicity of isomorphism ǫ′X ,i,C follows from the fact that the functors ϕS
and ψS are additive. Indeed, this implies that the isomorphism ǫX ,i,C is compatible with chain
homotopies.

Consider the injective model structure on C(AS) and C(BS) (see for example [CD09, 1.2]
for the definition). We first treat the case when C is fibrant for this model structure on C(BS).
Because the premotive MS(X ,B){i} is cofibrant for the injective model structure, we obtain that
the canonical map πB

X ,i,C is an isomorphism. This implies there exists a unique map ǫ′′X ,i,C making

diagram (5.1.27.1) commutative. On the other hand, the isomorphism ǫ′X ,i,C obtained previously

is obviously functorial in X . Thus, because B satisfies t-descent, we obtain that ψS(C) is t-
flasque. Because A is compatible with t, this implies ψS(C) is t-local, and because MS(X ,B){i}
is cofibrant for the t-descent model structure on C(AS), this implies πB

X ,i,C is an isomorphism.

Thus finally, ǫ′′X ,i,C is an isomorphism as required.
To treat the general case, we consider a fibrant resolution C → D for the injective model

structure on C(BS). Because ψS is exact, it preserves isomorphisms. Using the previous case, We
define ǫ′′X ,i,C by the following commutative diagram:

HomD(BS)

(
MS(X ,B){i}, C

) ǫ′′X ,i,C //

∼

��

HomD(AS)

(
MS(X ,A ){i}, ψS(C)

)

∼

��
HomD(BS)

(
MS(X ,B){i}, D

) ǫ′′X ,i,D // HomD(AS)

(
MS(X ,A ){i}, ψS(D)

)
.

The required property for ǫ′′X ,i,C then follows easily and the lemma is proved.

To finish the proof that (ii) implies (i), we note the lemma immediately implies, under (ii),
that the following two conditions are equivalent :

• C is t-flasque (resp. local) in C(BS);
• ψS(C) is t-flasque (resp. local) in C(AS).

This concludes. �

5.1.c. Constructible premotivic complexes.

Definition 5.1.28. Let A be an abelian P-premotivic category compatible with an ad-
missible topology t. We will say that t is bounded in A if for any scheme S, there exists an
essentially small family N t

S of bounded complexes which are direct factors of finite sums of objects
of type MS(X){i} in each degree, such that, for any complex C of AS , the following conditions
are equivalent.

(i) C is t-flasque.
(ii) For any H in N t

S , the abelian group HomK(AS)(H,C) vanishes.

In this case, we say the family N t
S is a bounded generating family for t-hypercoverings in AS .

Example 5.1.29. (1) Assume P contains the open immersions so that the Zariski topol-
ogy is admissible. Let MVS to be the family of complexes of the form

ΛS(U ∩ V )
l∗−k∗−−−−→ ΛS(U)⊕ ΛS(V )

i∗+j∗
−−−−→ ΛS(X)

for any open cover X = U ∪V , where i,j,k,l denotes the obvious open immersions. It fol-
lows then from [BG73] that MVS is a bounded generating family of Zariski hypercovers
in ShZar(P/S,Λ).

(2) Assume P contains the étale morphisms so that the Nisnevich topology is admissible.
We let BGS be the family of complexes of the form

ΛS(W )
g∗−l∗
−−−−→ ΛS(U)⊕ ΛS(V )

j∗+f∗
−−−−→ ΛS(X)
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for a Nisnevich distinguished square in S (cf. 2.1.11)

W
l //

g
��

V
f
��

U
j // X.

Then, by applying 3.3.2, we see that BGS is a bounded generating family for Nisnevich
hypercovers in ShNis(P/S,Λ).

(3) Assume that P = S ft is the class of morphisms of finite type in S . We let PCDHS

be the family of complexes of the form

ΛS(T )
g∗−k∗
−−−−→ ΛS(Z)⊕ ΛS(Y )

i∗+f∗
−−−−→ ΛS(X)

for a cdh-distinguished square in S (cf. 2.1.11)

T
k //

g
��

Y
f
��

Z
i // X.

Then, by virtue of 3.3.8, CDHS = BGS ∪ PCDHS is a bounded generating family for
cdh-hypercovers in Shcdh

(
S ft/S,Λ

)
.

(4) The étale topology is not bounded in Shét(Sm,Λ) for an arbitray ring Λ. However, if
Λ = Q, it is bounded: by virtue of Theorem 3.3.23, a bounded generating family for
étale hypercovers in Shét(Sm,Q)S is the union of the class BGS and that of complexes
of the form QS(Y )G → QS(X) for any Galois cover Y → X of group G.

(5) As in the case of étale topology, the qfh-topology is not bounded in general, but it is so
with rational coefficients. Let PQFHS be the family of complexes of the form

QS(T )G
g∗−k∗
−−−−→ QS(Z)⊕QS(Y )G

i∗+f∗
−−−−→ QS(X)

for a qfh-distinguished square of group G in S (cf. 3.3.15)

T
k //

g
��

Y
f
��

Z
i // X.

Then, by virtue of Theorem 3.3.25, QFHS = PQFHS ∪ BGS is a bounded generating
family for qfh-hypercovers in Shqfh

(
S ft/S,Q

)
.

(6) Similarly, by Theorem 3.3.30, HS = CDHS ∪QFHS is a bounded generating family for
h-hypercovers in Shh

(
S ft/S,Q

)
.

Proposition 5.1.30. Let A be an abelian P-premotivic category compatible with an admis-
sible topology t. We make the following assumptions:

(a) t is bounded in A ;
(b) for any P-morphism X → S and any n ∈ τ , the functor HomAS

(MS(X){n},−) pre-
serves filtered colimits.

Then t-local complexes are stable by filtering colimits.

Proof. Let N t
S is a bounded generating family for t-hypercovers in AS . Then a complex C

of AS is t-flasque if and only if for any H ∈ N t
S , the abelian group HomK(AS)(H,C) is trivial.

Hence it is sufficient to prove that the functor

C 7→ HomK(AS)(H,C)

preserves filtering colimits of complexes. This will follow from the fact that the functor

C 7→ HomC(AS)(H,C)

preserves filtering colimits. As H a is bounded complex that is degreewise compact, this latter
property is obvious. �
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5.1.31. Consider an abelian P-premotivic category A compatible with an admissible topology
t, with generating set of twists τ . Assume that t is bounded in A and consider a bounded
generating family N t

S for t-hypercovers in AS .
Let M(P/S,A ) be the full subcategory of AS spanned by direct factors of finite sums of

premotives of shape MS(X){i} for a P-scheme X/S and a twist i ∈ τ . This category is additive
and we can associate with it its category of complexes up to chain homotopy. We get an obvious
triangulated functor

(5.1.31.1) Kb
(
M(P/S,A )

)
→ D(AS).

Then the previous functor induces a triangulated functor

Kb
(
M(P/S,A )

)
/N t

S → D(AS)

where the left hand side stands for the Verdier quotient of Kb
(
M(P/S,A )

)
by the thick subcat-

egory generated by N t
S .

The category Kb
(
M(P/S,A )

)
/N t

S may not be pseudo-abelian while the aim of the previous
functor is. Thus we can consider its pseudo-abelian envelope and the induced functor

(5.1.31.2)
(

Kb
(
M(P/S,A )

)
/N t

S

)♮

→ D(AS).

According to Definition 1.4.9, the image of this functor is the subcategory of τ -constructible
premotives of the triangulated P-premotivic category D(AS). Then the following proposition is
a corollary of [CD09, theorem 6.2] :

Proposition 5.1.32. Consider the hypothesis and notations above.
If A is finitely τ -presented then D(A ) is compactly τ -generated. Moreover, the functor

(5.1.31.2) is fully faithful.

Let us denote by Dc(A ) the subcategory of D(A ) made of τ -constructible premotives in the
sense of Definition 1.4.9. Taking into account Porposition 1.4.11, the previous proposition admits
the following corollary:

Corollary 5.1.33. Consider the situation of 5.1.31, and assume that A is finitely τ -presented.
For any premotiveM in D(AS), the following conditions are equivalent:

(i) M is compact.
(ii) M is τ -constructible.

Moreover, the functor (5.1.31.2) induces an equivalence of categories:
(

Kb
(
M(P/S,A )

)
/N t

S

)♮

→ Dc(AS).

Example 5.1.34. According to example 5.1.29, we get the following examples:

(1) Let Λ(Sm/S) = M(Sm/S,A ) for A = ShNis(Sm/S,Λ). We obtain a fully faithful
functor

(

Kb (Λ(Sm/S)) /BGS

)♮

→ D
(
ShNis(Sm/S,Λ)

)
.

which is essentially surjective on compact objects.
(2) Let Λ(S ft/S) = M(Sm/S,A ) for A = Shcdh

(
S ft/S,Λ

)
. We obtain a fully faithful

functor
(

Kb
(
Λ(S ft/S)

)
/BGS ∪ CDHS

)♮

→ D
(

Shcdh(S
ft/S,Λ)

)

.

which is essentially surjective on compact objects.
(3) Let Qét(Sm/S) = M(Sm/S,A ) for A = Shét(Sm/S,Q). We obtain a fully faithful

functor
(

Kb (Qét(Sm/S)) /BGS

)♮

→ D
(
Shét(Sm/S,Q)

)
.

which is essentially surjective on compact objects.

5.1.35. Consider an abelian P-premotivic category A . We introduce the following property
of A :
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(C) Consider a projective system (Sα)α∈A of schemes in S with affine transition maps such
that S = lim

←−α∈A
Sα belongs to S . For any index α0 ∈ A, any object Aα0 in ASα0

, and

any twist n ∈ τ , the canonical map

lim
−→

α∈A/α0

HomASα
(1Sα{n}, Aα)→ HomAS

(1S{n}, A)

is an isomorphism where Aα (resp. A) is the pullback of Aα0
along the canonical map

Sα → Sα0
(resp. S → Sα0

).

Proposition 5.1.36. Consider an abelian P-premotivic category A compatible with an ad-
missible topology t and satisfying the assumption (C) above.

Then the derived premotivic category D(A ) is τ -continuous.

Proof. We use Proposition 4.3.6 applied to the t-descent model structure on C(AT ) for
T = S or T = Sα. (see Paragraph 5.1.13). Recall from Paragraph 5.1.11 that this model structure
is associated with a descent structure. Thus according to [CD09, 2.3], there exist an explicit
generating set I (resp. J) for cofibrations (resp. trivial cofibrations). Moreover, the source or
target of any map in I ∪ J is a complex C satisfying the following assumption:

(rep) for any integer i ∈ Z, Ci is a sum of premotives of the form MT (X){n} where X/T is a
P-scheme and n ∈ τ .

Thus, to check the assumption of 4.3.6 for C(A ), we fix a projective system (Sα)α∈A satisfying
the assumptions of property (C) above; we have to prove that for any index α0 ∈ A and any
complexes Cα0

and Eα0
such that Cα0

satisfies (rep), the natural map:

lim
−→

α∈A/α0

HomC(ASα )(Cα, Eα)→ HomC(AS)(C,E)

is bijective.
Given the definition of morphisms in a category of complexes, it is sufficient to check this

when the Hom groups are computed as morphisms of Z-graded objects. Thus it is sufficient to
treat the case where Cα0 and Eα0 are concentrated in degree 0. Thus, as Cα0 satisfies property
(rep), we are exactly reduced to assumption (C) on A . �

Example 5.1.37. (1) Assume P is contained in the class of morphisms of finite type.
Then the abelian P-premotivic category PSh(P,Λ) of example 5.1.1 satisfies as-

sumption (C). Indeed, property (C) when A is a representable presheaf follows from the
assumption on P: P-schemes over some base S always are of finite presentation over
S – S is noetherian according to our general assumption 5.0. Then the case of a gen-
eral presheaf A follows because A is an inductive limit of representable presheaf and the
global sections functor commutes with inductive limit of presheaves.

(2) Let S ft be the class of morphisms of finite type and let t be one of the following
topologies: Nis, ét, cdh, qfh, h.
Then the generalized abelian premotivic category Sht

(
S ft,Λ

)
of example 5.1.4 satisfies

assumption (C).
Indeed, according to the preceding example, we have only to prove that for any

morphism f : X → S, the functor

f∗ : PSh(S ft
S ,Λ)→ PSh(S ft

T ,Λ)

preserves the property of being a t-sheaf.
If f is a morphism of finite type, the functor f∗ admits as a left adjoint the functor

f♯, which preserves t-covers. Thus the assertion is clear in that case.
In the general case, we use the fact that X/S is a projective limit of a projective

system (Xα)α∈A where Xα is an S-scheme affine and of finite type over S. To check that
for a t-sheaf F over S, the presheaf f∗(F ) is a t-sheaf, we fix a t-cover (Wi)i∈I of X in

S
ft
X . As X is noetherian, we can assume I is finite. Moreover, there exists an index

α0 ∈ A such that for the t-cover (Wi)i∈I can be lifted to Xα0 . Then, using property (C)
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of PSh(S ft,Λ) applied to F and (Xα), we reduce to check that f∗α(F ) is a t-sheaf for
α ≥ α0. This follows from the first case treated.

(3) Let Sm be the class of smooth morphisms and t be one of the topologies: Nis, ét.
As we will see in Example 6.1.1, there exists a canonical enlargement of abelian premotivic
categories (see (6.1.1.1)):

ρ♯ : Sht(Sm,Λ) ⇄ Sht
(
S

ft,Λ
)
: ρ∗.

As the functor ρ♯ is fully faithful and commutes with f∗ for any morphism of schemes
f , we deduce from the preceding point that the abelian premotivic category Sht(Sm,Λ)
satisfies the above condition (C).

As an application of the previous proposition, we thus obtain that the derived pre-
motivic category D(Sht(Sm,Λ)) is τ -continuous.

5.2. The A1-derived premotivic category.
5.2.a. Localization of triangulated premotivic categories.

5.2.1. Let A be an abelian P-premotivic category compatible with an admissible topology t
and D(A ) be the associated derived P-premotivic category.

Suppose given an essentially small family of morphisms W in C(A ) which is stable by the
operations f∗, f♯ (in other words, W is a sub-P-fibred category of C(A )). Remark that the
localizing subcategory T of D(A ) generated by the cones of arrows in W is again stable by these
operations. Moreover, as for any P-morphism f : X → S we have f♯f

∗ = MS(X) ⊗S (−), the
category T is stable by tensor product with a geometric section.

We will say that a complex K over AS is W -local if for any object T of T and any integer
n ∈ Z, HomD(AS)(T,K[n]) = 0. A morphism of complexes p : C → D over AS is a W -equivalence
if for any W -local complex K over AS , the induced map

HomD(AS)(D,K)→ HomD(AS)(C,K)

is bijective.
A morphism of complexes over AS is called a W -fibration if it is a t-fibration with a W -local

kernel. A complex over AS will be called W -fibrant if it is t-local and W -local.

As consequence of [CD09, 4.3, 4.11 and 5.6], we obtain :

Proposition 5.2.2. Let A be an abelian P-premotivic category compatible with an admissible
topology t and W be an essentially small family of morphisms in C(A ) stable by f∗ and f♯.

Then the category C(AS) is a proper closed symmetric monoidal category with the W -fibrations
as fibrations, the cofibrations as defined in 5.1.11, and the W -equivalences as weak equivalences.

The homotopy category associated with this model category will be denoted by D(AS)[W
−1
S ].

It can be described as the Verdier quotient D(AS)/TS .
In fact, the W -local model category on C(AS) is nothing else than the left Bousfield localization

of the t-local model category structure. As a consequence, we obtain an adjunction of triangulated
categories:

(5.2.2.1) πS : D(AS) ⇄ D(AS)[W
−1
S ] : OS

such that OS is fully faithful with essential image the W -local complexes. In fact, the model
structure gives a functorial W -fibrant resolution 1→ RW

RW : C(AS)→ C(AS) ,

which induces OS .
Note that the triangulated category D(AS)[W

−1
S ] is generated by the complexes concentrated in

degree 0 of the form MS(X){i} – or, equivalently, the W -local complexes RW (MS(X){i}) – for a
P-scheme X and a twist i ∈ τ .

Remark 5.2.3. Another very useful property is that W -equivalences are stable by filtering
colimits; see [CD09, prop. 3.8].
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5.2.4. Recall from 5.1.14 that for any morphism (resp. P-morphism) f : T → S, the functor
f∗ (resp. f♯) satisfies descent; as it also preserves W , it follows from [CD09, 4.9] that the
adjunction

f∗ : C(AS)→ C(AT ) : f∗

(resp. f♯ : C(AS)→ C(AT ) : f
∗)

is a Quillen adjunction with respect to the W -local model structures. This gives the following
corollary.

Corollary 5.2.5. The P-fibred category C(A ) with the W -local model structure on its fibers
defined above is a monoidal P-fibred model category, which is moreover stable, proper and combi-
natorial.

We will denote by D(A )[W −1] the triangulated P-premotivic category whose fiber over a
scheme S is the homotopy category of the WS-local model category C(AS). The adjunction
(5.2.2.1) readily defines an adjuntion of triangulated P-premotivic categories

(5.2.5.1) π : D(A ) ⇄ D(A )[W −1] : O.

The P-fibred categories D(A ) and D(A )[W −1] are both τ -generated (and this adjunction is
compatible with τ -twists in a strong sense).

Remark 5.2.6. For any scheme S, the category D(AS)[W
−1
S ] is well generated and has a

canonical dg-structure (see also 5.1.19).

5.2.7. With the notations above, let us put T = D(A )[W −1] to clarify the following notations.
As in 5.1.20, the fibred category T has a canonical extension to S -diagrams X : I → S .

If we define WX as the class of morphisms (fi)i∈I in C(A (X , I)) such that for any object i,
fi is a W -equivalence, then T (X) is the triangulated category D(A (X , I))[W −1

X
].

Again, this triangulated category is symmetric monoidal closed and for any morphism (resp.
P-morphism) ϕ : (X , I)→ (Y , J), we get (derived) adjunctions as in 5.1.20:

Lϕ∗ : T (Y , J) ⇄ T (X , I) : Rϕ∗(5.2.7.1)

(resp. Lϕ♯ : T (X , I) ⇄ T (Y , J) : Lϕ∗ = ϕ∗)(5.2.7.2)

In fact, T is then a complete monoidal Pcart -fibred category over the category of diagrams of
schemes and the adjunction (5.2.5.1) extends to an adjunction of complete monoidal Pcart -fibred
categories.

Example 5.2.8. Suppose we are under the hypothesis of example 5.1.24.2.
Let Wt,S denote the family of maps which are of the form ΛS(X )→ ΛS(X) for a t-hypercover

X → X in P/S. Then Wt is obviously stable by f∗ and f♯.
Recall now that a complex of t-sheaves on P/S is local if and only if its t-hypercohomology

and its hypercohomology computed in the coarse topology agree (cf. 5.1.10).
This readily implies the adjunction considered in example 5.1.24.2

a∗t : D(PSh(P,Λ)) ⇄ D(Sht(P,Λ)) : Rat,∗.

induces an equivalence of triangulated P-premotivic categories

D(PSh(P,Λ))[W −1
t ] ⇄ D(Sht(P,Λ)).

Recall Rat,∗ is fully faithful and identifies D(Sht(S,Λ)) with the full subcategory of D(PSh(S,Λ))
made by t-local complexes.

5.2.9. A triangulated P-premotivic category (T ,M) such that there exists:

(1) an abelian P-premotivic category A compatible with an admissible topology t0 on Sm.
(2) an essentially small family W of morphisms in C(A ) stable by f∗ and f♯
(3) an adjunction of triangulated P-premotivic categories D(A )[W −1] ≃ T
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will be called for short a derived P-premotivic category. According to convention 5.0(d) and from
the above construction, T is τ -generated for some set of twists τ . 68

Let us denote simply byMS(X) the geometric sections of T . In this case, using the morphisms
(5.1.24.1) and (5.2.5.1), we get a canonical morphism of triangulated P-premotivic categories:

(5.2.9.1) ϕ∗ : D(PSh(P,Z)) ⇄ T : ϕ∗.

By definition, for any premotive M, any scheme X and any integer n ∈ Z, we get a canonical
identification:

(5.2.9.2) HomT (S)(MS(X),M[n]) = HnΓ(X,ϕ∗(M)).

Given any simplicial scheme X , we put MS(X ) = ϕ∗
(
ZS(X )

)
, so that we also obtain:

(5.2.9.3) HomT (S)(MS(X ),M[n]) = Hn
(
Totπ Γ(X ,Rγ∗(M))

)
.

Proposition 5.2.10. Consider the above notations and t an admissible topology. The follow-
ing conditions are equivalent.

(i) For any t-hypercover X → X in P/S, the induced map MS(X )→MS(X) is an isomor-
phism in T (S).

(i′) For any t-hypercover p : X → X in P/S, the induced functor Lp∗ : T (X) → T (X ) is
fully faithful.

(i′′) T satisfies t-descent.
(ii) There exists an essentially unique map ϕ∗

t : D(Sht(P/S,Z)) → T (S) making the fol-
lowing diagram essentially commutative:

D(PSh(P/S,Z))
ϕ∗

//

at
��

T (S)

D(Sht(P/S,Z))
ϕ∗

t

55kkkkkkkkkkk

(ii′) For any complex C ∈ C(PSh(P/S,Z)) such that at(C) = 0, ϕ∗(C) = 0.
(ii′′) For any map f : C → D in C(PSh(P/S,Z)) such that at(f) is an isomorphism, ϕ∗(f)

is an isomorphism.
(iii) There exists an essentially unique map ϕt∗ : T (S) → D(Sht(P/S,Z)) making the fol-

lowing diagram essentially commutative:

D(PSh(P/S,Z)) T (S)
ϕ∗oo

ϕt∗uukkkkkkkkkkk

D(Sht(P/S,Z))

ROt

OO

(iii′) For any premotiveM in T (S), the complex ϕ∗(M) is local.
(iii′′) For any premotiveM in T (S), any P-scheme X/S and any integer n ∈ Z,

HomT (S)(MS(X),M[n]) = Hn
t (X,ϕ∗(M)).

When these conditions are fulfilled for any scheme S, the functors appearing in (ii) and (iii) induce
a morphism of triangulated P-premotivic categories:

ϕ∗
t : D(Sht(P,Z)) ⇄ T : ϕt∗.

Proof. The equivalence between conditions (i), (i′) and (i′′) is clear (we proceed as in the
proof of 5.1.21). The equivalences (ii)⇔ (ii′)⇔ (ii′′) and (iii)⇔ (iii′) follows from example 5.2.8
and the definition of a localization. The equivalence (i) ⇔ (ii′′) follows again from loc. cit. The
equivalences (i)⇔ (iii′)⇔ (iii′′) follows finally from (5.2.9.2), (5.2.9.3), and the characterisation
of a local complex of sheaves (cf. 5.1.10). �

68We will formulate in some remarks below universal properties of some derived P-premotivic categories.
When doing so, we will restrict to morphisms of derived P-premotivic categories which can be written as

Lϕ : D(A1)[W
−1
1 ] → D(A2)[W

−1
2 ]

for a morphism ϕ : A1 → A2 of abelian P-premotivic categories compatible with suitable topologies. More natural

universal properties could be obtained if one considers the framework of dg-categories or triangulated derivator.
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Remark 5.2.11. The preceding proposition express the fact that the category D(Sht(P,Z))
is the universal derived P-premotivic category satisfying t-descent.

5.2.12. We end this section by making explicit two particular cases of the descent property
for derived P-premotivic categories.

Consider a derived P-premotivic category T with geometric sections M . Considering any
diagram X : I → P/S of P-schemes over S, with projection p : X → S, we can associate a
premotive in T :

MS(X ) = Lp♯(1S) = L lim
−→
i∈I

MS(Xi).

In particular, when I is the category • → •, we associate to every S-morphism f : Y → X of
P-schemes over S a canonical69 bivariant premotive

MS(X
f
−→ Y ).

When f is an immersion, we will also write MS(Y/X) for this premotive. Note that in any case,
there is a canonical distinguished triangle in T (S):

MS(X)
f∗
−→MS(Y )

πf
−−→MS(X

f
−→ Y )

∂f
−→MS(X)[1].

This triangle is functorial in the arrow f – with respect to commutative squares.
Given a commutative square of P-schemes over S

B
e′ //

g

��

Y

f
��

A
e // X

(5.2.12.1)

we will say that the image square in T (S)

MS(B)
e′∗ //

g∗
��

MS(Y )

f∗
��

MS(A)
e∗ // MS(X)

is homotopy cartesian70 if the premotive associated with diagram 5.2.12.1 is zero.

Proposition 5.2.13. Consider a derived P-premotivic category T . We assume that P

contains the étale morphisms (resp. P = S ft). Then, with the above definitions, the following
conditions are equivalent:

(i) T satisfies Nisnevich (resp. proper cdh) descent.
(ii) For any scheme S and any Nisnevich (resp. proper cdh) distinguished square Q of S-

schemes, the square MS(Q) is homotopy cartesian in T (S).
(iii) For any Nisnevich (resp. proper cdh) distinguished square of shape (5.2.12.1), the canon-

ical map MS(Y/B)
(f/g)∗
−−−−→MS(X/A) is an isomorphism.

Moreover, under these conditions, to any Nisnevich (resp. proper cdh) distinguished square Q of
shape (5.2.12.1), we associate a map

∂Q :MS(X)
πe−→MS(X/A)

(f/g)−1
∗−−−−−→MS(Y/B)

∂e′−−→MS(Y )[1]

which defines a distinguished triangle in T (S):

MS(B)

(

e′∗
−g∗

)

−−−−→MZ(Y )⊕MS(A)
(f∗,e∗)
−−−−→MS(X)

∂Q
−−→MS(Y )[1].

69In fact, if T = D(A )[W −1] for an abelian P-premotivic category A , then we can define MS(X → Y ) as

the cone of the morphism of complexes (concentrated in degree 0) MS(X)
f∗
−−→MS(Y ).

70If T = D(A )[W −1], this amount to say that the diagram obtained of complexes by applying the functor
MS(−) is homotopy cartesian in the W -local model category C(A ).
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Proof. The equivalence of (i) and (ii) follows from the theorem of Morel-Voevodsky 3.3.2
(resp. the theorem of Voevodsky 3.3.8). To prove the equivalence of (ii) and (iii), we assume
T = D(A )[W −1]. Then, the homotopy colimit of a square of shape 5.2.12.1 is given by the
complex

Cone
(
Cone(MS(B)→MS(Y ))→ Cone(MS(A)→MS(X))

)
.

This readily proves the needed equivalence, together with the remaining assertion. �

Remark 5.2.14. In the first of the respective cases of the proposition, condition (ii) is what
we usually called the Brown-Gersten property (BG) for T , whereas condition (iii) can be called
the excision property. In the second respective case, condition (ii) will be called the proper cdh
property for the generalized premotivic category T . We say also that T satisfies the (cdh) property
if it satisfies condition (ii) with respect to any cdh distinguished square Q.

5.2.b. The homotopy relation.

5.2.15. Let A be an abelian P-premotivic category compatible with an admissible topology
t.

We consider WA1 to be the family of morphisms MS(A
1
X){i} → MS(X){i} for a P-scheme

X/S and an twist i in τ . The family WA1 is obviously stable by f∗ and f♯.

Definition 5.2.16. Let A be an abelian P-premotivic category compatible with an admis-

sible topology t. With the notation above, we define Deff

A1(A ) = D(A )[W −1
A1 ] and refer to it as the

(effective) P-premotivic A1-derived category with coefficients in A .

By definition, the category Deff

A1(A ) satisfies the homotopy property (Htp) (see 2.1.3). Ac-
cording to the general facts about localization of derived premotivic categories, the triangulated

premotivic category Deff

A1(A ) is τ -generated.

Example 5.2.17. We can divide our examples into two types:
1) Assume P = Sm:

Consider the admissible topology t = Nis. Following F. Morel, we define the (effective) A1-

derived category over S to be Deff

A1 (ShNis(Sm/S,Λ)). Indeed we get a triangulated premotivic
category (see also the construction of [Ayo07b]):

(5.2.17.1) Deff

A1,Λ := Deff

A1 (ShNis(Sm,Λ)) .

We shall also write its fibres

(5.2.17.2) Deff

A1(S,Λ) := Deff

A1,Λ(S) = Deff

A1 (ShNis(Sm/S,Λ))

for a scheme S. For Λ = Z, we shall often write simply

(5.2.17.3) Deff

A1 := Deff

A1 (ShNis(Sm,Z)) .

Another interesting case is when t = ét; we get a triangulated premotivic category of effective
étale premotives:

Deff

A1 (Shét(Sm,Λ)) .

In each of these cases, we denote by ΛtS(X) the premotive associated with a smooth S-scheme
X.
2) Assume P = S ft:

Consider the admissible topology t = h (resp. t = qfh). In [Voe96], Voevodsky has introduced
the category of h-motives (resp. qfh-motives). In our formalism, one defines the category of
effective h-motives (resp. effective h-motives) over S with coefficients in Λ as:

DM eff
h (S,Λ) = Deff

A1

(
Shh

(
S

ft/S,Λ
))
,

resp. DM eff
qfh(S,Λ) = Deff

A1

(
Shqfh

(
S

ft/S,Λ
))
.

In other words, this is the A1-derived category of h-sheaves (resp. qfh-sheaves) of Λ-modules.
Moreover, these categories for various schemes S are the fibers of a generalized premotivic



5. FIBRED DERIVED CATEGORIES 135

triangulated category. What we have added to the construction of Voevodsky is the functors of
the generalized premotivic structure.

We will denote simply by ΛtS(X) the corresponding premotive associated withX inDM eff
t (S,Λ).

Another interesting case is obtained when t = cdh. We get an A1-derived generalized pre-

motivic category Deff

A1

(
Shcdh

(
S ft,Λ

))
whose premotives are simply denoted by Λcdh

S (X) for any
finite type S-scheme X.

5.2.18. Let C be a complex with coefficients in AS . According to the general case, we say that
C is A1-local if for any P-scheme X/S and any (i, n) ∈ τ ×Z, the map induced by the canonical
projection

HomD(AS)(MS(X){i}[n], C)→ HomD(AS)(MS(A
1
X){i}[n], C)

is an isomorphism. The adjunction (5.2.2.1) defines a morphism of triangulated P-premotivic
categories

D(A ) ⇄ Deff

A1(A )

such that for any scheme S, Deff

A1(AS) is identified with the full subcategory of D(AS) made of

A1-local complexes.
Fibrant objects for the model category structure on C(AS) appearing in Proposition 5.2.2

relatively to WA1 , simply called A1-fibrant objects, are the t-flasque and A1-local complexes.
We say a morphism f : C → D of complexes of AS is an A1-equivalence if it becomes an

isomorphism in Deff

A1(AS). Considering moreover two morphisms f, g : C → D of complexes of

AS , we say they are A1-homotopic if there exists a morphism of complexes

H :MS(A
1
S)⊗S C → D

such that H ◦ (s0 ⊗ 1C) = f and H ◦ (s1 ⊗ 1C) = g, where s0 and s1 are respectively induced
by the zero and the unit section of A1

S/S. When f and g are A1-homotopic, they are equal as

morphisms of Deff

A1(AS). We say the morphism p : C → D is a strong A1-equivalence if there

exists a morphism q : D → C such that the morphisms p ◦ q and q ◦ p are A1-homotopic to the
identity. A complex C is A1-contractible if the map C → 0 is a strong A1-equivalence.

As an example, for any integer n ∈ N, and any P-scheme X/S, the map

p∗ :MS(A
n
X)→MS(X)

induced by the canonical projection is a strong A1-equivalence with inverse the zero section s0,∗ :
MS(X)→MS(A

n
X).

5.2.19. The category Deff

A1(A ) is functorial in A .
Let ϕ : A ⇄ B : ψ be an adjunction of abelian P-premotivic categories. Consider two

topologies t and t’ such that t′ is finer than t. Suppose A (resp. B) is compatible with t (resp.
t′).

For any scheme S, consider the evident extensions ϕS : C(AS) ⇄ C(BS) : ψS of the above
adjoint functors to complexes. We easily check that the functor ψS preserves A1-local complexes.
Thus, applying 5.1.23, the pair (ϕS , ψS) is a Quillen adjunction for the respective A1-localized
model structure on C(AS) and C(BS); see [CD09, 3.11]. Considering the derived functors, it is
now easy to check we have obtained an adjunction

Lϕ : Deff

A1(A ) ⇄ Deff

A1(B) : Rψ

of triangulated P-premotivic categories.

Example 5.2.20. Consider the notations of 5.2.17. In the case where P = Sm, we get from
the adjunction of (5.1.24.2) the following adjunction of triangulated premotivic categories

a∗ét : D
eff

A1,Λ ⇄ Deff

A1 (Shét(Sm,Λ)) : Raét,∗.

Example 5.2.21. Let T be a derived P-premotivic category as in 5.2.9. If T satisfies the
property (Htp), then the canonical morphism (5.2.9.1) induces a morphism

Deff

A1(PSh(P,Z)) ⇄ T .
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If moreover T satisfies t-descent for an admissible topology t, we further obtain as in 5.2.10 a
morphism

Deff

A1(Sht(P,Z)) ⇄ T .

Particularly interesting cases are given by Deff

A1 (resp. Deff

A1

(
Shcdh

(
S ft,Z

))
) which is the univer-

sal derived premotivic category (resp. generalized premotivic category), i.e. initial premotivic
category satisfying Nisnevich descent (resp. cdh descent) and the homotopy property.

5.2.22. As in Example 5.1.25, let t be an admissible topology and ϕ : Λ→ Λ′ be an extension
of rings. Then, from the P-premotivic adjunction (5.1.25.1) and according to Paragraph 5.2.19,
we get an adjunction of triangulated P-premotivic categories:

Lϕ∗ : Deff

A1

(
Sht(P,Λ)

)
⇆ Deff

A1

(
Sht(P,Λ′)

)
: Rϕ∗.

Consider also complexes C andD of t-sheaves of Λ-modules over PS . Then there exists a canonical
morphism of Λ′-modules:

(5.2.22.1) HomDeff

A1(Sht(PS ,Λ))

(
C,D

)
⊗Λ Λ′ −→ HomDeff

A1(Sht(PS ,Λ′))

(
Lϕ∗(C),Lϕ∗(D)

)

There are two notable cases where this map is an isomorphism:

Proposition 5.2.23. Consider the above assumptions. Then the map (5.2.22.1) is an iso-
morphism in the two following cases:

(1) If Λ′ is a free Λ-module and C is compact;
(2) If Λ′ is a free Λ-module of finite rank.

Proof. Note that in any case, the functor ϕ∗ admits a right adjoint ϕ!.71

We can assume that Λ′ = I.Λ for a set I. In this case, we get for any sheaf F of Λ-modules:

ϕ∗ϕ
∗(F ) = F ⊗Λ Λ′ = I.F.

Moreover, for any P-scheme X/S, we get:

ϕ∗(Λ
′t
S(X)) = Λ′t

S(X) = I.ΛtS(X).

In particular, the functor ϕ∗ : C(Sht(PS ,Λ
′)) → C(Sht(PS ,Λ)) satisfies descent in the sense

of [CD09, 2.4] and preserves the family WA1 . Thus it is a left Quillen functor with respect to
the A1-local model structures. In particular, because it is also a right Quillen functor, we get:

Rϕ∗ = ϕ∗ = Lϕ∗. In particular, we get in Deff

A1(Sht(PS ,Λ)):

Rϕ∗Lϕ
∗(D) = Lϕ∗Lϕ

∗(D) = L(ϕ∗ϕ
∗)(D) = I.D.

Thus the Proposition follows as the functor Hom(C,−) commutes with direct sums if C is compact
and with finite direct sums in any case. �

We remark the following useful property.

Proposition 5.2.24. Consider a morphism

ϕ∗ : A ⇄ B : ϕ∗

of abelian P-premotivic categories such that A (resp. B) is compatible with an admissible topology
t (resp. t′). Assume t′ is finer than t.

Let S be a base scheme. Assume that ϕ∗ : AS → BS commutes with colimits72. Then
ϕ∗ : C(AS)→ C(BS) respects A1-equivalences.

In other words, the right derived functor Rϕ∗ : Deff

A1(BS) → Deff

A1(AS) satisfies the relation
Rϕ∗ = ϕ∗.

71It is defined by the formula:

ϕ!(F ) = HomΛ(Λ
′, F )

equipped with its canonical structure of sheaf of Λ′-modules.
72This amounts to ask that ϕ∗ is exact and commutes with direct sums.
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Proof. In this proof, we write ϕ∗ for ϕ∗,S . We first prove that ϕ∗ preserves strong A1-
equivalences (see 5.2.18).

Consider two maps u, v : K → L in C(BS). To give an A1-homotopy H :MS(A
1
S ,B)⊗SK →

L between u and v is equivalent by adjunction to give a map H ′ : K → HomBS
(MS(A

1
S ,B), L)

which fits into the following commutative diagram:

K

H′

��

u

vvnnnnnnnnnnnnnnnnnnn

v

((PPPPPPPPPPPPPPPPPPP

L HomBS
(MS(A

1
S ,B), L)

s∗0

oo
s∗1

// L

where s0 and s1 are the respective zero and unit section of A1
S/S.

Because MS(A
1
S ,B) = ϕ∗

S(MS(A
1
S ,A )), we get a canonical isomorphism (see paragraph

1.2.9)
ϕ∗(HomBS

(MS(A
1
S ,B), L)) ≃ HomBS

(MS(A
1
S ,A ), ϕ∗(L)).

Thus, applying ϕ∗ to the previous commutative diagram and using this identification, we obtain
that ϕ∗(u) is A

1-homotopic to ϕ∗(v).
As a consequence, for any P-scheme X over S, and any B-twist i, the map

ϕ∗(MS(A
1
X ,B){i})→ ϕ∗(MS(X,B){i})

induced by the canonical projection is a strong A1-equivalence, thus an A1-equivalence.
The functor ϕ∗ : BS → AS commutes with colimits. Thus it admits a right adjoint that we

will denote by ϕ!. Consider the injective model structure on C(AS) and C(BS) (see [CD09, 2.1]).
Because ϕ∗ is exact, it is a left Quillen functor for these model structures. Thus, the right derived
functor Rϕ! is well defined. From the result we just get, we see that Rϕ! preserves A1-local
objects, and this readily implies Lϕ∗ = ϕ∗ preserves A1-equivalences. �

5.2.25. To relate the category Deff

A1(S) with the homotopy category of schemes of Morel and
Voevodsky [MV99], we have to consider the category of simplicial Nisnevich sheaves of sets
denoted by ∆op Sh(Sm/S). Considering the free abelian sheaf functor, we obtain an adjunction
of categories

∆op Sh(Sm/S) ⇄ C(Sh(Sm/S,Z)).

If we consider Blander’s projective A1-model structure [Bla03] on the category ∆op Sh(Sm/S),
we can easily see that this is a Quillen pair, so that we obtain a P-premotivic adjunction of simple
P-premotivic categories

N : H ⇄ Deff

A1 : K.

Note that the functor N sends cofiber sequences in H (S) to distinguished triangles in Deff

A1(S).

5.2.c. Explicit A1-resolution.

5.2.26. Consider an abelian P-premotivic category A compatible with an admissible topology
t.
Consider the canonically split exact sequence

0→ 1S
s0−→MS(A

1
S)→ U → 0

where the map s0 : 1S →MS(A
1
S) is induced by the zero section of A1. The section corresponding

to 1 in A1 defines another map
s1 : 1S →MS(A

1
S)

which does not factor through s0, so that we get canonically a non trivial map u : 1S → U . This
defines for any complex C of AS a map, called the evaluation at 1,

Hom(U,C) = 1S ⊗S Hom(U,C)
u⊗1
−−−→ U ⊗S Hom(U,C)

ev
−→ C.

We define the complex R
(1)
A1(C) to be

R
(1)
A1(C) = Cone

(
Hom(U,C)→ C

)
.
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We have by construction a map

rC : C → R
(1)
A1(C).

This defines a morphism of functors from the identity functor to R
(1)
A1 . For an integer n ≥ 1, we

define by induction a complex

R
(n+1)
A1 (C) = R

(1)
A1(R

(n)
A1 (C)),

and a map

r
R

(n)

A1 (C)
: R

(n)
A1 (C)→ R

(n+1)
A1 .

We finaly define a complex RA1(C) by the formula

RA1(C) = lim
−→
n

R
(n)
A1 (C).

We have a functorial map
C → RA1(C).

Lemma 5.2.27. With the above hypothesis and notations, the map C → RA1(C) is an A1-
equivalence.

Proof. For any closed symmetric monoidal category C and any objects A, B, C and I in C ,
we have

Hom(I ⊗ Hom(B,C),Hom(A,C)) = Hom(Hom(B,C),Hom(I,Hom(A,C)))

= Hom(Hom(B,C),Hom(I ⊗A,C)).

Hence any map I ⊗ A → B induces a map I ⊗ Hom(B,C) → Hom(A,C) for any object C. If
we apply this to C = C(AS) and I = MS(A

1), we see immediately that the functor Hom(−, C)
preserves strong A1-homotopy equivalences. In particular, for any complex C, the map C →
Hom(MS(A

1
X), C) is a strong A1-homotopy equivalence. This implies that Hom(U,C)→ 0 is an

A1-equivalence, so that the map rC is an A1-equivalence as well. As A1-equivalences are stable
by filtering colimits, this implies our result. �

Proposition 5.2.28. Consider the above notations and hypothesis, and assume that t is
bounded in A .

For any t-flasque complex C of AS, the complex RA1(C) is t-flasque and A1-local. Moreover,
the morphism C → RA1(C) is an A1-equivalence. If furthermore C is t-flasque, so is RA1(C).

Proof. The last assertion is a particular case of Lemma 5.2.27. The functor R
(1)
A1 preserves

t-flasque complexes. By virtue of 5.1.30, the functor RA1 has the same gentle property. It thus
remains to prove that the functor RA1 sends t-flasque complexes on A1-local ones. We shall use
that the derived category D(AS) is compactly generated; see 5.1.30.

Let C be a t-flasque complex of AS . To prove RA1(C) is A1-local, we are reduced to prove
that the map

RA1(C)→ Hom(MS(A
1
X), RA1(C))

is a quasi-isomorphism, or, equivalently, that the complex Hom(U,RA1(C)) is acyclic. As U is a
direct factor ofMS(A

1
X ,A ), for any P-schemeX over S and any i in I, the object ZS(X;A ){i}⊗S

U is compact. This implies that the canonical map

lim
−→
n

Hom(U,R
(n)
A1 (C))→ Hom(U,RA1(C))

is an isomorphism of complexes. As filtering colimits preserve quasi-isomorphisms, the complex
Hom(U,RA1(C)) (resp. RA1(C)) can be considered as the homotopy colimit of the complexes

Hom(U,R
(n)
A1 (C)) (resp. R

(n)
A1 (C)). In particular, for any compact objectK of D(AS), the canonical

morphisms

lim
−→
n

Hom(K,Hom(U,R
(n)
A1 (C)))→ Hom(K,Hom(U,RA1(C)))

lim
−→
n

Hom(K,R
(n)
A1 (C))→ Hom(K,RA1(C))
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are bijective.
By construction, we have distinguished triangles

Hom(U,R
(n)
A1 (C))→ R

(n)
A1 (C)→ R

(n+1)
A1 (C)→ Hom(U,R

(n)
A1 (C))[1].

This implies that the evaluation at 1 morphism

ev1 : Hom(U,RA1(C))→ RA1(C)

induces the zero map

HomD(AS)(K,Hom(U,RA1(C)))→ HomD(AS)(K,RA1(C))

for any compact object K of D(AS). Hence the induced map

a = Hom(U, ev1 ) : Hom(U,Hom(U,RA1(C)))→ Hom(U,RA1(C))

has the same property: for any compact object K, the map

HomD(AS)(K,Hom(U,Hom(U,RA1(C))))→ HomD(AS)(K,Hom(U,RA1(C)))

is zero.
The multiplication map A1 ×A1 → A1 induces a map

µ : U ⊗S U → U

such that the composition of

µ∗ : Hom(U,RA1(C))→ Hom(U ⊗S U,RA1(C)) = Hom(U,Hom(U,RA1(C)))

with a is the identity of Hom(U,RA1(C)). As D(AS) is compactly generated, this implies that
Hom(U,RA1(C)) = 0 in the derived category D(AS). �

Remark 5.2.29. Consider a t-flasque resolution functor (i.e. a fibrant resolution for the t-local
model structure) Rt : C(AS)→ C(AS), 1→ Rt. As a corollary of the proposition, the composite
functor RA1 ◦Rt is a resolution functor by t-local and A1-local complexes.

Example 5.2.30. Consider an admissible topology t and the P-premotivic A1-derived cate-

gory D = Deff

A1 (Sht(P,Λ)). Suppose that t is bounded for abelian t-sheaves (for example, this is
the case for the Zariski and the Nisnevich topologies, see 5.1.29).

Let C be a complex of abelian t-sheaves on P/S. If C is A1-local, then

HomD(S)(Λ
t
S(X), C) = Hnt (X;C)

(this is true without any condition on t).
Consider a t-local resolution Ct of C in C

(
Sht(P/S,Λ)

)
. Then we get the following formula:

HomD(S)

(
ΛtS(X), C[n]

)
= Hn

(
Γ
(
X,RA1(Ct)

))
.

Corollary 5.2.31. Consider a morphism of abelian P-premotivic categories

ϕ : A ⇄ B : ψ

Suppose there are admissible topologies t and t′, with t′ finer than t, such that the following
conditions are verified.

(i) A is compatible with t and B is compatible with t′.
(ii) B and D(B) are compactly τ -generated.
(iii) For any scheme S, the functor ψS : BS → AS preserves filtering colimits.

Then, ψS : C(BS)→ C(AS) preserves A1-equivalences between t′-flasque objects. If moreover ψS
is exact, the functor ψS preserves A1-equivalences.

Proof. We already know that ψS is a right Quillen functor, so that it preserves local objects
and A1-fibrant objects. This implies also that ψS preserves A1-equivalences between A1-fibrant
objects (this is Ken Brown’s lemma [Hov99, 1.1.12]). Let D be a t′-flasque complex of BS . Then
ψS(D) is a t-flasque complex of AS . It follows from Proposition 5.2.28 that RA1(D) is A1-local
and that D → RA1(D) is an A1-equivalence. Lemma 5.2.27 implies the map

ψS(D)→ RA1(ψS(D)) = ψS(RA1(D))
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is a an A1-equivalence. This implies the first assertion.
The last assertion is a direct consequence of the first one. �

5.2.32. Consider the usual cosimplicial scheme ∆• defined by

∆n = Spec (Z[t0, . . . , tn]/(t1 + · · ·+ tn − 1)) ≃ An

(see [MV99]). For any scheme S, we get a cosimplicial object of AS , namely MS(∆
•
S). Given any

complex C of AS , we define its associated Suslin singular complex as

(5.2.32.1) C∗(C) = Tot⊕Hom(MS(∆
•
S), C),

where Hom(MS(∆
•
S), C) is considered as a bicomplex by the Dold-Kan correspondence. The

canonical map MS(∆
•
S)→ 1S induces a map

C → C∗(C).

Lemma 5.2.33. For any complex C of AS, the map

C∗(C)→ Hom(MS(A
1
S), C

∗(C)) = C∗(Hom(MS(A
1
S), C))

is a chain homotopy equivalence.

Proof. The composite morphism

(s0p× Id)∗ :MS(A
1 ×∆•

S)→MS(A
1 ×∆•

S),

where s0 is the map induced by the zero section, and p is the map induced by the obvious projection
of A1 on its base, is chain homotopic to the identity. Indeed, the homotopy relation is given by
the formula

sn =

n∑

i=0

(−1)i.(1⊗S ψi) :MS(A
1 ×∆n+1

S )→MS(A
1 ×∆n

S)

where 1 is the identity of MS(A
1
S), and ψi is induced by the map ∆n+1

S → A1 ×∆n
S which sends

the j-th vertex vj,n+1 to either 0 × vj,n, if j ≤ i, or to 1 × vj−1,n otherwise. This implies the
lemma. �

Lemma 5.2.34. For any t-flasque complex C of AS, we have a canonical isomorphism

C∗(C) ≃ L lim
−→
n

RHom(MS(∆
n
S), C)

in D(AS).

This is a variation on the Dold-Kan correspondence. As a direct consequence, we get:

Lemma 5.2.35. For any complex C of AS, the map C → C∗(C) is an A1-equivalence.

Proposition 5.2.36. If t is bounded in A , then, for any t-flasque complex C of AS, C
∗(C)

is A1-local.

Proof. Using the first premotivic adjunction of example 5.2.21 and the fact that D(A ) is
compactly generated (5.1.30), we can reduce the proposition to the case where AS is the category
of presheaves of abelian groups over P/S, in which case this is well known. �

5.2.d. Constructible A1-local premotives.

5.2.37. Consider an abelian P-premotivic category A compatible with an admissible topology
t. Assume that t is bounded in A (see Definition 5.1.28) and consider a bounded generating family
N t
S for t-hypercovers in AS .
Let TA1

S
be the family of complexes of C(AS) of shape

MS(A
1
X){i} →MS(X){i}

for a P-scheme X over S and a twist i ∈ I. Then the functor (5.1.31.1) obviously induces the
following functor

(5.2.37.1)
(

Kb
(
M(P/S,A )

)
/N t

S ∪ TA1
S

)♮

→ Deff

A1(AS),
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where the category on the left is the pseudo-abelian category associated to the Verdier quotient
of Kb

(
M(P/S,A )

)
by the thick subcategory generated by N t

S ∪ TA1
S
. Applying Thomason’s

localization theorem [Nee01], we get from Proposition 5.1.32 the following result:

Proposition 5.2.38. Consider the previous hypothesis and notations and assume that A is
finitely τ -presented.

Then Deff

A1(A ) is compactly τ -generated. Moreover, the functor (5.2.37.1) is fully faithful.

Let us denote by Deff

A1,c(A ) the subcategory of Deff

A1(A ) made of τ -constructible premotives in

the sense of Definition 1.4.9. Taking into account Proposition 1.4.11, we deduce from the above
proposition the following corollary:

Corollary 5.2.39. Under the assumptions of 5.2.38, for any premotiveM in Deff

A1(AS), the
following conditions are equivalent:

(i) M is compact;
(ii) M is τ -constructible.

Moreover, the functor (5.2.37.1) induces an equivalence of categories:
(

Kb
(
M(P/S,A )

)
/N t

S ∪ TA1
S

)♮

→ Deff

A1,c(AS).

Example 5.2.40. With the notations of 5.1.34, we get the following equivalences of categories:
(

Kb (Λ(Sm/S)) /(BGS ∪ TA1
S
)
)♮

→ Deff

A1,c(S,Λ).

(

Kb
(
Λ(S ft/S)

)
/CDHS ∪ TA1

S

)♮

→ Deff

A1,c

(

Shcdh(S
ft/S,Λ)

)

.

This statement is the analog of the embedding theorem [VSF00, chap. 5, 3.2.6].

Proposition 5.2.41. Assume P = S ft is the class of finite type (resp. separated and of
finite type) morphisms.

Let A be an abelian generalized premotivic category compatible with an admissible topology t
and satisfying the property (C) of Paragraph 5.1.35.

Then the triangulated generalized premotivic category Deff

A1(A ) is τ -continuous.

Proof. The proof relies on the following lemma:

Lemma 5.2.42. Under the assumptions of the preceding proposition, for any morphism of
schemes f : T → S, the functor

Lf∗ : D(AS)→ D(AT )

preserves A1-local complexes.

When f is a morphism of finite type (resp. separated of finite type), the functor Lf∗ admits
Lf♯ as a left adjoint and the lemma is clear. In the general case, one can write f as a projective
limit of a projective system of morphisms of scheme (fα : Tα → S)α∈A such that fα is affine of
finite type. Recall from Proposition 5.1.36, D(A ) is τ -continuous. Thus, to check that for an
A1-local complexe C in D(AS), the complex Lf∗(C) is A1-local, we thus are reduced to prove
that Lf∗α(C) is A

1-local which follows from the first treated case. The lemma is proven.

Given the full embedding Deff

A1(A )→ D(A ) whose image is made of A1-local complexes, the
proposition now directly follows from the previous lemma and the fact D(A ) is τ -continuous. �

Example 5.2.43. Taking into account the second point of Example 5.1.37, the previous propo-
sition can be applied to the category Sht

(
S ft,Z

)
where t = Nis, ét, cdh, qfh, h.

Remark 5.2.44. The previous proposition will be extended to the (non generalized) premotivic
case in Corollary 6.1.12.

5.3. The stable A1-derived premotivic category.
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5.3.a. Modules. Let A be an abelian P-premotivic category with generating set of twists τ .
A cartesian commutative monoid R of A is a cartesian section of the fibred category A over S

such that for any scheme S, RS has a commutative monoid structure in AS and for any morphism
of schemes f : T → S, the structural transition maps φf : f∗(RS) → RT are isomorphisms of
monoids.

Let us fix a cartesian commutative monoid R of A .
Consider a base scheme S. We denote by RS-mod the category of modules in the monoidal

category AS over the monoid RS . For any P-scheme X/S and any twist i ∈ τ , we put

RS(X){i} = RS ⊗S MS(X){i}

endowed with its canonical RS-module structure. The category RS-mod is a Grothendieck abelian
category such that the forgetful functor US : RS-mod→ AS is exact and conservative. A family
of generators for RS-mod is given by the modules RS(X){i} for a P-scheme X/S and a twist
i ∈ τ . As AS is commutative, RS-mod has a unique symmetric monoidal structure such that the
free RS-module functor is symmetric monoidal. We denote by ⊗R this tensor product. Note that
RS(X) ⊗R RS(Y ) = RS(X ×S Y ). Finally the categories of modules RS-mod form a symmetric
monoidal P-fibred category, such that the following proposition holds (see 7.2.10).

Proposition 5.3.1. Let A be a τ -generated abelian P-premotivic category and R be a carte-
sian commutative monoid of A .

Then the category R-mod equipped with the structures introduced above is a τ -generated abelian
P-premotivic category.

Moreover, we have an adjunction of abelian P-premotivic categories:

(5.3.1.1) R⊗ (−) : A ⇄ R-mod : U .

Remark 5.3.2. With the hypothesis of the preceding proposition, for any morphism of schemes
f : T → S, the exchange transformation f∗US → UT f

∗ is an isomorphism by construction of
R-mod (7.2.10).

Proposition 5.3.3. Let A be a τ -generated abelian P-premotivic category compatible with an
admissible topology t. Consider a cartesian commutative monoid R of A such that for any scheme
S, tensoring quasi-isomorphisms between cofibrant complexes by RS gives quasi-isomorphisms (e.g.
RS might be cofibrant (as a complex concentrated in degree zero), or flat). Then the abelian P-
premotivic category R-mod is compatible with t.

Proof. In view of Proposition 5.1.26, we have only to show that R-mod satisfies coho-
mological t-descent. Consider a t-hypercover p : X → X in P/S. We prove that the map
p∗ : RS(X )→ RS(X) is a quasi-isomorphism in C(RS-mod). The functor US is conservative, and
US(p∗) is equal to the map:

RS ⊗S MS(X )→ RS ⊗S MS(X).

But this is a quasi-isomorphism in C(AS) by assumption on RS . �

Remark 5.3.4. According to Lemma 5.1.27, for any simplicial P-scheme X over S, any twist
i ∈ τ and any RS-module C, we get canonical isomorphisms:

HomK(RS-mod)

(
RS(X ){i}, C

)
≃ HomK(AS)(MS(X ){i}, C)(5.3.4.1)

HomD(RS-mod)(RS(X ){i}, C) ≃ HomD(AS)(MS(X ){i}, C).(5.3.4.2)

5.3.b. Symmetric sequences. Let A be an abelian category.
Let G be a group. An action of G on an object A ∈ AS is a morphism of groups G →

AutA (A), g 7→ γAg . We say that A is a G-object of A . A G-equivariant morphism A
f
−→ B of

G-objects of A is a morphism f in A such that γBg ◦ f = f ◦ γAg .
If E is any object of A , we put G×E =

⊕

g∈GE considered as a G-object via the permutation
isomorphisms of the summands.

If H is a subgroup of G, and E is an H-object, G × E has two actions of H : the first one,
say γ, is obtained via the inclusion H ⊂ G, and the second one denoted by γ′, is obtained using
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the structural action of H on E. We define G×H E as the coequalizer of the family of morphisms
(γσ − γ

′
σ)σ∈H , and consider it equipped with its induced action of G.

Definition 5.3.5. Let A be an abelian category.
A symmetric sequence of A is a sequence (An)n∈N such that for each n ∈ N, An is a Sn-

object of A . A morphism of symmetric sequences of A is a collection of Sn-equivariant morphism
(fn : An → Bn)n∈N.

We let A S be the category of symmetric sequences of A .

It is straightforward to check A S is abelian. For any integer n ∈ N, we define the n-th
evaluation functor as follows:

evn : A
S → A , A∗ 7→ An.

Any object A of A can be considered as the trivial symmetric sequence (A, 0, . . .). The functor
i0 : A 7→ (A, 0, . . .) is obviously left adjoint to ev0 and we obtain an adjunction

(5.3.5.1) i0 : A ⇄ A
S : ev0.

Remark i0 is also right adjoint to ev0. Thus i0 preserves every limits and colimits.
For any integer n ∈ N and any symmetric sequence A∗ of A , we put

(A∗{−n})m =

{
Sm ×Sm−n

Am−n if m ≥ n
0 otherwise.

(5.3.5.2)

This define an endofunctor on A S, and we have A∗{−n}{−m} = A∗{−n − m} (through a
canonical isomorphism). Remark finally that for any integer n ∈ N, the functor

in : A → A
S, A 7→ (i0(A)){−n}

is left adjoint to evn.

Remark 5.3.6. Let S be the category of finite sets with bijective maps as morphisms. Then
the category of symmetric sequences is canonically equivalent to the category of functors S→ A .
This presentation is useful to define a tensor product on A S.

Definition 5.3.7. Let A be a symmetric closed monoidal abelian category.
Given two functors A∗, B∗ : S→ A , we put:

E ⊗S F : S 7→ A

N 7→
⊕

N=P⊔QE(P )⊗ F (Q).

If 1A is the unit object of the monoidal category A , the category A S is then a symmetric
closed monoidal category with unit object i0(1A ).

5.3.8. Let A be an object of A . Then the n-th tensor power A⊗n of A is endowed with a
canonical action of the groupSn through the structural permutation isomorphism of the symmetric
structure on A . Thus the sequence Sym(A) = (A⊗n)n∈N is a symmetric sequence.

Moreover, the isomorphism A⊗n ⊗ A⊗m → A⊗n+m is Sn ×Sm-equivariant. Thus it induces
a morphism µ : Sym(A) ⊗S Sym(A) → Sym(A) of symmetric sequences. We also consider the
obvious morphism η : i0(1A ) = i0(A

⊗0)→ Sym(A). One can check easily that Sym(A) equipped
with the multiplication µ and the unit η is a commutative monoid in the monoidal category A S.

Definition 5.3.9. Let A be an abelian symmetric monoidal category. The commutative
monoid Sym(A) of A S defined above will be called the symmetric monoid generated by A.

Remark 5.3.10. One can describe Sym(A) by a universal property: given a commutative
monoid R in A S, to give a morphism of commutative monoids Sym(A)→ R is equivalent to give
a morphism A→ R1 in A .
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5.3.11. Consider an abelian P-premotivic category A .
Consider a base scheme S. According to the previous paragraph, the category A S

S is an
abelian category, endowed with a symmetric tensor product ⊗S

S . For any P-scheme X/S and any
integer n ∈ N, using (5.3.5.2), we put

MS(X,A
S){−n} = i0(MS(X,A )){−n}.

It is immediate that the class of symmetric sequences of the form MS(X,A
S){−n} for a smooth

S-scheme X and an integer n ≥ 0 is a generating family for the abelian category A S
S which is

therefore a Grothendieck abelian category. It is clear that for any P-scheme X and Y over S,

MS(X,A
S){−n} ⊗S

S MS(Y,A
S){−n} =MS(X ×S Y,A

S){−n}.

Given a morphism (resp. P-morphism) of schemes f : T → S and a symmetric sequence
A∗ of AS , we put f∗S(A∗) = (f∗An)n∈N (resp. fS♯ (A∗) = (f♯An)n∈N). This defines a functor

f∗S : A S
S → A S

T (resp. fS♯ : AS
T → A S

S ) which is obviously right exact. Thus the functor f∗S
admits a right adjoint which we denote by fS∗ . When f is in P, we check easily the functor fS♯
is left adjoint to f∗S.

From criterion 1.1.42 and Lemma 1.2.13, we check easily the following proposition:

Proposition 5.3.12. Consider the previous hypothesis and notations.
The association S 7→ A S

S together with the structures introduced above defines an N × τ -
generated abelian P-premotivic category.

Moreover, the different adjunctions of the form (5.3.5.1) over each fibers over a scheme S
define an adjunction of P-premotivic categories:

(5.3.12.1) i0 : A ⇄ A
S : ev0

Indeed, i0 is trivially compatible with twists.

Proposition 5.3.13. Let A be an abelian P-premotivic category, and t be an admissible
topology. If A is compatible with t then A S is compatible with t.

Proof. This is based on the following lemma (see [CD09, 7.5, 7.6]):

Lemma 5.3.14. For any complex C of AS, any complex E of A S
S and any integer n ≥ 0,

there are canonical isomorphisms:

HomK(A S

S )(i0(C){−n}, E) ≃ HomK(AS)(C,En)(5.3.14.1)

HomD(A S

S )(i0(C){−n}, E) ≃ HomD(AS)(C,En)(5.3.14.2)

If A is compatible with t, this implies that E is local (resp. t-flasque) if and only if for any
n ≥ 0, En is local (resp. t-flasque). This concludes. �

5.3.c. Symmetric Tate spectra.

5.3.15. Consider an abelian P-premotivic category A .
For any scheme S, the unit point of Gm,S defines a split monomorphism of A -premotives

1S → MS(Gm,S). We denote by 1S{1} the cokernel of this monomorphism and call it the
suspended Tate S-premotive with coefficients in A . The collection of these objects for any scheme
S is a cartesian section of A denoted by 1{1}. For any integer n ≥ 0, we denote by 1{n} its
n-the tensor power.

With the notations of 5.3.9, we define the symmetric Tate spectrum over S as the symmetric
sequence 1S{∗} = Sym(1S{1}) in A S

S . The corresponding collection defines a cartesian commu-
tative monoid of the fibred category A S, called the absolute Tate spectrum.

Definition 5.3.16. Consider an abelian P-premotivic category A .
We denote by Sp(A ) the abelian P-premotivic category of modules over 1{∗} in the category

A S. The objects of Sp(A ) are called the abelian (symmetric) Tate spectra.73

73As we will almost never consider non symmetric spectra, we will cancel the word ”symmetric” in our
terminology.
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The category Sp(A ) is (N×τ)-generated. Composing the adjunctions (5.3.1.1) and (5.3.12.1),
we get an adjuntion

(5.3.16.1) Σ∞ : A ⇄ Sp(A ) : Ω∞

of abelian P-premotivic categories.
Let us explicit the definition. An abelian Tate spectrum (E, σ) is the data of :

(1) for any n ∈ N, an object En of AS endowed with an action of Sn

(2) for any n ∈ N, a morphism σn : En{1} → En+1 in AS

such that the composite map

Em{n}
σm{n−1}
−−−−−−→ Em+1{n− 1} → ...

σm+n−1
−−−−−→ Em+n

is Sn ×Sm-equivariant with respect to the canonical action of Sn on 1S{n} and the structural
action of Sm on Em. By definition, ev0(E) = E0. Recall that ev0 is exact.

Given an object A of AS , the abelian Tate spectrum Σ∞A is defined such that (Σ∞A)n = A{n}
with the action of Sn given by its action on 1S{n} by permutations of the factors.

Be careful we consider the category Sp(AS) as N-twisted by negative twists. For any abelian
Tate spectrum E∗, (E∗{−n})m = Sn ×Sm−n Em−n for n ≥ m.

5.3.17. Consider a morphism

ϕ : A → B

of abelian P-premotivic categories. Then as ϕ(1A {1}) = 1
B{1}, ϕ can be extended to abelian

Tate spectra in such a way that the following diagram commutes:

A
ϕ //

Σ∞
A

��

B

Σ∞
B

��
Sp(A )

Sp(ϕ) // Sp(B).

(Of course the obvious diagram for the corresponding right adjoints also commutes.)

Definition 5.3.18. For any scheme S, a complex of abelian Tate spectra over S will be called
simply a Tate spectrum over S.

A Tate spectrum E is a bigraded object. In the notation Emn , the index m corresponds to the
(cochain) complex structure and the index n to the symmetric sequence structure.

From propositions 5.3.3 and 5.3.13, we get the following:

Proposition 5.3.19. Let A be an abelian P-premotivic category compatible with an admis-
sible topology t. Then Sp(A ) is compatible with t.

Note also that remark 5.3.4 and Lemma 5.3.14 implies that for any simplicial P-scheme X
over S, any integer n ∈ N, and any Tate spectrum E, we have canonical isomorphisms:

HomK(Sp(AS))(Σ
∞MS(X ,A ){−n}, E) ≃ HomK(AS)(Σ

∞MS(X ,A ), En)(5.3.19.1)

HomD(Sp(AS))(Σ
∞MS(X ,A ){−n}, E) ≃ HomD(AS)(Σ

∞MS(X ,A ), En)(5.3.19.2)

According to the proposition, the category C(Sp(AS)) of Tate spectra over S has a t-descent model
structure. The previous isomorphisms allow to describe this structure as follows:

(1) For any simplicial P-scheme X over S, and any integer n ≥ 0, the Tate spectrum
Σ∞MS(X ,A ){−n} is cofibrant.

(2) A Tate spectrum E over S is fibrant if and only if for any integer n ≥ 0, the complex En
over AS is local (i.e. t-flasque).

(3) Let f : E → F be a morphism of Tate spectra over S. Then f is a fibration (resp.
quasi-isomorphism) if and only if for any integer n ≥ 0, the morphism fn : En → Fn of
complexes over AS is a fibration (resp. quasi-isomorphism).

Note that properties (2) and (3) follows from (5.3.4.1) and (5.3.14.1).
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5.3.20. We can also introduce the A1-localization of this model structure. The corresponding

homotopy category is the A1-derived P-premotivic category Deff

A1(Sp(A )) introduced in 5.2.16.
The isomorphism (5.3.19.2) gives the following assertion: From the above, a Tate spectrum E is
A1-local if and only if for any integer n ≥ 0, En is A1-local.

(1) A Tate spectrum E over S is A1-local if and only if for any integer n ≥ 0, the complex
En over AS is A1-local.

(2) Let f : E → F be a morphism of Tate spectra over S. Then f is aA1-local fibration (resp.
weak A1-equivalence) if and only if for any integer n ≥ 0, the morphism fn : En → Fn
of complexes over AS is a A1-local fibration (resp. weak A1-equivalence).

As a consequence, the isomorphism (5.3.19.2) induces an isomorphism

HomDeff

A1(Sp(AS))(Σ
∞MS(X ,A ){−n}, E) ≃ HomDeff

A1(AS)(Σ
∞MS(X ,A ), En).(5.3.20.1)

Similarly, the adjunction (5.3.16.1) induces an adjunction of triangulated P-premotivic categories

(5.3.20.2) LΣ∞ : Deff

A1(A ) ⇄ Deff

A1(Sp(A )) : RΩ∞.

5.3.d. Symmetric Tate Ω-spectra.

5.3.21. The final step is to localize further the category Deff

A1(Sp(A )). The aim is to relate

the positive twists on Deff

A1(A ) obtained by tensoring with 1S{1} and the negative twists on

Deff

A1(Sp(A )) induced by the consideration of symmetric sequences.
Let X be a P-scheme over S. From the definition of Σ∞, there is a canonical morphism of

abelian Tate spectra:
[
Σ∞
(
1S{1}

)]
{−1} → Σ∞

1S .

Tensoring this map by Σ∞MS(X,A ){−n} for any P-scheme X over S and any integer n ∈ N,
we obtain a family of morphisms of Tate spectra concentrated in cohomological degree 0:

[
Σ∞
(
MS(X,A ){1}

)]
{−n− 1} → Σ∞MS(X,A ){−n}.

We denote by WΩ this family and put WΩ,A1 = WΩ ∪ WA1 . Obviously, WΩ,A1 is stable by the
operations f∗ and f♯.

Definition 5.3.22. Let A be an abelian P-premotivic category compatible with an admissi-
ble topology t. With the notations introduced above, we define the stable A1-derived P-premotivic
category with coefficients in A as the derived P-premotivic category

DA1(A ) := D(Sp(A ))[W −1
Ω,A1 ]

defined in Corollary 5.2.5.

5.3.23. According to this definition, we get the following identification:

DA1(A ) = Deff

A1(Sp(A ))[W −1
Ω ].

Using the left Bousfield localization of the A1-local model structure on C(Sp(A )), we thus obtain
a canonical adjunction of triangulated P-fibred premotivic categories

Deff

A1(Sp(A )) ⇄ Deff

A1(Sp(A ))[W −1
Ω ]

which allows to describe DA1(AS) as the full subcategory of Deff

A1(Sp(AS)) made of Tate spectra

which are WΩ-local in Deff

A1(Sp(AS)). Recall a Tate spectrum E is a sequence of complexes (En)n∈N

over AS together with suspension maps in C(AS)

σn : 1S{1} ⊗ En → En+1.

From this, we deduce a canonical morphism 1S{1} ⊗
L En → En+1 in Deff

A1(A ) whose adjoint
morphism we denote by

(5.3.23.1) un : En → RHomDeff

A1(AS)(1S{1}, En+1)

According to (5.3.20.1), the condition that E is WΩ-local in Deff

A1(Sp(A )) is equivalent to ask that

for any integer n ≥ 0, the map (5.3.23.1) is an isomorphism in Deff

A1(Sp(A )).
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Considering the adjunction (5.3.20.2), we obtain finally an adjunction of triangulated P-fibred
categories:

(5.3.23.2) Σ∞ : Deff

A1(A ) ⇄ Deff

A1(Sp(A )) ⇄ DA1(A ) : Ω∞.

Note that tautologically, the Tate spectrum Σ∞(1S{1}) has a tensor inverse given by the spectrum
(Σ∞

1S){−1} in DA1(AS). Thus, we have obtained from the abelian premotivic category A a
triangulated premotivic category DA1(AS) which satisfies the properties:

• the homotopy property (Htp);
• the stability property (Stab);
• the t-descent property.

As we will see in the followings, the construction satisfies a universality property that the reader
can already guess.

Definition 5.3.24. Consider the assumptions of definition 5.3.22.
For any scheme S, we say that a Tate spectrum E over S is a Tate Ω-spectrum if the following

conditions are fulfilled:

(a) For any integer n ≥ 0, En is t-flasque and A1-local.
(b) For any integer n ≥ 0, the adjoint of the structural suspension map

En → HomC(AS)(1S{1}, En+1)

is a quasi-isomorphism.

In particular, a Tate Ω-spectrum is WΩ-local in Deff

A1(Sp(AS)). In fact, it is also WΩ,A1 -local
in the category D(Sp(AS)) so that the category DA1(A ) is also equivalent to the full subcategory
of D(Sp(AS)) spanned by Tate Ω-spectra.

Fibrant objects of the WΩ,A1 -local model category on C(Sp(A )) obtained in definition 5.3.22
are exactly the Tate Ω-spectra.

Proposition 5.3.25. Consider the above notations. Let S be a base scheme.

(1) If the endofunctor

Deff

A1(AS)→ Deff

A1(AS), C 7→ RHomDeff

A1(AS)(1S{1}, C)

is conservative, then the functor Ω∞
S is conservative.

(2) If the Tate twist E 7→ E(1) is fully faithful in Deff

A1(AS), then Σ∞
S is fully faithful.

(3) If the Tate twist E 7→ E(1) induces an auto-equivalence of Deff

A1(AS), then (Σ∞
S ,Ω

∞
S ) are

adjoint equivalences of categories.

Remark 5.3.26. Similar statements can be obtained for the derived categories rather than
the A1-derived categories. We left their formulation to the reader.

Proof. Consider point (1). We have to prove that for any WΩ-local Tate spectrum E in

Deff

A1(Sp(AS)), if RΩ∞(E) = 0, then E = 0. But RΩ∞(E) = Ω∞(E) = E0 (see 5.3.20). Because

for any integer n ≥ 0, the map (5.3.23.1) is an A1-equivalence, we deduce that for any integer
n ∈ Z, the complex En is (weakly) A1-acyclic. According to (5.3.20.1), this implies E = 0 –
because DA1(AS) is N-generated.

Consider point (2). We want to prove that for any complex C over AS , the counit map
C → RΩ∞LΣ∞(C) is an isomorphism. It is enough to treat the case where C is cofibrant.

Considering the left adjoint LΣ∞ of (5.3.20.2), we first prove that LΣ∞(C) is WΩ-local.
Because C is cofibrant, this Tate spectrum is equal in degree n to the complex C{n} (with its
natural action of Sn). Moreover, the suspension map is given by the isomorphism (in the monoidal
category C(AS))

σn : 1S{1} ⊗S C{n} → C{n+ 1}.

In particular, the corresponding map in Deff

A1(AS)

σ′
n : 1S{1} ⊗

L
S C{n} → C{n+ 1}.
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is canonically isomorphic to

1S{1} ⊗
L
S C{n}

1⊗1
−−→ 1S{1} ⊗

L
S C{n}.

Thus, because the Tate twist is fully faithful in Deff

A1(AS), the adjoint map to σ′
n is an A1-

equivalence. In other words, LΣ∞(C) is WΩ-local. But then, as C is cofibrant, C = Ω∞Σ∞(C) =
RΩ∞LΣ∞(C), and this concludes.

Point (3) is then a consequence of (1) and (2). �

Remark 5.3.27. (1) The construction of the triangulated category DA1(A ) can also be
obtained using the more general construction of [CD09, §7] – see also [Hov01, 7.11] and
[Ayo07b, chap. 4] for even more general accounts. Here, we exploit the simplification
arising from the fact that we invert a complex concentrated in degree 0: this allowed us
to describe DA1(A ) simply as a Verdier quotient of the derived category of an abelian
category. However, we can also consider the category of symmetric spectra in C(AS)
with respect to one of the complexes 1S(1)[2] or 1S(1) and this leads to the equivalent
categories; see [Hov01, 8.3].

(2) Point (3) of Proposition 5.3.25 is a particular case of [Hov01, 8.1].

5.3.28. Consider a morphism of abelian P-premotivic categories

ϕ : A ⇄ B : ψ

such that A (resp. B) is compatible with a system of topology t (resp. t′). Suppose t′ is finer
than t. According to 5.3.17, we obtain an adjunction of abelian P-premotivic categories

ϕ : C(Sp(A )) ⇄ C(Sp(B)) : ψ.

The pair (ϕS , ψS) is a Quillen adjunction for the stable model structures (apply again [CD09,
prop. 3.11]). Thus we obtain a morphism of triangulated P-premotivic categories:

Lϕ : DA1(A ) ⇄ DA1(B) : Rψ.

Remark 5.3.29. Under the light of Proposition 5.3.25, the category DA1(A ) might be consid-
ered as the universal derived P-premotivic category T with a morphism D(A ) → T , and such
that T satisfies the homotopy and the stability property. This can be made precise in the setting
of algebraic derivators or of dg-categories (or any other kind of stable ∞-categories).

Proposition 5.3.30. Let t and t′ be two admissible topologies, with t′ finer than t. Then
DA1 (Sht′ (P,Λ)) is canonically equivalent to the the full subcategory of DA1 (Sht(P,Λ)) spanned
by the objects which satisfy t′-descent.

Proof. It is sufficient to prove this proposition in the case where t is the coarse topology.
We deduce from [Ayo07b, 4.4.42] that, for any scheme S in S , we have

DA1 (Sht′ (P/S,Λ)) = D (PSh(P/S,Λ)) [W −1] ,

with W = Wt′ ∪WA1 ∪WΩ, where Wt′ is the set of maps of shape

Σ∞MS(X ){n}[i]→ Σ∞MS(X){n}[i] ,

for any t′-hypercover X → X and any integers n ≤ 0 and i. The assertion is then a particular
case of the description of the homotopy category of a left Bousfield localization. �

Example 5.3.31. We have the stable versions of the P-premotivic categories introduced in
example 5.2.17:
1) Consider the admissible topology t = Nis. Following F. Morel, we define the stable A1-derived
premotivic category as (see also the construction of [Ayo07b]):

DA1,Λ := DA1 (ShNis(Sm,Λ)) and DA1,Λ := DA1

(
ShNis

(
S

ft,Λ
))
,

as well as the generalized stable A1-derived premotivic category74

(5.3.31.1) DA1,Λ := DA1

(
ShNis

(
S

ft,Λ
))
.

74We will see in Example 6.1.10 that the generalized version contains the usual one as a full subcategory.
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Given a scheme S, we shall also write:

(5.3.31.2) DA1(S,Λ) := DA1,Λ(S) and DA1(S,Λ) := DA1,Λ(S).

In the case when t = ét, we get the triangulated premotivic categories of étale premotives:

DA1 (Shét(Sm,Λ)) and DA1

(
Shét

(
S

ft,Λ
))
.

In each of these cases, we denote by Σ∞ΛtS(X) the premotive associated with a smooth S-scheme
X.

From the adjunction (5.1.24.2), we get an adjunction of triangulated premotivic categories:

aét : DA1,Λ ⇄ DA1 (Shét(Sm,Λ)) : ROét.

2) Assume P = S ft:
Consider the S ft-admissible topology t = h (resp. t = qfh). In [Voe96], Voevodsky has

introduced the category of effective h-motives (resp. qfh-motives). According to the theory pre-
sented above, one can extends this definition to the stable setting: one defines the category of
stable h-motives (resp. qfh-motives) over S with coefficients in Λ as:

DMh(S,Λ) := DA1

(
Shh

(
S

ft/S,Λ
))
.

resp. DMqfh(S,Λ) := DA1

(
Shqfh

(
S

ft/S,Λ
))
.

In other words, this is the stable A1-derived category of h-sheaves (resp. qfh-sheaves) of Λ-
modules. Moreover, we get the generalized triangulated premotivic category of h-motives (resp.
qfh-motives) with coefficients in Λ over S :

DMh,Λ := DA1

(
Shh

(
S

ft,Λ
))
.

resp. DMqfh,Λ := DA1

(
Shqfh

(
S

ft,Λ
))
.

For an S-scheme of finite typeX, we will denote by Σ∞Λh
S(X) (resp Σ∞Λqfh

S (X)) the corresponding
premotive associated with X in DMt(S,Λ). Note that the h-sheafification functor induces a
premotivic adjunction (see Paragraph 5.3.28):

(5.3.31.3) DMqfh,Λ ⇄ DMh,Λ .

These generalized premotivic categories are too big to be reasonable (in particular for the local-
ization property – see Remark 2.3.4). Therefore, we introduce the triangulated category DMt(S,Λ)
as the localizing subcategory of DMt(S,Λ) generated by objects of shape Σ∞ΛtS(X)(p)[q] for any
smooth S-scheme of finite type X and any integers p and q. The fibred category DMh,Λ (resp.
DMqfh,Λ) defined above is premotivic. We call it the premotivic category h-motives (resp. qfh-
motives). The family of inclusions a premotivic morphism

(5.3.31.4) DMt(S,Λ)→ DMt(S,Λ)

indexed by a scheme S defines a premotivic morphism (the existence of right adjoints is ensured
by the Brown representability theorem).

Remark 5.3.32. When Λ = Q, we will show that the categories DMh,Q and DMqfh,Q are
equivalent and satisfies the axioms of a motivic category. In fact, they are equivalent to the
category of Beilinson motives. See Theorem 16.1.2 for all these results.

Proposition 5.3.33. Consider the notations of the second point in the above example. Then
the premotivic category DMt,Λ satisfies t-descent.

Proof. This is true for DMt,Λ by construction, which implies formally the assertion for
DMt,Λ. �

Remark 5.3.34. According to Proposition 5.2.10 and Remark 5.3.29, for any admissible topol-
ogy t, DA1(Sht(P,Z)) is the universal derived P-premotivic category satisfying t-descent as well
as the homotopy and stability properties.



150

A crucial example for us: the stable A1-derived premotivic category DA1 is the universal
derived premotivic category satisfying the properties of homotopy, of stability and of Nisnevich
descent.

5.3.35. We assume P = Sm.
Let Sh•(Sm) be the category of pointed Nisnevich sheaves of sets. Consider the pointed version
of the adjunction of P-premotivic categories

N : ∆op Sh•(Sm) ⇄ C(ShNis(Sm,Z)) : K

constructed in 5.2.25.
If we consider on the left hand side the A1-model category defined by Blander [Bla03],

(NS ,KS) is a Quillen adjunction for any scheme S.
We consider (Gm, 1) as a constant pointed simplicial sheaf. The construction of symmetric

Gm-spectra respectively to the model category ∆op Sh•(Sm) can now be carried out following
[Jar00] or [Ayo07b] and yields a symmetric monoidal model category whose homotopy category
is the stable homotopy category of Morel and Voevodsky SH(S).

Using the functoriality statements [Hov01, th. 8.3 and 8.4], we finally obtain a P-premotivic
adjunction

(5.3.35.1) N : SH ⇄ DA1 : K.

The functor K is the analog of the Eilenberg-Mac Lane functor in algebraic topology; in
fact, this adjunction is actually induced by the Eilenberg-MacLane functor (see [Ayo07b, chap.
4]). In particular, as the rational model category of topological (symmetric) S1-spectra is Quillen
equivalent to the model category of complexes of Q-vector spaces, we have a natural equivalence
of premotivic categories

(5.3.35.2) SHQ ⇄ DA1,Q ,

(where SHQ(S) denotes the Verdier quotient of SH(S) by the localizing subcategory generated by
compact torsion objects).

5.3.36. We can extend the considerations of Example 5.1.25 and Paragraph 5.2.22 on changing
coefficients in categories of sheaves.

Let t be an admissible topology and ϕ : Λ → Λ′ be an extension of rings. Using the P-
premotivic adjunction (5.1.25.1) and according to Paragraph 5.3.28, we get an adjunction of
triangulated P-premotivic categories:

Lϕ∗ : DA1

(
Sht(P,Λ)

)
⇄ DA1

(
Sht(P,Λ′)

)
: Rϕ∗.

Givew two Tate spectra C and D of t-sheaves of Λ-modules over PS , we get a canonical morphism
of Λ′-modules:

(5.3.36.1) HomD
A1(Sht(PS ,Λ))

(
C,D

)
⊗Λ Λ′ −→ HomD

A1(Sht(PS ,Λ′))

(
Lϕ∗(C),Lϕ∗(D)

)

Then the stable version of Proposition 5.2.23 holds (the proof is the same):

Proposition 5.3.37. Consider the above assumptions. Then the map (5.3.36.1) is an iso-
morphism in the two following cases:

(1) If Λ′ is a free Λ-module and C is compact;
(2) If Λ′ is a free Λ-module of finite rank.

5.3.e. Constructible premotivic spectra.

Lemma 5.3.38. Let A be an abelian P-premotivic category compatible with a topology t and

such that the category A1-derived category Deff

A1(A ) satisfies Nisnevich descent.
Then, for any scheme S, the non trival cyclic permutation (123) of order 3 acts as the identity

on the premotive 1S{1}
⊗3 in Deff

A1(AS).

Proof. Using example 5.2.21, it is sufficient to prove this in DA1,Λ(S), which is well known;
see for example [Ayo07b, 4.5.65]. �
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Proposition 5.3.39. Consider the hypothesis of the previous lemma and assume that the

triangulated premotivic category Deff

A1(A ) is compactly τ -generated.

Then, for any scheme S, any couple of integers (i, a), any compact object C of Deff

A1(AS) and
any Tate spectrum E in AS, we have a canonical isomorphism

HomD
A1(AS)(LΣ

∞(C){a}, E[i]) ≃ lim
−→
r>>0

HomDeff

A1(AS)(C{a+ r}, Er[i]).

Proof. Given the previous lemma, this is a direct consequence of [Ayo07b, theorems 4.3.61
and 4.3.79]. �

Corollary 5.3.40. Under the assumptions of the preceding proposition, the triangulated cat-
egory DA1(AS) is compactly (Z× τ)-generated where the factor Z corresponds to the Tate twist.

More precisely, if Deff

A1,c(AS) denotes the category of compact objects in Deff

A1(AS), then the

category of compact objects in DA1(AS) is canonically equivalent to the pseudo-abelian completion
of the category obtained as the 2-colimit of the following diagram:

Deff

A1,c(AS)
⊗1S{1}
−−−−−→ Deff

A1,c(AS) −→ · · · −→ Deff

A1,c(AS)
⊗1S{1}
−−−−−→ Deff

A1,c(AS) −→ · · ·

5.3.41. Let A be an abelian P-premotivic category compatible with an admissible topology
t. Assume that:

• The topology t is bounded in A (Definition 5.1.28).
• The abelian P-premotivic category A is finitely τ -presented.

We will denote by N t
S a bounded generating family for t-hypercovers in AS .

Recall from Proposition 5.2.38 that the category of compact objects of the triangulated cate-

gory Deff

A1(AS) is canonically equivalent to the triangulated monoidal category:

(

Kb
(
ZS(Sm/S;A )

)
/(N t

S ∪TA1
S
)
)♮

Let us denote by DA1,gm(AS) the category obtained from the monoidal category on the left hand

side of the above functor by formally inverting the Tate twist ZA
S (1). Because DA1(A ) satisfies

the stability property by construction, we readily obtains a canonical monoidal functor

(5.3.41.1) DA1,gm(AS)→ DA1(AS).

Then applying Proposition 5.2.38, the above corollary and Proposition 1.4.11, we deduce:

Corollary 5.3.42. Consider the above hypothesis and notations.
Then the triangulated premotivic category DA1(A ) is compactly (Z × τ)-generated. For any

premotiveM in DA1(AS) the following conditions are equivalent:

(i) M is compact;
(ii) M is (Z× τ)-constructible.

Moreover, the functor (5.3.41.1) is fully faithful and has for essential image the compact ( i.e.
τ -constructible) objects of DA1(AS).

Example 5.3.43. From the considerations of Example 5.2.40, we obtain that for any scheme

S, the compact objects of the category DA1(S,Λ) (resp. DA1

(

Shcdh(S
ft/S,Λ)

)

) is obtained

from the monoidal triangulated category

Kb (Λ(Sm/S)) (resp. Kb
(
Λ(S ft/S)

)
)

by the following steps:

• one mods out by the triangulated subcategories TA1
S
and BGS (resp. CDHS) correspond-

ing to the A1-homotopy property and the Brown-Gersten triangles (resp. cdh-triangles),
• one takes the pseudo-abelian envelope,
• one formally inverts the Tate twist.
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Proposition 5.3.44. Assume P = S ft is the class of finite type (resp. separated and of
finite type) morphisms.

Let A be an abelian generalized premotivic category compatible with an admissible topology t
such that:

• A satisfies property (C) of Paragraph 5.1.35.

• The A1-derived category Deff

A1(A ) is compactly τ -generated and satisfies Nisnevich de-
scent.

Then the stable A1-derived premotivic category DA1(A ) is (Z× τ)-continuous.

Proof. This is an immediate corollary of Proposition 5.2.41 combined with Proposition
5.3.39. �

Example 5.3.45. According to the previous proposition and the second point of Example
5.1.37, the generalized triangulated premotivic category DA1,Λ is continuous. We also refer the
reader to Corollary 6.1.12 for an extension of this result to the non generalized case.

6. Localization and the universal derived example

6.0. In this section, S is an adequate category of S-schemes as in 2.0. In sections 6.2 and
6.3, we assume in addition that the schemes in S are finite dimensional.

We will apply the definitions of the preceding section to the admissible class made of morphisms
of finite type (resp. smooth morphisms of finite type) in S , denoted by S ft (resp. Sm).

Recall the general convention of section 1.4:

• premotivic means Sm-premotivic.
• generalized premotivic means S ft-premotivic.

6.1. Generalized derived premotivic categories.

Example 6.1.1. Let t be a S ft-admissible topology. For a scheme S, we denote by Sht
(
S ft/S,Λ

)

the category of sheaves of abelian groups on S ft/S for the topology tS . For an S-scheme of finite
type X, we let ΛtS(X) be the free t-sheaf of Λ-modules represented by X. Recall Sht

(
S ft,Λ

)
is

a generalized abelian premotivic category (see 5.1.4).
Let ρ : Sm/S → S ft/S be the obvious inclusion functor and let us denote by tS the initial
topology on Sm/S such that ρ is continuous. Then it induces (cf. [SGA4, IV, 4.10]) a sequence
of adjoint functors

Sht(Sm/S,Λ)

ρ♯
--

ρ∗
11
Sht
(
S ft/S,Λ

)
ρ∗oo

and we checked easily that this induces an enlargement of abelian premotivic categories:

(6.1.1.1) ρ♯ : Sht(Sm,Λ) ⇄ Sht
(
S

ft,Λ
)
: ρ∗.

Remark 6.1.2. Note that for any scheme S, the abelian category Sht(Sm/S,Λ) can be de-
scribed as the Gabriel quotient of the abelian category Sht

(
S ft/S,Λ

)
with respect to the sheaves

F over S ft/S such that ρ∗(F) = 0.
An example of such a sheaf in the case where t = Nis and dim(S) > 0 is the Nisnevich sheaf

ΛS(Z) on S ft/S represented by a nowhere dense closed subscheme Z of S is zero when restricted
to Sm/S.

6.1.3. Consider an abelian premotivic category A compatible with an admissible topology t
on Sm and a generalized abelian premotivic category A compatible with an admissible topology
t′ on S . We denote by M (resp. M) the geometric sections of A (resp. A ). We assume that t′

restricted to Sm is finer that t, and consider an adjunction of abelian premotivic categories:

ρ♯ : A ⇄ A : ρ∗.
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Let S be a scheme in S . The functors ρ♯ and ρ
∗ induce a derived adjunction (see 5.2.19):

Lρ♯ : D
eff

A1(AS) ⇄ Deff

A1(AS) : Rρ
∗

(where A is considered as an Sm-fibred category).

Proposition 6.1.4. Consider the previous hypothesis, and fix a scheme S. Assume further-
more that we have the following properties.

(i) The functor ρ♯ : AS → AS is fully faithful.
(ii) The functor ρ∗ : AS → AS commutes with small colimits.

Then, the following conditions hold :

(a) The induced functor
ρ∗ : C(AS)→ C(AS)

preserves A1-equivalences.

(b) The A1-derived functor Lρ♯ : D
eff

A1(AS)→ Deff

A1(AS) is fully faithful.

Proof. Point (a) follows from Proposition 5.2.24. To prove (b), we have to prove that the
unit map

M → ρ∗Lρ♯(M)

is an isomorphism for any object M of Deff

A1(AS). For this purpose, we may assume that M is
cofibrant, so that we have

M ≃ ρ∗ρ♯(M) ≃ ρ∗Lρ♯(M)

(where the first isomorphism holds already in C(AS)). �

Corollary 6.1.5. Consider the hypothesis of the previous proposition. Then the family of

adjunctions Lρ♯ : D
eff

A1(AS)→ Deff

A1(AS) : Rρ
∗ indexed by a scheme S induces an enlargement of

triangulated premotivic categories

Lρ♯ : D
eff

A1(A ) ⇆ Deff

A1(A ) : Rρ∗.

Example 6.1.6. Considering the situation of 6.1.1, we will be particularly interested in the

case of the Nisnevich topology. We denote by Deff

A1,Λ the generalized A1-derived premotivic cat-

egory associated with Sh
(
S ft,Λ

)
(see also Example 5.3.31). The preceding corollary gives a

canonical enlargement:

(6.1.6.1) Deff

A1,Λ ⇄ Deff

A1,Λ

6.1.7. Consider again the hypothesis of 6.1.3. We denote simply byM (resp. M) the geometric
sections of the premotivic triangulated category DA1(A ) (resp. DA1(A )).

Recall from 5.3.15 that we have defined 1S{1} (resp. 1S{1}) as the cokernel of the canonical
map 1S → MS(Gm,S) (resp. 1S → MS(Gm,S)). Thus, it is obvious that we get a canonical
identification ρ♯(1S{1}) = 1S{1}. Therefore, the enlargement ρ♯ can be extended canonically to
an enlargement

ρ♯ : Sp(A ) ⇄ Sp(A ) : ρ∗

of abelian premotivic categories in such a way that for any scheme S, the following diagram
commutes:

AS

ρ♯ //

Σ∞
A

��

AS

Σ∞
A

��
Sp(AS)

ρ♯ // Sp(AS).

According to Proposition 5.3.13, Sp(A ) (resp. Sp(A )) is compatible with t (resp. t′), and we
obtain an adjoint pair of functors (5.3.28):

Lρ♯ : DA1(AS) ⇄ DA1(AS) : Rρ
∗.

From the preceding commutative square, we get the identification:

(6.1.7.1) Lρ♯ ◦ Σ
∞
A = Σ∞

A ◦ Lρ♯
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As in the non effective case, we get the following result:

Proposition 6.1.8. Keep the assumptions of Proposition 6.1.4, and suppose furthermore that

both Deff

A1(A ) and Deff

A1(A ) are compactly τ -generated. Then the derived functor Lρ♯ : DA1(AS)→
DA1(AS) is fully faithful.

Proof. We have to prove that for any Tate spectrum E of DA1(AS), the adjunction morphism

E → Lρ∗Rρ♯(E)

is an isomorphism. According to Proposition 1.3.20, the functor Lρ∗ admits a right adjoint. Thus,
applying Lemma 1.1.43, it is sufficient to consider the case where E =MS(X){i}[n] for a smooth
S-scheme X, and a couple (n, i) ∈ Z× τ .

Moreover, it is sufficient to prove that for another smooth S-scheme Y and an integer j ∈ Z,
the induced morphism

Hom(Σ∞MS(Y ){j},Σ∞MS(X){i}[n])→ Hom(Σ∞MS(Y ){j},Σ∞MS(X){i}[n])

is an isomorphism. Using the identification (6.1.7.1), propositions 5.3.39 and 6.1.4 allows to
conclude. �

Corollary 6.1.9. If the assumptions of Proposition 6.1.8 hold for any scheme S in S , then
we obtain an enlargement of triangulated premotivic categories

Lρ♯ : DA1(A ) ⇄ DA1(A ) : Rρ∗.

Example 6.1.10. Considering again the situation of 6.1.1, in the case of the Nisnevich topol-
ogy. We denote by DA1,Λ the generalized stable A1-derived premotivic category associated with

Sh
(
S ft,Λ

)
. The preceding corollary gives a canonical enlargement:

(6.1.10.1) Lρ♯ : DA1,Λ ⇄ DA1,Λ : Rρ∗

which is compatible with the enlargement (6.1.6.1) in the sense that the following diagram is
essentially commutative:

Deff

A1,Λ
//

Σ∞

��

Deff

A1,Λ

Σ∞

��
DA1,Λ

// DA1,Λ

Corollary 6.1.11. Consider a Grothendieck topology t on our category of schemes S . Let
S be a scheme in S , and M an object of DA1,Λ(S). Then M satisfies t-descent in DA1,Λ(S) if
and only if Lρ♯(M) satisfies t-descent in DA1,Λ(S).

Proof. Let f : X → S be a diagram of S-schemes of finite type. Define

Hq(X ,M(p)) = HomD
A1,Λ(S)(ΛX ,Lf∗(M)(p)[q])

Hq(X ,M(p)) = HomD
A1,Λ(S)(ΛX ,Lf∗ Lρ♯(M)(p)[q])

for any integers p and q. The full faithfulness of Lρ♯ ensures that the comparison map

Hq(X ,M(p))→ Hq(X ,M(p))

is always bijective. This proposition follows then from the fact that M (resp. Lρ♯(M)) satisfies
t-descent if and only if, for any integers p and q, for any S-scheme of finite type X, and any
t-hypercover X → X, the induced map

Hq(X,M(p))→ Hq(X ,M(p)) (resp. Hq(X,M(p))→ Hq(X ,M(p)) )

is bijective. �

We end-up this section with another interesting application of the preceding results.

Corollary 6.1.12. Consider the hypothesis and assumptions of Proposition 6.1.4. We sup-
pose furthermore that the generalized abelian premotivic category A satisfies condition (C) of
Paragraph 5.1.35.
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(1) Then the triangulated premotivic category Deff

A1(A ) is τ -continuous.

(2) Assume furhtermore that Deff

A1(A ) and Deff

A1(A ) are compactly τ -generated. Then the
triangulated premotivic category DA1(A ) is τ -continuous.

Proof. According to Proposition 5.2.41, the category Deff

A1(A ) is τ -continuous. According

to Corollary 6.1.5, the functor Lρ♯ : Deff

A1(A ) → Deff

A1(A ) : Rρ∗ is fully faithful and commutes
with Lf∗. Thus Point (1) follows.

In the assumption of Point (2), we deduce from Proposition 5.3.44 that DA1(A ) is (Z × τ)-
continuous. Thus it is sufficient to apply Corollary 6.1.9 as in the effective case to get the assertion
of Point (2). �

Example 6.1.13. According to the second point of Example 5.1.37, we can apply this corollary
to the enlargement

ShNis(Sm,Λ)→ ShNis

(
S

ft,Λ
)
.

Thus, we deduce that the triangulated premotivic categories Deff

A1,Λ and DA1,Λ both are continuous.

6.2. The fundamental example. Recall from [Ayo07b] the following theorem of Morel
and Voevodsky:

Theorem 6.2.1. The triangulated premotivic categories Deff

A1,Λ and DA1,Λ satisfy the localiza-
tion property.

Corollary 6.2.2. (1) The premotivic category DA1,Λ is a motivic category.
(2) It is compactly generated by the Tate twist.
(3) Suppose that T is a derived premotivic category (see 5.2.9) which is a motivic category.

Then there exists a canonical morphism of derived premotivic categories:

DA1,Z → T .

Proof. The first assertion follows from the previous theorem and Remark 2.4.47. The second
one follows from Corollary 5.3.42. The last one follows from Proposition 3.3.5 and Example
5.3.34. �

Remark 6.2.3. Thus, Theorem 2.4.50 can be applied to DA1,Λ. In particular, for any sepa-
rated morphism of finite type f : T → S, there exists a pair of adjoint functors

f! : DA1,Λ(T ) ⇄ DA1,Λ(S) : f
!

as in the theorem loc. cit. so that we have removed the quasi-projective assumption in [Ayo07a].

6.2.4. Because the cdh topology is finer than the Nisnevich topology, we get an adjunction of
generalized premotivic categories:

a∗cdh : DA1,Λ ⇄ DA1

(
Shcdh

(
S

ft,Λ
))

: Racdh,∗.

Corollary 6.2.5. For any scheme S, the composite functor

DA1(S,Λ)→ DA1(S,Λ)
acdh−−−→ DA1

(
Shcdh

(
S

ft/S,Λ
))

is fully faithful.
Moreover, it induces an enlargement of premotivic categories:

(6.2.5.1) DA1,Λ ⇄ DA1

(
Shcdh

(
S

ft,Λ
))

Remark 6.2.6. This corollary is a generalisation in our derived setting of the main theorem
of [Voe10c]. Note that if dim(S) > 0, there is no hope that the above composite functor is
essentially surjective because as soon as Z is a nowhere dense closed subscheme of S, the premotive
M cdh

S (Z,Λ) does not belong to its image (cf. remark 6.1.2).
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Proof. According to Corollary 6.2.2 and Proposition 3.3.10, any Tate spectrum E of DA1(S,Λ)
satisfies cdh-descent in the derived premotivic category DA1,Λ, and this implies the first assertion
by 5.3.30 and 6.1.11. The second one then follows from the fact the forgetful functor

DA1

(
Shcdh

(
S

ft/S,Λ
))
→ DA1(S,Λ).

commutes with direct sums (its left adjoint preserves compact objects). �

6.3. Nearly Nisnevich sheaves.

6.3.1. In all this section, we fix an abelian premotivic category A and we consider the canonical
premotivic adjunction (5.1.2.1) associated with A .

We assume A satisfies the following properties.

(i) A is compatible with Nisnevich topology, so that we have from (5.1.2.1) a premotivic
adjunction:

(6.3.1.1) γ∗ : ShNis(Sm,Z) ⇄ A : γ∗.

(ii) A is finitely presented (i.e. the functors HomAS
(MS(X),−) preserve filtered colimits

and form a conservative family, Def. 1.3.11).
(iii) For any scheme S, and for any open immersion U → X of smooth S-schemes, the map

MS(U)→MS(X) is a monomorphism.
(iv) For any scheme S, the functor γ∗ : AS → ShNis(Sm/S,Z) is exact.

Note that the functor γ∗ : AS → ShNis(Sm/S,Z) is exact and conservative. As it also preserves
filtered colimits, this functor preserves in fact small colimits.

Observe also that, according to these assumption, the abelian premotivic category of Tate
spectra Sp(A ) is compatible with Nisnevich topology, N-generated. Moreover, we get a canonical
premotivic adjunction

(6.3.1.2) γ∗ : Sp(ShNis(Sm,Z)) ⇄ Sp(A ) : γ∗

such that γ∗ is conservative and preserves small colimits.

In the following, we show how one can deduce properties of the premotivic triangulated cate-

gories Deff

A1(A ) and DA1(A ) from the good properties of Deff

A1,Z and DA1,Z.

6.3.a. Support property (effective case).

Proposition 6.3.2. For any scheme S, the functor γ∗ : C(AS) → C(ShNis(Sm/S,Z)) pre-
serves and detects A1-equivalences.

Proof. It follows immediately from Corollary 5.2.31 that γ∗ preserves A1-equivalences. The
fact it detects them can be rephrased by saying that the induced functor

γ∗ : Deff

A1(AS)→ Deff

A1,Z(S)

is conservative. This is obviously true once we noticed that its left adjoint is essentially surjective
on generators. �

Corollary 6.3.3. The right derived functor

Rγ∗ = γ∗ : Deff

A1(AS)→ Deff

A1,Z(S)

is conservative.

Proposition 6.3.4. Let f : S′ → S be a finite morphism of schemes. Then the induced
functor

f∗ : C(AS′)→ C(AS)

preserves colimits and A1-equivalences.
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Proof. We first prove f∗ preserves colimits. We know the functors γ∗ preserve colimits and
are conservative. As we have the identification γ∗f∗ = f∗γ∗, it is sufficient to prove the property
for A = ShNis(Sm,Z). Let X be a smooth S-scheme. It is sufficient to prove that, for any point
x of X, if Xh

x denotes the henselianization of X at x, the functor

ShNis(Sm/S
′,Z)→ Ab , F 7→ f∗(F )(X

h
x ) = F (S′ ×S X

h
x )

commutes to colimits. Moreover the scheme S′×SX
h
x is finite over Xh

x , so that we have S′×SX
h
x =

∐iYi, where the Yi’s are a finite family of henselian local schemes over S′ ×S X
h
x . Hence we have

to check that the functor F 7→
⊕

i F (Yi) preserves colimits. As colimits commute to sums, it is
thus sufficient to prove that the functors F 7→ F (Yi) commute to colimits. This follows from the
fact that the local henselian schemes Yi are points of the topos of sheaves over the small Nisnevich
site of X.

We are left to prove that the functor f∗ : C(AS′)→ C(AS) respects A
1-equivalences. For this,

we shall study the behaviour of f∗ with respect to the A1-resolution functor constructed in 5.2.26.
Note that f∗ commutes to limits because it has a left adjoint. In particular, we know that f∗ is

exact. Moreover, one checks easily that f∗R
(n)
A1 = f∗R

(n)
A1 . As f∗ commutes to colimits, this gives

the formula f∗RA1 = RA1f∗. Let C be a complex of Nisnevich sheaves of abelian groups on Sm/S′.
Choose a quasi-isomorphism C → C ′ with C ′ a Nis-flasque complex. Applying Proposition 5.2.28,
we know that RA1(C ′) is A1-fibrant and that we get a canonical A1-equivalence

f∗(C)→ f∗(C
′)→ f∗(RA1(C ′)) = RA1(f∗(C

′)).

Hence we are reduced to prove that f∗ preserves A1-equivalences between A1-fibrant objects.
But such A1-equivalences are quasi-isomorphisms, so that we can conclude using the exactness of
f∗. �

Proposition 6.3.5. For any open immersion of schemes j : U → S, the exchange transfor-
mation j♯γ∗ → γ∗j♯ is an isomorphism of functors.

Proof. Let X be a scheme, and F a Nisnevich sheaf of abelian groups on Sm/X. Define
the category CF as follows. The objects are the couples (Y, s), where Y is a smooth scheme
over X, and s is a section of F over Y . The arrows (Y, s) → (Y ′, s′) are the morphisms f ∈
HomShNis(Sm/X,Z)(ZX(Y ),ZX(Y ′)) such that f∗(s′) = s. We have a canonical functor

ϕF : CF → ShNis(Sm/X,Z)

defined by ϕF (Y, s) = ZX(Y ), and one checks easily that the canonical map

lim
−→
CF

ϕF = lim
−→

(Y,s)∈CF

ZX(Y )→ F

is an isomorphism in ShNis(Sm/X,Z) (this is essentially a reformulation of the Yoneda lemma).
Consider now an object F in the category AU . We get two categories Cγ∗(F ) and Cγ∗(j♯(F )).

There is a functor

i : Cγ∗(F ) → Cγ∗(j♯(F ))

which is defined by the formula i(Y, s) = (Y, j♯(s)). To explain our notations, let us say that we see
s as a morphism from MS(U,A ) to F , so that j♯(s) is a morphism from MS(Y,A ) = j♯MS(U,A )
to j♯(F ). This functor i has right adjoint

i′ : Cγ∗(j♯(F )) → Cγ∗(F )

defined by i′(Y, s) = (YU , sU ), where YU = Y ×S U , and sU is the section of γ∗(F ) over YU
that corresponds to the section j∗(s) of j∗j♯γ∗(F ) over YU under the canonical isomorphism
γ∗(F ) ≃ j∗j♯γ∗(F ) (here, we use strongly the fact the functor j♯ is fully faithful). The existence
of a right adjoint implies i is cofinal. This latter property is sufficient for the canonical morphism

lim
−→

Cγ∗(F )

ϕγ∗(j♯(F )) ◦ i→ lim
−→

Cγ∗(j♯(F ))

ϕγ∗(j♯(F )) = γ∗(j♯(F ))
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to be an isomorphism. But the functor ϕγ∗(j♯(F )) ◦ i is exactly the composition of the functor j♯
with ϕγ∗(F ). As the functor j♯ commutes to colimits, we have

lim
−→

Cγ∗(F )

ϕγ∗(j♯(F )) ◦ i = lim
−→

Cγ∗(F )

j♯ ϕγ∗(F ) ≃ j♯ lim
−→

Cγ∗(F )

ϕγ∗(F ) ≃ j♯(γ∗(F )).

Hence we obtain a canonical isomorphism j♯(γ∗(F )) ≃ γ∗(j♯(F )). It is easily seen that the
corresponding map γ∗(F ) → j∗(γ∗(j♯(F ))) = γ∗(j

∗j♯(F )) is the image by γ∗ of the unit map
F → j∗j♯(F ). This shows the isomorphism we have constructed is the exchange morphism. �

Corollary 6.3.6. For any open immersion of schemes j : U → S, the functor j♯ : AU → AS

is exact. Moreover, the induced functor

j♯ : C(AU )→ C(AS)

preserves A1-equivalences.

Proof. Using the fact γ∗ is exact and conservative, and propositions 6.3.2 and 6.3.5, it is
sufficient to prove this corollary when A = ShNis(Sm,Z). It is straightforward to prove exactness
using Nisnevich points. The fact j♯ preserves A

1-equivalences follows from the exactness property
and from the obvious fact it preserves strong A1-equivalences. �

Corollary 6.3.7. Let j : U → S be an open immersion of schemes. For any object M of

Deff

A1(AU ) the exchange morphism

(6.3.7.1) Lj♯(Rγ∗(M))→ Rγ∗(Lj♯(M))

is an isomorphism in Deff

A1(S,Z).

6.3.b. Support property (stable case).

6.3.8. Recall from 5.3.17 that the premotivic adjunction (γ∗, γ∗) induces a canonical adjunction
of abelian premotivic categories that we denote by:

γ̃∗ : Sp(ShNis(Sm,Z)) ⇄ Sp(AS) : γ̃∗

Proposition 6.3.9. For any scheme S, the functor induced functor

γ̃∗ : C
(
Sp(AS)

)
⇄ C

(
Sp(ShNis(Sm/S,Z))

)

preserves and detects stable A1-equivalences.

Proof. Using the equivalence between symmetric Tate spectra and non symmetric Tate
spectra, we are reduced to prove this for complexes of non symmetric Tate spectra. Consider a
non symmetric Tate spectrum (En)n∈N with suspension maps σn : En{1} → En+1. The non
symmetric Tate spectrum γ̃∗(E) is equal to γ∗(En) in degree n ∈ Z, and the suspension map is
given by the composite:

1S{1} ⊗S γ∗(En)→ γ∗(γ
∗(1S{1})⊗S En) = γ∗(En{1})

γ∗(σn)
−−−−→ En+1.

Thus, propositions 6.3.2 and 5.3.40 allows to conclude. �

Corollary 6.3.10. The right derived functor

Rγ∗ = γ∗ : DA1(AS)→ DA1,Z(S)

is conservative.

Proposition 6.3.11. Let j : U → X be an open immersion of schemes. For any object M of
DA1(AU ), the exchange morphism

Lj♯(Rγ∗(M))→ Rγ∗(Lj♯(M))

is an isomorphism in DA1,Z(X).

Proof. From Corollary 6.3.6 and the P-base change formula for the open immersion j, one
deduces easily that j♯ preserves stableA

1-equivalences of (non symmetric) Tate spectra. Moreover,
Proposition 6.3.5 shows that j♯γ∗ = γ∗j♯ at the level of Tate spectra. This concludes. �
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Corollary 6.3.12. The triangulated premotivic category DA1(A ) satisfies the support prop-
erty.

Proof. According to corollary 6.3.10, the functor Rγ∗ is conservative. Thus, by virtue of
the preceding proposition, to prove the support property in the case of DA1(A ) it is sufficient to
prove it in the case where A = ShNis(Sm,Z). This follows from theorems 6.2.1 and 2.4.50. �

6.3.c. Localization for smooth schemes.

Lemma 6.3.13. Let i : Z → S be a closed immersion which admits a smooth retraction
p : S → Z. Then the exchange transformation

Lγ∗Ri∗ → Ri∗Lγ
∗

is an isomorphism in Deff

A1(AS) (resp. DA1(AS)).

Proof. We first remark that for any object C of C(AZ) (resp. C(Sp(AZ))) the canonical
sequence

j♯(pj)
∗(C)→ p∗(C)→ i∗(C)

is a cofiber sequence in Deff

A1(AS) (resp. DA1(A )S)). Indeed, we can check this after applying the
exact conservative functor γ∗. The sequence we obtain is canonically isomorphic through exchange
transformations to

j♯j
∗p∗(γ∗C)→ p∗(γ∗C)→ i∗i

∗p∗(γ∗C)

using Corollary 6.3.7, the commutation of γ∗ with j∗, p∗ and i∗ (recall it is the right adjoint of
a premotivic adjunction) and the relation pi = 1. But this last sequence is a cofiber sequence in

Deff

A1,Z(S) (resp. DA1,Z(S)) because it satisfies the localization property (see 6.2.1).

Using exchange transformations, we obtain a morphism of distinguished triangles in DMeff
Z (S)

γ∗j♯j
∗p∗(C) // γ∗p∗(C) // γ∗i∗(C) //

Ex(γ∗,i∗)��

γ∗j♯j
∗p∗(C)[1]

j♯j
∗p∗(γ∗C) // p∗(γ∗C) // i∗(γ∗C) // j♯j∗p∗(γ∗C)[1]

The first two vertical arrows are isomorphisms as γ∗ is the left adjoint of a premotivic adjunction;
thus the morphism Ex(γ∗, i∗) is also an isomorphism. �

Proposition 6.3.14. Let i : Z → S be a closed immersion. If i admits a smooth retraction,
then Deff

A1(A ) satisfies (Loci).

Proof. This follows from Proposition 2.3.19 and the preceding lemma. �

Corollary 6.3.15. Let S be a scheme. Then the premotivic category Deff

A1(A ) (resp. DA1(A ))
satisfies localization with respect to any closed immersion between smooth S-schemes.

Proof. Let i : Z → X be closed immersion between smooth S-schemes. We want to prove

that Deff

A1(A ) (resp. DA1(A )) satisfies localization with respect to i. According to 2.3.18, it is
sufficient to prove that for any smooth S-scheme S, the canonical map

MS(X/X −XZ)→ i∗MZ(XZ)

is an isomorphism where we use the notation of loc. cit. and M(.,A ) denotes the geometric

sections of Deff

A1(A ) (resp. DA1(A )). But the premotivic triangulated category category DA1(A )

(resp. Deff

A1(A )) satisfies the Nisnevich separation property and the Sm-base change property.
Thus, we can argue locally in S for the Nisnevich topology. Thus, the statement is reduced to the
preceding proposition as i admits locally for the Nisnevich topology a smooth retraction (see for
example [Dég07, 4.5.11]). �
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7. Basic homotopy commutative algebra

7.1. Rings.

Definition 7.1.1. A symmetric monoidal model category V satisfies the monoid axiom if, for
any trivial cofibration A → B and any object X, the smallest class of maps of V which contains
the map X ⊗ A → X ⊗ B and is stable by pushouts and transfinite compositions is contained in
the class of weak equivalences.

7.1.2. Let V be a symmetric monoidal category. We denote by Mon(V ) the category of
monoids in V . If V has small colimits, the forgetful functor

U : Mon(V )→ V

has a left adjoint

F : V → Mon(V ) .

Theorem 7.1.3. Let V a symmetric monoidal combinatorial model category which satisfies the
monoid axiom. The category of monoids Mon(V ) is endowed with the structure of a combinatorial
model category whose weak equivalences (resp. fibrations) are the morphisms of commutative
monoids which are weak equivalences (resp. fibrations) in V . In particular, the forgetful functor
U : Mon(V ) → V is a right Quillen functor. Moreover, if the unit object of V is cofibrant, then
any cofibrant object of Mon(V ) is cofibrant as an object of V .

Proof. This is very a particular case of the third assertion of [SS00, Theorem 4.1] (the fact
that Mon(V ) is combinatorial whenever V is so comes for instance from [Bek00, Proposition
2.3]). �

Definition 7.1.4. A symmetric monoidal model category V is strongly Q-linear if the un-
derlying category of V is additive and Q-linear (i.e. all the objects of V are uniquely divisible).

Remark 7.1.5. If V is a strongly Q-linear stable model category, then it is Q-linear in the
sense of 3.2.14.

Lemma 7.1.6. Let V be a strongly Q-linear model category, G a finite group, and u : E → F
an equivariant morphism of representations of G in V . Then, if u is a cofibration in V , so is the
induced map EG → FG (where the subscript G denotes the coinvariants under the action of the
group G).

Proof. The map EG → FG is easily seen to be a direct factor (retract) of the cofibration
E → F . �

7.1.7. If V is a symmetric monoidal category, we denote by Comm(V ) the category of com-
mutative monoids in V . If V has small colimits, the forgetful functor

U : Comm(V )→ V

has a left adjoint

F : V → Comm(V ) .

Theorem 7.1.8. Let V a symmetric monoidal combinatorial model category. Assume that
V is left proper and tractable, satisfies the monoid axiom, and is strongly Q-linear. Then the
category of commutative monoids Comm(V ) is endowed with the structure of a combinatorial
model category whose weak equivalences (resp. fibrations) are the morphisms of commutative
monoids which are weak equivalences (resp. fibrations) in V . In particular, the forgetful functor
U : Comm(V )→ V is a right Quillen functor.

If moreover the unit object of V is cofibrant, then any cofibrant object of Comm(V ) is cofibrant
as an object of V .

Proof. The preceding lemma implies immediately that V is freely powered in the sense of
[Lur12, Definition 4.3.17], so that the existence of this model category structure follows from a
general result of Lurie [Lur12, Proposition 4.3.21]. The second assertion is then true by definition.
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The last assertion is proved by a careful analysis of pushouts by free maps in Comm(V ) as follows.
For two cofibrations u : A→ B and v : C → D in V , write u ∧ v for the map

u ∧ v : A⊗D ∐A⊗C B ⊗ C → B ⊗D

(which is a cofibration by definition of monoidal model categories). By iterating this construction,
we get, for a cofibration u : A→ B in V , a cofibration

∧n(u) = u ∧ · · · ∧ u
︸ ︷︷ ︸

n times

: �n(u)→ B⊗n .

Note that the symmetric group Sn acts naturally on B⊗n and �
n(u). We define

Symn(B) = (B⊗n)Sn
and Symn(B,A) = �

n(u)Sn
.

By virtue of Lemma 7.1.6, we get a cofibration of V :

σn(u) : Symn(B,A)→ Symn(B) .

Consider now the free map F (u) : F (A) → F (B) can be filtered by F (A)-modules as follows.
DefineD0 = F (A). As A = Sym1(B,A), we have a natural morphism F (A)⊗Sym1(B,A)→ F (A).
The objects Dn are then defined by induction with the pushouts below.

F (A)⊗ Symn(B,A)
1F (A)⊗σn(u) //

��

F (A)⊗ Symn(B)

��
Dn−1

// Dn

We get natural maps Dn → F (B) which induce an isomorphism

lim
−→
n≥0

Dn ≃ F (B)

in such a way that the morphism F (u) correspond to the canonical map

F (A) = D0 → lim
−→
n≥0

Dn .

Hence, if F (A) is cofibrant, all the maps Dn−1 → Dn are cofibrations, so that the map F (A) →
F (B) is a cofibration in V . In the particular case where A is the initial object of V , we see that
for any cofibrant object B of V , the free commutative monoid F (B) is cofibrant as an object of
V (because the initial object of Comm(V ) is the unit object of V ). This also implies that, if u is
a cofibration between cofibrant objects, the map F (u) is a cofibration in V .

This description of F (u) also allows to compute the pushouts of F (u) in Comm(V ) in V as
follows. Consider a pushout

F (A)
F (u) //

��

F (B)

��
R v

// S

in Comm(V ). For n ≥ 0, define Rn by the pushouts of V :

F (A) //

��

Dn

��
R // Rn

We then have an isomorphism
lim
−→
n≥0

Rn ≃ S .

In particular, if u is a cofibration between cofibrant objects, the morphism of commutative monoids
v : R→ S is then a cofibration in V . As the forgetful functor U preserves filtered colimits, conclude
easily from there (with the small object argument [Hov99, Theorem 2.1.14]) that any cofibration



162

of Comm(V ) is a cofibration of V . Using again that the unit object of V is cofibrant in V (i.e. that
the initial object of Comm(V ) is cofibrant in V ) this proves the last assertion of the theorem. �

Corollary 7.1.9. Let V a symmetric monoidal combinatorial model category. Assume that
V is left proper and tractable, satisfies the monoid axiom, and is strongly Q-linear. Consider a
small set H of maps of V , and denote by LHV the left Bousfield localization of V by H; see
[Bar10, Theorem 4.7]. Define the class of H-equivalences in Ho(V ) to be the class of maps which
become invertible in Ho(LHV ). If H-equivalences are stable by (derived) tensor product in Ho(V ),
then LHV is a symmetric monoidal combinatorial model category (which is again left proper and
tractable, satisfies the monoid axiom, and is strongly Q-linear).

In particular, under these assumtions, there exists a morphism of commutative monoids 1→ R
in V which is a weak equivalence of LHV , with R a cofibrant and fibrant object of LHV .

Proof. The first assertion is a triviality. The last assertion follows immediately: the map
1 → R is simply obtained as a fibrant replacement of 1 in the model category Comm(LHV )
obtained from Theorem 7.1.8 applied to LHV . �

7.1.10. Consider now a category S , as well as a closed symmetric monoidal bifibred category
M over S . We shall also assume that the fibers of M admit limits and colimits.

Then the categories Mon(M (X)) (resp. Comm(M (X))) define a bifibred category over S

as follows. Given a morphism f : X → Y , the functor

f∗ : M (Y )→M (X)

is symmetric monoidal, so that it preserves monoids (resp. commutative monoids) as well as
morphisms between them. It thus induces a functor

(7.1.10.1)
f∗ : Mon(M (Y ))→ Mon(M (X))

(resp. f∗ : Comm(M (Y ))→ Comm(M (X)) ).

As f∗ : M (Y ) → M (X) is symmetric monoidal, its right adjoint f∗ is lax monoidal: there is a
natural morphism

(7.1.10.2) 1Y → f∗(1X) = f∗ f
∗(1Y ) ,

and, for any objects A and B of M (X), there is a natural morphism

(7.1.10.3) f∗(A)⊗Y f∗(B)→ f∗(A⊗X B)

which corresponds by adjunction to the map

f∗(f∗(A)⊗Y f∗(B)) ≃ f∗ f∗(A)⊗ f
∗ f∗(B)→ A⊗B .

Hence the functor f∗ preserves also monoids (resp. commutative monoids) as well as morphisms
between them, so that we get a functor

(7.1.10.4)
f∗ : Mon(M (X))→ Mon(M (Y ))

(resp. f∗ : Comm(M (X))→ Comm(M (Y )) ).

By construction, the functor f∗ of (7.1.10.1) is a left adjoint ot the functor f∗ of (7.1.10.4). These
constructions extend to morphisms of S -diagrams in a similar way.

Proposition 7.1.11. Let M be a symmetric monoidal combinatorial fibred model category
over S . Assume that, for any object X of S , the model category M (X) satisfies the monoid
axiom (resp. is left proper and tractable, satisfies the monoid axiom, and is strongly Q-linear).

(a) For any object X of S , the category Mon(M )(X) (resp. Comm(M )(X)) of monoids
(resp. of commutative monoids) in M (X) is a combinatorial model category structure
whose weak equivalences (resp. fibrations) are the morphisms of commutative monoids
which are weak equivalences (resp. fibrations) in M (X). This turns Mon(M ) (resp.
Comm(M )) into a combinatorial fibred model category over S .
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(b) For any morphism of S -diagrams ϕ : (X , I)→ (Y, J), the adjunction

ϕ∗ : Mon(M )(Y , J) ⇄ Mon(M )(X , I) : ϕ∗

(resp. ϕ∗ : Comm(M )(Y , J) ⇄ Comm(M )(X , I) : ϕ∗)

is a Quillen adjunction (where the categories of monoids Mon(M )(X , I) (resp. of
commutative monoids Comm(M )(X , I)) are endowed with the injective model category
structure obtained from Proposition 3.1.7 applied to Mon(M ) (resp. to Comm(M )).

(d) If moreover, for any object X of S , the unit 1X is cofibrant in M (X), then, for mor-
phism of S -diagrams ϕ : (X , I)→ (Y, J), the square

Ho(Mon(M ))(Y , J)
Lϕ∗

//

U

��

Ho(Mon(M ))(X , I)

U

��
Ho(M )(Y , J)

Lϕ∗

// Ho(M )(X , I)

(7.1.11.1)

is essentially commutative. Similarly, in the respective case, the square

Ho(Comm(M ))(Y , J)
Lϕ∗

//

U

��

Ho(Comm(M ))(X , I)

U

��
Ho(M )(Y , J)

Lϕ∗

// Ho(M )(X , I)

(7.1.11.2)

is essentially commutative.

Proof. Assertion (a) is an immediate consequence of Theorem 7.1.3 (resp. of Theorem
7.1.8), and assertion (b) is a particular case of Proposition 3.1.11 (beware that the injective model
category structure on Comm(M )(X , I) does not necessarily coincide with the model category
structure given by Theorem 7.1.3 (resp. of Theorem 7.1.8) applied to the injective model structure
on M (X , I)). For assertion (d), we see by the second assertion of Proposition 3.1.6 that it is
sufficient to prove it when ϕ : X → Y is simply a morphism of S . In this case, by construction of
the total left derived functor of a left Quillen functor, this follows from the fact that ϕ∗ commutes
with the forgetful functor and from the fact that, by virtue of the last assertion of Theorem
7.1.3 (resp. of Theorem 7.1.8), the forgetful functor U preserves weak equivalences and cofibrant
objects. �

Remark 7.1.12. The main application of the preceding corollary will come from assertion
(d): it says that, given a monoid (resp. a commutative monoid) R in M (Y ) and a morphism
f : X → Y , the image of R by the functor

Lf∗ : Ho(M )(Y )→ Ho(M )(X)

is canonically endowed with a structure of monoid (resp. of commutative monoid) in the strongest
sense possible. Under the assumptions of assertion (c) of Proposition 7.1.11, we shall often make
the abuse of saying that Lf∗(R) is a monoid (resp. a commutative monoid) in M (X) without
refereeing explicitely to the model category structure on Mon(M )(X) (resp. on Comm(M )(X)).
Similarly, for any monoid (resp. commutative monoid) R in M (X), Rf∗(R) will be canonically
endowed with a structure of a monoid (resp. a commutative monoid) in M (Y ). In particular, for
any monoid (resp. commutative monoid) R in M (Y ), the adjunction map

R→ Rf∗ Lf
∗(R)

is a morphism of monoids (i.e. is a map in the homotopy category Ho(Mon(M ))(X) (resp.
Ho(Comm(M ))(X))), and, for any monoid (resp. commutative monoid) R in M (X), the adjunc-
tion map

Lf∗ Rf∗(R)→ R

is a morphism of monoids (i.e. is a map in the homotopy category Ho(Mon(M ))(Y ) (resp.
Ho(Comm(M ))(Y ))).
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Remark 7.1.13. In order to get a good homotopy theory of commutative monoids wihout
the strongly Q-linear assumption, we should replace commutative monoids by E∞-algebras (i.e.
objects endowed with a structure of commutative monoid up to a bunch of coherent homotopies).
More generally, we should prove the analog of Theorem 7.1.3 and of Theorem 7.1.8 by replacing
Mon(V ) by the category of algebras of some ‘well behaved’ operad, and then get as a consequence
the analog of Proposition 7.1.11. All this is a consequence of the general constructions and results
of [Spi01, BM03, BM09].

However, in the case we are interested in the homotopy theory of commutative monoids in
some category of spectra V , it seems that some version of Shipley’s positive stable model structure
(cf. [Shi04, Proposition 3.1]) would provide a good model category for commutative monoids,
which, by Lurie’s strictification theorem [Lur12, Theorem 4.4.4.7], would be equivalent to the
homotopy theory of E∞-algebras in V . This kind of technics is available in the context of stable
homotopy theory of schemes, which provides a good setting to speak of motivic commutative ring
spectra; see [Hor10]. Therefore, Theorem 7.1.8 and Proposition 7.1.11 are in fact true in SH for
genuine commutative monoids without any Q-linearity assumption.

7.2. Modules.

7.2.1. Given a monoid R in a symmetric monoidal category V , we shall write R-mod(V ) for
the category of (left) R-modules. The forgetful functor

U : R-mod(V )→ V

is a left adjoint to the free R-module functor

R⊗ (−) : V → R-mod(V ) .

If V has enough small colimits, and if R is a commutative monoid, the category R-mod(V ) is
endowed with a unique symmetric monoidal structure such that the functor R ⊗ (−) is naturally
symmetric monoidal. We shall denote by ⊗R the tensor product of R-mod(V ).

Theorem 7.2.2. Let V be a combinatorial symmetric model category which satisfies the
monoid axiom.

(i) For any monoid R in V , the category of right (resp. left) R-modules is a combinatorial
model category with weak equivalences (resp. fibrations) the morphisms of R-modules
which are weak equivalences (resp. fibrations) in V .

(ii) For any commutative monoid R in V , the model category of R-modules given by (i) is a
combinatorial symmetric monoidal model category which satisfies the monoid axiom.

Proof. Assertions (i) and (ii) are particular cases of the first two assertions of [SS00, The-
orem 4.1]. �

Definition 7.2.3. A symmetric monoidal model category V is perfect if it has the following
properties.

(a) V is combinatorial and tractable (3.1.27);
(b) V satisfies the monoid axiom;
(c) For any weak equivalence of monoids R→ S, the functor M 7→ S ⊗RM is a left Quillen

equivalence from the category of left R-modules to the category of left S-modules.
(d) weak equivalences are stable by small sums in V .

Remark 7.2.4. If V is a perfect symmetric monoidal model category, then, for any com-
mutative monoid R, the symmetric monoidal model category of R-modules in V given by The-
orem 7.2.2 (ii) is also perfect: condition (c) is quite obvious, and condition (d) comes from the
fact that the forgetful functor U : R-mod→ V commutes with small sums, while it preserves and
detects weak equivalences. Note that condition (d) implies that the functor U : Ho(R-mod) →
Ho(V ) preserves small sums.

Remark 7.2.5. If V is a stable symmetric monoidal model category which satisfies the monoid
axiom, then for any monoid R of V , the model category of (left) R-modules given by Theorem
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7.2.2 is stable as well: the suspension functor of Ho(R-mod) is given by the derived tensor product
by the R-bimodule R[1], which is clearly invertible with inverse R[−1].

In this work, a basic example of perfect model categories are those coming from stable A1-
derived premotivic categories (cf Def. 5.3.22):

Proposition 7.2.6. Let t be an admissible topology. Then, for any scheme S in S , the
symmetric monoidal model structure on C(Sp(Sht(P/S,Z))) underlying the triangulated category
DA1 (Sht(P/S,Z)) is perfect.

Proof. The generating family of Sht(P/S,Z) is flat in the sense of [CD09, 3.1], so that, by
virtue of [CD09, prop. 7.22 and cor. 7.24], the assumptions of Proposition 7.2.9 are fulfilled. �

Proposition 7.2.7. Let V be a stable perfect symmetric monoidal model category. Assume
furthermore that Ho(V ) admits a small family G of compact generators (as a triangulated category).
For any monoid R in V , the triangulated category Ho(R-mod(V )) admits the set {R⊗LE | E ∈ G}
as a family of compact generators.

Proof. We have a derived adjunction

R⊗L (−) : Ho(V ) ⇄ Ho(R-mod(V )) : U .

As the functor U preserves small sums the functor R⊗L (−) preserves compact objects. But U is
also conservative, so that {R⊗L E | E ∈ G} is a family of compact generators of Ho(R-mod(V )).

�

Remark 7.2.8. If V is a combinatorial symmetric model category which satisfies the monoid
axiom, then there are two ways to derive the tensor product. The first one consists to derive the
left Quillen bifunctor (−)⊗ (−), which gives the usual derived tensor product

(−)⊗L (−) : Ho(V )×Ho(V )→ Ho(V ) .

Remember that, by construction, A⊗L B = A′ ⊗B′, where A′ and B′ are cofibrant replacements
of A and B respectively. On the other hand, the monoid axiom gives that, for any object A of V ,
the functor A⊗ (−) preserves weak equivalences between cofibrant objects, which implies that it
has also a total left derived functor

A⊗L (−) : Ho(V )→ Ho(V ) .

Despite the fact we have adopted very similar (not to say identical) notations for these two derived
functor, there is no reason they would coincide in general: by construction, the second one is defined
by A⊗L B = A⊗B′, where B′ is some cofibrant replacement of B. However, they coincide quite
often in practice (e.g. for simplicial sets, for the good reason that all of them are cofibrant, or for
symmetric S1-spectra, or for complexes of quasi-coherent OX -modules over a quasi-compact and
quasi-separated scheme X).

Proposition 7.2.9. Let V be a stable combinatorial symmetric monoidal model category
which satisfies the monoid axiom. Assume furthermore that, for any cofibrant object A of V , the
functor A⊗ (−) preserve weak equivalences (in other words, that the two ways to derive the tensor
product explained in Remark 7.2.8 coincide), and that weak equivalences are stable by small sums
in V . Then the symmetric monoidal model category V is perfect.

Proof. We just have to check condition (c) of Definition 7.2.3. Consider a weak equivalence
of monoids R→ S. We then get a derived adjunction

S ⊗L
R (−) : Ho(R-mod(V )) ⇄ Ho(S-mod(V )) : U ,

where S ⊗L
R (−) is the left derived functor of the functor M 7→ S ⊗RM . We have to prove that,

for any left R-module M , the map
M → S ⊗L

RM

is an isomorphism in Ho(V ). As this is a morphism of triangulated functors which commutes
with sums, and as Ho(R-mod(V )) is well generated in the sense of Neeman [Nee01] (as the
localization of a stable combinatorial model category), it is sufficient to check this when M runs
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over a small family of generators of Ho(R-mod(V )). Let us chose is a small family of generators
G of Ho(V ). As the forgetful functor from Ho(R-mod(V )) to Ho(V ) is conservative, we see that
{R⊗L E | E ∈ G} is a small generating family of Ho(R-mod(V )). We are thus reduced to prove
that the map

R⊗L E → S ⊗L
R (R⊗L E) ≃ S ⊗L E

is an isomorphism for any object E in G. For this, we can assume that E is cofibrant, and this
follows then from the fact that the functor (−)⊗E preserves weak equivalences by assumption. �

7.2.10. Let S be a category endowed with an admissible class of morphisms P, and M a
symmetric monoidal P-fibred category. Consider a monoid R in the symmetric monoidal category
M (1S ,S ) (i.e. a section of the fibred category Mon(M ) over S ). In other words, R consists of
the data of a monoid RX for each objectX of S , and of a morphism of monoids af : f∗(RY )→ RX
for each map f : X → Y in S , subject to coherence relations; see 3.1.2.

For an object X of S , we shall write R-mod(X) for the category of (left) RX -modules in
M (X), i.e.

R-mod(X) = RX -mod(M (X)) .

This defines a fibred category R-mod over S as follows.
For a morphism f : X → Y , the inverse image functor

(7.2.10.1) f∗ : R-mod(Y )→ R-mod(X)

is defined by

(7.2.10.2) M 7→ RX ⊗f∗(RY ) f
∗(M)

(where, on the right hand side, f∗ stands for the inverse image functor in M ). The functor
(7.2.10.1) has a right adjoint

(7.2.10.3) f∗ : R-mod(X)→ R-mod(Y )

which is simply the functor induced by f∗ : M (X) →M (Y ) (as the latter sends RX -modules to
f∗(RX)-modules, which are themselves RY -modules via the map af ).

If the map f is a P-morphism, then, for any RX -module M , the object f♯(M) has a natural
structure of RY -module: using the map af , M has a natural structure of f∗(RY )-module

f∗(RY )⊗X M →M ,

and applying f♯, we get by the P-projection formula (1.1.26) a morphism

RY ⊗ f♯(M) ≃ f♯(f
∗(RY )⊗M)→ f♯(M)

which defines a natural RY -module structure on f♯(M). For a P-morphism f : X → Y , we define
a functor

(7.2.10.4) f♯ : R-mod(X)→ R-mod(Y )

as the functor induced by f♯ : M (X) →M (Y ). Note that the functor (7.2.10.4) is a left adjoint
to the functor (7.2.10.1) whenever the map af : f∗(RY )→ RX is an isomorphism in M (X).

We shall say that R is a cartesian monoid in M over S if R is a monoid of M (1C ,C ) such
that all the structural maps f∗(RY ) → RX are isomorphisms (i.e. if R is a cartesian section of
the fibred category Mon(M ) over S )

If R is a cartesian monoid in M over S , then R-mod is a P-fibred category over S : to see
this, it remains to prove that, for any pullback square of S

X ′
g //

f ′

��

X

f

��
Y ′

h
// Y

in which f is a P-morphism, and for any RX -module M , the base change map

f ′♯ g
∗(M)→ h∗ f♯(M)
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is an isomorphism, which follows immediately from the analogous formula for M .
Similarly, we see that whenever R is a commutative monoid of M (1C ,C ) (i.e. RX is a

commutative monoid in M (X) for all X in S ), then R-mod is a symmetric monoidal P-fibred
category.

Proposition 7.2.11. Let M be a combinatorial symmetric monoidal P-fibred model category
over S which satisfies the monoid axiom, and R a monoid in M (1S ,S ) (resp. a cartesian monoid
in M over S ). Then 7.2.2 (i) applied termwise turns R-mod into a combinatorial fibred model
category (resp. a combinatorial P-fibred model category).

If moreover R is commutative, then R-mod is a combinatorial symmetric monoidal fibred
model category (resp. a combinatorial symmetric monoidal P-fibred model category).

Proof. Choose, for each object X of S , two small sets of maps IX and JX which generate
the class of cofibrations and the class of trivial cofibrations in M (X) respectively. Then RX⊗X IX
and RX ⊗X JX generate the class of cofibrations and the class of trivial cofibrations in R-mod(X)
respectively. For a map f : X → Y in S , we see from formula (7.2.10.2) that the functor (7.2.10.1)
sends these generating cofibrations and trivial cofibrations to cofibrations and trivial cofibrations
respectively, from which we deduce that the functor (7.2.10.1) is a left Quillen functor. In the
respective case, if f is a P-morphism, then we deduce similarly from the projection formula
(1.1.26) in M that the functor (7.2.10.4) sends generating cofibrations and trivial cofibrations
to cofibrations and trivial cofibrations respectively. The last assertion follows easily by applying
7.2.2 (ii) termwise. �

Definition 7.2.12. Let M be a symmetric monoidal P-fibred model category over S . A
homotopy cartesian monoid R in M will be a homotopy cartesian section of Mon(M ).

Proposition 7.2.13. Let M be a perfect symmetric monoidal P-fibred model category over
S , and consider a homotopy cartesian monoid R in M over S .

Then Ho(R-mod) is a P-fibred category over S , and

R⊗L (−) : Ho(M )→ Ho(R-mod)

is a morphism of P-fibred categories. In the case where R is commutative, Ho(R-mod) is even a
symmetric monoidal P-fibred category.

Moreover, for any weak equivalence between homotopy cartesian monoids R→ S over S , the
Quillen morphism

S ⊗R (−) : R-mod→ S-mod

induces an equivalence of P-fibred categories over S

S ⊗L
R (−) : Ho(R-mod)→ Ho(S-mod) .

Proof. It is sufficient to prove these assertions by restricting everything over S /S, where S
runs over all the objects of S . In particular, we may (and shall) assume that S has a terminal
object S. As M is perfect, it follows from condition (c) of Definition 7.2.3 that we can replace
R by any of its cofibrant resolution. In particular, we may assume that RS is a cofibrant object
of Mon(M )(S). We can thus define a termwise cofibrant cartesian monoid R′ as the family of
monoids f∗(RS), where f : X → S runs over all the objects of S ≃ S /S. There is a canonical
morphism of homotopy cartesian monoids R′ → R which is a termwise weak equivalence. We thus
get, by condition (c) of Definition 7.2.3, an equivalence of fibred categories

R⊗L
R′ (−) : Ho(R′-mod)→ Ho(R-mod) .

We can thus replace R by R′, which just means that we can assume that R is cartesian and
termwise cofibrant. The first assertion follows then easily from Proposition 7.2.11. In the case
where R is commutative, we prove that Ho(R-mod) is a P-fibred symmetric monoidal category
as follows. Let f : X → Y a morphism of S . We would like to prove that, for any object M in
Ho(R-mod)(X) and any object N in Ho(R-mod)(Y ), the canonical map

(7.2.13.1) Lf♯(M ⊗
L
R f

∗(N))→ Lf♯(M)⊗L
R N
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is an isomorphism. By adjunction, this is equivalent to prove that, for any objects N and E in
Ho(R-mod)(Y ), the map

(7.2.13.2) f∗RHomR(N,E)→ RHomR(f
∗(N), f∗(E))

is an isomorphism in Ho(R-mod)(X) (where RHomR stands for the internal Hom of Ho(R-mod)).
But the forgetful functors

U : Ho(R-mod)(X)→ Ho(M )(X)

are conservative, commute with f∗ for any P-morphism f , and commute with internal Hom: by
adjunction, this follows immediately from the fact that the functors

R⊗L (−) : Ho(M )(X)→ Ho(R-mod)(X) ≃ Ho(R′-mod)(X)

are symmetric monoidal and define a morphism of P-fibred categories (and thus, in particular,
commute with f♯ for any P-morphism f). Hence, to prove that (7.2.13.2) is an isomorphism, it
is sufficient to prove that its analog in Ho(M ) is so, which follows immediately from the fact that
the analog of (7.2.13.1) is an isomorphism in Ho(M ) by assumption.

For the last assertion, we are also reduced to the case where R and S are cartesian and termwise
cofibrant, in which case this follows easily again from condition (c) of Definition 7.2.3. �

Proposition 7.2.14. Let M be a combinatorial symmetric monoidal model category over S

which satisfies the monoid axiom. Then, for any cartesian monoid R in M over S we have a
Quillen morphism

R⊗ (−) : M → R-mod .

If, for any object X of S , the unit object 1X is cofibrant in M (X) and the monoid RX is cofibrant
in Mon(M )(X), then the forgetful functors also define a Quillen morphism

U : R-mod→M .

Proof. The first assertion is obvious. For the second one, note that, for any object X of S ,
the monoid RX is also cofibrant as an object of M (X); see Theorem 7.1.3. This implies that the
forgetful functor

U : RX -mod→M (X)

is a left Quillen functor: by the small object argument and by definition of the model category
structure of Theorem 7.2.2 (i), this follows from the trivial fact that the endofunctor

RX ⊗ (−) : M (X)→M (X)

is a left Quillen functor itself whenever RX is cofibrant in M (X). �

Remark 7.2.15. The results of the preceding proposition (as well as their proofs) are also
true in terms of Pcart -fibred categories (3.1.21) over the category of S /S-diagrams for any object
S of S (whence over all S -diagrams whenever S has a terminal object).

7.2.16. Consider now a noetherian scheme S of finite dimension. We choose a full subcategory
of the category of separated noetherian S-schemes of finite dimension which is stable by finite
limits, contains separated S-schemes of finite type, and such that, for any étale S-morphism
Y → X, if X is in S /S, so is Y . We denote by S /S this chosen category of S-schemes.

We also fix an admissible class P of morphisms of S /S which contains the class of étale
morphisms.

Definition 7.2.17. A property P of Ho(M ), for M a stable combinatorial P-fibred model
category over S /S, is homotopy linear if the following implications are true.

(a) If γ : M → M ′ is a Quillen equivalence (i.e. a Quillen morphism which is termwise a
Quillen equivalence) between stable combinatorial P-fibred model category over S /S,
then M has property P is and only if M ′ has property P.

(b) If M is a stable combinatorial symmetric monoidal P-model category which satisfies the
monoid axiom, and such that the unit 1X of M (X) is cofibrant, then, for any cartesian
and termwise cofibrant monoid R in M over S /S, R-mod has property P.
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Proposition 7.2.18. The following properties are homotopy linear: A1-homotopy invariance,
P1-stability, the localization property, the property of proper transversality, separability, semi-
separability, t-descent (for a given Grothendieck topology t on S /S).

Proof. Property (a) of the definition above is obvious. Property (b) comes from the fact
that the forgetful functors

U : Ho(R-mod)→ Ho(M )

are conservative and commute with all the operations: Lf∗ and Rf∗ for any morphism f , as well
as Lf♯ for any P-morphism (by Proposition 7.2.14). Hence any property formulated in terms of
equations involving only these operations is homotopy linear. �





Part 3

Motivic complexes and relative cycles



In this entire part, we adopt the special convention that smooth means smooth separated of
finite type. This concerns also the framework of premotivic categories: we assume the admissible
class Sm is made of smooth separated morphisms of finite type.

This assumption is required by the use of the theory of finite correspondences (see more
precisely Example 9.1.4).

8. Relative cycles

8.0. In this entire section, S is the category of noetherian schemes; any scheme is assumed
to be noetherian. We fix a subring Λ ⊂ Q which will be the ring of coefficients of the algebraic
cycles considered in the following section.

8.1. Definitions.
8.1.a. Category of cycles.

8.1.1. Let X be a scheme. As usual, an element of the underlying set of X will be called a
point and a morphism Spec (k)→ X where k is a field will be called a geometric point. We often
identify a point x ∈ X with the corresponding geometric point Spec (κx) → X. However, the
explicit expression ”the point Spec (k)→ X” always refers to a geometric point.
As our schemes are assumed to be noetherian, any immersion f : X → Y is quasi-compact. Thus,
according to [EGA1, 9.5.10], the schematic closure X̄ of X in Y exists which gives a unique
factorization of f

X
j
−→ X̄

i
−→ Y

such that i is a closed immersion and j is an open immersion with dense image75. Note that
when Y is reduced, X̄ coincide with the topological closure of X in Y with its induced reduced
subscheme structure. In this case, we simply call Ȳ the closure of Y in X.

Definition 8.1.2. A Λ-cycle is a couple (X,α) such that X is a scheme and α is a Λ-linear
combination of points of X. A generic point of (X,α) is a point which appears in the Λ-linear
combination α with a non zero coefficient. The support Supp(α) of α is the closure of the generic
points of α.

A morphism of Λ-cycles (Y, β) → (X,α) is a morphism of scheme f : Y → X such that
f(Supp(β)) ⊂ Supp(α). We say this morphism is pseudo-dominant if for any generic point y of
(Y, β), f(y) is a generic point of (X,α).

When considering such a pair (X,α), we will denote it simply by α and refer to X as the
domain of α. We also use the notation α ⊂ X to mean the domain of the cycle α is the scheme
X.

The category of Λ-cycle is functorial in Λ with respect to morphisms of integral rings. In what
follows, cycles are assumed to have coefficients in Λ unless explicitly stated.

8.1.3. Given a property (P) of morphisms of schemes, we will say that a morphism f : β → α

of cycles satisfies property (P) if the induced morphism f |
Supp(α)
Supp(β) satisfies property (P).

Definition 8.1.4. Let X be a scheme. We denote by X(0) the set of generic points of X. We
define as usual the cycle associated with X as the cycle with domain X :

〈X〉 =
∑

x∈X(0)

lg(OX,x).x.

The integer lg(OX,x), length of an artinian local ring, is called the geometric multiplicity of x in
X.

When no confusion is possible, we usually omit the delimiters in the notation 〈X〉. As an
example, we say that α is a cycle over X to mean the existence of a structural morphism of cycles
α→ 〈X〉.

75Recall the scheme X̄ is characterized by the property of being the smallest sub-scheme of Y with the existence
of such a factorization.
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8.1.5. When Z is a closed subscheme of a scheme X, we denote by 〈Z〉X the cycle 〈Z〉
considered as a cycle with domain X.
Consider a cycle α with domain X. Let (Zi)i∈I be the family of the reduced closure of generic
points of α. Then we can write α uniquely as α =

∑

i∈I ni.〈Zi〉X . We call this writing the standard
form of α for short.

Definition 8.1.6. Let α =
∑

i∈I ni.xi be a cycle with domain X and f : X → Y be any
morphism.

For any i ∈ I, put yi = f(xi). Then f induces an extension field κ(xi)/κ(yi) between the
residue fields. We let di be the degree of this extension field in case it is finite and 0 otherwise.

We define the pushforward of α by f as the cycle with domain Y

f∗(α) =
∑

i∈I

nidi.f(xi).

Thus, when f is an immersion, f∗(α) is the same cycle as α but seen as a cycle with domain
X. Remark also that we obtain the following equality

(8.1.6.1) f∗
(
〈X〉

)
=
〈
X̄
〉

Y

where X̄ is the schematic closure of X in Y (indeed X is a dense open subscheme in X̄). When
f is clear, we sometimes abusively put: 〈X〉Y := f∗(〈X〉).

By transitivity of degrees, we obviously have f∗g∗ = (fg)∗ for a composable pair of morphisms
(f, g).

Definition 8.1.7. Let α =
∑

i∈I ni.xi be a cycle over a scheme S with domain f : X → S
and U ⊂ S be an open subscheme. Let I ′ = {i ∈ I | f(xi) ∈ U}. We define the restriction of α
over U as the cycle α|U =

∑

i∈I′ ni.xi with domain X ×S U considered as a cycle over U .

If α =
∑

i∈I ni.〈Zi〉X , then obviously α|U =
∑

i∈I ni.〈Zi ×S U〉XU
. We state the following

obvious lemma for convenience :

Lemma 8.1.8. Let S be a scheme, U ⊂ S an open subscheme and X be an S-scheme. Let
j : XU → X be the obvious open immersion.

(i) For any cycle (XU , α
′),
(
j∗(α

′)
)
|U = α′.

(ii) Assume Ū = S. For any cycle (X,α) pseudo-dominant over S, j∗(α |U ) = α.

8.1.b. Hilbert cycles.

8.1.9. Recall that a finite dimensional scheme X is equidimensional – we will say absolutely
equidimensional – if its irreducible components have all the same dimension.

We will say that a flat morphism f : X → S is equidimensional if it is of finite type and for
any connected component X ′ of X, there exists an integer e ∈ N such that for any generic point
η in X ′, the fiber f−1[f(η)] is absolutely equidimensional of dimension e.

Definition 8.1.10. Let S be a scheme.
Let α be a cycle over S with domain X. We say that α is a Hilbert cycle over S if there exists

a finite family (Zi)i∈I of closed subschemes of X which are flat equidimensional over S and a finite
family (ni)i∈I ∈ ΛI such that

α =
∑

i∈I

ni.〈Zi〉X .

Example 8.1.11. Any cycle over a field k is a Hilbert cycle over Spec (k). Let S be the
spectrum of a discrete valuation ring. A cycle α =

∑

i∈I ni.xi over S is a Hilbert cycle if and only
if each point xi lies over the generic points of S. Indeed, an integral S-scheme is flat if and only
if it is dominant.

The following lemma follows almost directly from a result of [SV00b]:



174

Lemma 8.1.12. Let f : S′ → S be a morphism of schemes and X be an S-scheme of finite
type. Put X ′ = X ×S S

′.
Let (Zi)i∈I be a finite family of closed subschemes of X such that each Zi is flat equidimen-

sional over S. We assume the following relation:

(8.1.12.1)
∑

i∈I

ni.〈Zi〉X = 0

Then we the following equality holds:
∑

i∈I

ni.〈Zi ×S S
′〉X′ = 0.

Proof. When we assume that for any index i ∈ I, Zi/S is equidimensional of dimension e,
this lemma is exactly [SV00b, Prop. 3.2.2]. We show how to reduce to that case.

Up to adding more members to the family (Zi), we can always assume that Zi is connected.
Then, because Zi/S is equidimensional by assumption, there exists an integer ei such that for any

point x ∈ Z
(0)
i , the fiber f−1[f(x)] is absolutely equidimensional of dimension ei. In particular

the transcendence degree dx of the residual extension κx/κf(x) satisfies the relation: dx = ei.
For any integer e ∈ N, we define the following subset of I:

Ie = {i ∈ I | ∀x ∈ Z
(0)
i , dx = e}.

Thus (Ie)e∈N is a partition of I.
One can rewrite the assumption (8.1.12.1) as follows: for any point x ∈ X,

∑

i∈I|x∈Z
(0)
i

ni.lg(OZi,x) = 0.

In particular, given any integer e ∈ N, we deduce that the family (Zi)i∈Ie still satisfies the relation
(8.1.12.1). As any member of this family is equidimensional of dimension e, we can apply [SV00b,
Prop. 3.2.2] to (Zi)i∈Ie . This concludes. �

8.1.13. Consider a Hilbert S-cycle α ⊂ X and a morphism of schemes f : S′ → S. Put
X ′ = X ×S S

′. We choose a finite family (Zi)i∈I of flat equidimensional S-schemes and a finite
family (ni)i∈I ∈ ΛI such that α =

∑

i∈I ni.〈Zi〉X . The previous lemma says exactly that the cycle
∑

i∈I

ni.〈Zi ×S S
′〉X′

depends only on α and not on the chosen families.

Definition 8.1.14. Adopting the preceding notations and hypothesis, we define the pullback
cycle of α along the morphism f : S′ → S as the cycle with domain X ′

α⊗♭S S
′ =

∑

i∈I

ni.〈Zi ×S S
′〉X′ .

In this setting the following lemma is obvious :

Lemma 8.1.15. Let α be a Hilbert cycle over S, and S′′ → S′ → S be morphisms of schemes.
Then (α⊗♭S S

′)⊗♭S′ S′′ = α⊗♭S S
′′.

We will use another important computation from [SV00b] (it is a particular case of loc. cit.,
3.6.1).

Proposition 8.1.16. Let R be a discrete valuation ring with residue field k.
Let α ⊂ X be a Hilbert cycle over Spec (R) and f : X → Y a morphism over Spec (R). We denote
by f ′ : X ′ → Y ′ the pullback of f over Spec (k).

Suppose that the support of α is proper with respect to f .
Then f∗(α) is a Hilbert cycle over R and the following equality of cycles holds in X ′:

f ′∗(α⊗
♭
S k) = f∗(α)⊗

♭
S k.
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Definition 8.1.17. Let p : S̃ → S be a birational morphism. Let C be the minimal closed
subset of S such that p induces an isomorphism (S̃ − S̃ ×S C)→ (S − C).

Consider α =
∑

i∈I ni.〈Zi〉X a cycle over S written in standard form.

We define the strict transform Z̃i of the closed subscheme Zi in X along p as the schematic
closure of (Zi−Zi×S C)×S S̃ in X ×S S̃. We define the strict transform of α along p as the cycle

over S̃

α̃ =
∑

i∈I

ni.〈Z̃i〉X×S S̃
.

As in [SV00b], we remark that a corollary of the platification theorem of Gruson-Raynaud is
the following :

Lemma 8.1.18. Let S be a reduced scheme and α be a pseudo-dominant cycle over S.
Then there exists a dominant blow-up p : S̃ → S such that the strict transform α̃ of α along

p is a Hilbert cycle over S̃.

We conclude this part by recalling an elementary lemma about cycles and Galois descent
which will be used extensively in the next sections :

Lemma 8.1.19. Let L/K be an extension of fields and X be a K-scheme. We put XL =
X ×K Spec (L) and consider the faithfully flat morphism f : XL → X.

Denote by Cycl(X) (resp. Cycl(XL)) the cycles with domain X (resp. XL).

(1) The morphism f∗ : Cycl(X)→ Cycl(XL), β 7→ β ⊗♭K L is a monomorphism.
(2) Suppose L/K is finite. For any K-cycle β ∈ Cycl(X),

f∗(β ⊗
♭
K L) = [L : K].β.

(3) Suppose L/K is finite normal with Galois group G.
The cycles in the image of f∗ are invariant under the action of G. For any cycle

β ∈ Cycl(XL)
G, there exists a unique cycle βK ∈ Cycl(X) such that

βK ⊗
♭
K L = [L : K]i.β

where [L : K]i is the inseparable degree of L/K.

8.1.c. Specialization. The aim of this section is to give conditions on cycles so that one can
define a relative tensor product on them.

Definition 8.1.20. Consider two cycles α =
∑

i∈I ni.si and β =
∑

j∈J mi.xj . Let S be the
support of α.

A morphism β
f
−→ α of cycles is said to be pre-special if it is of finite type and for any j ∈ J ,

there exists i ∈ I such that f(xj) = si and ni|mj in Λ. We define the reduction of β/α as the
cycle over S

β0 =
∑

j∈J,f(xj)=si

mj

ni
.xj .

Example 8.1.21. Let S be a scheme and α a Hilbert S-cycle. Then the canonical morphism
of cycles α→ 〈S〉 is pre-special. If S is the spectrum of a discrete valuation ring, an S-cycle α is
pre-special if and only if it is a Hilbert S-cycle.

Definition 8.1.22. Let α be a cycle.

A point (resp. trait) of α will be a morphism Spec (k)
x
−→ α (resp. Spec (R)

τ
−→ α) such that k

is a field (resp. R is a discrete valuation ring). We simply say that x (resp. τ) is dominant if the
image of the generic point in the domain of α is a generic point of α.
Let x : Spec (k0)→ α be a point. An extension of x will be a point y on α of the form Spec (k)→

Spec (k0)
x
−→ α.

A fat point of α will be morphisms

Spec (k)
s
−→ Spec (R)

τ
−→ α
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such that τ is a dominant trait and the image of s is the closed point of Spec (R).
Given a point x : Spec (k)→ α, a fat point over x is a factorization of x through a dominant trait
as above.

In the situation of the last definition, we denote simply by (R, k) a fat point over x, without
indicating in the notation the morphisms s and τ .

Remark 8.1.23. With our choice of terminology, a point of α is in general an extension of a
specialization of a generic point of α. As a further example, a dominant point of α is an extension
of a generic point of α.

Lemma 8.1.24. For any cycle α and any non dominant point x : Spec (k0) → α, there exists
an extension y : Spec (k)→ α of x and a fat point (R, k) over y.

Proof. Replacing α by its support S, we can assume α = 〈S〉. Let s be the image of x in S,
κ its residue field. We can assume S is reduced, irreducible by taking one irreducible component
containing s, and local with closed point s. Let S = Spec (A), K = Frac(A). According to
[EGA2, 7.1.7], there exists a discrete valuation ring R such that A ⊂ R ⊂ K, and R/A is an
extension of local rings. Then any composite extension k/κ of k0 and the residue field of R over
κ gives the desired fat point (R, k). �

Definition 8.1.25. Let β → α be a pre-special morphism of cycles. Consider S the support of
α and X the domain of β. Let β0 =

∑

j∈J mj .〈Zj〉X be the reduction of β/α written in standard
form.

(1) Let Spec (K) → α be a dominant point. We define the following cycle over Spec (K)
with domain XK = X ×S Spec (K) :

βK =
∑

j∈J

mj .〈Zj ×S Spec (K)〉XK
.

(2) Let Spec (R)
τ
−→ S be a dominant trait, K be the fraction field of R and j : XK → XR be

the canonical open immersion. We define the following cycle over R with domain XR :

βR = j∗(βK).

According to example 8.1.11, βR is a Hilbert cycle over R.
(3) Let x : Spec (k)→ α be a point on α and (R, k) be a fat point over x.

We define the specialization of β along the fat point (R, k) as the cycle

βR,k := βR ⊗
♭
R k

using the above notation and definition 8.1.14. It is a cycle over Spec (k) with domain
Xk = X ×S Spec (k).

Remark 8.1.26. Let β ⊂ X be an S-cycle, x : Spec (K)→ S be a dominant point and U be
an open neighborhood of x in S.
Then if β is pre-special over S, β|U is pre-special over U and βK = (β|U )K .
If τ : Spec (R) → S (resp. (R, k)) is a trait (resp. fat point) with generic point x, we also get
βR = (β|U )R (resp. βR,k = (β|U )R,k).

8.1.27. Let S be a reduced scheme, and β =
∑

i∈I ni.xi be an S-cycle with domain X. For
any index i ∈ I, let κi be the residue field of xi.

Consider a dominant point x : Spec (K) → S. Let η be its image in S and F be the residue
field of η. We put I ′ = {i ∈ I | f(xi) = η} where f : X → S is the structural morphism. With
these notations, we get

βK =
∑

i∈I′

ni.〈Spec (κi ⊗F K)〉XK
,

and for a dominant trait Spec (R)→ S with generic point x,

(8.1.27.1) βR =
∑

i∈I′

ni.〈Spec (κi ⊗F K)〉XR
,
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where Spec (κi ⊗F K) is seen as a subscheme of XK (resp. XR).
Consider a fat point (R, k) with generic point x and write β =

∑

i∈I ni.〈Zi〉X in standard

form (i.e. Zi is the closure of {xi} in X). Then according to (8.1.6.1), we obtain76

βR,k =
∑

i∈I′

ni.
〈
Zi,K ×R Spec (k)

〉

Xk

where Zi,K = Zi ×S Spec (K) is considered as a subscheme of XK and the schematic closure is
taken in XR.

Considering the description of the schematic closure for the generic fiber of an R-scheme (cf.
[EGA4, 2.8.5]), we obtain the following way to compute βR,k. By definition, R is an F -algebra.
For i ∈ I ′, let Ai be the image of the canonical morphism

κi ⊗F R→ κi ⊗F K.

It is an R-algebra without R-torsion. Moreover, the factorization

Spec (κi ⊗F K)→ Spec (Ai)→ Spec (κi ⊗F R)

defines Spec (Ai) as the schematic closure of the left hand side in the right hand side (cf. [EGA4,
2.8.5]). In particular, we get an immersion Spec (Ai ⊗R k)→ Xk and the nice formula :

βR,k =
∑

i∈I′

ni. 〈Spec (Ai ⊗R k)〉Xk
.

Definition 8.1.28. Consider a morphism of cycles f : β → α and a point x : Spec (k0)→ α.
We say that f is special at x if it is pre-special and for any extension y : Spec (k) → α of x, for
any fat points (R, k) and (R′, k) over y, the equality βR,k = βR′,k holds in Xk. Equivalently, we
say that β/α is special at x.
We say that f is special (or that β is special over α) if it is special at every point of α.

Remark 8.1.29. (1) Trivially, f is special at every dominant point of α.
(2) Given an extension y of x, it is equivalent for f to be special at x or at y (use Lemma

8.1.19(1)). Thus, in the case where α = 〈S〉, we can restrict our attention to the points
s ∈ S.

(3) According to 8.1.26, the property that β/S is special at s ∈ S depends only on an open
neighbourhood U of s in S. More precisely, the following conditions are equivalent :
(i) β is special at s over S.
(ii) β|U is special at s over U .

Example 8.1.30. Let S be a scheme and β be a Hilbert cycle over S. We have already seen
that β → 〈S〉 is pre-special. The next lemma shows this morphism is in fact special.

Lemma 8.1.31. Let S be a scheme and β be a Hilbert cycle over S. Consider a point x :
Spec (k)→ S and a fat point (R, k) over x.

Then βR,k = β ⊗♭S k.

Proof. According to the preceding definition and Lemma 8.1.15 it is sufficient to prove
βR = β ⊗♭S R. As the two sides of this equation are unchanged when replacing β by the reduction
β0 of β/S, we can assume that S is reduced. By additivity, we are reduced to the case where
β = 〈X〉 is the fundamental cycle associated with a flat S-scheme X. According to 8.1.6.1,
βR =

〈
XK

〉

XR
. Applying now [EGA4, 2.8.5], XK is the unique closed subscheme Z of XR such

that Z is flat over Spec (R) and Z ×R Spec (K) = XK . Thus, as XR is flat over Spec (R), we get
XK = XR and this concludes. �

Lemma 8.1.32. Let p : S̃ → S be a birational morphism and consider a commutative diagram

S̃
p
��Spec (k) // Spec (R)

44iiii

**VVVV
S

76This shows that our definition coincide with the one given in [SV00b] (p. 23, paragraph preceding 3.1.3)
in the case where α = 〈S〉, S reduced.
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such that (R, k) is a fat point of S̃ and S.

Consider a pre-special cycle β over S and β̃ its strict transform along p. Then, β̃ is pre-special
and β̃R,k = βR,k.

Proof. Using 8.1.26, we reduce to the case where p is an isomorphism which is trivial. �

Lemma 8.1.33. Let S be a reduced scheme, x : Spec (k0)→ S be a point and α be a pre-special

cycle over S. Let p : S̃ → S be a dominant blow-up such that the strict transform α̃ of α along p
is a Hilbert cycle over S̃. Then the following conditions are equivalent :

(i) α is special at x.

(ii) for every points x1, x2 : Spec (k)→ S̃ such that p ◦ x1 = p ◦ x2 and p ◦ x1 is an extension
of x, α̃⊗♭

S̃
x1 = α̃⊗♭

S̃
x2.

Proof. The case where x is a dominant point follows from the definitions and the fact p is
an isomorphism at the generic point. We thus assume x is non dominant.
(i)⇒ (ii) : Applying Lemma 8.1.24 to xi, i = 1, 2, we can find an extension x′i : Spec (ki)→ S̃ of
xi and a fat point (Ri, ki) over x′i. Taking a composite extension L of k1 and k2 over k, we can
further assume L = k1 = k2 and p ◦ x′1 = p ◦ x′2. Then for i = 1, 2, we get

(
α̃⊗♭

S̃
xi
)
⊗♭k L

8.1.15
α̃⊗♭

S̃
x′i

8.1.31 α̃Ri,L
8.1.32αRi,L,

and this concludes according to 8.1.19(1).
(ii)⇒ (i) : Consider an extension y : Spec (k)→ α over x and two fat point (R1, k), (R2, k) over
y. Fix i ∈ {1, 2}. As p is proper birational, the trait Spec (Ri) on S can be extended (uniquely)

to S̃. Let xi : Spec (k) → Spec (Ri) → S̃ be the induced point. Then the following computation
allows to conclude :

αRi,k
8.1.32 α̃Ri,k

8.1.31
α̃⊗♭ xi �

8.1.d. Pullback.

8.1.34. In this part, we construct a pullback which extends the pullback defined by Suslin
et Voevodsky in [SV00b, 3.3.1] to the case of morphism of cycles. Consider the situation of a
diagram of cycles

β

f

��

X

��
⊂

α′ // α S′ // S

where the diagram on the right is the domain of the one on the left. Let n be exponential
characteristic of Supp(α′).

The pullback of β, considered as an α-cycle, over α′ will be a Λ[1/n]-cycle denoted by β⊗αα
′.

It will fits into the following commutative diagram of cycles

β ⊗α α
′ //

��

β

��

X ×S S
′ //

��

X

��
⊂

α′ // α S′ // S

where the right commutative square is again the support of the left one.
It will be defined under an assumption on β/α and is therefore non symmetric77. This assump-

tion will imply that β/α is pre-special, and the first property of β ⊗α α
′ is that it is pre-special

over α′.
We define this product in three steps in which the following properties78 will be a guideline :

(P1) Let S0 be the support of α and β0 be the reduction of β/α as an S0-cycle. Consider the
canonical factorization α′ → S0 → α.
Then, β ⊗α α

′ = β0 ⊗S0 α
′.

77See further 8.2.3 for this question.
78All these properties except (P3) will be particular cases of the associativity of the pullback.
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(P2) Consider a commutative diagram

Spec (E) // Spec (R′) //

�� (∗)

Spec (R)

��
α′ // α

such that (R,E) (resp. (R′, E)) is a fat point on α (resp. α′).
Then, (β ⊗α α

′)R′,E = βR,E .

Assume α′ → α = 〈S′ → S〉.

(P3) If β is a Hilbert cycle over S, β ⊗S S
′ = β ⊗♭S S

′.

(P4) Consider a factorization S′ → U
j
−→ S such that j is an open immersion. Then β⊗S S

′ =
β|U ⊗U S

′.

(P5) Consider a factorization S′ → S̃
p
−→ S such that p is a birational morphism. Then

β ⊗S S
′ = β̃ ⊗S̃ S

′.

Lemma 8.1.35. Consider the hypothesis of 8.1.34 in the case where α′ = Spec (k) is a point x
of α.

We suppose that f is special at x.
Then the pre-special Λ[1/n]-cycle β ⊗α k exists and is uniquely determined by property (P2)

above. We also put βk := β ⊗α k.
The properties (P1) to (P5) are fulfilled and in addition :

(P6) For any extension fields L/k, βL = βk ⊗
♭
k L.

Proof. According to Lemma 8.1.24 there always exists a fat point (R,E) over an extension
of x. Thus the unicity statement follows from 8.1.19(1).

For the existence, we first consider the case where α = 〈S〉 is a reduced scheme. Applying

Lemma 8.1.18, there exists a blow-up p : S̃ → S such that the strict transform β̃ of β along p is a
Hilbert cycle over S̃.

As p is surjective, the fiber S̃k is a non empty algebraic k-scheme. Thus, it admits a closed
point given by a finite extension k′0 of k. Let k′/k be a normal closure of k′0/k and G be its Galois

group. As β/S is special at x by hypothesis, Lemma 8.1.33 implies that β̃ ⊗♭
S̃
k′ is G-invariant.

Thus, applying Lemma 8.1.19, there exists a unique cycle βk ⊂ Xk with coefficients in Λ[1/n] such

that βk ⊗
♭
k k

′ = β̃ ⊗♭
S̃
k′.

We prove (P2). Given a diagram (∗) with α′ = Spec (k), we first remark that (βk)R′,E =

βk ⊗
♭
k E. As p is proper birational, the dominant trait Spec (R) → S lifts to a dominant trait

Spec (R)→ S̃. Let E′/k be a composite extension of k′/k and E/k. With these notations, we get
the following computation :

βR,E ⊗
♭
E E

′8.1.32β̃R,E ⊗
♭
E E

′8.1.31β̃ ⊗♭
S̃
E′8.1.15(β̃ ⊗♭

S̃
k′)⊗♭E E

′ βk ⊗
♭
k E

′,

so that we can conclude by applying 8.1.19(1).
In the general case, we consider he support S of α abd β0/S the reduction of β/α. According

to (P1), we are led to put βk := (β0)k with the help of the preceding case. Considering the
definition of specialization along fat points, we easily check this cycle satisfies property (P2).

Finally, property (P6) (resp. (P3), (P5)) follows from the unicity statement applying lemmas
8.1.24, 8.1.19(1) (resp. and moreover Lemma 8.1.31, 8.1.32). �

Remark 8.1.36. In the case where x is a dominant point, the cycle βk defined in the previous
proposition agrees with the one defined in 8.1.25(1).

Lemma 8.1.37. Consider the hypothesis of 8.1.34 in the case where α′ = Spec (O) is a trait
of α. Let K be the fraction field of O and x the corresponding point on α.

We suppose that f is special at x.
Then the pre-special Λ[1/n]-cycle β ⊗α O exists and is uniquely defined by the property (β ⊗α

O)⊗♭O K = βK with the notations of the preceding lemma. We also put βO := β ⊗α O.
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The properties (P1) to (P5) are fulfilled and in addition :
(P6’) For any extension O′/O of discrete valuation rings, βO′ = βO ⊗

♭
O O

′.

Proof. Remark that, with the notation of definition 8.1.7, βO ⊗
♭
O K = βO|Spec(K). For the

first statement, we simply apply Lemma 8.1.8 and put βO = j∗(βK) where j : XK → XO is the
canonical open immersion.

Then properties (P1), (P3), (P4), (P5) and (P6’) of the case considered in this lemma follows
easily from the uniqueness statement and the corresponding properties in the preceding lemma
(applying again 8.1.8).

It remains to prove (P2). According to (P1), we reduce to the case α = 〈S〉 for a reduced

scheme S. We choose a birational morphism p : S̃ → S such that the proper transform β̃ is a
Hilbert S̃-cycles. Consider a diagram of the form (∗) in this case. According to property (P3), we
can assume R′ = O.
Remark the trait Spec (R) → S admits an extension Spec (R) → S̃ as p is proper. The point x

admits an extension K ′/K which lifts to a point x′ : Spec (K ′) → S̃ – again S̃K is a non empty
algebraic scheme. The discrete valuation corresponding to O ⊂ K extends to a discrete valuation
on K ′ as K ′/K is finite. Let O′ ⊂ K ′ be the corresponding valuation ring. The corresponding trait

Spec (O′)→ S thus admits a lifting to S̃ corresponding to the point x′ as p is proper. Considering
a composite extension E′/K of K ′/K and E/K, we have obtained a commutative diagram

Spec (E′) // Spec (O′) // Spec (R)
��

Spec (O′) // S̃

which lifts our original diagram (∗). Let x1 (resp. x2) be the point Spec (E)
′ → S̃ corresponding

to the the composite through the upper way (resp. lower way) in the preceding diagram.

Then, βR,E ⊗
♭
E E

′ = β̃x1 . Moreover, we get

(β ⊗S O)O,E ⊗
♭
E E

′8.1.31(β ⊗S O)⊗♭O E
′
(P5)+(P6′)

(β̃ ⊗S̃ O
′)⊗♭O′ E′

(P3)
β̃x2

.

By hypothesis, β/α is special at Spec (K ′)→ S. Thus Lemma 8.1.33 concludes. �

Theorem 8.1.38. Consider the hypothesis of 8.1.34.
Assume f is special at the generic points of α′.
Then the pre-special Λ[1/n]-cycle β ⊗α α

′ exists and is uniquely determined by property (P2).
It satisfies all the properties (P1) to (P5).

Proof. According to Lemma 8.1.24, for any point s of S′ with residue field κ, there exists
an extension E/κ and a fat point (R,E) (resp. (R′, E)) of α (resp. α′) over Spec (E)→ α (resp.
Spec (E)→ α′). The uniqueness statement follows by applying Lemma 8.1.19(1).

For the existence, we write α′ =
∑

i∈I ni.〈Zi〉S′ in standard form.
For any i ∈ I, let Ki be the function field of Zi and consider the canonical morphism

Spec (Ki) → α. Let βKi
⊂ XKi

be the Λ[1/n]-cycle defined in lemma 8.1.35. Let ji : XKi
→ X ′

be the canonical immersion and put :

(8.1.38.1) β ⊗α α
′ =

∑

i∈I

ni.ji∗(βKi
).

Then properties (P1), (P3), (P4) and (P5) are direct consequences of this definition and of
the corresponding properties of Lemma 8.1.35.

We check property (P2). Given a diagram of the form (∗), there exists a unique i ∈ I such that
Spec (R′) dominates Zi. Thus we get for this choice of i ∈ I that (β ⊗α α

′)R′,E =
(
ji∗(βKi)

)

R′,E
.

Let K ′ be the fraction field of R′ and consider the open immersion j′ : XK′ → XR′ . The following
computation then concludes :

(
ji∗(βKi)

)

R′,E j′∗
(
ji∗(βKi

)K′)⊗♭R′ E
8.1.26

j′∗(βK′)⊗♭R′ E
8.1.37

βR′ ⊗♭R′ E
8.1.37(P2)

βR,E .

�
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Definition 8.1.39. In the situation of the previous theorem, we call the Λ[1/n]-cycle β⊗α α
′

the pullback of β/α by α′.

8.1.40. By construction, the cycle β ⊗α α
′ is bilinear with respect to addition of cycles in the

following sense:

(P7) Consider the hypothesis of 8.1.34. Let α′
1, α

′
2 be cycles with domain S′ such that α =

α′
1 + α′

2. If β/α is special at the generic points of α1 and α2, then the following cycles
are equal in X ×S S

′:

β ⊗α (α′
1 + α′

2) = β ⊗α α
′
1 + β ⊗α α

′
2.

(P7’) Consider the hypothesis of 8.1.34. Let β1, β2 be cycles with domain X such that β =
β1 + β2. If β1 and β2 are special over α at the generic points of α′, then β/α is special
at the generic points of α′ and the following cycles are equal in X ×S S

′:

(β1 + β2)⊗α α
′ = β1 ⊗α α

′ + β2 ⊗α α
′.

In the theorem above, we can assume that X (resp. S, S′) is the support of β (resp. α, α′).
Thus the support of β ⊗α α

′ is included in X ×S S
′. More precisely:

Lemma 8.1.41. Consider the hypothesis of 8.1.34 and assume that X (resp. S, S′) is the
support of β (resp. α, α′). Then, if β/α is special at the generic points of α′, we obtain:

(i) Let (X ×S S
′)(0) be the generic points of X ×S S

′. Then, we can write

β ⊗α α
′ =

∑

x∈(X×SS′)(0)

mx.x

(ii) For any generic point x of X ×S S
′, if mx 6= 0, the image of x in S′ is a generic point

s′ and the multiplicity of s′ in α′ divides mx in Λ[1/n].

Proof. Point (ii) is just a traduction that β ⊗α α
′ is pre-special over α′. For point (i), we

reduce easily to the case where α is the scheme S and S is reduced. We can also assume that α′

is the spectrum of a field k. It is sufficient to check point (i) after an extension of k. Thus we
can apply Lemma 8.1.18 to reduce to that case where β is a Hilbert cycle over S. This case is
obvious. �

Definition 8.1.42. In the situation of the previous lemma, we put

mSV (x;β ⊗α α
′) := mx ∈ Λ[1/n]

and we call them the Suslin-Voevodsky multiplicities (in the operation of pullback).

Remark 8.1.43. Consider the notations of the previous lemma:

(1) Assume that α is the spectrum of a field k. Then the product β ⊗k α
′ is always defined

and agrees with the classical exterior product (according to (P3)).
(2) According to the previous lemma, the irreducible components of X ×S S

′ which does
not dominate an irreducible component of S′ have multiplicity 0: they correspond to the
”non proper components” with respect to the operation β ⊗α α

′.

(3) Assume α′ → α = 〈S′ p
−→ S〉, β =

∑

i∈I ni.xi. Let y be a generic point of X ×S S
′ lying

over a generic point s′ of S′. Let S′
0 be the irreductible component of S′ corresponding

to s′. Consider any irreductible component S0 of S which contains p(s′) and let β0 =
∑

i ni.xi where the sums runs over the indexes i such that xi lies over S0. Then, according
to (8.1.38.1),

mSV (y;β ⊗S 〈S
′〉) = mSV (y;β0 ⊗S0

〈S′
0〉).

This is a key property of the Suslin-Voevodsky multiplicities which explains why we have
to consider the property that β/α is special at s′ (see 8.3.25 for a refined statement).
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Lemma 8.1.44. Consider a morphism of cycles α′ → α and a pre-special morphism f : β → α
which is special at the generic points of α. Consider a commutative square

Spec (k′)
x′

//

��
α′

��
Spec (k)

x // α

such that k and k′ are fields. Then the following conditions are equivalent :

(i) f is special at x.
(ii) β ⊗α α

′ → α′ is special at x′.

Proof. This follows easily from Lemma 8.1.24 and property (P2). �

Corollary 8.1.45. Let f : β → α be a special morphism.
Then for any morphism α′ → α, β ⊗α α

′ → α′ is special.

Definition 8.1.46. Let f : β → α be a morphism of cycles and x : Spec (k)→ α be a point.
We say that f is Λ-universal at x if it is special at x and the cycle β ⊗α k has coefficients in Λ.

In the situation of this definition, let s be the image of x in the support of α, and κs be its
residue field. Then according to (P6), βk = βκs ⊗

♭
κs
k. Thus f is Λ-universal at x if and only if it

is Λ-universal at s. Furthermore, the following lemma follows easily :

Lemma 8.1.47. Let f : β → α be a morphism of cycles. The following conditions are equiva-
lent :

(i) For any point s ∈ α, f is Λ-universal at s.
(ii) For any point x : Spec (k)→ α, f is Λ-universal at x.
(iii) For any morphism of cycles α′ → α, β ⊗α α

′ has coefficients in Λ.

Definition 8.1.48. We say that a morphism of cycles f is Λ-universal if it satisfies the
equivalent properties of the preceding lemma.

Of course, Λ-universal morphisms are stable by base change. These definitions will be applied
similarly to morphisms of schemes by considering the associated morphism of cycles.

Example 8.1.49. According to property (P3) of the pullback, a flat equidimensional morphism
of schemes is Λ-universal.

8.2. Intersection theoretic properties.
8.2.a. Commutativity.

Lemma 8.2.1. Consider morphisms of cycles with support in the left diagram

β

��

X
f��⊂

γ // α T
g // S

such that β/α is pre-special and γ/α is pseudo-dominant.
Assume

α =
∑

i∈I

ni.si, β =
∑

j∈J

mj .xj , γ =
∑

l∈H

pl.tl

and denote by κsi (resp. κxj , κtl) the residue field of si (resp. xj, tl) in S (resp. X, T ). Consid-

ering (i, j, l) ∈ I × J ×H such that f(xj) = g(tl) = si, we denote by νj,l : Spec
(
κxj
⊗κsi

κtl
)
→

X ×S T the canonical immersion.
Then the following assertions hold :

(i) β is special at the generic points of γ.
(ii) The cycle β ⊗α γ has coefficients in Λ.
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(iii) The following equality of cycles holds

β ⊗α γ =
∑

i,j,l

mj

ni
pl.νj,l∗

(
〈Spec

(
κyj ⊗κxi

κzl
)
〉
)

where the sum runs over (i, j, l) ∈ I × J ×H such that f(xj) = g(tj) = si.

Proof. Assertion (i) is in fact the first point of 8.1.29. Assertion (ii) follows from assertion
(iii), which is a consequence of the defining formula (8.1.38.1) and remark 8.1.36. �

Corollary 8.2.2. Let g : T → S be a flat morphism and β =
∑

j∈J mj .〈Zj〉X be a pre-special
S-cycle written in standard form.

Then β/S is pre-special at the generic points of T and

β ⊗S 〈T 〉 =
∑

j∈J

mj .〈Zj ×S T 〉.

The pullback β ⊗α γ, at it is defined only when β/α is special, is in general non symmetric in
β and γ. However the previous lemma implies it is symmetric whenever it makes sense :

Corollary 8.2.3. Consider pre-special morphisms of cycles β → α and γ → α.
Then β (resp. γ) is special at the generic points of γ (resp. β) and the following equality

holds: β ⊗α γ = γ ⊗α β.

8.2.b. Associativity.

Proposition 8.2.4. Consider morphism of cycles β
f
−→ α, α′′ → α′ → α such that f is special

at the generic points of α′ and of α′′. Let n be the exponential characteristic of α′′.
Then the following assertions hold:

(i) The relative cycle (β ⊗α α
′)/α′ is special at the generic points of α′′.

(ii) The cycle (β ⊗α α
′)⊗α′ α′′ has coefficients in Λ[1/n].

(iii) (β ⊗α α
′)⊗α′ α′′ = β ⊗α α

′′.

Proof. Assertion (i) is a corollary of Lemma 8.1.44. Assertion (ii) is in fact a corollary of
assertion (iii), which in turn follows easily from the uniqueness statement in theorem 8.1.38. �

Lemma 8.2.5. Let γ
g
−→ β

f
−→ α be two pre-special morphisms of cycles with domains Y →

X → S. Consider a fat point (R, k) over α such that γ/β is special at the generic points of βR,k.
Then γ/α is pre-special and the following equality of cycles holds in Yk:

γR,k = γ ⊗β (βR,k).

Proof. The first statement is obvious.
We first prove: γR = γ ⊗β βR.

Remark that βR → β is pseudo-dominant. Thus γ/β is special at the generic points of βR and the
right hand side of the preceding equality is well defined. Moreover, according to Lemma 8.2.1, we
can restrict to the case where α = s, β = x and γ = y, with multiplicity 1. Let κs, κx, κy be the
corresponding respective residue fields, and K be the fraction field of R.
Then, according to (8.1.27.1), γR = 〈κy ⊗κs

K〉YR
and βR = 〈κx ⊗κs

K〉XR
. But Lemma 8.2.1

implies that γ ⊗β βR = 〈κy ⊗κx
(κx ⊗κs

K)〉XR
. Thus the associativity of the tensor product of

fields allows to conclude.
From this equality and Proposition 8.2.4, we deduce that:

γR ⊗βR
βR,k = (γ ⊗β βR)⊗βR

βR,k = γ ⊗β βR,k.

Thus, the equality we have to prove can be written γR ⊗
♭
R k = γR ⊗βR

(βR ⊗
♭
R k) and we are

reduced to the case α = Spec (R).

In this case, we can assume β = 〈X〉 with X integral. Let us consider a blow-up X̃
p
−→ X such

that the proper transform γ̃ of γ along p is a Hilbert cycle over X̃ (8.1.18). We easily get (from
(P3) and 8.1.15) that

γ̃k = γ̃ ⊗X̃ 〈X̃k〉.
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Let Y (resp. Ỹ ) be the support of γ (resp. γ̃), q : Ỹ → Y the canonical projection. We consider
the cartesian square obtained by pullback along Spec (k)→ Spec (R):

Ỹk
qk //

��

Yk

��
X̃k

pk // Xk.

As Xk ⊂ X (resp. Yk ⊂ Y ) is purely of codimension 1, the proper morphism pk (resp. qk) is still

birational. As a consequence, qk∗(γ̃) = γ. Let y be a point in Ỹ
(0)
k ≃ Y

(0)
k which lies above a point

x in X̃
(0)
k ≃ X

(0)
k Then, according to (P5) and using the notations of 8.1.42, we get

mSV (y; γ̃ ⊗X̃ 〈X̃k〉) = mSV (y; γ ⊗X 〈Xk〉).

This readily implies qk∗(γ̃ ⊗X̃ 〈X̃k〉) = γ ⊗X 〈Xk〉 and allows us to conclude. �

As a corollary of this lemma using the uniqueness statement in Theorem 8.1.38, we obtained :

Corollary 8.2.6. Let γ
g
−→ β

f
−→ α be pre-special morphisms of cycles.

Let x : Spec (k) → α be a point. If β/α is special (resp. Λ-universal) at x and γ/β is special
(resp. Λ-universal) at the generic points of βk, then γ/α is special at x.

Let α′ → α be any morphism of cycles with domain S′ → S and n be the exponential charac-
teristic of α′. Then, whenever it is well defined, the following equality of Λ[1/n]-cycles holds:

γ ⊗β (β ⊗α α
′) = γ ⊗α α

′.

A consequence of the transitivity formulas is the associativity of the pullback :

Corollary 8.2.7. Suppose given the following morphisms of cycles

α

��<
<<

< β

f�����
�

��=
==

=
γ

g����
��

δ σ

such that f and g are pre-specials.
Then, whenever it is well defined, the following equality of cycles hold:

γ ⊗σ (β ⊗δ α) = (γ ⊗σ β)⊗δ α

Proof. Indeed, by the transitivity formulas 8.2.4 and 8.2.6, both members of the equation
are equal to (γ ⊗σ β)⊗β (β ⊗δ α). �

8.2.c. Projection formulas.

Proposition 8.2.8. Consider morphisms of cycles with support in the left diagram

β

��

X

��⊂

α′ // α S′
q // S

such that β/α is special at the generic points of α′.

Consider a factorization S′ g
−→ T → S.

Then β/α is special at the generic points of g∗(α) and the following equality of cycles holds in
X ×S T :

β ⊗α g∗(α
′) = (1X ×S g)∗(β ⊗α α

′).

Proof. The first assuption is obvious. By linearity, we can assume S′ is integral and α′ is
the generic point s of S′ with multiplicity 1. Let L (resp. E) be the residue field of s (resp. g(s)).

Consider the pullback square XL
g0 //

j ��

XE

i��
X ×S S

′
gX // X ×S T

where i and j are the natural immersions.
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Let d be the degree of L/E if it is finite and 0 otherwise. We are reduced to prove the equality
gX∗(j∗(βL)) = d.i∗(βE). Using the functoriality of pushforward and property (P6), it is sufficient
to prove the equality g0∗(βE⊗

♭
EL) = d.βE . If d = 0, the morphism g0 induces an infinite extension

of fields on any point of XL which concludes. If L/E is finite, g0 is finite flat and βE ⊗
♭
E L is the

usual pullback by g0. Then the needed equality follows easily (see [Ful98, 1.7.4]). �

Lemma 8.2.9. Let β → α be a pre-special morphism of cycles with domain X
p
−→ S. Let (R, k)

a fat point over α and X
f
−→ Y → S be a factorization of p. Let fk be the pullback of f over

Spec (k).
Suppose that the support of β is proper with respect to f . Then f∗(β) is pre-special over α

and the equality of cycles
(
f∗(β)

)

R,k
= fk∗(βR,k) holds in Yk.

Proof. As usual, considering the support S of α, we reduce to the case where α = 〈S〉. Let
K be the fraction field of R. As Spec (K) maps to a generic point of S, we can assume S is
integral. Let F be its function field. We can assume by linearity that β is a point x in X with
multiplicity 1.

Let L (resp. E) be the residue field of x (resp. y = f(x)). Let d be the degree of L/E if it is
finite and 0 otherwise. Consider the following pullback square

Spec (L⊗F K)
j //

f0 ��

X ×S Spec (R) = XR

fR��
Spec (E ⊗F K)

i // Y ×S Spec (R) = YR.

According to the formula (8.1.27.1), we obtain:

fR∗(βR) = fR∗j∗(〈L⊗F K〉) = i∗f0∗(〈L⊗F K〉)

= i∗f0∗(f
∗
0 (〈E ⊗F K〉) = i∗(d.〈E ⊗F K〉) = 〈f∗(β)〉R.

We are finally reduced to the case S = Spec (R) and β is a Hilbert cycle over Spec (R). Note
that f∗(β) is still a Hilbert cycle over Spec (R). As βR,k = β ⊗♭R k, the result follows now from
Proposition 8.1.16. �

Corollary 8.2.10. Consider morphisms of cycles with support in the left diagram

β

��

X
p
��⊂

α′ // α S′ // S

such that β/α is special at the generic points of α′ (resp. Λ-universal).

Consider a factorization X
f
−→ Y → S of p.

Suppose that the support of β is proper with respect to f . Then f∗(β)/α is special at the
generic points of α′ (resp. Λ-universal) and the following equality of cycles holds in X ×S S

′ :

(f ×S 1S′)∗(β ⊗α α
′) =

(
f∗(β)

)
⊗α α

′.

8.3. Geometric properties.

8.3.1. We introduce a notation which will come often in the next section. Let S be a scheme
and α =

∑

i∈I ni.〈Zi〉X an S-cycle written in standard form.

Let s be a point of S and Spec (k)
s̄
−→ S be a geometric point of S with k separably closed.

Let S′ be one of the following local schemes: the localization of S at s, the Hensel localization of
S at s, the strict localization of S at s̄.

We then define the cycle with coefficients in Λ and domain X ×S S
′ as:

α|S′ =
∑

i∈I

ni〈Zi ×S S
′〉X×SS′ .

Remark 8.3.2. The canonical morphism S′ → S is flat. In particular, α/S is special at the
generic points of S′ and we easily get: α|S′ = α⊗S S

′.
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8.3.a. Constructibility.

Definition 8.3.3. Let S be a scheme and s ∈ S a point. We say that a pre-special S-cycle α
is emphtrivial at s if it is special at s and α⊗S s = 0.

Naturally, we say that α is trivial if it is zero. Thus α is trivial if and only if it is trivial at
the generic points of S.

Recall from [EGA4, 1.9.6] that an ind-constructible subset of a noetherian scheme X is a
union of locally closed subset of X.

Lemma 8.3.4. Let S be a noetherian scheme, and α/S be a pre-special cycle. Then the set

T =
{
s ∈ S | α/S is special (resp. trivial, Λ-universal) at s

}

is ind-constructible in S.

Proof. Let s be a point of T , and Z be its closure in S with its reduced subscheme structure.
Put αZ = α⊗S Z, defined because α is special at the generic point of Z. Given any point t of Z,
we know that α/S is special at t if and only if αZ/Z is special at t (cf. 8.1.44). But there exists
a dense open subset Us of Z such that αZ |UZ

is a Hilbert cycle over UZ . Thus, α/S is special
at each point of Us and Us ⊂ T . This concludes and the same argument proves the respective
statements. �

8.3.5. Let I be a left filtering category and (Si)i∈I be a projective system of noetherian
schemes with affine transition morphisms. We let S be the projective limit of (Si) and we assume
the followings:

(1) S is noetherian.

(2) There exists an index i ∈ I such that the canonical projection S
pi
−→ Si is dominant.

In this case, there exists an index j/i such that for any k/j, the map pk induces an isomorphism

S(0) → S
(0)
k on the generic points (cf. [EGA4, 8.4.1]). Thus, replacing I by I/j, we can assume

that this property is satisfied for all index i ∈ I. As a consequence, the following properties are
consequences of the previous ones:

(3) For any i ∈ I, pi : S → Si is pseudo-dominant and pi induces an isomorphism S(0) →

S
(0)
i .

(4) For any arrow j → i of I, pji : Sj → Si is pseudo-dominant and pji induces an isomor-

phism S
(0)
j → S

(0)
i .

Proposition 8.3.6. Consider the notations and hypothesis above. Assume we are given a
projective system of cycles (αi)i∈I such that αi is a pre-special cycle over Si and for any j → i,
αj = αi ⊗Si

Sj. Put α = αi ⊗Si
S for an index i ∈ I.79

The following conditions are equivalent:

(i) α/S is special (resp. Λ-universal).
(ii) There exists i ∈ I such that αi/Si is special (resp. Λ-universal).
(iii) There exists i ∈ I such that for all j/i, αj/Sj is special (resp. Λ-universal).

Let s be point of S and si its image in Si. Then the following conditions are equivalent:

(i) α/S is special (resp. Λ-universal) at s.
(ii) There exists i ∈ I such that αi/Si is special (resp. Λ-universal) at si.
(iii) There exists i ∈ I such that for all j/i, αj/Sj is special (resp. Λ-universal) at sj.

Proof. Let P be one of the respective properties: “special”, “trivial”, “Λ-universal”. Using
the fact that being P at s is an ind-constructible property (from Lemma 8.3.4), it is sufficient to
apply [EGA4, th. 8.3.2] to the following family of sets:

Fi = {si ∈ Si | αi satisfies P at si}, F = {s ∈ S | α satisfies P at s}.

79The pullback is well defined because of point (3) and (4) of the hypothesis above.
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To get the two sets of equivalent conditions of the statement from op. cit. we have to prove the
following relations:

(1) : ∀(j → i) ∈ Fl(I), p−1
ji (Fi) ⊂ Fj ,

(2) : F = ∪i∈Ip
−1
i (Fi).

We consider the case where P is the property “special”. For relation (1), we apply 8.1.44 which
implies the stronger relation p−1

ji (Fi) = Fj . For relation (2), another application of 8.1.44 gives in

fact the stronger relation F = p−1
i (Fi) for any i ∈ I.

Consider a point sj ∈ S and put si = pji(sj). Assume αi is special at si. Then, applying 8.2.4
and (P3), we get:

(8.3.6.1) αj ⊗Sj
sj = (αi ⊗Si

si)⊗
♭
κ(si)

κ(sj).

Similarly, given s ∈ Sj , si = pi(s), and assuming αi is special at si, we get:

(8.3.6.2) α⊗S s = (αi ⊗Si si)⊗
♭
κ(si)

κ(s).

We consider now the case where P is the property “trivial”. Then relation (1) follows from
(8.3.6.1). Relation (2) follows from (8.3.6.1) and 8.1.19(1).

We finally consider the case P is the property “Λ-universal”. Relation (1) in this case is again
a consequence of (8.3.6.1). According to (8.3.6.2), we get the inclusion ∪i∈If

−1
i (Fi) ⊂ F . We

have to prove the reciprocal inclusion.
Consider a point s ∈ S with residue field k such that α/S is Λ-universal at s. For any i ∈ I, we
put si = pi(s) and denote by ki its residue field. It is sufficient to find an index i ∈ I such that
αi ⊗Si

si has coefficients in Λ. Thus we are reduced to the following lemma:

Lemma 8.3.7. Let (ki)i∈Iop be an ind-field and put: k = lim
−→i∈Iop

ki.

Consider a family (βi)i∈I such that βi is a ki-cycle of finite type with coefficients in Q and for
any j/i, βj = βi ⊗

♭
ki
kj. We put β = βi ⊗

♭
ki
k.

If for an index i ∈ I, βi ⊗
♭
ki
k has coefficients in Λ, then there exists j/i such that βj has

coefficients in Λ.

We can assume that for any j/i, βj has positive coefficients. Let Xj (resp. X) be the support
of βj (resp. β). We obtain a pro-scheme (Xj)j/i such that X = lim

←−i∈I
Xi. The transition maps

of (Xj)j/i are dominant. Thus, by enlarging i, we can assume that for any j/i, the induced map
π0(Xi) → π0(Xj) is a bijection. Thus we can consider each element of π0(X) separately and
assume that all the Xi are integrals: for any j/i, βj = nj .〈Xj〉 for a positive element nj ∈ Q.
Arguing generically, we can further assume Xj = Spec (Lj) for a field extension of finite type Lj
of kj . By assumption now, for any j/i, Li ⊗ki kj is an Artinian ring whose reduction is the field
Lj . Moreover, nj = ni.lg(Li ⊗ki kj) and we know that n := ni.lg(Li ⊗ki k) belongs to Λ.

Let p be a prime not invertible in Λ such that vp(ni) < 0 where vp denotes the p-adic valuation
on Q. It is sufficient to find an index j/i such that vp(nj) ≥ 0. Let L = (Li ⊗ki k)red. Remark
that L = lim

−→i∈Iop
Li. It is a field extension of finite type of k. Consider elements a1, ..., an

algebraically independant over k such that L is a finite extension of k(a1, ..., an). By enlarging i,
we can assume that a1, ..., an belongs to Li. Thus Li is a finite extension of ki(a1, ..., an): replacing
ki by ki(a1, ..., an), we can assume that Li/ki is finite.
Let L′ be the subextension of L over k generated by the p-th roots of elements of k. As L/k is
finite, L′/k is finite, generated by elements b1, ..., br ∈ L. consider an index j/i such that b1, ..., br
belongs to Lj . It follows that vp(lg(Li ⊗ki kj)) = vp(lg(Li ⊗ki k)). Thus vp(nj) = vp(n) ≥ 0 and
we are done. �

Corollary 8.3.8. Let S be a scheme and α be a pre-special S-cycle.
Let s̄ be a geometric point of S, with image s in S, and S′ be the strict localization of S at s̄.

Then the following conditions are equivalent:

(i) α/S is special at s.
(i’) α/S is special at s̄.
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(ii)
(
α|S′

)
/S′ is special at s̄ (notation of 8.3.1).

(iii) There exists an étale neighbourhood V of s̄ in S such that (α⊗S V )/V is special at s̄.

Proof. The equivalence of (i) and (i’) follows trivially from definition (cf. 8.1.29). Recall
from 8.3.1 that α|S′ = α ⊗S S

′. Thus (i′) ⇒ (ii) is easy (see 8.1.44). Moreover, (ii) ⇒ (iii) is
a consequence of the previous proposition applied to the pro-scheme of étale neighbourhood of s̄.
Finally, (iii)⇒ (i) follows from Lemma 8.1.44. �

Proposition 8.3.9. Consider the notations and hypothesis of 8.3.5. Assume that S and Si
are reduced for any i ∈ I.

Suppose given a projective system (Xi)i∈I of Si-schemes of finite type such that for any j/i,
Xj = Xi ×Si

Sj. We let X be the projective limit of (Xi).
Then for any pre-special (resp. special, Λ-universal) S-cycle α ⊂ X, there exists i ∈ I and a

pre-special (resp. special, Λ-universal) Si-cycle αi ⊂ Xi such that α = αi ⊗Si S.
80

Proof. Using Proposition 8.3.6, we are reduced to consider the first of the respective cases
of the proposition. Write α =

∑

r∈Θ nr.〈Zr〉X in standard form.
Consider r ∈ Θ. As X is noetherian, there exists an index i ∈ I and a closed subscheme Zr,i ⊂ Xi

such that Zr = Zr,i ×Si
S. Moreover, replacing Zr,i by the reduced closure of the image of the

canonical map Zr
(∗)
−−→ Zr,i, we can assume that the map (∗) is dominant. For any j ∈ I/i, we

put Zr,j = Zr,i ×Si
Sj . The limit of the pro-scheme (Zr,j)j∈I/iop is the integral scheme Zr. Thus,

applying [EGA4, 8.2.2], we see that by enlarging i, we can assume that for any j ∈ I/i, Zr,j is
irreducible (but not necessarily reduced).
We repeat this construction for every r ∈ Θ, enlarging i at each step. Fix now an element j ∈ I/i.
The scheme Zr,j may not be reduced. However, its reduction Z ′

r,j is an integral scheme such that
Z ′
r,j ×Sj

S = Zr. We put

αj =
∑

r∈Θ

nr〈Z
′
r,j〉Xj .

Let zr,j be the generic point of Z
′
r,j , and sr,j be its image in Sj . It is a generic point and corresponds

uniquely to a generic point sr of S according to the point (3) of the hypothesis 8.3.5. Thus αj/Sj
is pre-special. Moreover, we get from the above that κ(zr,j)⊗κ(sr,j) κ(sr) = κ(zr) where zr is the
generic point of Zr. Thus the relation αj ⊗Sj S = α follows from lemma 8.2.1. �

8.3.b. Samuel multiplicities.

8.3.10. We give some recall on Samuel multiplicities, following as a general reference [Bou93,
VIII.§7].
Let A be a noetherian local ring with maximal ideal m. Let M 6= 0 be a A-module of finite type
and q ⊂ m an ideal of A such that M/qM has finite length. Let d be the dimension of the support
of M . Recall from loc. cit. that Samuel multiplicity of M at q is defined as the integer:

eAq (M) := lim
n→∞

(
d!

nd
lgA(M/qnM)

)

In the case M = A, we simply put eq(A) := eAq (A) and e(A) := eAm(A).
We will use the following properties of these multiplicities that we recall for the convenience

of the reader; let A be a local noetherian ring with maximal ideal m:
Let Φ be the generic points p of Spec (A) such that dim(A/pA) = dimA. Then according to

proposition 3 of loc. cit.:

(S1) eq(A) =
∑

p∈Φ

lg(Ap).eq(A/p).

Let B be a local flat A-algebra such that B/mB has finite length over B. Then according to
proposition 4 of loc. cit.:

(S2)
emB(B)

e(A)
= lgB(B/mB).

80This pullback is defined in any case because of point (3) of the hypothesis above.
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Let B be a local flat A-algebra such that mB is the maximal ideal of B. Let q ⊂ A be an ideal
such that A/qA has finite length. Then according to the corollary of proposition 4 in loc. cit.:

(S3) eqB(B) = eq(A).

Assume A is integral with fraction field K. Let B be a finite local A-algebra such that B ⊃ A.
Let kB/kA be the extension of the residue fields of B/A. Then, according to proposition 5 and
point b) of the corollary of proposition 4 in loc. cit.,

(S4)
emB(B)

e(A)
=

dimK(B ⊗A K)

[kB : kA]
.

Definition 8.3.11. (i) Let S = Spec (A) be a local scheme, s = m the closed point of S.
Let Z be an S-scheme of finite type with special fiber Zs. For any generic point z of Zs,

denoting by B the local ring of Z at z, we define the Samuel multiplicity of Z at z over S as the
rational integer:

mS(z, Z/S) =
emB(B)

e(A)
.

In the case where Z is integral, we define the Samuel specialization of the S-cycle 〈Z〉 at s as
the cycle with rational coefficients and domain Zs:

〈Z〉 ⊗S
S s =

∑

z∈Z
(0)
s

mS(z, Z/S).z.

Consider an S-cycle of finite type α =
∑

i∈I ni.〈Zi〉X written in standard form. We define the
Samuel specialization of the S-cycle α at s as the cycle with domain Xs:

α⊗S
S s =

∑

i∈I

ni.〈Zi〉 ⊗
S
S s.

(ii) Let S be a scheme. For any point s of S, we let S(s) be the localized scheme of S at s.
Let f : Z → S be an S-scheme of finite type, and z a point of Z which is generic in its fiber.

Put s = f(z). We define the Samuel multiplicity of Z/S at z as the integer

mS(z, Z/S) := mS(z, Z ×S S(s)/S(s)).

Consider an S-cycle of finite type α with domain X and a point s of S. We define the Samuel
specialization of the S-cycle α at s as the cycle with rational coefficients:

α⊗S
S s =

(
α|S(s)

)
⊗S
S(s)

s.

Lemma 8.3.12. Let S be a scheme, and p : Z ′ → Z an S-morphism which is a birational
universal homeomorphism. Then for any point s ∈ S,

〈Z ′〉 ⊗S
S s = 〈Z〉 ⊗

S
S s

in (Z ′
s)red = (Zs)red.

Proof. By hypothesis, p induces an isomorphism Z ′(0) ≃ Z(0) between the generic points.
Given any irreducible component T ′ of Z ′ corresponding to the irreducible component T of Z, we
get by hypothesis:

T ′
red ≃ Tred (as schemes), lg

(
OZ′,T ′

)
= lg

(
OZ,T

)
.

Thus, we easily concludes from the definition. �

8.3.13. Let Z
f
−→ S be a morphism of finite type and a z a point of Z, s = f(z). Assume z is

a generic point of Zs. We introduce the following condition:

D(z, Z/S) :

{
For any irreducible component T of Z(z),

Ts = ∅ or dim(T ) = dim(Z(z)).

Remark 8.3.14. This condition is in particular satisfied if Z(z) is absolutely equidimensional
(and a fortiori if Z is absolutely equidimensional).

An immediate translation of (S1) gives:
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Lemma 8.3.15. Let S be a local scheme with closed point s and Z be an S-scheme of finite
type such that Zs is irreducible with generic point z.

If the condition D(z, Z/S) is satisfied, then 〈Z〉 ⊗S
S s = mS(z, Z/S).z.

We get directly from (S2) the following lemma:

Lemma 8.3.16. Let S be a scheme, s be a point of S, and α =
∑

i∈I ni.〈Zi〉X be an S-cycle
in standard form such that Zi is a flat S-scheme of finite type.

Then α is a Hilbert S-cycle and α⊗S
S s = α⊗♭S s.

With the notations of 8.3.1, we get from (S3):

Lemma 8.3.17. Let S be a scheme, s a point of S with residue field k and α an S-cycle of
finite type.

(i) Let S′ be the Hensel localization of S at s. Then, α⊗S
S s =

(
α|S′

)
⊗S
S′ s.

(ii) Let k̄ a separable closure corresponding and s̄ the corresponding geometric point of S. Let
S(s̄) be the strict localization of S at s̄. Then,

(
α⊗S

S s
)
⊗♭k k̄ =

(
α|S(s̄)

)
⊗S
S(s̄)

s̄.

Let us recall from [EGA4, 13.3.2] the following definition:

Definition 8.3.18. Let f : X → S be a morphism of finite type between noetherian schemes,
and x a point of X.

We say f is equidimensional at x if there exists an open neighbourhood U of x in X and a
quasi-finite pseudo-dominant S-morphism U → Ad

S for d ∈ N. The integer d is independant of
the choice of U : it is called the relative dimension of f at x.

We say f is equidimensional if it is equidimensional at every point of X.

Remark 8.3.19. A quasi-finite morphism is equidimensional if and only if it is pseudo-
dominant. According to [EGA4, 12.1.1.5], this definition agrees with the convention stated in
paragraph 8.1.9 in the case of flat morphisms.

Note that a direct translation of (S4) gives:

Lemma 8.3.20. Let S = Spec (A) be an integral local scheme with closed point s and fraction
field K. Let Z be a finite equidimensional S-scheme and z a generic point of Zs. Let B be the
local ring of Z at z.

Then,

mS(z, Z/S) =
dimK(B ⊗A K)

[κ(x) : κ(s)]
.

8.3.21. Recall that a scheme S is said to be unibranch ( resp. geometrically unibranch) at a
point s ∈ S if the henselisation (resp. strict henselisation) of the local ring OS,s is irreducible (see
[EGA4, 6.15.1, 18.8.16]). The scheme S is said to be unibranch (resp. geometrically unibranch)
if it is so at any point s ∈ S.

The following result is the key point of this subsection.

Proposition 8.3.22. Consider a cartesian square

Z ′
g′ //

f ′

��

Z
f��

S′
g // S

and a point s′ of S′, s = g(s′). Let k (resp. k′) be the residue field of s (resp. s′). We assume
the following conditions:

(1) S (resp. S′) is geometrically unibranch at s (resp. s′).
(2) f and f ′ are equidimensional of dimension n.
(3) For any generic point z of Zs (resp. z

′ of Zs′) the condition D(z, Z/S) (resp. D(z
′, Z ′/S′))

is satisfied.
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Then, the following equality holds in Zs′ :

〈Z ′〉 ⊗S
S′ s′ = (〈Z〉 ⊗S

S s)⊗
♭
k k

′.

Proof. According to Lemma 8.3.15, we have to prove the equality:

(8.3.22.1)
∑

z′∈Z
(0)

s′

mS(z′, Z ′/S′).z′ =
∑

z∈Z
(0)
s

mS(z, Z/S).〈Spec (κ(z)⊗k k
′)〉Zs′

.

As f is equidimensional of dimension n, we can assume according to 8.3.18 that there exists
a quasi-finite pseudo-dominant S-morphism p : Z → An

S . For any generic point z of Zs, t = p(z)
is the generic point of An

s . Thus applying (S3), we get:

mS(z, Z/S) = mS(z, Z/An
S).

Consider the S′ morphism p′ : Z ′ → An
Z′ obtained by base change. It is quasi-finite. As Z ′/S′

is equidimensional of dimension n, p′ must be pseudo-dominant. For any generic point z′ of Zs′ ,
t′ = p′(z′) is the generic point of An

s′ and as in the preceding paragraph, we get

mS(z′, Z ′/S′) = mS(z′, Z ′/An
S′).

Moreover, the residue field κt of t (resp. κt′ of t′) is k(t1, ..., tn) (resp. k′(t1, ..., tn)) and
this implies Spec (κ(z)⊗κt

κt′) is homeomorphic to Spec (κ(z)⊗k k
′) and has the same geometric

multiplicities. Putting this and the two preceding relations in (8.3.22.1), we get reduced to the
case n = 0 – indeed, according to [EGA4, 14.4.1.1], An

S (resp. An
S′) is geometrically unibranch

at t (resp. t′).

Assume now n = 0, so that f and f ′ are quasi-finite pseudo-dominant.
Let k̄ be a separable closure of k and k̄′ a separable closure of a composite of k̄ and k′. It

is sufficient to prove relation (8.3.22.1) after extension to k̄′ (Lemma 8.1.19). Thus according to
8.3.17 and hypothesis (3), we can assume S and S′ are integral strictly local schemes.

For any z ∈ Z
(0)
s , the extension κ(z)/k is totally inseparable. Moreover, z corresponds to a

unique point z′ ∈ Z
(0)
s′ and we have to prove for any z ∈ Z

(0)
s :

mS(z′, Z ′/S′) = mS(z, Z/S). lg(κ(z)⊗k k
′).

Let S = Spec (A), K = Frac(A) and B = OZ,z (resp. S′ = Spec (A′), K ′ = Frac(A′) and
B′ = OZ′,z′). As B is quasi-finite dominant over A and A is henselian, B/A is necessarily finite
dominant. The same is true for B′/A′ and (S4) gives the formulas:

mS(z, Z/S) =
dimK(B ⊗A K)

[κ(z) : k]
, mS(z′, Z ′/S′) =

dimK′(B′ ⊗A′ K ′)

[κ(z′) : k′]
.

As B′⊗A′ K ′ = (B⊗AK)⊗KK
′, the numerator of these two rationals are the same. To conclude,

we are reduced to the easy relation

[κ(z′) : k′]. lg(κ(z)⊗k k
′) = [κ(z) : k].

�

Definition 8.3.23. Let S be a scheme and α =
∑

i∈I ni.〈Zi〉X be an S-cycle in standard
form.

We say α/S is pseudo-equidimensional over s if it is pre-special and for any i ∈ I, the structual
map Zi → S is equidimensional at the generic points of the fiber Zi,s.

Proposition 8.3.24. Let S be a strictly local integral scheme with closed point s and residue
field k and α be an S-cycle pseudo-equidimensional at s.

Then for any extension Spec (k′)
s′
−→ S of s and any fat point (R, k′) of S over s′, the following

relation holds:

αR,k′ =
(
α⊗S

S s
)
⊗♭k k

′.



192

Proof. We put S′ = Spec (R) and denote by s′ its closed point.

Reductions.– By additivity, we reduce to the case α = 〈Z〉, Z is integral and the structural
morphism f : Z → S is equidimensional at the generic points of Zs. Any generic points of S′

s′

dominantes a generic point of Zs so that we can argue locally at each generic point x of Zs. Thus
we can assume Zs is irreducible with generic point x. Moreover, as Z is equidimensional at x, we
can assume according to 8.3.18 there exists a quasi-finite pseudo-dominant S-morphism

(8.3.24.1) Z
p
−→ An

S .

Note that S is geometrically unibranch at s. Thus, applying [EGA4, 14.4.1] (”critère de
Chevalley”), f is universally open at x. As S′ is a trait whose close point goes to s in S, it follows
from [EGA4, 14.3.7] that the base change f ′ : Z ′ → S′ of f along S′/S is pseudo-dominant.

Let T be an irreducible component of Z ′, with special fiber Ts′ and generic fiber TK′ over S′.
Then T → S′ is a dominant morphism of finite type. Thus, according to [EGA4, 14.3.10], either
Ts′ = ∅ or dim(Ts′) = dim(TK′). Moreover, the dimension of Tη is equal to the transcendantal
degree of the function field of T over K ′, which is equal to the transcendental degree of Z over
K. This is n according to (8.3.24.1). Thus, in any case, T is equidimensional of dimension n over
S′ and this implies Z ′ is equidimensional of dimension n over S′. Moreover, either Ts′ = ∅ or
dim(T ) = n + 1 = dim(Z ′). Note this implies that for any generic point z′ of Zs′ , the condition
D(z′, Z ′/S′) is satisfied.

Middle step.– We prove: αR,k = 〈Z ′〉 ⊗S
S′ s′.

According to Lemma 8.3.16,

αR,k = 〈Z ′
K〉 ⊗

♭
R k

′ = 〈Z ′
K〉 ⊗

S
S′ s′.

But the canonical map Z ′
K → Z ′ is a birational universal homeomorphism so that we conclude

this step by Lemma 8.3.12.

Final step.– We have only to point out that the conditions of Proposition 8.3.22 are fulfilled for
the obvious square; this is precisely what we need. �

Corollary 8.3.25. Let S be a reduced scheme, s a point of S and α an S-cycle which is
pseudo-equidimensional over s.

Let s̄ be a geometric point of S with image s in S and S′ be the strict localization of S at s̄.
We let S′ = ∪i∈IS

′
i be the irreducible components of S′ and αi be the cycle made by the part of

the cycle α⊗♭S S
′ whose points dominate S′

i.
Then the following conditions are equivalent:
(i) α/S is special at s.
(ii) the cycle αλ ⊗

S
S′
i
s̄ does not depend on i ∈ I.

Moreover, when these conditions are fulfilled, α⊗S s̄ = αλ ⊗
S
S′
i
s̄.

Proof. According to Corollary 8.3.8, we reduce to the case S = S′. Then this follows directly
from the preceding proposition. �

Corollary 8.3.26. Let S be a reduced scheme, geometrically unibranch at a point s ∈ S, and
α an S-cycle. The following conditions are equivalent:

(i) α/S is pseudo-equidimensional over s.
(ii) α/S is special at s.

Under these conditions, α⊗S s = α⊗S
S s.

Remark 8.3.27. In particular, over a reduced geometrically unibranch scheme S, every cycle
whose support is equidimensional over S is special.

Corollary 8.3.28. Let S be a reduced scheme and s ∈ S a point such that S is geometrically
unibranch at s and e(OS,s) = 1. Then for any S-cycle α, the following conditions are equivalent:

(i) α/S is pseudo-equidimensional over s.
(ii) α/S is Λ-universal at s.
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Remark 8.3.29. In particular, over a regular scheme S, every cycle whose support is equidi-
mensional over S is Λ-universal. Remark also the following theorem:

Theorem 8.3.30. Let S be an excellent scheme, s ∈ S a point. The following conditions are
equivalent:

(i) S is regular at s.
(ii) S is geometrically unibranch at s and e(OS,s) = 1.
(iii) S is unibranch at s and e(OS,s) = 1.

Bibliographical references for the proof. We can assume S is the spectrum of an excellent local ring
A with closed point s. The implication (i)⇒ (ii) follows from the fact that a normal local ring is
geometrically unibranch (at its closed point) and from [Bou93, AC.VIII.§7, prop. 2]. (ii)⇒ (iii)

is trivial. Concerning the implication (iii)⇒ (i), let Â be the completion of the local ring A. We

know from [Bou93, AC.VIII.108, ex. 24] that when e(A) = 1 and Â is integral, A is regular. Note
e(A) = 1 implies A is reduced. To conclude, we refer to [EGA4, 7.8.3, (vii)] which established

that if A is local excellent reduced, Â is integral if and only if A is unibranch.

Finally, we get the following theorem already proved by Suslin and Voevodsky ([SV00b,
3.5.9]):

Theorem 8.3.31. Let S be a scheme and s a point with residue field κs such that the local
ring A of S at s is regular. Then for any equidimensional S-scheme Z and any generic point z of
Zs,

mSV (z, 〈Z〉 ⊗S s) =
∑

i

(−1)ilgATor
A
i (OZ,z, κs).

Proof. We reduce to the case S = Spec (A). Then Z is absolutely equidimensional and we
can apply Lemma 8.3.15 together with Corollary 8.3.26 to get thatmSV (z, 〈Z〉⊗Ss) = mS(z, Z/S).
Then the result follows from a theorem of Serre [Ser75, IV.12, th. 1]. �

Remark 8.3.32. Let S be a regular scheme, X a smooth S-scheme and α ⊂ X an S-cycle
whose support is equidimensional over S. Let s be a point of S and i : Xs → X the closed
immersion of the fiber of X at s. Then the cycle i∗(α) of [Ser75, V-28, par. 7] is well defined and
we get:

α⊗S s = i∗(α).

9. Finite correspondences

9.0. In this section, S is the category of all noetherian schemes. We fix an admissible class
P of morphisms in S and assume in addition that P is contained in the class of separated
morphisms of finite type.

Consider two S-schemes X and Y . To clarify certain formulas, we will denote X ×S Y simply
by XY and let pXXY : XY → X be the canonical projection morphism.

We fix a ring of coefficients Λ ⊂ Q.

9.1. Definition and composition.

9.1.1. Let S be a base scheme. For any P-scheme X/S, we let c0(X/S,Λ) be the Λ-module
made of the finite and Λ-universal S-cycles with domain X.81 Consider a morphism f : Y → X
of P-schemes over S. Then the pushforward of cycles induces a well defined morphism:

f∗ : c0(Y/S,Λ)→ c0(X/S,Λ).

Indeed, consider a cycle α ∈ c0(Y/S). Let us denote by Z its support in Y and by f(Z) ⊂ X
image of the latter by f . We consider these subsets as reduced subschemes. Note that f(Z) is
separated and of finite type over S because X/S is noetherian, separated, and of finite type, by
assumption 9.0. Because Z/S is proper, [EGA2, 5.4.3(ii)] shows that f(Z) is indeed proper over
S. Thus, the cycle f∗(α) is Λ-universal according to Corollary 8.2.10. Finally, Z/S is finite, we
deduce that f(Z) is quasi-finite, thus finite, over S. This implies the result.

81With the notations of [SV00b], c0(X/S,Z) = cequi(X/S, 0) when S is reduced.
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Definition 9.1.2. Let X and Y be two P-schemes over S.
A finite S-correspondence from X to Y with coefficients in Λ is an element of

cS (X,Y )Λ := c0(X ×S Y/X).

We denote such a correspondence by the symbol X•
α
−→ Y .

In the case Λ = Z, we simply put cS (X,Y ) := cS (X,Y )Z. Through the rest of this
section, unless explicitely stated, any cycle and any finite S-correspondence are assumed to have
coefficients in Λ.

Remark 9.1.3. (1) According to properties (P7) and (P7’) (cf. 8.1.40) of the pullback,
cS (X,Y )Λ commutes with finite sums in X and Y .

(2) Consider α ∈ cS (X,Y )Λ. Let Z be the support of α. Then, Z is finite pseudo-dominant
over X (by definition 8.1.20). This means that Z is finite equidimensional over X.

When X is regular (resp. X is reduced geometrically unibranch and char(X) ⊂ Λ×),
a cycle α ⊂ X ×S Y written in standard form:

α =
∑

i

ni〈Zi〉X×SY

defines a finite S-correspondence from X to Y if and only if for any index i ∈ I, the
scheme Zi is finite equidimensional over X (i.e. finite and dominant over an irreducible
component of X) – cf. 8.3.29 (resp. 8.3.27).

Moreover, in each respective case, cS(X,Y )Λ is the free Λ-module generated by the
closed integral subschemes Z of X ×S Y which are finite equidimensional over X.

(3) Recall that in general, there is only an inclusion

cS (X,Y )⊗Z Λ ⊂ cS (X,Y )Λ .

This inclusion is an equality if S is regular (cf. 8.3.29) or char(S) ⊂ Λ×.82

Given more generally inclusions of rings Λ ⊂ Λ′ ⊂ Q, we get an inclusion of groups

(9.1.3.1) cS (X,Y )Λ ⊗Λ Λ′ ⊂ cS (X,Y )Λ′

which, for the same reasons, is an equality when S is regular or char(S) ⊂ Λ×.

Example 9.1.4. (1) Let f : X → Y be a morphism in P/S.
Because X/S is separated (assumption 9.0), the graph Γf of f is a closed subscheme

of X ×S Y . The canonical projection Γf → X is an isomorphism. Thus 〈Γf 〉XY is a
Hilbert cycle over X. In particular, it is Λ-universal and also finite over X, thus it defines
a finite S-correspondence from X to Y .

(2) Let f : Y → X be a finite S-morphism which is Λ-universal (as a morphism of the
associated cycles). Then the graph Γf of f is closed in X ×S Y and the projection
Γf → X is isomorphic to f . Thus the cycle 〈Γf 〉XY is a finite Λ-universal cycle over X
which therefore define a finite S-correspondence tf : X•−→ Y called the transpose of
the finite Λ-universal morphism f .

Suppose we are given finite S-correspondences X•
α
−→ Y •

β
−→ Z. Consider the following diagram

of cycles :

β ⊗Y α //

��

β //

��
Z.

α //

��
Y

X

(9.1.4.1)

The pullback cycle is well defined and has coefficients in Λ as β is Λ-universal over Y . Moreover,
according to the definition of pullback (cf. 8.1.38) and Corollary 8.2.6, β⊗Y α is a finite Λ-universal

82Indeed Suslin-Voeodsky’s multiplicities of a cycle over a scheme X can only have denominators whose prime
factors divide the residue characteristics of X according to 8.1.38.
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cycle over X with domain XY Z. Note finally that according to 9.1.1, the pushforward of this
latter cycle by pXZXY Z is an element of cS (X,Z)Λ.

Definition 9.1.5. Using the preceding notations, we define the composition product of β and
α as the finite S-correspondence

β ◦ α = pXZXY Z∗(β ⊗Y α) : X•−→ Z.

Remark 9.1.6. In the case where S is regular andX, Y , Z are smooth over S, the composition
product defined above agree with the one defined in [Dég07, 4.1.16] in terms of the Tor-formula
of Serre. In fact, this is a direct consequence of 8.3.31 after reduction to the case where α and β
are represented by closed integral subschemes (see also point (2) of remark 9.1.3).

We sum up the main properties of the composition for finite correspondences in the following
proposition :

Proposition 9.1.7. Let X, Y , Z be P-schemes over S.

(1) For any finite S-correspondences X•
α
−→ Y •

β
−→ Z•

γ
−→ T , we have

(γ ◦ β) ◦ α = γ ◦ (β ◦ α).

(2) For any X•
α
−→ Y

g
−→ Z, 〈Γg〉Y Z ◦ α = (1X ×S g)∗(α).

(3) For any X
f
−→ Y •

β
−→ Z, β ◦ 〈Γf 〉XY = β ⊗Y 〈X〉.

Moreover, if f is flat, β ◦ 〈Γf 〉XY = (f ×S 1Z)
∗(β) considering the flat pullback of cycles

in the classical sense.

(4) For any X
f
←− Y •

β
−→ Z such that f is finite Λ-universal,

β ◦ tf = (f ×S 1Z)∗(β).

(5) For any X•
α
−→ Y

g
←− Z such that g is finite Λ-universal,

tg ◦ α = 〈Z〉 ⊗Y α.
If we suppose that g is finite flat, then tg ◦ α = (1X ×S g)

∗(α).

Proof. (1) Using respectively the projection formulas 8.2.10 and 8.2.8, we obtain

(γ ◦ β) ◦ α = pXTXY ZT∗

(
(γ ⊗Z β)⊗Y α

)

γ ◦ (β ◦ α) = pXTXY ZT∗

(
γ ⊗Z (β ⊗Y α)

)
.

Thus this formula is a direct consequence of the associativity 8.2.7.

(2) Let ǫ : Γg → Y and pXZXΓg
: XΓg → XZ be the canonical projections. As ǫ is an

isomorphism, we have tautologically 〈Y 〉 = ǫ∗(〈Γg〉). We conclude by the following computation :

(1X ×S g)∗(α) = (1X ×S g)∗(〈Y 〉 ⊗Y α) = (1X ×S g)∗(ǫ∗〈Γg〉 ⊗Y α)

(∗)
= (1X ×S g)∗(1X ×S ǫ)∗(〈Γg〉 ⊗Y α) = pXZXΓg∗(〈Γg〉 ⊗Y α)

(∗)
= pXZXY Z∗(〈Γg〉Y Z ⊗Y α)

The equalities labeled (∗) follow from the projection formula of 8.2.10.
(3) The first assertion follows from projection formula of 8.2.8 and the fact that Γf is isomor-

phic to X :

β ◦ 〈Γf 〉XY = pXZXY Z∗(β ⊗Y 〈Γf 〉XY ) = β ⊗Y p
X
XY ∗(〈Γf 〉XY ) = β ⊗Y 〈X〉

The second assertion follows from Corollary 8.2.2.
(4) and (5): The proof of these assertions is strictly similar to that of (2) and (3) instead that

we use the projection formula of 8.2.8 (and do not need the commutativity 8.2.3). �

As a corollary, we obtain that the composition of S-morphisms coincide with the composition
of the associated graph considered as finite S-correspondences. For any S-morphism f : X → Y ,
we will still denote by f : X•−→ Y the finite S-correspondence equal to 〈Γf 〉XY . Note moreover
that for any P-schemeX/S, the identity morphism ofX is the neutral element for the composition
of finite S-correspondences.
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Definition 9.1.8. We let Pcor
Λ,S be the category of P-schemes over S with morphisms the

finite S-correspondences and the composition product of definition 9.1.5.

An object of Pcor
Λ,S will be denoted by [X]. The category Pcor

Λ,S is additive, and the direct sum
is given by the disjoint union of P-schemes over S. We have a canonical faithful functor

(9.1.8.1) γ : P/S →P
cor
Λ,S

which is the identity on objects and the graph on morphisms. We call it the graph functor.

9.1.9. Given extension of rings Λ ⊂ Λ′ ⊂ Q, we get according to Remark 9.1.3(3) and the
definition of composition of finite correspondences a functor of Λ′-linear categories:

(9.1.9.1) P
cor
Λ,S ⊗Λ Λ′ →P

cor
Λ′,S

which is the identity on objects and the inclusions of the form (9.1.3.1) on morphisms.

Proposition 9.1.10. Consider the above notations. If S is regular or char(S) ⊂ Λ× then the
functor (9.1.9.1) is an equality of categories.

Indeed according to point (3) of Proposition 9.1.3, the inclusions of groups of correspondences
used to define the above functors are all equalities in each respective cases.

9.1.11. Given two S-morphisms f : Y → X and g : X ′ → X such that g is finite Λ-universal,
we get from the previous proposition the equality of cycles in Y X ′:

tg ◦ f = 〈X ′〉 ⊗X 〈Y 〉Y X

where Y is seen as a closed subscheme of Y X through the graph of f .
In particular, when either f or g is flat, we get (use property (P3) of 8.1.34 or Corollary 8.2.2):

tg ◦ f = 〈X ′ ×X Y 〉Y X′ .

To state the next formulas (the generalized degree formulas), we introduce the following notion:

Definition 9.1.12. Let f : X ′ → X be a finite equidimensional morphism.
For any generic point x of X, we define the degree of f at x as the integer:

degx(f) =
∑

x′/x

[κx′ : κx]

where the sum runs over the generic points of X ′ lying above x.

Proposition 9.1.13. Let X be a connected S-scheme and f : X ′ → X be a finite S-morphism.
If f is special then there exists an integer d ∈ N∗ such that for any generic point x of X,

degx(f) = d.
Moreover, f ◦ tf = d.1X .

We simply call d the degree of the finite special morphism f .

Proof. Let ∆′ be the diagonal of X ′/S. For any generic point x of X, we let ∆x be the
diagonal of the corresponding irreducible component of X, seen as a closed subscheme of X.
According to Proposition 9.1.7, and the definition of pushforwards, we get

α := f ◦ tf = (f ×S f)∗(〈∆
′〉X′X′) =

∑

x∈X(0)

degx(f).〈∆x〉XX .

Considering generic points x, y of X, we prove degx(f) = degy(f). By induction, we can reduce
to the case where x and y have a common specialisation s in X because X is connected and
noetherian. Then, as α/X is special, we get by definition of the pullback (see more precisely
8.1.43)

α⊗S s = degx(f).s = degy(f).s

as required. The remaining assertion then follows. �



9. FINITE CORRESPONDENCES 197

Proposition 9.1.14. Let f : X ′ → X be an S-morphism which is finite, radicial and Λ-
universal.

Assume X is connected, and let d be the degree of f .
Then tf ◦ f = d.1X′ . In particular, if d is invertible in Λ, f is an isomorphism in Pcor

Λ,S.

Proof. According to 9.1.11, tf ◦ f = 〈X ′〉 ⊗X 〈X
′〉 as cycles in X ′X ′. Let x be the generic

point of X and k be its residue field. Let {x′i, i ∈ I} be the set of generic points of X, and for any
i ∈ I, k′i be the residue field of x′i. According to 8.2.1, we thus obtain:

tf ◦ f =
∑

(i,j)∈I2

〈Spec
(
k′i ⊗k k

′
j

)
〉X′X′ .

The result now follows by the definition of the degree and the fact that for any i ∈ I, k′i/k is
radicial. �

9.2. Monoidal structure. Fix a base scheme S. Let X, X ′, Y , Y ’ be P-schemes over S.
Consider finite S-correspondences α : X•−→ Y and α′ : X ′•−→ Y ′. Then αX ′ := α ⊗X

〈XX ′〉 and α′X := α′ ⊗X′ 〈XX ′〉 are both finite Λ-universal cycles over XX ′. Using stability by
composition of finite Λ-universal morphisms (cf. Corollary 8.2.6), the cycle (αX ′)⊗XX′ (α′X) is
finite Λ-universal over XX ′.

Definition 9.2.1. Using the above notation, we define the tensor product of α and α′ over
S as the finite S-correspondence

α⊗trS α′ = (αX ′)⊗XX′ (α′X) : XX ′•−→ Y Y ′.

Let us first remark that this tensor product is commutative (use commutativity of the pullback
8.2.3) and associative (use associativity of the pullback 8.2.7). Moreover, it is compatible with
composition :

Lemma 9.2.2. Suppose given finite S-correspondences :
α : X → Y, β : Y → Z, α′ : X ′ → Y ′, β′ : Y ′ → Z ′. Then

(β ◦ α)⊗trS (β′ ◦ α′) = (β ⊗trS β′) ◦ (α⊗trS α′).

Proof. We put αX ′ = α ⊗X 〈XX
′〉, α′X = α′ ⊗X 〈XX

′〉 and βY ′ = β ⊗Y 〈Y Y
′〉, β′Y =

β′ ⊗Y 〈Y Y
′〉. We can compute the right hand side of the above equation as follows :

pXX
′ZZ′

XX′Y Y ′ZZ′∗

(

(βY ′ ⊗Y Y ′ β′Y )⊗Y Y ′ (αX ′ ⊗XX′ α′X)
)

(1)
= pXX

′ZZ′

XX′Y Y ′ZZ′∗

(

(βY ′ ⊗Y Y ′ β′Y )⊗Y Y ′ (α′X ⊗XX′ αX ′)
)

(2)
= pXX

′ZZ′

XX′Y Y ′ZZ′∗

(

βY ′ ⊗Y Y ′ ((β′Y ⊗Y Y ′ α′X)⊗XX′ αX ′)
)

(3)
= pXX

′ZZ′

XX′Y Y ′ZZ′∗

(

(βY ′ ⊗Y Y ′ αX ′)⊗XX′ (β′Y ⊗Y Y ′ α′X))
)

.

Equality (1) follows from commutativity 8.2.3, equality (2) from associativity 8.2.7 and equality
(3) by both commutativity and associativity.

For the left hand side, we note that using the projection formula 8.2.10, the left hand side is
equal to

pXX
′ZZ′

XX′Y Y ′ZZ′∗

((
(β ⊗Y α)⊗X 〈XX

′〉
)
⊗XX′

(
(β′ ⊗Y ′ α′)⊗X′ 〈XX ′〉

))

.

We are left to remark that

(β ⊗Y α)⊗X 〈XX
′〉 =

(
(βY ′)⊗Y Y ′ α

)
⊗X 〈XX

′〉 = βY ′ ⊗Y Y ′ αX ′,

using transitivity 8.2.4 and associativity 8.2.7. We thus conclude by symmetry of the other part
in the left hand side. �
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Definition 9.2.3. We define a symmetric monoidal structure on the category Pcor
Λ,S by putting

[X] ⊗trS [Y ] = [X ×S Y ] on objects and using the tensor product of the previous definition for
morphisms.

9.2.4. Note that the functor γ : P/S →Pcor
Λ,S is monoidal for the cartesian structure on the

source category. Indeed, this is a consequence of property (P3) of the relative product (see 8.1.34)
and the remark that for any morphisms f : X → Y and f ′ : X ′ → Y ′, (Γf×SX

′)×XX′ (Γ′
f×SX) =

Γf×Sf ′ .

9.3. Functoriality. Fix a morphism of schemes f : T → S. For any P-scheme X/S, we put
XT = X ×S T . For a pair of P-schemes over S (resp. T -schemes) (X,Y ), we put XY = X ×S Y
(resp. XYT = X ×T Y ).

9.3.a. Base change. Consider a finite S-correspondence α : X•−→ Y . The cycle α ⊗X 〈XT 〉
defines a finite T -correspondence from XT to YT denoted by αT .

Lemma 9.3.1. Consider finite S-correspondences X•
α
−→ Y •

β
−→ Y .

Then (β ◦ α)T = βT ◦ αT .

Proof. This follows easily using the projection formula 8.2.10, the associativity formula 8.2.7
and the transitivity formula 8.2.4 :

pXZXY Z∗(β ⊗Y α)⊗X 〈XT 〉 = pXZT

XY ZT ∗

(
(β ⊗Y α)⊗X 〈XT 〉

)

= pXZT

XY ZT ∗

(
β ⊗Y (α⊗X 〈XT 〉)

)
= pXZT

XY ZT ∗

(
(β ⊗Y 〈YT 〉)⊗YT

(α⊗X 〈XT 〉)
)
.

�

Definition 9.3.2. Let f : T → S be a morphism of schemes. Using the preceding lemma, we
define the base change functor

f∗ : Pcor
Λ,S → Pcor

Λ,T

[X/S] 7→ [XT /T ]
cS (X,Y )Λ ∋ α 7→ αT .

We sum up the basic properties of the base change for correspondences in the following lemma.

Lemma 9.3.3. Take the notation and hypothesis of the previous definition.

(1) The functor f∗ is symmetric monoidal.
(2) Let f∗0 : P/S →P/T be the classical base change functor on P-schemes over S. Then

the following diagram is commutative:

P/S
γS //

f∗
0 ��

Pcor
Λ,S

f∗

��
P/T

γT // Pcor
Λ,T .

(3) Let σ : T ′ → T be a morphism of schemes. Through the canonical isomorphisms
(XT )T ′ ≃ XT ′ , equality (f ◦ σ)∗ = σ∗ ◦ f∗ holds.

Proof. (1) This point follows easily using the associativity formula 8.2.7 and the transitivity
formulas 8.2.4, 8.2.6.
(2) This point follows from the fact that for any S-morphism f : X → Y , there is a canonical
isomorphism ΓfT → Γf ×S T .
(3) This point is a direct application of the transitivity 8.2.4. �

Lemma 9.3.4. Let f : T → S be a universal homeomorphism.
Then f∗ : Pcor

Λ,S →Pcor
Λ,T is fully faithful.

Proof. Let X and Y be P-schemes over S. Then XT → X is a universal homeomorphism.
Any generic point x of X corresponds uniquely to a generic point of XT . Let mx (resp. m′

x) be the
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geometric multiplicity of x in X (resp. XT ). Consider a finite S-correspondence α =
∑

i∈I ni.zi.
For each i ∈ I, let xi be the generic point of X dominated by zi. Then we get by definition:

f∗(α) =
∑

i∈I

m′
xi

ni
mxi

.zi

and the lemma is clear. �

9.3.b. Restriction. Consider a P-morphism p : T → S. For any pair of T -schemes (X,Y ), we
denote by δXY : X ×T Y → X ×S Y the canonical closed immersion deduced by base change from
the diagonal immersion of T/S.

Consider a finite T -correspondence α : X•−→ Y . The cycle δXY ∗(α) is the cycle α considered
as a cycle in X ×S Y . It defines a finite S-correspondence from X to Y .

Lemma 9.3.5. Let X, Y and Z be T -schemes. The following relations are true :

(1) For any T -morphism f : X → Y , δXY ∗

(
〈Γf 〉XYT

)
= 〈Γf 〉XY .

(2) For all α ∈ cT (X,Y )Λ and β ∈ cT (Y, Z)Λ,

δXZ∗(β ◦ α) = (δY Z∗(β)) ◦ (δXY ∗(α)).

Proof. The first assertion is obvious.
The second assertion is a consequence of the projection formulas 8.2.8 and 8.2.10, and the

functoriality of pushforwards :

(δY Z∗(β)) ◦ (δXY ∗(α)) = pXZXY Z∗

(
δY Z∗(β)⊗Y δXY ∗(α)

)

= pXZXY Z∗δXY Z∗(β ⊗Y α) = δXZ∗p
XZT

XY ZT ∗(β ⊗Y α).

�

Definition 9.3.6. Let p : T → S be a P-morphism.
Using the preceding lemma, we define a functor

p♯ : Pcor
Λ,T → Pcor

Λ,S

[X → T ] 7→ [X → T
p
−→ S]

cT (X,Y )Λ ∋ α 7→ δXY ∗(α).

This functor enjoys the following properties:

Lemma 9.3.7. Let p : T → S be a P-morphism.

(1) The functor p♯ is left adjoint to the functor p∗.

(2) For any composable P-morphisms Z
q
−→ T

p
−→ S, (pq)♯ = p♯q♯.

(3) Let p0♯ : P/T →P/S be the functor induced by composition with p. Then the following
diagram is commutative:

P/T
γT //

p0♯ ��

Pcor
Λ,T

p♯��
P/S

γS // Pcor
Λ,S .

Proof. For point (1), we have to construct for schemes X/T and Y/S a natural isomorphism
cS (p♯X,Y )Λ ≃ cT (X, p∗Y )Λ. It is induced by the canonical isomorphism of schemes (p♯X)×SY ≃
X ×T (p∗Y ).
Point (2) follows from the associativity of the pushforward functor on cycles. Note also that this
identification is compatible with the transposition of the identification of 9.3.3(3) according to the
adjunction property just obtained.
Point (3) is a reformulation of 9.3.5(2). �
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9.3.c. A finiteness property.

9.3.8. We assume here that P is the class of all separated morphisms of finite type in S .
Let I be a left filtering category and (Xi)i∈I be a projective system of separated S-schemes of

finite type with affine dominant transition morphisms. We let X be the projective limit of (Xi)i
and assume that X is Noetherian over S.

Proposition 9.3.9. Let Y be a P-scheme of finite type over S. Then the canonical morphism

ϕ : lim
−→
i∈Iop

cS (Xi, Y )Λ → c0(X ×S Y/X ,Λ).

is an isomorphism.

Proof. Note that according to [SGA4, IV, 8.3.8(i)], we can assume the conditions (2) of 8.3.5
is verified for (Xi)i∈I . Thus conditions (1) to (4) of loc. cit. are verified. Then the surjectivity of
ϕ follows from 8.3.9 and the injectivity from 8.3.6. �

9.4. The fibred category of correspondences. We can summarize the preceding con-
structions:

Proposition 9.4.1. The 2-functor

P
cor
Λ : S 7→P

cor
Λ,S

equipped with the pullback defined in 9.3.2 and with the tensor product of 9.2.3 is a monoidal
P-fibred category such that the functor

γ : P →P
cor
Λ

(see (9.1.8.1)) is a morphism of monoidal P-fibred category.

Proof. According to Lemma 9.3.7, for any P morphisms p, p∗ admits a left adjoint p♯.
We have checked that γ is symmetric monoidal and commutes with f∗ and p♯ (see respectively
9.2.4, 9.3.3 and 9.3.7). But γ is essentially surjective. Thus, to prove the properties (P-BC) and
(P-PF) for the fibred category Pcor

Λ , we are reduced to the case of P which is easy (see example
1.1.28). This concludes. �

Remark 9.4.2. Consider the definition above.

(1) The category Pcor
Λ is Λ-linear. For any scheme S, Pcor

Λ,S is additive. For any finite family

of schemes (Si)i∈I which admits a sum S in S , the canonical map

P
cor
Λ,S →

⊕

i∈I

P
cor
Λ,Si

is an isomorphism.
(2) The functor γ : P →Pcor

Λ is nothing else than the canonical geometric sections of Pcor
Λ

(see definition 1.1.35).

We will apply these definitions in the particular cases P = Sm (resp. P = S ft) the class
of smooth separated (resp. separated) morphisms of finite type. Note that we get a commutative
square

Sm
γ //

��

Smcor
Λ

��

S ft
γ // S ft,cor

Λ

where the vertical maps are the obvious embeddings of monoidal Sm-fibred categories.

9.4.3. Consider extensions of rings Λ ⊂ Λ′ ⊂ Q. The functors (9.1.9.1) for various schemes
S in S are compatible with the operations of a P-fibred category because it is just concerned
with adding denominators in the coefficients of the finite correspondences considered. Thus they
induce a morphism of monoidal P-fibred categories over S :

(9.4.3.1) P
cor
Λ ⊗Λ Λ′ →P

cor
Λ′ .
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According to Proposition 9.1.10, we get the following result:

Proposition 9.4.4. Consider the above notations. Then the above morphism of monoidal
P-fibred categories is an equality whenever it is restricted to one of the following subcategories of
S :

• The category of regular schemes.
• The category of noetherian finite dimensional schemes S such that char(S) ⊂ Λ×.

Remark 9.4.5. The restriction of the category Pcor
Z to the category of regular schemes was

already defined in [Dég07]. Indeed, one can check using the comparison of Suslin-Voevodsky’s
multiplicites with Serre’s intersection multiplicities (using Tor-formulas ; cf. 8.3.31), that the
operations τ∗, τ♯, and ⊗

tr defined here coincide with that of [Dég07]. This remark extends 9.1.6.

10. Sheaves with transfers

10.0. The category S is the category of noetherian schemes of finite dimension. We fix an
admissible class P of morphisms in S satisfying the following assumptions:

(a) Any morphism in P is separated of finite type.
(b) Any étale separated morphism of finite type is in P.

We fix a topology t on S which is P-admissible and such that:

(c) For any scheme S, there is a class of covers E of the form (p : W → S) with p a
P-morphism such that t is the topology generated by E and the covers of the form
(U → U ⊔ V, V → U ⊔ V ) for any schemes U and V in S .

We fix a ring of coefficients Λ. Whenever we speak of Λ-cycles (or the premotivic category Pcor
Λ ,

etc...), we mean cycles with coefficients in the localization of Z with respect to invertible primes
in Λ.

Note that in sections 10.4 and 10.5, we will apply the conventions of section 1.4 by replacing
the class of smooth morphisms of finite type (resp. morphisms of finite type) there by the class of
smooth separated morphisms of finite type (resp. separated morphisms of finite type).

10.1. Presheaves with transfers. We consider the additive category Pcor
Λ,S of definition

9.1.8 and the graph functor γ : P/S →Pcor
Λ,S of (9.1.8.1).

Definition 10.1.1. A presheaf with transfers F over S is an additive presheaf of Λ-modules
over Pcor

Λ,S . We denote by PSh
(
Pcor

Λ,S

)
the corresponding category.

If X is a P-scheme over S, we denote by ΛtrS (X) the presheaf with transfers represented by
X.

We denote by γ̂∗ the functor

(10.1.1.1) PSh
(
P

cor
Λ,S

)
→ PSh(P/S,Λ), F 7→ F ◦ γ.

Note that PSh
(
Pcor

Λ,S

)
is obviously a Grothendieck abelian category generated by the objects

ΛtrS (X) for a P-scheme X/S. Moreover, the following proposition is straightforward:

Proposition 10.1.2. There is an essentially unique Grothendieck abelian P-premotivic cat-
egory PSh (Pcor

Λ ) which is geometrically generated (cf. 1.1.41), whose fiber over a scheme S is
PSh

(
Pcor

Λ,S

)
and such that the functor ΛtrS induces a morphism of additive monoidal P-fibred

categories.

(10.1.2.1) P
cor
Λ → PSh (Pcor

Λ ) .

Moreover, the functor (10.1.1.1) induces a morphism of abelian P-premotivic categories

γ̂∗ : PSh(P,Λ) ⇄ PSh (Pcor
Λ ) : γ̂∗.

Proof. To help the reader, we recall the following consequence of Yoneda’s lemma:
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Lemma 10.1.3. Let F : (Pcor
Λ,S)

op → Λ-mod be a presheaf with transfers. Let I be the category
of representables preshaves with transfers over F . Then the canonical map

lim
−→

Λtr
S (X)→F

ΛtrS (X)→ F

is an isomorphism. The limit is taken in PSh
(
Pcor

Λ,S

)
and runs over I.

This lemma allows us to define the structural left adjoint of PSh (Pcor
Λ ) (recall f∗, p♯ for p

a P-morphism and the tensor product) because they are indeed determined by (10.1.2.1). The
existence of the structural right adjoints is formal.

The same lemma allows to get the adjunction (γ̂∗, γ̂∗). �

Remark 10.1.4. Note that for any presheaf with transfers F over S, and any morphism
f : T → S (resp. P-morphism p : S → S′), we get as usual f∗F = F ◦ f∗ (resp. p∗F = F ◦ p♯)
where the functor f∗ (resp. p♯) on the right hand side is taken with respect to the P-fibred
category Pcor

Λ .

Let us state the following lemma for future use.

Lemma 10.1.5. Let Let (Sα)α∈A be a projective system of schemes in S , with dominant affine
transition maps, and such that S = lim

←−α∈A
Sα is representable in S .

Consider an index α0 ∈ A and a presheaf with transfers F over Sα0
. For any index α/α0,

we denote by Fα (resp. F ) the pullback of Fα0
over Sα (resp. S) in the sense of the premotivic

structure on PSh (Pcor
Λ ).

Then the canonical map:

lim
−→

α∈A/α0

Fα(Sα) −→ F (S)

is an isomorphism.

Proof. The presheaf Fα0
can be written as an inductive limit of representable sheaves of

the form ΛtrSα0
(Xα0) of a P-scheme Xα0/Sα0 . As the global section functor on presheaves with

transfers commute with inductive limit, we are reduced to the case where F = ΛtrSα0
(Xα0

). In this

case, the lemma follows directly from Proposition 9.3.9. �

10.2. Sheaves with transfers.

Definition 10.2.1. A t-sheaf with transfers over S is a presheaf with transfers F such that
the functor F ◦ γS is a t-sheaf. We denote by Sht

(
Pcor

Λ,S

)
the full subcategory of PSh(Pcor

Λ,S ,Λ) of
sheaves with transfers.

According to this definition, we get a canonical faithful functor

γ∗ : Sht
(
P

cor
Λ,S

)
→ Sht(P/S,Λ) , F 7→ F ◦ γ.

Example 10.2.2. A particularly important case for us is the case when t = Nis is the Nisnevich
topology. According to the original definition of Voevodsky, a Nisnevich sheaf with transfers will
be called simply a sheaf with transfers.

Remark 10.2.3. Later on, in the case P = S ft, we will use the notation Λtr
S (X) to denote

the presheaf on the big site S
ft,cor
Λ,S represented by a separated S-scheme of finite type.

Proposition 10.2.4. Let X be an P-scheme over S.

(1) The presheaf ΛtrS (X) is an étale sheaf with transfers.
(2) If char(X) ⊂ Λ×, ΛtrS (X) is a qfh-sheaf with transfers.

Proof. For point (1), we follow the proof of [Dég07, 4.2.4]: the computation of the pullback
by an étale map is given in our context by point (3) of Proposition 9.1.7. Moreover, the property
for a cycle α/Y to be Λ-universal is étale-local on Y according to 8.3.8. For point (2), we refer to
[SV00b, 4.2.7]. �
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We can actually describe explicitely representable presheaves with transfers in the following
case:

Proposition 10.2.5. Let S be a scheme and X be a finite étale S-scheme. Then for any
P-scheme Y over S,

Γ(Y,ΛtrS (X)) = π0(Y ×S X).Λ.

This readily follows from the following lemma:

Lemma 10.2.6. Let f : X → S be an étale separated morphism of finite type. Let πfinite0 (X/S)
be the set of connected components V of X such that f(V ) is equal to a connected component of
S ( i.e. f is finite over V ).

Then c0(X/S,Λ) = πfinite0 (X/S).Λ.

Proof. We can assume that S is reduced and connected.
We first treat the case where X = S. Consider a finite Λ-universal S-cycle α with domain S.

Write α =
∑

i∈I ni.〈Zi〉S in standard form. By definition, Zi dominates an irreducible component
of S thus Zi is equal to that irreducible component.
Consider S0 an irreducible component of S and an index i ∈ I such that S0 ∩ Zi is not empty.
Consider a point s ∈ S0 ∩ Zi. We have obviously αs = ni.〈Spec (κ(s))〉 6= 0. Thus there exists
a component of α which dominates S0 i.e. ∃j ∈ I such that Zj = S0. Moreover, computing αs
using alternatively Zi and Zj gives ni = nj .
As S is noetherian, we see inductively {Zi|i ∈ I} is the set of irreducible components of S and for
any i, j ∈ I, ni = nj . Thus c0(S/S,Λ) = Z.

Consider now the case of an étale S-scheme X. By additivity of c0, we can assume that X is
connected. Consider the following canonical map:

c0(X/S,Λ)→ c0(X ×S X/X,Λ), α 7→ α⊗♭S X.

Note that considering the projection p : X ×S X → X, by definition, α⊗♭S X = p∗(α).
Consider the diagonal δ : X → X ×S X of X/S. Because X/S is étale and separated, δ is a direct
factor of X ×S X and we can write X ×S X = X ⊔ U . Because c0 is additive,

c0(X ×S X/X,Λ) = c0(X/X,Λ)⊕ c0(U/X,Λ).

Moreover, the projection on the first factor is induced by the map δ∗ on cycles. Because δ∗p∗ = 1,
we deduce that a cycke in c0(X/S,Λ) corresponds uniquely to a cycle in c0(X/X,Λ). According to
the preceding case, this latter group is the free group generated by the cycle 〈X〉. This latter cycle
is Λ-universal over S, because X/S is flat. Thus, if X/S is finite, it is an element of c0(X/S,Λ) so
that c0(X/S,Λ) = Λ. Otherwise, not any of the Λ-linear combination of 〈X〉 belongs to c0(X/S,Λ)
so that c0(X/S,Λ) = 0. �

10.3. Associated sheaf with transfers.

10.3.1. Recall from 3.2.1 that we denote by (P/S)∐ the category of I-diagrams of objects in
P/S indexed by a discrete category I. Given any simplicial object X of (P/S)∐, we will consider
the complex ΛtrS (X ) of PSh

(
Pcor

Λ,S

)
applying the definition of 5.1.8 to the Grothendieck P-fibred

category PSh (P).
Consider a t-cover p : W → X in P/X. We denote by Wn

X the n-fold product of W over

X (in the category P/X). We denote by Š(W/X) the Čech simplicial object of Pcor
Λ,S such

that Šn(W/X) = Wn+1
X . The canonical morphism Š(W/X) → X is a t-hypercover according to

definition 3.2.1. We will call these particular type of t-hypercovers the Čech t-hypercovers of X.

Definition 10.3.2. We will say that the admissible topology t on P is compatible with
transfers (resp. weakly compatible with transfers) if for any scheme S and any t-hypercover (resp.
any Čech t-hypercover) X → X in the site P/S, the canonical morphism of complexes

(10.3.2.1) ΛtrS (X )→ ΛtrS (X)

induces a quasi-isomorphism of the associated t-sheaves on P/S.
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Obviously, if t is compatible with transfers then it is weakly compatible with transfers.
Recall from 10.2.4 that, in the cases t = Nis, ét, (10.3.2.1) is actually a morphism of complexes

of t-sheaves with transfers. The following proposition is a generalisation of [Voe96, 3.1.3] but its
proof is in fact the same.

Proposition 10.3.3. The Nisnevich (resp étale) topology t on P is weakly compatible with
transfers.

Proof. We consider a t-cover p : W → X, the associated Čech hypercover X = Š(W/X) of
X and we prove that the map (10.3.2.1) is a quasi-isomorphism of t-sheaves. Recall that a point of
P/S for the topology t is given by an essentially affine pro-object (Vi)i∈I of P/S. Moreover, its
projective limit V in the category of schemes is in particular a local henselian noetherian scheme.
It will be sufficient to check that the fiber of (10.3.2.1) at the point (Vi)i∈I is a quasi-isomorphism.
Thus, according to Proposition 9.3.9, we can assume that S = V is a local henselian scheme and
we are to reduce to prove that the complex of abelian groups

. . .→ c0(W ×X W/S,Λ)→ c0(W/S,Λ)
p∗
−→ c0(X/S,Λ)→ 0

is acyclic. We denote this complex by C.
Recall that the abelian group c0(X/S) is covariantly functorial in X with respect to separated

morphisms of finite type f : X ′ → X (cf. paragraph 9.1.1). Moreover, if f is an immersion, f∗ is
obviously injective.

Let F0 be the set of closed subschemes Z of X such that Z/S is finite. Given a closed
subscheme Z in F0, we let CZ be the complex of abelian groups

(10.3.3.1) . . .→ c0(WZ ×Z WZ/S,Λ)→ c0(WZ/S,Λ)
pZ∗
−−→ c0(Z/S,Λ)→ 0

where pZ is the t-cover obtained by pullback along Z → X. From what we have just recalled, we
can identify CZ with a subcomplex of C. The set F0 can be ordered by inclusion, and C is the
union of its subcomplexes CZ . If F0 is empty, then C = 0 and the proposition is clear. Otherwise,
F0 is filtered and we can write:

C = lim
−→
Z∈F0

CZ .

Thus, it will be sufficient to prove that CZ is acyclic for any Z ∈ F0. Because S is henselian and
Z is finite over S, Z is indeed a finite sum of local henselian schemes. This implies that the t-cover
pZ , which is in particular étale surjective, admits a splitting s : Z → WZ . Then the complex
(10.3.3.1) is contractible with contracting homotopy defined by the family

(s×Z 1Wn
Z
)∗ : c0(W

n
Z/S,Λ)→ c0(W

n+1
Z /S,Λ).

�

10.3.4. Considering an additive abelian presheaf G on P/S, the natural transformation

X 7→ HomPSh(P/S)(γ̂∗Λ
tr
S (X), G)

defines a presheaf with transfers over S.83 We will denote by Gτ its restriction to the site P/S.
Note that this definition can be applied in the case where G is a t-sheaf on P/S, because under
the assumption 10.0 on t, it is in particular an additive presheaf.

Definition 10.3.5. We will say that t is mildly compatible with transfers if for any scheme
S and any t-sheaf F on P/S, Fτ is a t-sheaf on P/S.

If t is weakly compatible with transfers then is it mildly compatible with transfers.

Remark 10.3.6. Assume t is mildly compatible with transfers. Then for any scheme S, any
t-cover p :W → X in P/S induces a morphism

p∗ : ΛtrS (W )→ ΛtrS (X)

83Actually, this defines a right adjoint to the functor γ̂∗.
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which is an epimorphism of the associated t-sheaves on P/S. This means that for any correspon-
dence α ∈ cS (Y,X), there exists a t-cover q : W ′ → Y and a correspondence α′ ∈ cS (W

′,W )
making the following diagram commutative:

W ′ α̂ //• //

q
��

W

p
��

Y
α //• // X

(10.3.6.1)

Lemma 10.3.7. Assume t is mildly compatible with transfers.
Let S be a scheme and P tr be a presheaf with transfers over S. We put P = P tr ◦ γ as a

presheaf on P/S. We denote by F the t-sheaf associated with P and by η : P → F the canonical
natural transformation.

Then there exists a unique pair (F tr, ηtr) such that:

(1) F tr is a sheaf with transfers over S such that F tr ◦ γ = F .
(2) ηtr : P tr → F tr is a natural transformation of presheaves with transfers such that the

induced transformation

P = (P tr ◦ γ)→ (F tr ◦ γ) = F

coincides with η.

Proof. As a preliminary observation, we note that given a presheaf G on P/S, the data of
a presheaf with transfers Gtr such that Gtr ◦ γ = G is equivalent to the data for any P-schemes
X and Y of a bilinear product

(10.3.7.1) G(X)⊗Z cS (Y,X)→ G(Y ), ρ⊗ α 7→ 〈ρ, α〉

such that:

(a) For any morphism f : Y ′ → Y in P/S, f∗〈ρ, α〉 = 〈ρ, α ◦ f〉.
(b) For any morphism f : X → X ′ in P/S, if ρ = f∗(ρ′), 〈ρ, α〉 = 〈ρ′, f ◦ α〉.
(c) When X = Y , for any ρ ∈ F (X), 〈ρ, 1X〉 = ρ.
(d) For any finite S-correspondence β ∈ cS (Z, Y ), 〈〈ρ, α〉, β〉 = 〈ρ, α ◦ β〉.

On the other hand, the data of products of the form (10.3.7.1) for any P-schemes X and Y over S
which satisfy the conditions (a) and (b) above is equivalent to the data of a natural transformation

φ : G→ Gτ

by putting 〈ρ, α〉φ = [φX(ρ)]Y .α.
Applying this to the presheaf with transfers P tr, we obtain a canonical natural transformation

ψ : P → Pτ .

By assumption on t, Fτ is a t-sheaf. Thus there existe a unique natural transformation ψ such
that the following diagram commutes:

P
ψ //

η

��

Pτ

ητ
��

F
φ // Fτ

Thus we get products of the form 10.3.7.1 associated with φ which satisfies (a) and (b). The
commutativity of the above diagram asserts they are compatible with the ones corresponding
to P tr and the unicity of the natural transformation φ implies the uniqueness statement of the
lemma.

To finish the proof of the existence, we must show (c) and (d) for the product 〈., 〉φ. Consider
a couple (ρ, α) ∈ F (X) × cS (Y,X). Because F is the t-sheaf associated with P , there exists a
t-cover p : W → X and a section ρ̂ ∈ P (W ) such that p∗(ρ) = ηW (ρ̂). Moreover, according to
remark 10.3.6, we get a t-cover q : W ′ → Y and a correspondence α̂ ∈ cS (W

′,W ) making the
diagram (10.3.6.1) commutative. Then we get using (a) and (b):

q∗〈ρ, α〉φ = 〈ρ, α ◦ q〉φ = 〈ρ, p ◦ α̂〉φ = 〈p∗ρ, α̂〉φ = 〈ηW (ρ̂), α̂〉φ = 〈ρ̂, α̂〉ψ.
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Because q∗ : F (X) → F (W ) is injective, we deduce easily from this principle the properties (c)
and (d) and this concludes. �

10.3.8. Let us consider the canonical adjunction

a∗t : PSh(P/S,Λ) ⇄ Sht(P/S,Λ) : Ot

where Ot is the canonical forgetful functor.
We also denote by Otrt : Sht

(
Pcor

Λ,S

)
→ PSh

(
Pcor

Λ,S

)
the obvious forgetful functor. Trivially,

the following relation holds:

(10.3.8.1) γ̂∗ at,∗ = at,∗ γ∗.

Proposition 10.3.9. Using the notations above, the following condition on the admissible
topology t are equivalent:

(i) t is mildly compatible with transfers.
(ii) For any scheme S, the functor Otrt admits a left adjoint a∗t : PSh

(
Pcor

Λ,S

)
→ Sht

(
Pcor

Λ,S

)

which is exact and such that the exchange transformation

(10.3.9.1) a∗t γ̂∗ → γ∗ a
∗
t

induced by the identification (10.3.8.1) is an isomorphism.

Under these conditions, the following properties hold for any scheme S:

(iii) The category Sht
(
Pcor

Λ,S

)
is a Grothendieck abelian category.

(iv) The functor γ∗ commutes with every limits and colimits.

Proof. The fact (i) implies (ii) follows from the preceding lemma as we can put atrt (F ) = F tr

with the notation of the lemma. The fact this defines a functor, as well as the properties stated
in (ii), follows from the uniqueness statement of loc. cit.

Let us assume (ii). Then (iii) follows formally because from (ii), from the existence, adjunction
property and exactness of a∗t , because PSh

(
Pcor

Λ,S

)
is a Grothendieck abelian category. Moreover,

we deduce from the isomorphism (10.3.9.1) that γ∗ is exact: indeed, a∗t and γ̂∗ are exact. As γ∗
commutes with arbitrary direct sums, we get (iv).
From this point, we deduce the existence of a right adjoint γ! to the functor γ∗. Using again
the isomorphism (10.3.9.1), we obtain for any t-sheaves F on P/S and any P-scheme X/S a
canonical isomorphism Fτ (X) = γ!F (X). This proves (i). �

10.3.10. Under the assumption of the previous proposition, given any P-scheme X/S, we will
put ΛtrS (X)t = a∗tΛ

tr
S (X). The above proposition shows that the family ΛtrS (X)t for P-schemes

X/S is a generating family in Sht
(
Pcor

Λ,S

)
. Moreover, we get easily the following corollary of the

preceding proposition and Proposition 10.1.2:

Corollary 10.3.11. Assume that t is mildly compatible with transfers.
Then there exists an essentially unique Grothendieck abelian P-premotivic category Sht(P

cor
Λ )

which is geometrically generated, whose fiber over a scheme S is Sht
(
Pcor

Λ,S

)
and such that the t-

sheafification functor induces an adjunction of abelian P-premotivic categories:

a∗t : PSh (P
cor
Λ ) ⇄ Sht(P

cor
Λ ) : Otrt .

Moreover, the functor γ∗ induces an adjunction of abelian P-premotivic categories:

(10.3.11.1) γ∗ : Sht(P,Λ) ⇄ Sht(P
cor
Λ ) : γ∗.

Remark 10.3.12. Notice moreover that γ∗ a∗t = a∗t γ̂
∗.

Proof. In fact, using the exactness of a∗t , given any sheaf F with transfers F over S, we get
a canonical isomorphism

F = lim
−→

Λtr
S (X)t→F

ΛtrS (X)t

where the limit is taken in Sht
(
Pcor

Λ,S

)
and runs over the representable t-sheaves with transfers

over F . As in the proof of 10.1.2, this allows to define uniquely the structural left adjoints of
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Sht(P
cor
Λ ). The existence (and uniqueness) of the structural right adjoints then follows formally.

The same remark allows to construct the functor γ∗. �

Remark 10.3.13. Let us explicit the meaning of the preceding Corollary for a topology t which
is compatible with transfers. Given a complex C with coefficients in the category Sht

(
Pcor

Λ,S

)
, the

following conditions are equivalent:

(i) C is local (Definition 5.1.9),
(i’) γ∗(C) is local,
(i”) given any P-scheme X/S and any integer n ∈ Z, the canonical map

Hn(C(X))→ Hn
t (X, γ∗(C))

is an isomorphism,
(ii) C is t-flasque (Definition 5.1.9),
(ii’) γ∗(C) is t-flasque,
(ii”) given any t-hypercover p : X → X in P/S and any integer n ∈ Z, the canonical map

p∗ : Hn(C(X))→ Hn(C(X ))

is an isomorphism.

More precisely, the equivalence of (i) and (ii) is the preceding corollary, while the equivalence of
(i) and (i’) (resp. (ii) and (ii’)) follows from the existence of the adjunction (10.3.11.1) and the
fact γ∗ is exact. The equivalence between (i’) and (i”) (resp. (ii’) and (ii”)) is a simple translation
of Definition 5.1.9.

10.3.14. Recall from Definition 5.1.9 we say that the abelian P-premotivic category Sht(P
cor
Λ )

satisfies cohomological t-descent if for any scheme S, and any t-hypercover X → X in P/S, the
induced morphism of complexes in Sht

(
Pcor

Λ,S

)

ΛtrS (X )t → ΛtrS (X)t

is a quasi-isomorphism. The preceding corollary thus gives the following one:

Corollary 10.3.15. Assume t is mildly compatible with transfers.
Then the following conditions are equivalent:

(i) The topology t is compatible with transfers.
(ii) The abelian P-premotivic category Sht(P

cor
Λ ) satisfies cohomological t-descent.

(iii) The abelian P-premotivic category Sht(P
cor
Λ ) is compatible with t (see 5.1.9).

Proof. The equivalence of (i) and (ii) follows easily from the isomorphism (10.3.9.1). The
equivalence of (ii) and (iii) is Proposition 5.1.26 applied to the adjunction (10.3.11.1), in view of
10.3.9(iv). �

10.3.16. Recall from Paragraph 2.1.10 that a cd-structure P on S is the data of a family of
commutative squares, called P -distinguished, of the form

B
k //

g
�� Q

Y
f
��

A
i
// X

(10.3.16.1)

which is stable by isomorphisms. Further, we will consider the following assumptions on P :

(a) P is complete, regular and bounded in the sense of [Voe10c].
(b) Any P -distinguished square as above is made of P-morphisms and k is an immersion.
(c) Any square as above which is cartesian and such that X = A ⊔ Y , i and f being the

obvious immersions, is P -distinguished.

Then the topology tP associated with P (see 2.1.10) is P-admissible and satisfy assumption
10.0(c). Moreover, according to [Voe10c, 2.9], we obtain the following properties:
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(d) A presheaf F on P/S is a tP -sheaf if and only if F (∅) = 0 and for any P -distinguished
square (10.3.16.1) in P/S, the sequence

0→ F (X)
f∗+e∗

−−−−→ F (Y )⊕ F (A)
k∗−g∗

−−−−→ F (B)

is exact.
(e) For any P -distinguished square (10.3.16.1) the sequence of representable pre-sheaves on

P/S

0→ ΛS(B)
k∗−g∗
−−−−→ ΛS(Y )⊕ ΛS(A)

f∗+e∗
−−−−→ ΛS(X)→ 0

becomes exact on the associated tP -sheaves.

Proposition 10.3.17. Consider a cd-structure P satisfying properties (a) and (b) above and
assume that t = tP is the topology associated with P . Then the following conditions are equivalent:

(i) The topology t is compatible with transfers.
(ii) The topology t is mildly compatible with transfers.
(iii) For any scheme S and any P -distinguished square (10.3.16.1) in P/S, the short sequence

of presheaves with transfers over S

0→ ΛtrS (B)
k∗−g∗
−−−−→ ΛtrS (Y )⊕ ΛtrS (A)

f∗+e∗
−−−−→ ΛtrS (X)→ 0

becomes exact on the associated t-sheaves on P/S.

Proof. The implication (i) ⇒ (ii) is obvious.
The implication (ii) ⇒ (iii) follows from point (e) above and the following facts: γ∗ is right

exact (Corollary 10.3.11), γ∗at = atrt γ̂
∗ (remark 10.3.12), k∗ : ΛtrS (B) → ΛtrS (Y ) is a monomor-

phism of presheaves with transfers (use 9.1.7(2) and the fact k is an immersion from assumption
(b)).

Assume (iii). Then we obtain (ii) as a direct consequence of the point (d) above. Thus,
to prove (i), we have only to prove that the abelian P-premotivic category Sht(P

cor
Λ ) satisfies

cohomological t-descent according to 10.3.15.
Let S be a scheme. Recall that the category D(Sht(P/S,Λ) has a canonical DG-structure (see

for example 5.0.27). The cohomological t-descent for Sht
(
Pcor

Λ,S

)
can be reformulated by saying

that for any complex K of t-sheaves on P/S, and any t-hypercover X → X, the canonical map
of D(Λ-mod)

RHom•
D(Sht(P/S,Λ))(γ∗Λ

tr
S (X)t,K)→ RHom•

D(Sht(P/S,Λ))(γ∗Λ
tr
S (X )t,K)

is an isomorphism. Recall also there is the injective model structure on C(Sht(P/S,Λ)) for which
every object is cofibrant and with quasi-isomorphisms as weak equivalences (see [CD09, 2.1] for
more details). Replacing K by a fibrant resolution for the injective model structure, we get for
any simplicial objects X of P/S∐ that:

RHom•
D(Sht(P/S,Λ))(γ∗Λ

tr
S (X )t,K) = Hom•

D(Sht(P/S,Λ))(γ∗Λ
tr
S (X )t,K).

Thus it is sufficient to prove that the presheaf

E : P/Sop → C(Λ-mod), X 7→ Hom•
D(Sht(P/S,Λ))(γ∗Λ

tr
S (X)t,K)

satisfies t-descent in the sense of 3.2.5.
We derive from (iii) that E sends a P -distinguished square to a homotopy cartesian square in

D(Λ-mod). Thus the assertion follows from the arguments on t-descent from [Voe10b, Voe10c].
�

Remark 10.3.18. It follows from Remark 10.3.13 that under the equivalent conditions (i),
(ii), (iii) of the above corollary, the admissible topology t = tP is bounded in Sht(P

cor
Λ ) in the

sense of Definition 5.1.28. Over a scheme S, a bounded generating family is given by the following
complexes of Sht

(
Pcor

Λ,S

)
:

. . .→ 0→ ΛtrS (B)
k∗−g∗
−−−−→ ΛtrS (Y )⊕ ΛtrS (A)

f∗+e∗
−−−−→ ΛtrS (X)→ 0→ . . .

induced by a P -distignuished square of the form (10.3.16.1) – see also Example 5.1.29.
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We end-up this section with a compatibility of certain sheaves with transfers with projective
limits of schemes. This will be the key point to establish continuity for motivic complexes.

Proposition 10.3.19. Let t be one of the topologies Nis, ét, cdh.
Let (Sα)α∈A be a projective system of schemes in S , with dominant affine transition maps,

and such that S = lim
←−α∈A

Sα is representable in S .

Consider an index α0 ∈ A and a t-sheaf with transfers F over S
ft,cor
Λ,S0

. For any index α/α0,

we denote by Fα (resp. F ) the pullback of Fα0
over Sα (resp. S) in the sense of the premotivic

structure on Sht(P
cor
Λ ) (obtained in Corollary 10.3.11).

Then the canonical map:

lim
−→

α∈A/α0

Fα(Sα) −→ F (S)

is an isomorphism.

Proof. We consider the forgetful functor: Otrt : Sht

(

S
ft,cor
Λ

)

→ PSh
(

S
ft,cor
Λ

)

. It is fully

faithful and it commutes with the global section functor. We want to prove the proposition by
using Lemma 10.1.5. Thus it is sufficient to prove that, for any morphism f : X → S in S ,

the functor Otrt commutes with f∗. In other words, the pullback functor f̂∗ for presheaves with

transfers on S
ft,cor
Λ preserves t-sheaves with transfers: for any t-sheaf with transfers F over S,

f̂∗(F ) is a t-sheaf with transfers.

Let us first treat the case where f is separated of finite type. Then f̂∗ admits a left adjoint

f̂♯ which preserves t-covers. Thus the property is clear.
In the general case, we write f as a projective limit of morphisms of schemes (fα : Xα → S)α∈A

such that the transition morphisms of the projective scheme (Xα)α∈A are affine and dominant

and each fα is separated of finite type.84 To check that f̂∗(F ) is a t-sheaf, we consider a t-cover
p : W → X of an S-scheme separated of finite type. Because of our choice of topology t, there
exists an index α1/α0 such that p : W → X can be lifted as a t-cover p1 : Wα1

→ Xα1
over Sα1

.

Using Lemma 10.1.5 again, we now are reduced to prove that for any α/α1, f̂
∗
α1
(F ) satisfies the

t-sheaf property with respect to the pullback of p1 over Sα/Sα1 . This follows from the first case
treated. �

Remark 10.3.20. The previous proposition generalizes [Dég07, Prop. 2.19].

10.4. Examples.

10.4.1. Assume that t is the Nisnevich topology. According to Lemma 10.3.3 and Proposition
10.3.17, t is then compatible with transfers. With the notation of Corollary 10.3.11, we get the
following definition:

Definition 10.4.2. We denote by

Shtr (−,Λ), Shtr (−,Λ)

the respective abelian premotivic and generalized abelian premotivic categories defined in Corol-
lary 10.3.11 in the respective cases P = Sm, P = S ft.

From now on, the objects of Shtr (S,Λ) (resp. Shtr (S,Λ)) are called sheaves with transfers
over S (resp. generalized sheaves with transfers over S).

Let X be a separated S-scheme of finite type. We let Λtr
S (X) be the generalized sheaf with

transfers represented by X (cf. 10.2.4). If X is S-smooth, we denote by ΛtrS (X) its restriction to
Smcor

Λ,S – i.e. the sheaf with transfers over S represented by X.
An important property of sheaves with transfers is that the abelian premotivic category

Shtr (−,Λ) (resp. Shtr (−,Λ)) is compatible with the Nisnevich topology on Sm (resp. S ft)
according to Proposition 10.3.17. Note moreover that it is compactly geometrically generated.

84Write the OS-algebra f∗(OX) as the filtered union of its finite type sub-OS-algebras, ordered by inclusion.



210

10.4.3. We also obtained an adjunction (resp. generalized adjunction) of premotivic abelian
categories

γ∗ : Sh(Sm,Λ) ⇄ Shtr (−,Λ) : γ∗

γ∗ : Sh
(
S

ft,Λ
)
⇄ Shtr (−,Λ) : γ∗.

Note that in each case γ∗ is conservative and exact according to 10.3.9(iv).

Remark 10.4.4. An important application of the existence of the pair of adjoint functors
(γ∗, γ∗) is the following computation: given any complex K of sheaves with transfers over S and
any smooth S-scheme X,

HomD(Shtr (S,Λ))(Λ
tr
S (X),K[n]) = HomD(Shtr (S,Λ))(Lγ

∗ΛS(X),K[n])

= HomD(Sh(Sm,Λ))(ΛS(X), γ∗(K)[n]) = Hn
Nis(X, γ∗(K)).

This is a generalization of [VSF00, chap. 5, 3.1.9] to unbounded complexes and arbitrary bases.

10.4.5. Let S be a scheme. Consider the inclusion functor ϕ : Smcor
Λ,S → S

ft,cor
Λ,S . It induces

a functor
ϕ∗ : Shtr (S,Λ)→ Shtr (S,Λ), F 7→ F ◦ ϕ

which is obviously exact and commute with arbitrary direct sums. In particular, it commutes with
arbitrary colimits.

Lemma 10.4.6. With the notations above, the functor ϕ∗ admits a left adjoint ϕ! such that
for any smooth S-scheme X, ϕ!(Λ

tr
S (X)) = Λtr

S (X). The functor ϕ! is fully faithful.

In other words, we have defined an enlargement of premotivic abelian categories (cf. definition
1.4.13)

(10.4.6.1) ϕ! : Sh
tr (−,Λ)→ Shtr (−,Λ) : ϕ∗.

Proof. Let F be a sheaf with transfers. Let {X/F} be the category of representable sheaf
ΛtrS (X) over F for a smooth S-scheme X. We put

ϕ!(F ) = lim
−→

{X/F}

Λtr
S (X).

The adjunction property of ϕ! is immediate from the Yoneda lemma. We prove that for any sheaf
with transfers F , the unit adjunction morphism F → ϕ∗ϕ!(F ) is an isomorphism. As already
remarked, ϕ∗ commutes with colimits so that we are restricted to the case where F = ΛtrS (X)
which follows by definition. �

10.4.7. Assume now that t = cdh is the cdh-topology, and P = S ft is the class of separated
morphisms of finite type. Recall the topology t is associated with the lower cd-structure – see
Example 2.1.11. Then the assumptions of Proposition 10.3.17 with respect to the lower cd-
structure are fulfilled according to [SV00b, 4.3.3] combined with [SV00b, 4.2.9]. Thus we get
the following result:

Proposition 10.4.8. The admissible topology cdh on S ft is compatible with transfers.

As a corollary, we get a generalized premotivic abelian category whose fiber over a scheme
S is the category Shtrcdh(S,Λ) of cdh-sheaves with transfers on S ft. It is compatible with the

cdh-topology. Moreover, the restriction of acdh to Shtr (S,Λ) induces a morphism of generalized
premotivic categories; we get the following commutative diagram of such morphisms:

Sh(−,Λ)

γ∗

��

a∗cdh // Shcdh(−,Λ)

γ∗
cdh

��
Shtr (−,Λ)

a∗cdh // Shtrcdh(−,Λ)

10.5. Comparison results.
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10.5.a. Change of coefficients.

10.5.1. Assume the topology t is mildly compatible with transfers and consider a localization
Λ′ of Λ.

Then the morphism (9.4.3.1) of P-premotivic categories extends to an adjunction of abelian
P-premotivic categories:

(10.5.1.1) Sht(P
cor
Λ )⊗Λ Λ′

⇆ Sht(P
cor
Λ′ )

Proposition 9.4.4 immediately yields the following result:

Proposition 10.5.2. Consider the above notations. Then the above P-premotivic adjunction
is an equality whenever it is restricted to one of the following subcategories of S :

• The category of regular schemes.
• The category of noetherian finite dimensional schemes S such that char(S) ⊂ Λ×.

Remark 10.5.3. Remark 9.4.5 can be extended to sheaves with transfers: for any regular
scheme S, the category Shtr (S,Z) = ShNis

(
Smcor

Z,S

)
defined here coincides with that defined in

[Dég07], as well as its operations of a P-premotivic category when restricted to regular schemes.

10.5.b. Representable qfh-sheaves.

10.5.4. Let us denote by Shqfh(S,Λ) the category of qfh-sheaves of Λ-modules over S ft/S.
Remark that for an S-scheme X, the Λ-presheaf represented by X is not a sheaf for the qfh-

topology. We denote the associated sheaf by Λqfh
S (X). We let aqfh be the associated qfh-sheaf

functor. Recall that for any S-scheme X, the graph functor (10.4.3) induces a morphism of sheaves

ΛS(X)
γX/S
−−−→ Λtr

S (X).

We recall the following theorem of Suslin and Voevodsky (see [SV00b, 4.2.7+4.2.12]):

Theorem 10.5.5. Let S be a scheme such that char(S) ⊂ Λ×. Then, for any S-scheme X,
the application of aqfh to the map γX/S gives an isomorphism in Shqfh(S,Λ):

Λqfh
S (X)

γqfh
X/S
−−−→ Λtr

S (X).

10.5.6. Assume char(S) ⊂ Λ×. Using the previous theorem, we associate to any qfh-sheaf
F ∈ Shqfh(S,Λ) a presheaf with transfers

ρ(F ) : X 7→ HomShqfh(S,Λ)(Λ
tr
S (X), F ).

We obviously get γ∗ρ(F ) = F as a presheaf over S ft/S so that ρ(F ) is a sheaf with transfers and
we have defined a functor

ρ : Shqfh(S,Λ)→ Shtr (S,Λ).

For any S-scheme X, ρ(Λqfh
S (X)) = Λtr

S (X) according to the previous proposition.

Corollary 10.5.7. Assume char(S) ⊂ Λ×. Let f : X ′ → X be a morphism of S-schemes.
If f is a universal homeomorphism, then the map f∗ : Λtr

S (X
′) → Λtr

S (X) is an isomorphism in

Shtr (S,Λ).

Proof. Indeed, according to [Voe96, 3.2.5], Λqfh
S (X ′) → Λqfh

S (X) is an isomorphism in
Shqfh(S,Λ) and we conclude by applying the functor ρ. �

10.5.c. qfh-sheaves and transfers.

Proposition 10.5.8. Assume char(S) ⊂ Λ×. Any qfh-sheaf of Λ-modules over the category
of S-schemes of finite type is naturally endowed with a unique structure of a sheaf with transfers,
and any morphism of such qfh-sheaves is a morphism of sheaves with transfers.

In particular, the qfh-sheafification functor defines a left exact functor left adjoint to the
forgetful functor ρ : Shqfh(S,Λ)→ Shtr (S,Λ) introduced in 10.5.6.
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Proof. It follows from Theorem 10.5.5 that the category of Λ-linear finite correspondences is
canonically equivalent to the full subcategory of the category of qfh-sheaves of Λ-modules spanned

by the objects of shape Λqfh
S (X) for X separated of finite type over S. The first assertion is thus

an immediate consequence of Theorem 10.5.5 and of the (additive) Yoneda lemma. The fact that
the qfh-sheafification functor defines a left adjoint to the restriction functor ρ is then obvious,
while its left exactness is a consequence of the facts that it is left exact (at the level of sheaves
without transfers) and that forgetting transfers defines a conservative and exact functor from the
category of Nisnevich sheaves with transfers to the category of Nisnevich sheaves. �

Recall the following theorem:

Theorem 10.5.9. Assume Λ is a Q-algebra. Let F be an étale Λ-sheaf on S ft/S. Then for
any S-scheme X, and any integer i, the canonical map

Hi
Nis(X,F )→ Hi

ét(X,F )

is an isomorphism.

Proof. Using the compatibility of étale cohomology with projective limits of schemes, we
are reduced to prove that Hi

ét(X,F ) = 0 whenever X is henselian local and i > 0. Let k be the
residue field of X, G its absolute Galois group and F0 the restriction of F to Spec (k). Then F0 is
a G-module and according to [SGA4, 8.6], Hi

ét(X,F ) = Hi(G,F0). As G is profinite, this group
must be torsion so that it vanishes by assumption. �

Remark 10.5.10. The preceding theorem also follows formally from Theorem 3.3.23.

Proposition 10.5.11. Assume Λ is a Q-algebra. Let S be an excellent scheme and F be a
qfh-sheaf of Λ-modules on S ft/S. Then for any geometrically unibranch S-scheme X of finite
type, and any integer i, the canonical map

Hi
Nis(X,F )→ Hi

qfh(X,F )

is an isomorphism.

Proof. According to 10.5.9, Hi
Nis(X,F ) = Hi

ét(X,F ). Let p : X
′ → X be the normalization

of X. As X is an excellent geometrically unibranch scheme, p is a finite universal homeomorphism.
It follows from [SGA4, VII, 1.1] that Hi

ét(X,F ) = Hi
ét(X

′, F ) and from [Voe96, 3.2.5] that
Hi

qfh(X,F ) = Hi
qfh(X

′, F ). Thus we can assume that X is normal, and the result is now exactly

[Voe96, 3.4.1]. �

Corollary 10.5.12. Assume Λ is a Q-algebra. Let S be an excellent scheme.

(1) Let X be a geometrically unibranch S-scheme of finite type. For any point x of X,
the local henselian scheme Xh

x is a point for the category of sheaves Shqfh(S,Λ) ( i.e.
evaluating at Xh

x defines an exact functor).
(2) The family of points Xh

x of the previous type is a conservative family for Shqfh(S,Λ).

Proof. The first point follows from the previous proposition. For any excellent scheme X,
the normalization morphism X ′ → X is a qfh-cover. Thus the category Shqfh(S,Λ) is equivalent
to the category of qfh-sheaves on the site made of geometrically unibranch S-schemes of finite
type. This implies the second assertion. �

10.5.13. Given any scheme S, we introduce the following composite functor using the notations
of 10.5.6 and 10.4.5:

ψ∗ : Shqfh(S,Λ)
ρ
−→ Shtr (S,Λ)

ϕ∗

−−→ Shtr (S,Λ).

Theorem 10.5.14. Assume Λ is a Q-algebra and let S be a geometrically unibranch excellent
scheme. Considering the above notation, the following conditions are true :

(i) For any S-scheme X of finite type, ψ∗
(
Λqfh
S (X)

)
= ΛtrS (X).

(ii) The functor ψ∗ admits a left adjoint ψ!.

(iii) For any smooth S-scheme X, ψ!

(
ΛtrS (X)

)
= Λqfh

S (X).
(iv) The functor ψ∗ is exact and preserves colimits.
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(v) The functor ψ! is fully faithful.

According to property (iii), the functor ψ! commutes with pullbacks. In other words, we have
defined an enlargement of abelian premotivic categories (cf. definition 1.4.13) over the category
of (noetherian) geometrically unibranch schemes:

(10.5.14.1) ψ! : Sh
tr (−,Λ) ⇄ Shqfh(−,Λ) : ψ

∗

Proof. Point (i) follows from the fact ΛtrS (X) = Λqfh
S (X). Recall the enlargement of (10.4.6.1):

ϕ! : Sh
tr (−,Λ)→ Shtr (−,Λ) : ϕ∗.

We define the functor ψ! as the composite :

Shtr (S,Λ)
ϕ!−→ Shtr (S,Λ)

γ∗

−→ Sh(S,Λ)
aqfh
−−→ Shqfh(S,Λ) .

According to the properties of the functors in this composite, ψ! is exact and preserves colimits.
Moreover, for any smooth S-scheme X, as ΛtrS (X) is a qfh-sheaf over S ft/S according to 10.2.4,

ψ!(Λ
tr
S (X)) = Λqfh

S (X) which proves (iii). Property (ii) follows from (iii) and the fact ψ! commutes
with colimits, while the sheaves ΛtrS (X) for X/S smooth generate Shtr (S,Λ).

For any smooth S-scheme X, Γ(X;ψ∗(F )) = F (X). Thus the exactness of ψ∗ follows from
corollary 10.5.12. As ψ∗ obviously preserves direct sums, we get (iv).

To check that for any sheaf with transfers F the unit map F → ψ∗ψ!(F ) is an isomorphism,
we thus are reduced to the case where F = ΛtrS (X) for a smooth S-scheme X which follows from
(i) and (iii). �

11. Motivic complexes

11.0. In this section, S is the category of noetherian finite dimensional schemes. It is adequate
in the sense of 2.0. Given a scheme S, we denote by SmS the category smooth separated S-schemes
of finite type. It is admissible in the sense of 1.0.

We fix a ring of coefficients Λ.

11.1. Definition and basic properties.
11.1.a. Premotivic categories. According to Proposition 10.3.17 and Corollary 10.3.15, the

abelian premotivic category Shtr (−,Λ) constructed in 10.4.2 is compatible with Nisnevich topol-
ogy. Thus we can apply to it the general definitions of section 5. This gives the following definition:

Definition 11.1.1. We define the (Λ-linear) category of motivic complexes (resp. stable
motivic complexes or simply motives) following definition 5.3.22 (resp. definition 5.2.16) as

DMeff
Λ = Deff

A1

(
Shtr (−,Λ)

)

resp. DMΛ = DA1

(
Shtr (−,Λ)

)
.

Given a scheme S, we will put: DMeff (S,Λ) = DMeff
Λ (S), DM(S,Λ) = DMΛ(S).

11.1.2. Let us unfold the preceding definition. Given a scheme S in S , the triangulated
category DMeff (S,Λ) is equal to the A1-localization of the derived category D(Shtr (S,Λ)) of the
category of sheaves with transfers over S.

Given a smooth scheme S-scheme X of finite type, we have denoted by ΛtrS (X) the sheaf with

transfers represented by X over S. We will see this sheaf as an object of DMeff (S,Λ), as a complex
concentrated in degree 0, and call it the effective motivic complex associated with X/S.

Recall the following operations as part of the premotivic structure:

• Given any morphism f : T → S in S , there exists an adjunction of the form:

Lf∗ : DMeff (S,Λ) ⇆ DMeff (T,Λ) : Rf∗.

• Given a separated smooth morphism of finite type f : T → S in S , there exists an
adjunction of the form:

Lf♯ : DMeff (S,Λ) ⇆ DMeff (T,Λ) : f∗.
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• Given any noetherian finite dimensional scheme S, the category DMeff (S,Λ) is symmetric
closed monoidal.

These operations are subject to the properties of a premotivic category: functoriality, smooth
base change formula, smooth projection formula – see section 1 for more details. By construction,

the triangulated premotivic category DMeff
Λ satisfies the homotopy property and the Nisnevich

descent properties.
By construction (cf. (5.3.23.2)), we get an adjunction of triangulated premotivic categories

(11.1.2.1) Σ∞ : DMeff
Λ ⇄ DMΛ : Ω∞.

Considering the Tate motivic complex

(11.1.2.2) ΛtrS (1) := ΛtrS (P
1
S/{1}),

the object Σ∞(ΛtrS (1)) is ⊗-invertible in DM(S,Λ) and this property characterizes uniquely the
homotopy category DM(S,Λ) – see Remark 5.3.29. Given a smooth separated S-scheme X of
finite type, we put:

MS(X) := Σ∞ΛtrS (X)

and simply call it the motive associated with X/S. Usually we denote by 1S the unit of the
monoidal category DM(S,Λ).

By construction, the premotivic category DMΛ satisfies the homotopy, stability and Nisnevich
descent properties (see Paragraph 5.3.23).

Example 11.1.3. • Let k be a perfect field. Then DMeff (k,Z) contains as a full

subcategory the category DMeff
− (k) defined by Voevodsky (cf [VSF00, Chap. 5]). This

is the content of the proof of [VSF00, Chap. 5, Prop. 3.2.3]. Indeed, recall from
Paragraph 5.2.18 that DM(k,Z) is equivalent to the full subcategory of D(Shtr (k,Z))
made by the complexes which are A1-local. Over a perfect field, Theorem 3.1.12 of
[VSF00, Chap. 5] implies that a complex of sheaves with transfers is A1-local if and
only if its homotopy sheaves are A1-invariant.

• Let S be a regular scheme. The triangulated categories DMeff (S,Z) and DM(S,Z)
introduced here coincide with that constructed in [CD09]. The same is true concerning
the operations of premotivic triangulated categories (see Remark 10.5.3).

11.1.4. Let Λ′ be a localization of Λ. The premotivic adjunction

(11.1.4.1) Shtr (−,Λ)⊗Λ Λ′
⇆ Shtr (−,Λ′)

obtained as a particular case of (10.5.1.1) gives the following adjunctions of triangulated premotivic
categories:

DMΛ ⊗Λ Λ′
⇆ DMΛ′ ,

DMeff
Λ ⊗Λ Λ′

⇆ DMeff
Λ′ .

(11.1.4.2)

Proposition 10.5.2 gives the following result:

Proposition 11.1.5. The above premotivic adjunctions are equalities whenever it is restricted
to one of the following subcategories of S :

• The category of regular schemes.
• The category of noetherian finite dimensional schemes S such that char(S) ⊂ Λ×.

In other words, when S is a scheme of one of the categories listed above, the triangulated
monoidal category DM(S,Λ′) (resp. DMeff (S,Λ′)) is the naive localization of the category

DM(S,Λ) (resp. DMeff (S,Λ)) with respect to integers invertible in Λ′.
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11.1.b. Constructible and geometric motives.

11.1.6. The premotivic triangulated category DMeff
Λ is geometrically generated: given any

scheme S, the essentially small set GeffS of motivic complexes of the form ΛtrS (X) for a smooth sep-

arated S-scheme X of finite type form a set of generators in the triangulated category DMeff (S,Λ).
Similarly, the premotivic triangulated category DMΛ is Z-generated where Z is the set of

twists corresponding to the Tate twist: given any scheme S, the essentially small set GS of motives
of the form MS(X)(n) for a smooth separated S-scheme X of finite type and an integer n ∈ Z
form a set of generators in the triangulated category DM(S,Λ).

Following the general conventions about premotivic triangulated category (Definition 1.4.9),
we define the notion of constructibility for motives as follows:

Definition 11.1.7. Given any scheme S, we define the category of constructible motives (resp.
constructible motivic complexes) over S as the thick triangulated subcategory of DM(S,Λ) (resp.

DMeff (S,Λ)) generated by GS (resp. GeffS ). We denote it by DMc(S,Λ) (resp. DMeff
c (S,Λ)).

Remark 11.1.8. Recall that DMc,Λ (resp. DMeff
c,Λ) is Sm-fibred monoidal subcategory of DMΛ

(resp. DMeff
Λ ) over S . In other words, constructible motives (resp. motivic complexes) are stable

by the operations f∗, p♯ for p smooth and tensor product. This is obvious from definitions.

11.1.9. Let S be a scheme. Consider the triangulated subcategory VS of Kb(Smcor
Λ,S) generated

by complexes of one the following forms :

(1) for any distinguished square W
k //

g ��
V
f��

U
j // X

of smooth S-schemes,

[W ]
g∗−k∗
−−−−→ [U ]⊕ [V ]

j∗+f∗

−−−−→ [X]

(2) for any smooth S-scheme X, p : A1
X → X the canonical projection.

[A1
X ]

p∗
−→ [X].

Definition 11.1.10. We define the category DMeff
gm(S,Λ) of geometric effective motives over

S as the pseudo-abelian envelope of the triangulated category

Kb(Smcor
Λ,S)/VS .

We define the category DMgm,Λ(S) of geometric motives over S as the triangulated category

obtained from DMeff
gm(S,Λ) by formally inverting the Tate complex

[P1
S ]→ [S].

Remark 11.1.11. The categories of geometric motives (resp. effective geometric motives) over
an arbitrary base, as defined here, already appears in the work of Ivorra [Ivo07, sec. 1.3].

11.1.12. According to this definition, we can construct for any scheme S a commutative
diagram of functors:

DMeff
gm(S,Λ) //

��

DMeff (S,Λ)

Σ∞

��
DMgm(S,Λ) // DM(S,Λ)

(11.1.12.1)

where the right vertical map is the left adjoint of (11.1.2.1).
Recall from Remark 10.3.18 that the Nisnevich topology is bounded in Shtr (−,Λ). Thus, as a

corollary of Proposition 5.2.38, Corollary 5.2.39 and Corollary 5.3.42 we get the following result:

Theorem 11.1.13. The horizontal functors of the square (11.1.12.1) are fully faithful and
their essential images consist of constructible objects in the sense of Definition 11.1.7.

Given any motive (resp. motivic complex)M over S, the following conditions are equivalent:

(i) M is geometric ( i.e. in the image of the horizontal map of diagram (11.1.12.1)),
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(ii) M is constructible,
(iii) M is compact.

The triangulated category DM(S,Λ) (resp. DMeff (S,Λ)) is compactly generated. More pre-

cisely, the objects of the set of generators GS (resp. GeffS ) defined in Paragraph 11.1.6 are compact.

Remark 11.1.14. If S = Spec (k) is the spectrum of a perfect field, then the categories

DMgm(S,Λ) and DMeff
gm(S,Λ) coincide with the categories introduced by Voevodsky in [VSF00,

chap. 5, Sec. 2.1]. The above theorem is a generalization of [VSF00, chap. 5, Th. 3.2.6] to an
arbitrary base (and the non effective case).

11.1.c. Enlargement, descent and continuity.

11.1.15. We can apply the definitions of section 5 to the generalized abelian premotivic cate-
gory Shtr (−,Λ) constructed in 10.4.2

Definition 11.1.16. We define the (Λ-linear) category of generalized motivic complexes (resp.
generalized motives) following definition 5.3.22 (resp. definition 5.2.16) as

DMeff
Λ = Deff

A1

(
Shtr (−,Λ)

)

resp. DMΛ = DA1

(
Shtr (−,Λ)

)
.

11.1.17. The advantage of this definition is that any separated S-scheme X of finite type
defines a generalized motivic complex, given by the sheaf with transfers Λtr

S (X) seen as a complex
concentrated in degree 0 (see Definition 10.4.2).

The category DMeff
Λ , as a generalized premotivic category, admits the following operations:

• Given any morphism f : T → S in S , there exists an adjunction of the form:

Lf∗ : DMeff (S,Λ) ⇆ DMeff (T,Λ) : Rf∗.

• Given a separated morphism f : T → S of finite type in S (non necessarily smooth),
there exists an adjunction of the form:

Lf♯ : DMeff (S,Λ) ⇆ DMeff (T,Λ) : f∗.

• Given any noetherian finite dimensional scheme S, the category DMeff (S,Λ) is symmetric
closed monoidal.

These operations satisfies the properties of a genaralized premotivic category for which we refer
the reader to section 1.4.

As in the non generalized case, we get from the general construction (see (5.3.23.2)) an ad-
junction of triangulated generalized premotivic categories

(11.1.17.1) Σ∞ : DMeff
Λ ⇄ DMΛ : Ω∞.

To any separated S-scheme X of finite type, we associate a generalized motive as:

MS(X) := Σ∞Λtr
S (X).

By construction, the generalized premotivic category DMeff
Λ (resp. DMΛ) satisfies the homo-

topy property, Nisnevich descent property (resp. and stability property).

11.1.18. According to Remark 10.3.18, the Nisnevich topology is bounded in Shtr (−,Λ).
Thus, as a corollary of Proposition 5.2.38 (resp. Corollary 5.2.39), we obtain in particular that

DMeff (S,Λ) (resp. DM(S,Λ)) is compactly generated, with the essentially small family of objects
Λtr
S (X) (resp. MS(X)(n)) for a separated S-scheme of finite type X (resp. and an integer n ∈ Z)

as compact generators.
Recall that for any scheme S, the obvious restriction functor ϕ∗ : Shtr (S,Λ) → Shtr (S,Λ)

admits a left adjoint ϕ! which is fully faithful (Lemma 10.4.6). Moreover, the adjoint pair (ϕ!, ϕ
∗)

satisfies the assumption of Proposition 6.1.4 so that applying Corollary 6.1.9 gives the following
proposition:
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Proposition 11.1.19. Given any scheme S, the adjoint pair (ϕ!, ϕ
∗) can be derived and

induces the following pair of adjoint functors

ϕ! : DM(S,Λ) ⇄ DM(S,Λ) : ϕ∗,

resp. ϕ! : DMeff (S,Λ) ⇄ DMeff (S,Λ) : ϕ∗,
(11.1.19.1)

such that ϕ! is fully faithful.
More generally, the family of these adjunctions for a noetherian finite dimensional scheme S

defines an enlargement of premotivic categories (Definition 1.4.13).

The abuse of notations is justified because of the following essentially commutative diagram
of functors:

DMeff
Λ

Σ∞

//

ϕ! ��

DMΛ

ϕ!��
DMeff

Λ

Σ∞

// DMΛ

(11.1.19.2)

Recall that, given a smooth separated S-scheme X, we have the relation:

ϕ!(MS(X)) =MS(X).

Remark 11.1.20. Beware that the functor ϕ∗ is far from being conservative. The following
example was suggested by V.Vologodsky: let Z be a nowhere dense closed subscheme of S. Then
ϕ∗(MS(Z)) = 0. In fact, one can see that DM(S,Λ) is a localization of the category DM(S,Λ)
with respect to the objects M such that ϕ∗(M ) = 0.

11.1.21. With rational coefficients, the preceding proposition can be refined. Recall that the
qfh-sheafification functor (10.5.8) induces by 5.3.28 a premotivic adjunction

α∗ : DMQ ⇄ DMqfh,Q : α∗ .

Theorem 11.1.22. If S is a geometrically unibranch excellent noetherian scheme of finite
dimension then the following composite functor

α∗ϕ! : DM(S,Q)→ DMqfh,Q(S)

is fully faithful.

Proof. Note that DMeff (S,Q) and Deff

A1(Shqfh(S,Q)) are compactly generated; see example
5.1.29 and Proposition 5.2.38. Hence this corollary follows from Theorem 10.5.14 and Proposition
6.1.8. �

Remark 11.1.23. Recall this theorem can be rephrased by saying that motives over S satisfies
qfh-descent – see Remark 5.2.11 and more generally Section 3. In the next section, we will give
applications of this fact to motivic cohomology.

Theorem 11.1.24. The following assertions hold:

(1) The triangulated premotivic categories DMeff
Λ and DMΛ are continuous when we restrict

ourself to pro-schemes whose transition maps are affine and dominant.

(2) The generalized triangulated premotivic categories DMeff
Λ and DMΛ are continuous with

the same restriction on pro-schemes.

Proof. Note that Proposition 10.3.19 shows precisely that the generalized premotivic abelian
category Shtr (−,Λ) satisfies Property (C) of Paragraph 5.1.35. Therefore the assertion (2) follows
from Propositions 5.2.41 and 5.3.44.85

Moreover, the assertion (1) follows from Corollary 6.1.12 given the enlargement obtained in
Proposition 11.1.19. �

85These propositions are also true with the restriction on pro-schemes considered in the statement of the
Theorem.
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Example 11.1.25. From the previous theorem and Proposition 4.3.4, we obtain in particular
that for any pro-scheme (Sα)α∈A with affine and dominant transition map such that S = lim

←−α∈A
Sα

is noetherian finite dimensional, there exists canonical equivalences of categories:

2- lim
−→
α

(
DMeff

gm,Λ(Sα)
)
→ DMeff

gm,Λ(S),

2- lim
−→
α

(
DMgm,Λ(Sα)

)
→ DMgm,Λ(S).

This result generalizes [Ivo07, 4.16].

11.2. Motivic cohomology.
11.2.a. Definition and functoriality.

Definition 11.2.1. Let S be a scheme and (n,m) ∈ Z2 a couple of integer. We define the
motivic cohomology of S in degree n and twist m with coefficients in Λ as the Λ-module

Hn,m
M (S,Λ) = HomDM(S,Λ)

(
1S ,1S(m)[n]

)
.

Assuming m ≥ 0, we define the effective motivic cohomology of S in degree n and twist m with
coefficients in Λ as the Λ-module

Hn,m
M,eff (S,Λ) = HomDMeff (S,Λ)

(
ΛtrS ,Λ

tr
S (m)[n]

)
.

Motivic cohomology (resp. effective motivic cohomology) is contravariant with respect to

morphisms of schemes and the monoidal structure on DMΛ (resp. DMeff
Λ ) defines a ring structure

compatible with pullbacks: given two cohomology classes:

α : 1S → 1S(m)[n], α′ : 1S → 1S(m
′)[n′],

one simply put:
α.α′ = α⊗S α

′.

The link between motivic cohomology and effective motivic cohomology is provided by Proposi-
tion 5.3.39. Given any scheme S and any couple of integers (n,m) ∈ Z2, one has a canonical
identification:

Hn,m
M (S,Λ) = lim

−→
r>>0

HomDMeff (S,Λ)

(
ΛtrS (r),Λ

tr
S (m+ r)[n]

)
.

11.2.2. Let Λ′ be a localization of Λ. Then using the left adjoint of the premotivic adjunction
(11.1.4.2), we get a canonical morphism

Hn,m
M (S,Λ)⊗Λ Λ′ → Hn,m

M (S,Λ′).

It is obviously compatible with pullbacks and the product structure. According to Proposition
11.1.5, this map is an isomorphism (even an identity) when one the following conditions are
fulfilled:

• S is a regular schemes.
• char(S) ⊂ Λ×.

Example 11.2.3. Let k be a perfect field. Given any smooth separated k-scheme S of finite
type, with structural morphism f , and any pair of integers (n,m) ∈ Z2, motivic cohomology as
defined in the previous definition coincide with motivic cohomology as defined by Voevodsky in
[VSF00, chap. 5] according to the following computation and Remark 11.1.14:

Hn,m
M (X,Z) = HomDM(X,Z)(1X ,1X(m)[n]) = HomDM(X,Z)(1X , f

∗(1k)(m)[n])

= HomDM(k,Z)(Lf♯(1X),1k(m)[n]) = HomDM(k,Z)(Mk(X),1k(m)[n])

= HomDMgm(k,Z)(Mk(X),1k(m)[n]).

In particular, it coincides with higher Chow groups (cf [Voe02a]) according to the following
formula:

Hn,m
M (X,Z) = CHm(X, 2m− n).
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Recall in particular the following computations:

Hn,m
M (X,Z) =







Zπ0(X) if n = m = 0,

Gm(X) if n = m = 1,

CHm(X) if n = 2m,

0 if m < 0, n > min(m+ dim(X), 2m)

where CHm(X) is the usual Chow group of m-codimensional cycles in X.
Note we will extend the identification of motivic cohomology as defined in the previous defi-

nition with the general version defined by Voevodsky – [Voe98] – in section 11.2.c.

11.2.4. Consider a separated morphism p : X → S of finite type. Recall from the S ft-fibred
structure of DMΛ that MS(X) = Lp♯p

∗(1S). Using the adjunction property of the pair (Lp♯, p
∗),

we easily get:

Hn,m
M (X,Λ) = HomDM(X,Λ)

(
1X ,1X(m)[n]

)
= HomDM(X,Λ)

(
1X ,1X(m)[n]

)

= HomDM(S,Λ)

(
MS(X),1S(m)[n]

)
.

(11.2.4.1)

In particular, given any finite S-correspondence α : X•−→ Y between separated S-schemes of
finite type, we obtain a pullback

α∗ : Hn,m
M (Y,Λ)→ Hn,m

M (X,Λ)

which is, among other properties, functorial with respect to composition of finite S-correspondences
and extends the natural contravariant functoriality of motivic cohomology.

In particular, given any finite Λ-universal morphism f : Y → X, we obtain a pushout

f∗ : Hn,m
M (Y,Λ)→ Hn,m

M (X,Λ)

by considering the transpose of the graph of f .

Proposition 11.2.5. Let f : Y → X be a finite Λ-universal morphism of schemes. Assume X
is connected and let d > 0 be the degree of f (cf. 9.1.12). Then for any element x ∈ Hn,m

M (X,Λ),
f∗f

∗(x) = d.x.

This is a simple application of Proposition 9.1.13. We left to the reader the exercice to state
projection and base change formulas for this pushout.

Example 11.2.6. Let f : Y → X be a finite morphism. Recall that f is Λ-universal in the
following particular cases:

• f is flat (see Example 8.1.49);
• X is regular and f sends the generic points of Y to generic points of X (see Corollary
8.3.28).

In particular, motivic cohomology is covariant with respect to this kind of finite morphisms.

Another important application of the generalized motives is obtained using the Corollary
10.5.7:

Proposition 11.2.7. Let f : X ′ → X be a separated universal homeomorphism of finite type.
Assume that char(X) ⊂ Λ×. Then the pullback functor

Hn,m
M (X,Λ)→ Hn,m

M (X ′,Λ)

is an isomorphism.

Remark 11.2.8. The preceding considerations hold similarly for the effective motivic coho-
mology.

Example 11.2.9. In characteristic 0, motivic cohomology (effective and non effective) is in-
variant under seminormalization ([Swa80]).

When restricted to excellent geometrically unibranch scheme X, motivic cohomology (effective
and non effective) is invariant under normalization. Indeed, the normalization X ′ → X of such a
scheme is a universal homeomorphism ([EGA4, IV0, 23.2.2]) of finite type.
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11.2.b. Effective motivic cohomology in weight 0 and 1.

11.2.10. Let S be a scheme and X a smooth S-scheme. For any subscheme Y of X, we denote
by ΛtrS (X/Y ) the cokernel of the canonical morphism of sheaf with transfers ΛtrS (Y )→ ΛtrS (X). As

this morphism is a monomorphism, we obtain a canonical distinguished triangle in DMeff (S,Λ)

ΛtrS (Y )→ ΛtrS (X)→ ΛtrS (X/Y )→ ΛtrS (X)[1].

Using this notation and according to Definition 2.4.17, the Tate motivic complex is defined as:
ΛtrS (1) = ΛtrS (P

1
S/{∞})[−2].

The following computation is classical:

ΛtrS (1) = ΛtrS (P
1
S/A

1
S)[−2] = ΛtrS (A

1
S/Gm)[−2];

the first identification follows from homotopy invariance and the second one by Nisnevich descent
(cf. Prop. 5.2.13).

Proposition 11.2.11. Suppose S is a normal scheme.
Then the sheaf on SmS represented by Gm admits a canonical structure of a sheaf with trans-

fers and there is a canonical isomorphism in DMeff (S,Λ):

Gm ⊗Z Λ
≃
−−→ ΛtrS (1)[1].

Proof. Let U be an open subscheme of A1
S and X be a smooth S-scheme. Note that X is

normal according to [EGA4, 18.10.7]. Consider a cycle

α =
∑

i

ni.〈Zi〉

of X×SU with ni ∈ Λ and Zi irreducible finite and dominant over an irreducible component of X.
Then Zi is a divisor in X×SU and according to [EGA4, 21.14.3], it is flat over X. In other words,
α is a Hilbert bert cycle which implies it is Λ-universal (Example 8.1.49). As a consequence, we
obtain the equality

HiΓ(X;C∗ΛtrS (U)) = Hsing
−i (X ×S U/X)⊗Z Λ

where the functor C∗ is the associated Suslin singular complex (see (5.2.32.1)) and the right hand
side is the Suslin homology of X ×S U/X (cf. [SV00b]).

Suppose in addition that X and U are affine and let Z = P1
S −U . According to a theorem of

Suslin and Voevodsky (cf. [SV00b, th. 3.1]),

Hsing
−i (X ×S U/X) =

{
Pic(X ×S P1

S , X ×S Z) if i = 0
0 otherwise;

the group on the left hand side is the relative Picard group. In particular, the complex C∗ΛtrS (U),
seen as a complex of presheaves with transfers, is concentrated in cohomological degree 0 and its
0-th cohomology is the presheaf X 7→ Pic(X ×S P1

S , X ×S Z)⊗Z Λ.
Consider the following exact sequence of presheaves with transfers:

0→ ΛtrS (Gm)→ ΛtrS (A
1
S)→ Λ̃trS (A

1
S/Gm)→ 0.

Applying the functor C∗ to it, relatively to the category of complexes of presheaves with transfers,
we obtain a distinguished triangle in D(PShtr (S,Λ)):

C∗ΛtrS (Gm)→ C∗ΛtrS (A
1
S)→ C∗Λ̃trS (A

1
S/Gm)

+1
−−→ C∗ΛtrS (Gm).

Taking the associated long exact sequence of cohomology presheaves, we obtain that the complex
of presheaves with transfers C∗Λ̃trS (A

1
S/Gm) is concentrated in cohomological degree 0 and −1,

and we get an exact sequence of presheaves:

0→ Ĥ−1[C∗Λ̃trS (A
1
S/Gm)]→ Ĥ0[C∗ΛtrS (Gm)]→ Ĥ0[C∗ΛtrS (A

1
S)]→ Ĥ0[C∗Λ̃trS (A

1
S/Gm)]→ 0.

By definition of the relative Picard group, given any smooth (affine) scheme X, we get an exact
sequence of abelian groups:

(11.2.11.1) 0→ Gm(X)→ Pic(X ×S P1
S , X0 ⊔X∞)→ Pic(X ×S P1

S , X0)→ 0.
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Thus we deduce that:

Ĥ0[C∗Λ̃trS (A
1
S/Gm)] = 0,

Ĥ−1[C∗Λ̃trS (A
1
S/Gm)] = Gm ⊗Z Λ.

This gives in particular a canonical isomorphism:

C∗Λ̃trS (A
1
S/Gm)[−1] ≃ Gm ⊗Z Λ

in D(PShtr (S,Λ)). Taking its image in DMeff (S,Λ) we obtain a canonical isomorphism which can
be written as:

C∗ΛtrS (A
1
S/Gm)[−1] ≃ Gm ⊗Z Λ.

Thus we can conclude because, according to Lemma 5.2.35, the canonical map

ΛtrS (A
1
S/Gm)→ C∗ΛtrS (A

1
S/Gm)

is an isomorphism in DMeff (S,Λ). �

Remark 11.2.12. In the course of the proof, a canonical structure of a sheaf with transfers
over S on Gm has naturally appeared – described by the exact sequence (11.2.11.1). This structure
is classical (see [MVW06, Ex. 2.4]). One can describe it as follows.

Let X and Y be smooth S-schemes. Assume X is connected (thus irreducible as it is normal).
Let Z be a closed integral subscheme Z of X ×S Y which is finite surjective over X. Then
Z/X corresponds to an extension of function fields L/K. The norm map of L/K induces a
morphism of abelian groups: NZ/X : Gm(Z) → Gm(X). Then we associate with Z, seen as a
finite correspondence from X to Y , the following morphism:

Gm(Y )
p∗

−→ Gm(Z)
NZ/X
−−−−→ Gm(X)

where p : Y → Z is the natural projection.

The following proposition is well known to the expert. We include a proof for completeness.

Proposition 11.2.13. For any regular scheme X and any interger i ≥ 0,

Hi
Nis(X,Gm) =







OX(X)× if i = 0,

Pic(X) if i = 1,

0 otherwise

where Pic(X) is the Picard group of X.

Proof. Let Y be any étale scheme over X. We let C0(V ) be the abelian group made by
the invertible rational functions on V and C1(V ) be the group of 1-codimensional cycles in V .
Classically, one associates with any rational function f on V its Weil divisor div(f) ∈ C1(V ).
Recall, when V is integral with function field K, f ∈ K, one puts:

divV (f) =
∑

x∈V (1)

vx(f).x;

the sum runs over the points of codimension 1 in V and vx(f) is the valuation of f corresponding
to the valuation ring OX,x.

According to this definition, we get a complex:

0→ Gm(V )→ C0(V )
divV−−−→ C1(V ).

This sequence is functorial with respect to pullback of étale X-schemes. Thus we have defined a
morphism of presheaves on Xét:

π : Gm → C∗.

Given any Nisnevich distinguished square Q (Example 2.1.11), one can check easily that the image
of Q by C0 (resp. C1) is cocartesian. As a consequence C∗ is a complex of Nisnevich sheaves
which satisfies the Brown-Gersten property – i.e. it is Nisnevich flasque in the sense of Definition
5.1.9 according to Proposition 5.2.13 applied to the derived category of Nisnevich sheaves over X.
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On the other hand, π is a quasi-isomorphism of Nisnevich sheaves over S: indeed it is well
known that for any regular local ring A, the sequence

0→ A× → Frac(A)×
divA−−−→ Z1(A)→ 0

is exact. This is an easy consequence of the fact A is a unique factorization domain – the classical
Auslander-Buchsbaum theorem, (e.g. [Mat70, 20.3]).

In particular, we get Hi(X,Gm) = Hi(C∗(X)) and this concludes. �

The following theorem is a generalization of a well-known computation of Voevodsky for
smooth schemes over a perfect field. The second case is a corollary of the two preceding proposi-
tions.

Theorem 11.2.14. Let S be a scheme and n ∈ Z an integer. The following computation holds:

(1)

Hn,0
M,eff (S,Λ) = HomDMeff (S)(Λ

tr
S ,Λ

tr
S [n]) =

{
Λπ0(S) if n = 0
0 otherwise;

(2) if S is regular,

Hn,1
M,eff (S,Λ) = HomDMeff (S)(Λ

tr
S ,Λ

tr
S (1)[n]) =







OS(S)
× ⊗Z Λ if n = 1

Pic(S)⊗Z Λ if n = 2
0 otherwise

Proof. For the first case, according to Proposition 10.2.5, the sheaf ΛtrS is Nisnevich local
and A1-local as a complex of sheaves. It is obviously acyclic for the Nisnevich topology. Thus, we
conclude using again 10.2.5 in the case n = 0.

Consider the second case. According to Proposition 11.2.13, the sheaf Gm on SmS is A1-local.
Thus according to Proposition 11.2.11 Gm ⊗ Λ[−1] is an A1-resolution of ΛtrS (1). In particular,

HomDMeff (S)(Λ
tr
S ,Λ

tr
S (1)[n]) = HomD(Shtr (S,Λ))(Λ

tr
S ,Gm ⊗ Λ[n− 1]) = Hn−1

Nis (S,Gm)⊗ Λ

where the second identification follows from Remark 10.4.4. The conclusion follows from another
application of Proposition 11.2.13. �

The following corollary is a (very) weak cancellation result in DMeff (S) :

Corollary 11.2.15. Let S be a regular scheme. Then

RHom(ΛtrS (1),Λ
tr
S (1)) = ΛtrS .

Moreover, if m = 0 or m = 1, for any integer n > m,

RHom(ΛtrS (n),Λ
tr
S (m)) = 0.

Proof. We consider the first assertion. Any smooth S-scheme is regular. Hence it is sufficient
to prove that for any connected regular scheme S, for any integer n ∈ Z,

HomDMeff (S)(Λ
tr
S (1),Λ

tr
S (1)[n]) =

{
Λ if n = 0
0 otherwise.

Using the exact triangle

(11.2.15.1) ΛtrS (Gm)→ ΛtrS (A
1)→ ΛtrS (1)[2]

+1
−−→

and the second case of the previous theorem, we obtain the following long exact sequence

· · · → Hom(ΛtrS (A
1),ΛtrS (1)[n])→ Hom(ΛtrS (Gm),ΛtrS (1)[n])

→ Hom(ΛtrS (1),Λ
tr
S (1)[n− 1])→ Hom(ΛtrS (A

1),ΛtrS (1)[n+ 1])→ · · ·

Then we conclude using the previous theorem and the fact

Pic(A1 × S) = Pic(Gm × S)

whenever S is regular.
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For the last assertion, we are reduced to prove that if S is a regular scheme, for any integers
n > 0 and i,

HomDMeff (S)(Λ
tr
S (n),Λ

tr
S [i]) = 0.

This is obviously implied by the case n = 1.
Consider the distinguished triangle (11.2.15.1) again. Then the long exact sequence attached

to the cohomological functor HomDMeff (S,Λ)(−,Λ
tr
S ) and applied to this triangle together with the

first case of the previous theorem allows us to conclude. �

11.2.c. The motivic cohomology ring spectrum.

11.2.16. According to definition 10.4.2 and paragraph 10.4.3, we have an adjunction of abelian
premotivic categories

γ∗ : Sh(−,Λ) ⇄ Shtr (−,Λ) : γ∗

such that γ∗ is conservative and exact. According to Paragraph 5.3.28, it induces an adjunction
of triangulated premotivic categories

(11.2.16.1) Lγ∗ : DA1,Λ ⇄ DMΛ : Rγ∗.

Composing with the premotivic adjunction between the stable homotopy category and the A 1-
derived homtopoy category (5.3.35.1), we finally get a canonical premotivic adjunction:

(11.2.16.2) ϕ∗ : SH ⇄ DMΛ : ϕ∗.

Recall that, because ϕ∗ is monoidal, ϕ∗ is weakly monoidal. In particular, for any scheme S, one
gets canonical morphisms

1S → ϕ∗(1S), ϕ∗(1S) ∧ ϕ∗(1S)→ ϕ∗(1S)

which gives a structure of a commutative monoid to the spectrum ϕ∗(1S) i.e. a ring spectrum.

Definition 11.2.17. Given any scheme S, one defines the motivic cohomology ring spectrum
over S with coefficients in Λ as the commutative ring spectrum:

HΛ
M,S := ϕ∗(1S).

The properties of the functor ϕ∗ immediately implies that the ring spectrum HΛ
M,S represents

motivic cohomology. One easily checks now that this ring specutrm coincides with the original
one of Voevodsky (see [Voe98, sec. 6.1]) – in the case Λ = Z. Therefore, our definition of motivic
cohomology (with Z-coefficients) agrees with that given by Voevodsky in loc. cit.

11.2.18. Consider a localization Λ′ of Λ. Then one gets an essentially commutative diagram
of premotivic adjunctions:

DA1(S,Λ)⊗Λ Λ′

ttiiiiiiii
DM(S,Λ)⊗Λ Λ′oo

SH(S)

DA1(S,Λ′)

jjUUUUUUUU

(1)

OO

DM(S,Λ′)

(2)

OO

oo

where the map (1) is the canonical equivalence and the map (2) is the left adjoint of (11.1.4.2) (in
the stable case). Note that (2) is weakly monoidal. Thus this essentially commutative diagram
defines a canonical morphism of ring spectra:

(11.2.18.1) HΛ
M,S ⊗Λ Λ′ → HΛ′

M,S .

As a corollary of Proposition 11.1.5, we get the following result:

Proposition 11.2.19. If S ir regular or char(S) ⊂ Λ× then the map (11.2.18.1) is an iso-
morphism.

Remark 11.2.20. We do not know what is the nature of the map (11.2.18.1) in the case of a
general scheme S.
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11.2.21. Let f : T → S be a morphism of schemes. Recall from the structure of the premotivic
adjunction (ϕ∗, ϕ∗) defined above that we get an exchange morphism:

f∗ϕ∗ → ϕ∗f
∗

Applying this natural transformation to the unit object 1S of DM(S,Λ), one gets a canonical
morphism of ring spectra:

τf : f∗(HΛ
M,S)→ HΛ

M,T .

Remark that this shows the collection (HΛ
M,S) is a section of the fibred category SH. Recall also

the following conjecture of Voevodsky ([Voe02b, conj. 17]):

Conjecture. For any morphism f as above, the map τf is an isomorphism.

At least, Voevodsky formulated this conjecture in the case where Λ = Z. As we have warn
the reader in remark 11.2.20, the case Λ = Z does not necessarily implies the case of an arbitrary
ring Λ ⊂ Q.

Remark 11.2.22. We will solve affirmatively a particular case of this conjecture in 16.1.7.

11.3. Orientation and purity.

11.3.1. For any scheme S, we let P∞
S be the ind-scheme

S → P1
S → · · · → Pn

S → Pn+1
S →

made of the obvious closed immersions. This ind-scheme has a comultiplication given by the Segre
embeddings

P∞
S ×S P∞

S → P∞
S

Define ΛtrS (P
∞) = lim

−→
ΛtrS (P

n). Applying Theorem 11.2.14 in the case S = Spec (Z), we
obtain a canonical isomorphism:

HomDMeff (Spec(Z),Λ)(Λ
tr(P∞),Λtr(1)[2]) = Pic(P∞)⊗Z Λ,

whose aim is a free Λ-algebra of power series in one variable. Considering the canonical dual
invertible sheaf on P∞, we obtain a canonical formal generator of this Λ-algebra and thus a
morphism DMeff (Spec (Z) ,Λ):

c1 : Λtr(P∞)→ Λtr(1)[2].

For any scheme S, considering the canonical projection f : S → Spec (Z), we obtain by pullback

along f a morphism of DMeff (S,Λ)

c1,S : ΛtrS (P
∞
S )→ ΛtrS (1)[2].

Consider Gm as a sheaf of groups over SmS . Following [MV99, part 4], we introduce its clas-
sifying space BGm as a simplicial sheaf over SmS . From proposition 1.16 of loc. cit., we
get HomH s

• (S)(S+, BGm) = Pic(S). Moreover, in H•(S), we obtain a canonical isomorphism
BGm = P∞

S of pointed simplicial sheaf (cf. loc. cit., prop. 3.7). Thus finally, we obtain a
canonical map of pointed sets

Pic(S) = HomH s
• (S)(S+, BGm)→ HomH•(S)(S+,P

∞)

→ HomDMeff (S,Λ)(Λ
tr
S ,Λ

tr
S (P

∞/∗))→ HomDMeff (S,Λ)(Λ
tr
S ,Λ

tr
S (P

∞)).

Definition 11.3.2. Consider the above notations. We define the first motivic Chern class as
the following composite morphism

c1 : Pic(S) −→ HomDMeff (S,Λ)(Λ
tr
S ,Λ

tr
S (P

∞
S ))

(c1,S)∗
−−−−→ HomDMeff (S,Λ)(Λ

tr
S ,Λ

tr
S (1)[2])

−→ HomDM(S,Λ)(1S ,1S(1)[2]) = H2,1
M (S,Λ)

The first motivic Chern class is evidently compatible with pullback.
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Remark 11.3.3. Beware that the map

Pic(S)→ HomDMeff (S,Λ)(Λ
tr
S ,Λ

tr
S (P

∞
S ))

defined above is not necessarily a morphism of abelian groups. However, the composite:

Pic(S) −→ HomDMeff (S,Λ)(Λ
tr
S ,Λ

tr
S (P

∞
S ))

(c1,S)∗
−−−−→ HomDMeff (S,Λ)(Λ

tr
S ,Λ

tr
S (1)[2])

is the isomorphism of Theorem 11.2.14 when S is normal. In particular, it is a morphism of abelian
groups in this case. We will give an argument below for the general case.

11.3.4. The triangulated category DM(S,Λ) thus satisfies all the axioms of [Dég08, 2.1] (see
also 2.3.1 of loc. cit. in the regular case). In particular, we derive from the main results of loc.
cit. the following facts:

(1) Let p : P → S be a projective bundle of rank n. Let c : 1S → 1S(1)[2] be the first Chern
class of the canonical line bundle on P . Then the map

MS(P )
∑

i p⊗c
i

−−−−−→
n⊕

i=0

1S(i)[2i]

is an isomorphism. This gives the projective bundle theorem in motivic cohomology for
any base scheme.

One deduces using the method of Grothendieck that motivic cohomology possesses
Chern classes of vector bundles which satisfies all the usual properties (see remark below
for additivity).

(2) Let i : Z → X be a closed immersion between smooth separated S-schemes of finite type.
Assume i has pure codimension c and let j be the complementary open immersion. Then
there is a canonical purity isomorphism:

pX,Z :MS(X/X − Z)→MS(Z)(c)[2c].

This defines in particular the Gysin triangle

MS(X − Z)
j∗
−→MS(X)

i∗
−→MS(Z)(c)[2c]

∂X,Z
−−−→MS(X − Z)[1].

(3) Let f : Y → X be a projective morphism between smooth separated S-schemes of
finite type. Assume f has pure relative dimension d. Then there is an associated Gysin
morphism

f∗ :MS(X)→MS(Y )(d)[2d]

functorial in f . We refer the reader to loc. cit for various formulas involving the Gysin
morphism (projection formula, excess intersection,...)

Note in particular that we deduce from that Gysin morphism the following map in
motivic cohomology:

f∗ : Hn,i
M (Y,Λ)→ Hn+2d,i+d

M (X,Λ).

(4) For any smooth projective S-scheme X, the premotive MS(X) admits a strong dual. If
X has pure relative dimension d over S, the strong dual of MS(X) is MS(X)(−d)[−2d].

Remark 11.3.5. According to loc. cit., there exists for any scheme S a formal group law
FS(x, y) with coefficients in the graded ring H2∗,∗

M (S,Λ). If one consider the Segre embedding

Σ : P∞
S → P∞

S ×S P∞
S

one has: FS(x, y) = σ∗(1) through the isomorphism:

H2∗,∗
M (P∞

S ×S P∞
S ,Λ) ≃ H

2∗,∗
M (S,Λ)[[x, y]]

which results from the projective bundle formula in motivic cohomology.
According to Remark 11.3.3, whenever S is normal, one gets FS(x, y) = x+ y. In particular,

FSpec(Z)(x, y) = x+ y. On the other hand, according to the above definition of FS(x, y), FS(x, y)
is compatible with pullback. Thus one deduces that FS(x, y) = x+ y for any scheme S.
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11.3.6. According to the properties that we have previously proved, motivic cohomology, and
in particular the bigraded partH2n,n

M (X,Z), possesses many of the desired property of a generalized
Chow theory for regular schemes (see [SGA6, XIV, §8]).

Note in particular that the existence of Chern classes allows to define a Chern character:

K0(X)⊗Z Q
ch
−→ H2∗,∗

M (X,Z)⊗Q ≃ H2∗,∗
M (X,Q)

where the final isomorphism follows from Paragraph 11.2.2. In particular we will prove in the next
section (Corollary 16.1.7) that, when X is regular, this map is an isomorphism as expected.

Remark 11.3.7. Among the good properties of motivic cohomology is the fact it is defined,
with its ring structure and natural functoriality, other arbitrary schemes. On the other hand,
even when X is regular, one cannot describe at the moment the cohomology group H2n,n

M (X,Z)
in terms of classes of n-codimensional cycles in X modulo an appropriate equivalence relation.

Let us however mention the two following interesting facts:

(1) Let X be a scheme of finite type over Spec (Z) and Xp be its fiber over a primer p. Then
one has a pullback map:

H2n,n
M (X,Z)→ H2n,n

M (Xp,Z), σ 7→ σp.

When X is an arithmetic scheme (regular and flat over Z) with good reduction at p,
the target is the Chow group of n-codimensional cycles (see Example 11.2.3). Then σp
should be thought as the specialization of its generic fiber (which lies in H2n,n

M (XQ,Z) =
CHn(XQ) according to the Example 11.2.3). This construction should coincide with
other specialization maps in the arithmetic case (see for example [Ful98, §20.3]).

(2) Let X be a smooth S-scheme. Then any n-codimensional closed subscheme Z of X which
is smooth over S defines using the Gysin morphism an element

[Z] = i∗(1) ∈ H
2n,n
M (X,Z)

which should be called the fundamental class of X. One can extract from [Dég08]
some of the expected properties of these fundamental classes (relation to Chern classes,
pullback properties such as compatibility with base change).

In particular, any S-point of X defines an element of H2d,d
M (X,Z) where d is the

dimension of X (assumed of pure dimension). In particular, the group H2d,d
M (X,Z) is

close to a group of cycles in X of relative dimension 0 over S.

11.3.8. We end up this series of remarks on motivic cohomology with the following construction
that the reader might enjoy.

Let S be any scheme and PS be the category of smooth projective S-schemes. Given any
scheme X and Y in PS , one can use the group

H2d,d
M (X ×S Y,Λ)

where d is the relative dimension of Y as a group of correspondences using the properties obtained
so far from motivic cohomology. In particular, one can mimic the construction of the category of
Chow motives over a field k using the category PS and these correspondences. One obtains an
additive monoidal category Chow′(S,Λ) of strong Chow motives.

According to the duality property of motives (Paragraph 11.3.4, point 4) one also obtains a
canonical isomorphism

HomDM(S,Λ)(MS(X),MS(Y )) = H2d,d
M (X ×S Y,Λ).

Thus one deduces a canonical full embedding of monoidal categories:

Chow′(S,Λ)→ DMgm(S,Λ)

which extends the well known case when S is a perfect field.

Remark 11.3.9. Beware that, with rational coefficients, a sharper notion of Chow motives
– in more precise terms, these are motives of weight zero – have been introduced recently (see
[Héb11], [Bon10]).
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11.4. The six functors.

11.4.1. Recall that according to Definition 10.4.2 and Paragraph 10.4.3, we have an adjunction
of abelian premotivic categories

γ∗ : Sh(−,Λ) ⇄ Shtr (−,Λ) : γ∗

such that γ∗ is exact and conservative. Moreover, for any scheme S, any smooth S-schemes X, Y
and any open immersion j : U → X, the canonical map:

j∗ : cS (Y, U)→ cS (Y,X)

is obviously a monomorphism. Thus the abelian premotivic category Shtr (−,Λ) satisfies the
assumptions (i)-(iv) of Paragraph 6.3.1. In particular, we deduce from Corollaries 6.3.12 and
6.3.15 the following theorem:

Proposition 11.4.2. The premotivic triangulated category DMΛ satisfies the support property.
Moreover, for any scheme S and any closed immersion i : Z → X between smooth S-schemes,

DMΛ satisfies the localization property with respect to i, (Loci).

An important corollary of this proposition is that given any separated morphism f : Y → X
of finite type, one can construct an adjunction of triangulated categories:

f! : DM(Y,Λ) ⇆ DM(X,Λ) : f !

such that f! = f∗ when f is proper (see Section 2.2). We will elaborate on this fact at the end of
this section.

11.4.3. Note that in particular, the premotivic category DMΛ satisfies the weak localization
property (wLoc). According to the premotivic adjunction (11.2.16.2) and the existence of the
first Chern class in motivic cohomology (Definition 11.3.2), one can apply Example 2.4.40 to
the premotivic triangulated category DMΛ (which satisfies the Nisnevich separation property
by construction). This implies in particular that DMΛ is oriented as a premotivic triangulated
category (Definition 2.4.38).

In particular, one can apply Corollary 2.4.43 to DMΛ and get the following result:

Proposition 11.4.4. Any smooth projective morphism f is DMΛ-pure: the canonical purity
map (2.4.39.3)

f♯ → f!(d)[2d],

is an isomorphism where d is the relative dimension of f .

In particular, DMΛ is weakly pure. The only property of the premotivic triangulated category
DMΛ that we cannot prove is the localization property for general closed immersions. However,
the properties we have seen so far allows to construct the 6 operations and establish some of its
properties that are already of interest. Let us summarize this formalism, from Theorem 2.2.14
together with Lemma 2.4.23:

Theorem 11.4.5. For any separated morphism of finite type f : Y → X, there exists an
essentially unique pair of adjoint functors

f! : DM(Y,Λ) ⇄ DM(X,Λ) : f !

such that:

(1) There exists a structure of a covariant (resp. contravariant) 2-functor on f 7→ f! (resp.
f 7→ f !).

(2) There exists a natural transformation αf : f! → f∗ which is an isomorphism when f is
proper. Moreover, α is a morphism of 2-functors.

(3) For any smooth projective morphism f : X → S of relative dimension d, there are
canonical natural isomorphisms

ptf : f♯ −→ f!(d)[2d]

p′tf : f∗ −→ f !(−d)[−2d]

which are dual to each other.
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(4) For any cartesian square:

Y ′
f ′

//

g′

��
∆

X ′

g
��

Y
f

// X,

such that f is separated of finite type, there exist natural transformations

g∗f!
∼
−→ f ′! g

′∗ ,

g′∗f
′! ∼
−→ f !g∗ ,

which are isomorphisms in the following cases:
• g is smooth;
• f is projective and smooth.

(5) For any smooth projective morphism f : Y → X, there exist natural isomorphisms

Ex(f∗! ,⊗) : (f!K)⊗X L
∼
−−→ f!(K ⊗Y f

∗L) ,

HomX(f!(L),K)
∼
−−→ f∗HomY (L, f

!(K)) ,

f !HomX(L,M)
∼
−−→ HomY (f

∗(L), f !(M)) .

Remark 11.4.6. As an example of application, let us recall the construction of the general
trace map (from [SGA4]) in the case of a smooth projective morphism f : Y → X of relative
dimension d. It is the following composite map:

f∗f
∗
α−1

f
−−→ f!f

∗
p′t
f
−−→ f!f

!(d)[2d]
ad′(f!,f

!)
−−−−−−→ 1(d)[2d].

This allows one to recover the Gysin map associated with f , already constructed in Paragraph
11.3.4, as well as the duality property for the motive MX(Y ).



Part 4

Beilinson motives and algebraic K-theory



12.0. In all this part, S is assumed to be the category of noetherian schemes of finite dimen-
sion.

12. Stable homotopy theory of schemes

12.1. Ring spectra. Consider a base scheme S.
Recall that a ring spectrum E over S is a monoid object in the monoidal category SH(S).

We say that E is commutative if it is commutative as a monoid in the symmetric monoidal
category SH(S). In what follows, we will assume that all our ring spectra are commutative
without mentioning it.
The premotivic category is Z2-graded where the first index refers to the simplicial sphere and
the second one to the Tate twist. According to our general convention, a cohomology theory
representable in SH is Z2-graded accordingly: given such a ring spectrum E, for any smooth
S-scheme X, and any integer (i, n) ∈ Z2, we get a bigraded ring:

En,i(X) = HomSH(S)

(
Σ∞X+, E(i)[n]

)
.

When X is a pointed smooth S-scheme, it defines a pointed sheaf of sets still denoted by X and
we denote by Ẽn,i(X) for the corresponding cohomology ring.
The coefficient ring associated with E is the cohomology of the base E∗∗ := E∗∗(S). The ring

E∗∗(X) (resp. Ẽ∗∗(X)) is in fact an E∗∗-algebra.

12.1.1. We say E is a strict ring spectrum if there exists a monoid in the category of symmetric
Tate spectra E′ and an isomorphism of ring spectra E ≃ E′ in SH(S). In this case, a module
M over the monoid E in the monoidal category SH(S) will be said to be strict if there exists an
E′-moduleM ′ in the category of symmetric Tate spectra, as well as an isomorphism of E-modules
M ≃M ′ in SH(S).

12.2. Orientation.

12.2.1. Consider the infinite tower

P1
S → P2

S → · · · → Pn
S → · · ·

of schemes pointed by the infinity. We denote by P∞
S the limit of this tower as a pointed Nisnevich

sheaf of sets and by ι : P1
S → P∞

S the induced inclusion. Recall the following definition, classically
translated from topology:

Definition 12.2.2. Let E be a ring spectrum over S. An orientation of E is a cohomology
class c in Ẽ2,1(P∞

S ) such that ι∗(c) is sent to the unit of the coefficient ring of E by the canonical

isomorphism Ẽ2,1(P1
S) = E0,0.

We then say that (E, c) is an oriented ring spectrum. We shall say also that E is orientable if
there exists an orientation c.

According to [MV99, 1.16 and 3.7], we get a canonical map for any smooth S-scheme X

Pic(X) = H1(X,Gm)→ HomH•(S)(X+,P
∞)→ HomSH(S)(Σ

∞X+,Σ
∞P∞)

(the first map is an isomorphism whenever S is regular (or even geometrically unibranch)). Given
this map, an orientation c of a ring spectrum E defines a map of sets

c1,X : Pic(X)→ E2,1(X)

which is natural in X (and from its construction in [MV99], one can check that c = c1,P∞
S
(O(1))).

Usually, we put c1 = c1,X .

Example 12.2.3. (1) The original example of an oriented ring spectrum is the algebraic
cobordism spectrum MGL introduced by Voevodsky (cf. [Voe98]).

(2) According to Definition 11.3.2, the motivic cohomology ring spectrum HΛ
M,S defined in

11.2.17 is an oriented ring spectrum.



12. STABLE HOMOTOPY THEORY OF SCHEMES 231

(3) Consider a triangulated premotivic category T which satisfies the weak localization
property (wLoc) and such that there exists an adjunction of triangulated premotivic
categories:

ϕ∗ : SH ⇆ T : ϕ∗.

Recall that ϕ∗ is symmetric monoidal. Thus, its right adjoint is weakly symmetric
monoidal and for any the spectrum

HT ,S := ϕ∗(1S)

admits a (commutative) ring structure.
Then T is oriented in the sense of Definition 2.4.38 if and only if the ring spectrum

HT ,S is oriented in the sense of Definition 12.2.2 – see Example 2.4.40. Moreover, an
orientation of T is equivalent to the data of orientations HT ,S for any scheme S which
are stable by pullbacks (on cohomology).

Remark 12.2.4. When E is a strict ring spectrum, the category E-mod satisfies the axioms
of [Dég08, 2.1] (see example 2.12 of loc.cit.).

Recall the following result, which first appeared in [Vez01]:

Proposition 12.2.5 (Morel). Let (E, c) be an oriented ring spectrum.
Then:

E∗∗(P∞
S ) = E∗∗[[c]]

E∗∗(P∞
S ×P∞

S ) = E∗∗[[x, y]]

where x (resp. y) is the pullback of c along the first (resp. second) projection.

Remark 12.2.6. When E is a strict ring spectrum, this is [Dég08, 3.2] according to remark
12.2.4. The proof follows an argument of Morel ([Dég08, lemma 3.3]) and the arguments of
op.cit., p. 634, can be easily used to obtain the proposition arguing directly for the cohomology
functor X 7→ E∗,∗(X).

12.2.7. Recall that the Segre embeddings

Pn
S ×Pm

S → Pn+m+nm
S

define a map
σ : P∞

S ×P∞
S → P∞

S .

It gives the structure of an H-group to P∞
S in the homotopy category H (S). Consider the

hypothesis of the previous proposition. Then the pullack along σ in E-cohomology induces a map

E∗∗[[c]]
σ∗

−→ E∗∗[[x, y]]

and following Quillen, we check that the formal power series σ∗(c) defines a formal group law over
the ring E∗∗.

Definition 12.2.8. Let (E, c) be an oriented ring spectrum and consider the previous nota-
tion.

The formal group law FE(x, y) := σ∗(c) will be called the formal group law associated to
(E, c).

Recall the formal group law has the form:

FE(x, y) = x+ y +
∑

i+j>0

aij .x
iyj

with aij = aji in E
−2i−2j,−i−j .

The coefficients aij describe the failure of additivity of the first Chern class c1. Indeed, assuming
the previous definition, we get the following result:

Proposition 12.2.9. Let X be a smooth S-scheme.

(1) For any line bundle L/X, the class c1(L) is nilpotent in E∗∗(X).
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(2) Suppose X admits an ample line bundle. For any line bundles L,L′ over X,

c1(L1 ⊗ L2) = FE(c1(L1), c1(L2)) ∈ E
2,1(X).

We refer to [Dég08, 3.8] in the case where E is strict; the proof is the same in the general
case.

Recall the following theorem of Vezzosi (cf. [Vez01, 4.3]):

Theorem 12.2.10 (Vezzosi). Let (E, c) be an oriented spectra over S, with formal group law
FE. Then there exists a bijection between the following sets:

(i) Orientation classes c′ of E.
(ii) Morphisms of ring spectra MGL→ E in SH(S).
(iii) Couples (F,ϕ) where F is a formal group law over E∗∗ and ϕ is a power series over E∗∗

which defines an isomorphism of formal group law: ϕ is invertible as a power series and
FE(ϕ(x), ϕ(y)) = F (x, y).

12.3. Rational category. In what follows, we shall use frequently the equivalence of pre-
motivic categories (see 5.3.35)

SHQ ⇄ DA1,Q ,

and shall identify freely any rational spectrum over a scheme S with an object of DA1(S,Q).

13. Algebraic K-theory

13.1. The K-theory spectrum. We consider the spectrum KGLS which represents homo-
topy invariant K-theory in SH(S) according to Voevodsky (see [Cis13], [Voe98, 6.2], [Rio10,
5.2] and [PPR09]). It is characterized by the following properties:

(K1) For any morphism of schemes f : T → S, there is an isomorphism f∗KGLS ≃ KGLT in
SH(T ).

(K2) For any regular scheme S and any integer n, there exists an isomorphism

HomSH(S) (1S [n],KGLS)→ Kn(S)

(where the right hand side is Quillen algebraic K-theory) such that, for any morphism
f : T → S of regular schemes, the following diagram is commutative:

Hom (1S [n],KGLS) //

��

Hom(f∗1S [n], f
∗KGLS) Hom (1T [n],KGLT )

��
Kn(S)

f∗

// Kn(T )

(where the lower horizontal map is the pullback in Quillen algebraic K-theory along the
morphism f and the upper horizontal map is obtained by using the functor f∗ : SH(S)→
SH(T ) and the identification (K1)).

(K3) For any scheme S, there exists a unique structure of a commutative monoid on KGLS
which is compatible with base change – using the identification (K1) – and induces the
canonical ring structure on K0(S).

Thus, according to (K1) and (K3), the collection of the ring spectrum KGLS for any scheme S
form an absolute ring spectrum. As usual, when no confusion can arise, we will not indicate the
base in the notation KGL.
Note that (K1) implies formally that the isomorphism of (K2) can be extended for any smooth
S-scheme X (with S regular), giving a natural isomorphism:

HomSH(S) (Σ
∞X+[n],KGL)→ Kn(X) .
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13.2. Periodicity.

13.2.1. Recall from the construction the following property of the spectrum KGL:

(K4) the spectrum KGL is a P1-periodic spectrum in the sense that there exists a canonical
isomorphism

KGL
∼
−→ RHom

(
Σ∞P1

S ,KGL
)
= KGL(−1)[−2].

As usual, P1
S is pointed by the infinite point.

This isomorphism, classically called the Bott isomorphism, is characterized uniquely by the fact
that its adjoint isomorphism (obtained by tensoring with 1S(1)[2]) is equal to the composite

(13.2.1.1) γu : KGL(1)[2]
1⊗u
−−−→ KGL ∧KGL

µ
−→ KGL.

where u : Σ∞P1 → KGL corresponds to the class [O(1)]− 1 in K̃0(P
1) through the isomorphism

(K2) and µ is the structural map of monoid from (K3).
Using the isomorphism of (K4), the property (K1) can be extended as follows: for any smooth

S-scheme X and any integers (i, n) ∈ Z2, there is a canonical isomorphism:

(13.2.1.2) KGLn,i(X)
∼
−−→ K2i−n(X).

Remark 13.2.2. The element u is invertible in the ring KGL∗,∗(S). Its inverse is the Bott
element β ∈ KGL2,1(S). If we chose as an orientation of the ring spectrum KGL (cf. 12.2.2) the
class

β.([O(1)]− 1) ∈ KGL2,1(P∞),

the corresponding formal group law is the multiplicative formal group law:

F (x, y) = x+ y + β−1.xy.

13.3. Modules over algebraic K-theory.

Theorem 13.3.1 (Röndigs, Spitzweck, Østvær). The spectrum KGL can be represented canon-

ically by a cartesian monoid KGL′, as well as by a homotopy cartesian commutative monoid KGLβ

in the fibred model category of symmetric P1-spectra, in such a way that there exists a morphism
of monoids KGL′ → KGLβ which is a termwise stable A1-equivalence.

Proof. For any noetherian scheme of finite dimension S, one has a strict commutative ring

spectrum KGLβS which is canonically isomorphic to KGLS in SH(S) as ring spectra; see [RSØ10].

One can check that the objects KGLβS do form a commutative monoid over the diagram of all
noetherian schemes of finite dimension (i.e. a commutative monoid in the category of sections of the
fibred category of P1-spectra over the category of noetherian schemes of finite dimension), either
by hand, by following the explicit construction of loc. cit., either by modifying its construction
very slightly as follows: one can perform mutatis mutandis the construction of loc. cit. in the
P1-stabilization of the A1-localization of the model category of Nisnevich simplicial sheaves over
(any essentially small adequate subcategory of) the category of all noetherian schemes of finite

dimension, and get an object KGLβ , whose restriction to each of the categories Sm/S is the

object KGLβS . From this point of view, we clearly have canonical maps f∗(KGLβS) → KGLβT for

any morphism of schemes f : T → S. The object KGLβ is homotopy cartesian, as the composed
map

Lf∗(KGLS) ≃ Lf∗(KGLβS)→ f∗(KGLβS)→ KGLβT ≃ KGLT

is an isomorphism in SH(T ). Consider now a cofibrant resolution

KGL′
Spec(Z) → KGLβSpec(Z)

in the model category of monoids of the category of symmetric P1-spectra over Spec (Z); see
Theorem 7.1.3. Then, we define, for each noetherian scheme of finite dimension S, the P1-
spectrum KGL′

S as the pullback of KGL′
Spec(Z) along the map f : S → Spec (Z). As the functor

f∗ is a left Quillen functor, the object KGL′
S is cofibrant (both as a monoid and as a P1-spectrum),

so that we get, by construction, a termwise cofibrant cartesian strict P1-ring spectrum KGL′, as
well as a morphism KGL′ → KGLβ which is a termwise stable A1-equivalence. �
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13.3.2. For each noetherian scheme of finite dimension S, one can consider the model categories

of modules over KGL′
S and KGLβS respectively; see 7.2.2. The change of scalars functor along the

stable A1-equivalence KGL′
S → KGLβS defines a left Quillen equivalence, whence an equivalence

of homotopy categories:

Ho(KGL′
S-mod) ≃ Ho(KGLβS-mod).

We put

Ho(KGL-mod)(S) = Ho(KGLβS-mod) ,

and call this category the homotopy category of KGL-modules over S. By definition, for any
smooth S-scheme X, we have a canonical isomorphism

HomSH(S)(Σ
∞(X+),KGL[n]) ≃ HomKGL(KGLS(X),KGL[n])

(where KGLS(X) = KGLS ∧
L
S Σ∞(X+), while HomKGL stands for HomHo(KGL-mod)(S)).

According to (K1) and (K3), for any regular scheme X, we thus get a canonical isomorphism:

(13.3.2.1) ǫS : HomKGL(KGLS [n],KGLS)
∼
−−→ Kn(S).

Using Bott periodicity (K4), and the compatibility with base change, this isomorphism can be
extended for any smooth S-scheme X and any pair (n,m) ∈ Z2:

(13.3.2.2) ǫX/S : HomKGL(KGLS(X),KGLS(m)[n])
∼
−−→ K2m−n(X).

Corollary 13.3.3. The categories Ho(KGL-mod)(S) form a motivic category, and the func-
tors

SH(S)→ Ho(KGL-mod)(S) , M 7→ KGLS ∧
L
S M

define a morphism of motivic categories

SH→ Ho(KGL-mod)

over the category of noetherian schemes of finite dimension.

Proof. This follows from the preceding theorem and from 7.2.13 and 7.2.18. �

13.4. K-theory with support.

13.4.1. Consider a closed immersion i : Z → S with complementary open immersion j : U →
S. Assume S is regular.
We use the definition of [Gil81, 2.13] for the K-theory of S with support in Z denoted by KZ

∗ (S).
In other words, we define KZ(S) as the homotopy fiber of the restriction map

RΓ(S,KGLS) = K(S)→ K(U) = RΓ(U,KGLU ) ,

and put: KZ
n (S) = πn(K

Z(S)).
Applying the derived global section functor RΓ(S,−) to the homotopy fiber sequence

(13.4.1.1) i! i
!KGLS → KGLS → j∗ j

∗KGLS ,

we get a homotopy fiber sequence

(13.4.1.2) RΓ(S, i! i
!KGLS)→ RΓ(S,KGLS)→ RΓ(U,KGLS)

from which we deduce an isomorphism in the stable homotopy category of S1-spectra:

(13.4.1.3) RΓ(Z, i!KGLS) = RΓ(S, i! i
!KGLS) ≃ K

Z(S) .

We thus get the following property:

(K6) There is a canonical isomorphism

HomSH(S)

(
1S [n], i!i

!KGLS
)
→ KZ

n (S)

which satisfies the following compatiblities:
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(K6a) the following diagram is commutative:

Hom(1[n+ 1], j∗j
∗KGLS) //

��

Hom
(
1[n], i!i

!KGLS
)

//

��

Hom(1[n],KGLS)

��
Kn+1(U) // KZ

n (S)
// Kn(S)

where the upper horizontal arrows are induced by the localization sequence (13.4.1.1),
and the lower one is the canonical sequence of K-theory with support. The extreme
left and right vertical maps are the isomorphisms of (K2);

(K6b) for any morphism f : Y → S of regular schemes, k : T → Y the pullback of i
along f , the following diagram is commutative:

Hom
(
1[n], i!i

!KGLS
)

//

��

Hom
(
f∗1[n], f∗i!i

!KGLS
)

// Hom
(
1[n], k!k

!KGLY
)

��
KZ
n (S)

f∗

// KT
n (Y )

where the lower horizontal map is given by the functoriality of relative K-theory (in-
duced by the funtoriality of K-theory) and the left one is obtained using the functor
f∗ of SH, the canonical exchange morphism f∗i!i

! → k!k
!f∗ and the identification

(K1).

This property can be extended to the motivic category Ho(KGL-mod) and we get a canonical
isomorphism

(13.4.1.4) ǫi : HomKGL(KGLS [n], i!i
!KGLS)

∼
−−→ KZ

n (S)

satisfying the analog of (K6a) and (K6b).

13.5. Fundamental class.

13.5.1. Consider a cartesian square of regular schemes

Z ′ k //

g

��

S′

f

��
Z

i // S

with i a closed immersion. We will say that this square is Tor-independant if Z and S′ are
Tor-independant over S in the sense of [SGA6, III, 1.5]: for any i > 0, TorSi (OZ ,OS′) = 0.86

In this case, when we assume in addition that all the schemes in the previous square are
regular and that i is a closed immersion we get from [TT90, 3.18]87 the formula

f∗i∗ = k∗g
∗ : K∗(Z)→ K∗(S

′)

in Quillen K-theory. An important point for us is that there exists a canonical homotopy between
these morphisms at the level of the Waldhausen spectra.88 According to the localization theorem
of Quillen [Qui73, 3.1], we get:

Theorem 13.5.2 (Quillen). For any closed immersion i : Z → S between regular schemes,
there exists a canonical isomorphism

qi : K
Z
n (S)→ Kn(Z).

Moreover, this isomorphism is functorial with respect to the Tor-independant squares as above,
with i a closed immersion and all the schemes regular.

86For example, when i is a regular closed immersion of codimension 1, this happens if and only if the above
square is transversal.

87When all the schemes in the square admit ample line bundles, we can refer to [Qui73, 2.11].
88In the proof of Quillen, one can also trace back a canonical homotopy with the restriction mentioned in the

preceding footnote.
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Remark 13.5.3. In the condition of this theorem, the following diagram is commutative by
construction:

KZ
n (S) ++WWWWW

qi �� Kn(S)

Kn(Z) i∗

33gggggg

where the non labelled map is the canonical one.

Definition 13.5.4. Let i : Z → S be a closed immersion between regular schemes.
We define the fundamental class associated with i as the morphism of KGL-modules:

ηi : i∗KGLZ → KGLS

defined by the image of the unit element 1 through the following morphism:

K0(Z)
q
−1
i−−→ KZ

0 (S)
ǫ−1
i−−→ HomKGL(KGLS , i!i

!KGLS) = HomKGL(i∗KGLZ ,KGLS).

We also denote by η′i : KGLZ → i!KGLS the morphism obtained by adjunction.

Remark 13.5.5. The fundamental class has the following functoriality properties.

(1) By definition, and applying remark 13.5.3, the composite map

KGLS → i∗i
∗(KGLS) = i∗KGLZ

ηi
−→ KGLS

corresponds via the isomorphism ǫS to i∗(1) ∈ K0(S). According to [SGA6, Exp. VII,
2.7], this class is equal to λ−1(Ni) whereNi is the conormal sheaf of the regular immersion
i.

(2) In the situation of a Tor-independant square as in 13.5.1, remark that f∗ηi = ηk through
the canonical exchange isomorphism f∗i∗ = k∗g

∗ — apply the functoriality of ǫi from
(K6b) and the one of qi.

(3) Using the identification i!i∗ = 1, we get η′i = i!ηi. Consider a cartesian square as in 13.5.1
and assume f is smooth. Then the square is Tor-independant and we get g∗η′i = η′k using
the exchange isomorphism g∗i! = k!f∗.

13.6. Absolute purity for K-theory.

Proposition 13.6.1. For any closed immersion i : Z → S between regular schemes, the
following diagram is commutative:

HomKGL(KGLZ [n],KGLZ)
η′i //

ǫZ

��
(∗)

HomKGL(KGLZ [n], i
!KGLS)

ǫi

��
Kn(Z)

q
−1
i // KZ

n (S)

Proof. In this proof, we denote by [−,−] the bifunctor HomKGL(−,−).
Step 1: We assume that i : Z → S admits a retraction p : S → Z.
Consider a KGL-linear map α : KGLZ [n]→ KGLZ . Then, η

′
i(α) corresponds by adjunction to the

composition

i∗KGLZ [n]
i∗(α)
−−−→ i∗KGLZ

ηi
−→ KGLS .

Applying the projection formula for the motivic category Ho(KGL-mod), we get:

i∗(α) = i∗(1⊗ i
∗p∗(α)) = i∗(1)⊗ p

∗(α).

Here 1 stands for the identity morphism of the KGL-module KGLZ . This shows that η′i(α)
corresponds by adjunction to the composite map:

ηi ⊗ p
∗(α) : i∗KGLZ [n] = i∗KGLZ [n]⊗KGLS → KGLS ⊗KGLS = KGLS

(the tensor product is the KGL-linear one). By assumption, i∗ : K∗(Z) → K∗(S) admits a
retraction which implies the canonical map Oi : K

Z
∗ (S)→ K∗(S) admits a retraction (cf. remark

13.5.3). To check that the diagram (∗) is commutative, we can thus compose with Oi.
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Recall the first point of remark 13.5.5: applying property (K6a) and the fact the isomorphism
ǫS : [KGLS [n],KGLS ]→ Kn(S) is compatible with the algebra structures, we are finally reduced
to prove that

i∗(α) = i∗(1).p
∗(α) ∈ Kn(S).

This follows from the projection formula in K-theory (see [Qui73, 2.10] and [TT90, 3.17]).
Step 2: We shall reduce the general case to Step 1. We consider the following deformation to the
normal cone diagram: let D be the blow-up of A1

S in the closed subscheme {0} × Z, P be the
projective completion of the normal bundle of Z in S and s be the canonical section of P/Z; we
get the following diagram of regular schemes:

Z
s1 //

i

��

A1
Z

��

Z
s0oo

s

��
S // D Poo

(13.6.1.1)

where s0 (resp. s1) is the zero (resp. unit) section of A1
Z over Z. These squares are cartesian

and Tor-independant in the sense of 13.5.1. The maps s0 and s1 induce isomorphisms in K-theory
because Z is regular. Thus, the second point of remark 13.5.5 allows to reduce to the case of the
immersion s which was done in Step 1. �

13.6.2. Consider a cartesian square

T
k //

g

��

X

f

��
Z

i // S

such that S and Z are regular, i is a closed immersion and f is smooth. In this case, the following
diagram is commutative

HomKGL(KGLZ(T )[n],KGLZ)
η′i // HomKGL(KGLZ(T )[n], i

!KGLS)

HomKGL(KGLT [n],KGLT )
η′k // HomKGL(KGLT [n], k

!KGLX)

using the adjunction (g♯, g∗), the exchange isomorphism g∗i! ≃ k!f∗ (which uses relative purity for
smooth morphisms) and the third point of remark 13.5.5. In particular, the preceding proposition
has the following consequences:

Theorem 13.6.3 (Absolute purity). For any closed immersion i : Z → S between regular
schemes, the map

η′i : KGLZ → i!KGLS

is an isomorphism in the category Ho(KGL-mod)(Z) (or in SH(Z)).

Corollary 13.6.4. Given a cartesian square as above, for any pair (n,m) ∈ Z2, the following
diagram is commutative:

Hom(KGLS(X), i∗KGLZ(m)[n])
ηi // Hom(KGLS(X),KGLS(m)[n])

ǫX/S∼

��

Hom(KGLZ(T ),KGLZ(m)[n])

ǫT/Z ∼
��

K2m−n(T )
k∗ // K2m−n(X)

where the vertical maps are the isomorphisms (13.3.2.2).
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13.7. Trace maps.

13.7.1. Let S be a regular scheme. Let Y be a smooth S-scheme. The canonical map

Pic(Y )→ K0(Y )
∼
−→ HomKGL(KGLS(Y ),KGLS)

β∗
−→ HomKGL(KGLS(Y ),KGLS(1)[2])

defines Chern classes in the category Ho(KGL-mod)(S); they corresponds to the orientation de-
fined in remark 13.2.2.
Let p : P → S be a projective bundle of rank n. Let v = [O(1)] − 1 in K0(P ). It corresponds to
a map v : KGLS(P ) → KGLS . According to [Dég08, 3.2] and our choice of Chern classes, the
following map

KGLS(P )
∑

i β
i.vi

⊠p∗
−−−−−−−−→

⊕

0≤i≤n

KGLS(i)[2i]

is an isomorphism. As β is invertible, it follows that the map

(13.7.1.1) ϕP/S : KGLS(P )
∑

i v
i
⊠p∗

−−−−−−→
⊕

0≤i≤n

KGLS

is an isomorphism as well. Using this formula, the map Hom(ϕP/S ,KGLS) is equal to the isomor-
phism of Quillen’s projective bundle theorem in K-theory (cf. [Qui73, 4.3]):

fP/S :

n⊕

i=0

K∗(S)→ K∗(P ), (S0, ..., Sn) 7→
∑

i

p∗(Si).v
i.

Let p∗ : K∗(P ) → K∗(S) be the pushout by the projective morphism p. According to the
projection formula, it is K∗(S)-linear. In particular, it is determined by the n+1-uple (a0, ..., an)
where ai = p∗(v

i) ∈ K0(S) through the isomorphism fP/S . Let ai : KGLS → KGLS be the map
corresponding to ai.

Definition 13.7.2. Consider the previous notations. We define the trace map associated with
the projection p : P → S as the morphism of KGL-modules

TrKGL
p : p∗(KGLP ) = RHom(KGLS(P ),KGLS)

(ϕ∗
P/S)−1

−−−−−−→
n⊕

i=0

KGLS
(a0,...,an)
−−−−−−→ KGLS .

From this definition, it follows that Trp represents the pushout by p in K-theory:

HomKGL(KGLS [n], p∗KGLP )
TrKGL

p∗ // HomKGL(KGLS [n],KGLS)

ǫS

��

HomKGL(KGLP [n],KGLP )
ǫP ��
Kn(P )

p∗ // Kn(S)

Consider moreover a cartesian square:

Q
q //

g

��

P

p

��
Y

f // S

such that f is smooth. From the projective base change theorem, we get f∗p∗p
∗ = q∗q

∗g∗. Using
this identification, we easily obtain that f∗ TrKGL

p = TrKGL
q . Thus, we conclude that the map

HomKGL(KGLS(Y )[n], p∗KGLP )
TrKGL

p
−−−−→ HomKGL(KGLS(Y )[n],KGLS)

represents the usual pushout map

q∗ : Kn(Q)→ Kn(Y )

through the canonical isomorphisms (13.3.2.2).
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13.7.3. Consider a projective morphism f : T → S between regular schemes and choose a
factorization

T
i
−→ P

p
−→ S

where i is a closed immersion and p is the projection of a projective bundle. Let us define a
morphism

TrKGL
(p,i) : f∗KGLT = p∗i∗KGLT

p∗ηi
−−−→ p∗KGLP

TrKGL
p

−−−−→ KGLS .

According to 13.6.4 and the previous paragraph, for any cartesian square

Y
g //

b

��

X

a

��
T

f // S

such that a is smooth, the following diagram is commutative.

HomKGL(KGLS(X), f∗KGLT (m)[n])
TrKGL

(p,i)∗ // HomKGL(KGLS(X),KGLS(m)[n])

ǫX/S≃

��

HomKGL(KGLT (Y ),KGLZ(m)[n])

ǫY/T ≃
��

K2m−n(Y )
g∗ // K2m−n(X)

(13.7.3.1)

Definition 13.7.4. Considering the above notations, we define the trace map associated to
f as the morphism

TrKGL
f = TrKGL

(p,i) : f∗f
∗KGLS → KGLS .

Remark 13.7.5. By definition, the trace map TrKGL
f is a morphism of KGL-modules. As a

consequence, the map obtained by adjuntion

η′f : KGLT ≃ f
∗KGLS → f !KGLS

is also a morphism of KGL-module. This implies that the morphism η′f (and thus also TrKGL
f ) is

completely determined by the element

η′f ∈ HomKGL(KGLT , f
!KGLS) ≃ HomSH(T )(1T , f

!KGLS) .

Moreover, as p is smooth, there is a canonical isomorphism p!KGLS ≃ KGLP (by relative purity
for p and by periodicity; see [Rio10, lemma 6.1.3.3]). From there, we deduce from Theorem 13.6.3
that we have a canonical isomorphism

f !KGLS ≃ i
!KGLP ≃ KGLT .

This implies that we have an isomorphism:

HomSH(T )(1T , f
!KGLS) ≃ K0(T ) .

Hence the map η′f is completely determined by a class inK0(T ). The problem of the functoriality of

trace maps in the motivic category Ho(KGL-mod) is thus a matter of functoriality of this element
η′f in K0, which can be translated faithfully to the problem of the functoriality of pushforwards
for K0.

However, the only property of trace maps we shall use here is the following.

Proposition 13.7.6. Let f : T → S be a finite flat morphism of regular schemes such that
the OS-module f∗OT is (globally) free of rank d. Then the following composite map

KGLS → f∗f
∗KGLS

TrKGL
f

−−−−→ KGLS

is equal to d.1KGLS
in Ho(KGL-mod)(S) (whence in SH(S)).
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Proof. Let ϕ be the composite map of Ho(KGL-mod)(S)

KGLS → f∗f
∗KGLS

Trf
−−→ KGLS .

As ϕ is KGLS-linear by construction, it corresponds to an element

ϕ ∈ HomKGL(KGLS ,KGLS) ≃ HomSH(S)(1S ,KGLS) ≃ K0(S) .

According to the commutative diagram (13.7.3.1), if we apply the functor HomSH(S)(1S ,−) to ϕ,
we obtain through the evident canonical isomorphisms the composition of the usual pullback and
pushforward by f in K-theory:

K0(S)
f∗

−→ K0(T )
f∗
−→ K0(S).

With these notations, the element of K0(S) corresponding to ϕ is the pushforward of 1T =
f∗(1S) by f , while the element corresponding to the identity of KGLS is of course 1S . Under our
assumptions on f , it is obvious that we have the identity f∗(1T ) = d.1S ∈ K0(S). This means
that ϕ is d times the identity of KGLS . �

14. Beilinson motives

14.1. The γ-filtration.

14.1.1. We denote by KGLQ the Q-localization of the absolute ring spectrum KGL, considered
as a cartesian section of DA1,Q. From [Rio10, 5.3.10], this spectrum has the following property:

(K5) For any scheme S, there exists a canonical decomposition, called the Adams decomposi-
tion

KGLQ,S ≃
⊕

i∈Z

KGL
(i)
S

compatible with base change and such that for any regular scheme S, the isomorphism
of (K2) induces an isomorphism:

HomD
A1 (S,Q)

(

QS(X)[n],KGL
(i)
S

)

≃ K(i)
n (S) := GriγKn(S)Q

where the right hand side is the i-th graded piece of the γ-filtration on K-theory groups.

We will denote by

πi : KGLQ,S → KGL
(i)
S ,

resp. ιi : KGL
(i)
S → KGLQ,S

the projection (resp. inclusion) defined by the decomposition (K3) and we put pi = ιiπi for the
corresponding projector on KGLQ,S .

Definition 14.1.2 (Riou). We define the Beilinson motivic cohomology spectrum as the ra-

tional Tate spectrum HB,S = KGL
(0)
S .

Remark 14.1.3. Note that, by definition, for any morphism of schemes f : T → S, we have
f∗HB,S ≃ HB,T .

Lemma 14.1.4. The isomorphism γu of (13.2.1.1) is homogenous of degree +1 with respect
to the graduation (K5). In other words, for any integer i ∈ Z, the following composite map is an
isomorphism

KGL(i)(1)[2]
ιi−→ KGLQ(1)[2]

γu
−→ KGLQ

πi−→ KGL(i+1).

For any integer i ∈ Z, we thus get a canonical isomorphism

(14.1.4.1) HB(i)[2i]
∼
−→ KGL(i).
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Proof. It is sufficient to check that, for j 6= i+ 1,
{

pj ◦ γu ◦ pi = 0,

pj ◦ γ
−1
u ◦ pi = 0

in HomD
A1 (S,Q)(KGLQ,KGLQ). But according to [Rio10, 5.3.1 and 5.3.6], we have only to

check these equalities for the induced endomorphism of K0 (seen as a presheaf on the category of
smooth schemes over Spec (Z)). This follows then from the compatibility of the projective bundle
isomorphism with the γ-filtration; see [SGA6, Exp. VI, 5.6]. �

14.1.5. Recall from [NSØ09] that KGLQ is canonically isomorphic (with respect to the ori-
entation 13.2.2) to the universal oriented rational ring spectrum with multiplicative formal group
law introduced in [NSØ09]. The isomorphism of the preceding corollary shows in particular that
HB is obtained from KGLQ by killing the elements βn for n 6= 0. In particular, this shows that
HB is canonically isomorphic to the spectrum denoted by LQ in [NSØ09], which corresponds to
the universal additive formal group law over Q. This implies that HB has a natural structure of
a (commutative) ring spectrum.

Proposition 14.1.6. The multiplication map

µ : HB ⊗HB → HB

is an isomorphism.

This trivially implies that the following map is an isomorphism:

(14.1.6.1) 1⊗ η : HB → HB ⊗HB.

Proof. It is enough to treat the case S = Spec (Z). We will proove that the projector

ψ : HB ⊗HB

µ
−→ HB

1⊗η
−−→ HB ⊗HB

is an isomorphism (in which case it is in fact the identity). We do that for the isomorphic ring
spectrum LQ.

Let H
topQ be the topological spectrum representing rational singular cohomology. In the

terminology of [NSØ09], LQ is a Tate spectrum representing the Landweber exact cohomology
which corresponds to the Adams graded MU∗-algebra Q obtained by killing every generators of
the Lazard ring MU∗. The corresponding topological spectrum is of course H

topQ.
According to [NSØ09, 9.2], the spectrum E = LQ ⊗ LQ is a Landweber exact spectrum cor-
responding to the MU∗-algebra Q ⊗MU∗

Q = Q. In particular, the corresponding topological
spectrum is simply H

topQ. Thus, according to [NSØ09, 9.7], applied with F = E = LQ ⊗ LQ,
we get an isomorphism of Q-vector spaces

End(LQ⊗ LQ) = HomQ(Q, E∗∗) = Q.

Thus ψ = λ.Id for λ ∈ Q. But λ = 0 is excluded because ψ is a projector on a non trivial factor,
so that we can conclude. �

14.2. Definition.

Definition 14.2.1. Let S be any scheme.
We say that an object E of DA1(S,Q) is HB-acyclic if HB⊗E = 0 in DA1(S,Q). A morphism

of DA1(S,Q) is an HB-equivalence if its cone is HB-acyclic (or, equivalently, if its tensor product
with HB is an isomorphism).

An object M of DA1(S,Q) is HB-local if, for any HB-acyclic object E, the group Hom(E,M)
vanishes.

We denote by DMB(S) the Verdier quotient of DA1(S,Q) by the localizing subcategory made
of HB-acyclic objects (i.e. the localization of DA1(S,Q) by the class of HB-equivalences).

The objects of DMB(S) are called the Beilinson motives.

Proposition 14.2.2. An object E of DA1(S,Q) is HB-acyclic if and only if we have KGLQ⊗
E = 0.
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Proof. This follows immediately from property (K5) (see 14.1.1) and Lemma 14.1.4. �

Proposition 14.2.3. The localization functor DA1(S,Q) → DMB(S) admits a fully faithful
right adjoint whose essential image in DA1(S,Q) is the full subcategory spanned by HB-local ob-
jects. More precisely, there is a left Bousfield localization of the stable model category of symmetric
Tate spectra Sp(S,Q) by a small set of maps whose homotopy category is precisely DMB(S).

Proof. For each smooth S-scheme X and any integers n, i ∈ Z, we have a functor with values
in the category of Q-vector spaces

FX,n,i = HomD
A1 (S,Q)(Σ

∞QS(X), HB ⊗ (−)(i)[n]) : Sp(S,Q)→ Q-mod

which preserves filtered colimits. We define the class of HB-weak equivalences as the class of maps
of Sp(S,Q) whose image by FX,n,i is an isomorphism for all X and n, i. By virtue of [Bek00,
Prop. 1.15 and 1.18], we can apply Smith’s theorem [Bek00, Theorem 1.7] (with the class of
cofibrations of Sp(S,Q)), which implies the proposition. �

Remark 14.2.4. We shall often make the abuse of considering DMB(S) as a full subcategory
in DA1,Q(S), with an implicit reference to the preceding proposition.

Note that HB-acyclic objects are stable by the operations f∗, f♯ and ⊗, so that applying
Corollary 5.2.5, we obtain a premotivic category DMB together with a premotivic adjunction:

(14.2.4.1) β∗ : DA1,Q ⇄ DMB : β∗.

Proposition 14.2.5. The spectrum HB,S is HB-local and the unit map ηHB
: 1→ HB,S is an

HB-equivalence in DA1(S,Q).

Proof. The unit map η : 1S → HB,S is an HB-equivalence by 14.1.6.
Consider a rational spectrum Eover S such that E ⊗ HB = 0 and a map f : E → HB. It

follows trivially from the commutative diagram

E
f //

1⊗η
��

HB,S

1⊗η
�� PPPPPPPPPPP

PPPPPPPPPPP

E ⊗HB,S
f⊗1 // HB,S ⊗HB,S

µ // HB,S

that f = 0, which shows that HB,S is HB-local. �

Corollary 14.2.6. The family of ring spectra HB,S comes from a cofibrant cartesian com-
mutative monoid (7.2.10) of the symmetric monoidal fibred model category of Tate spectra over
the category of schemes.

Proof. By virtue of Proposition 14.2.5 and of Corollary 7.1.9, there exists a cofibrant commu-
tative monoid in the model category of symmetric Tate spectra over Spec (Z) which is canonically
isomorphic to HB,Z in DA1(Spec (Z) ,Q) (as commutative ring spectrum). For a morphism of
schemes f : S → Spec (Z), we can then define HB,S as the pullback of HB,Z (at the level of the
model categories); using Proposition 7.1.11, we see that this defines a cofibrant cartesian commu-
tative monoid on the fibred category of spectra which is isomorphic to HB,S as commutative ring
spectra in DA1(S,Q). �

14.2.7. From now on, we shall assume that HB is given by a cofibrant cartesian commutative
monoid of the symmetric monoidal fibred model category of Tate spectra over the category of
schemes. By virtue of propositions 7.2.11 and 7.2.18), we get the motivic category Ho(HB-mod)
of HB-modules, together with a commutative diagram of morphisms of premotivic categories

DA1,Q

β ''OOOOOO

HB⊗(−) // Ho(HB-mod)

DMB

ϕ

55kkkkkkkk

(any HB-acyclic object becomes null in the homotopy category of HB-modules by definition, so
that HB ⊗ (−) factors uniquely through DMB by the universal property of localization).
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Proposition 14.2.8. The forgetful functor U : Ho(HB-mod)(S)→ DA1(S,Q) is fully faithful.

Proof. We have to prove that, for any HB,S-module M , the map

HB,S ⊗M →M

is an isomorphism in DA1,Q(S). As this is a natural transformation between exact functors which
commute with small sums, and as DA1,Q is a compactly generated triangulated category, it is
sufficient to check this for M = HB,S ⊗E, with E a (compact) object of DA1,Q(S) (see 7.2.7). In
this case, this follows immediately from the isomorphism (14.1.6.1). �

Theorem 14.2.9. The functor DMB(S) → Ho(HB,S-mod) is an equivalence of triangulated
monoidal categories.

Proof. This follows formally from the preceding proposition by definition of DMB (see for
instance [GZ67, Chap. I, Prop. 1.3]). �

Remark 14.2.10. The preceding theorem shows that the premotivic category Ho(HB-mod)
as well as the morphism DA1,Q → Ho(HB-mod) are completely independent of the choice of the
strictification of the (commutative) monoid structure on HB given by Corollary 14.2.6.

Corollary 14.2.11. The premotivic category DMB ≃ Ho(HB-mod) is a Q-linear motivic
category.

Proof. It follows from Proposition 7.2.18 and Theorem 14.2.9 that DMB satisfies the homo-
topy, stability and localization properties (because this is true for DA1,Q by 6.2.2). It is also well
generated because it is a localization of DA1,Q. Thus we can apply Remark 2.4.47 to conclude. �

Remark 14.2.12. One can also prove that DMB is motivic much more directly: this follows
from the fact that DA1,Q is motivic and that the six Grothendieck operations preserve HB-acyclic
objects, so that all the properties of DA1,Q induce their analogs on DMB by the 2-universal
property of localization (we leave this as an easy exercise for the reader).

Definition 14.2.13. For a scheme X, we define its Beilinson motivic cohomology by the
formula:

Hq
B
(X,Q(p)) = HomDMB (X)(1X ,1X(p)[q]) .

In fact, according to the preceding corollary, the cohomology theory defined above is repre-
sented by the ring spectrum HB. In particular, we can now justify the terminology of Beilinson
motives:

Corollary 14.2.14. For any regular scheme X, we have a canonical isomorphism

Hq
B
(X,Q(p)) ≃ Grpγ K2p−q(X)Q .

14.2.15. Recall from Paragraph 14.1.5 that HB,S is canonically oriented for any scheme S.
Moreover, these orientations are compatible with pullbacks with respect to S. This means in
particular that the motivic triangulated category DMB is oriented (see Example 12.2.3).

In particular, the fibred category DMB satisfies the usual Grothendieck 6 functors formalism.
We refer the reader to Theorem 2.4.50 for the precise statement.

It was remarked in Paragraph 14.1.5 that HB,S is the universal oriented ring spectrum with
additive formal group law over S. This property can be expressed by the following nice description
of Beilinson motives:

Corollary 14.2.16. Let E be a rational spectrum over S. The following conditions are
equivalent:

(i) E is a Beilinson motive (i.e. is in the essential image of the right adjoint of the local-
ization functor DA1,Q → DMB);

(ii) E is HB-local;
(iii) the map η ⊗ 1E : E → HB ⊗ E is an isomorphism;
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(iv) E is an HB-module in DA1,Q;
(v) E is admits a strict HB-module structure.

If, in addition, E is a commutative ring spectrum, these conditions are equivalent to the following
ones:

(Ri) E is orientable;
(Rii) E is an HB-algebra;
(Riii) E admits a unique structure of HB-algebra;

And, if E is a strict commutative ring spectrum, these conditions are equivalent to the following
conditions:

(Riv) there exists a morphism of commutative monoids HB → E in the stable model category
of Tate spectra;

(Rv) there exists a unique morphism HB → E in the homotopy category of commutative
monoids of the category of Tate spectra.

Proof. The equivalence between statements (i)–(v) follows immediately from 14.2.9. If E is
a ring spectrum, the equivalence with (Ri), (Rii) and R(iii) is a consequence of 12.2.10 and of the
fact that MGLQ is HB-local; see [NSØ09, Cor. 10.6]. It remains to prove the equivalence with
(Riv) and (Rv). Then, E is HB-local if and only if the map E → HB ⊗E is an isomorphism. But
this map can be seen as a morphism of strict commutative ring spectra (using the model structure
of 7.1.8 applied to the model category of Tate spectra) whose target is clearly an HB-algebra, so
that (Riv) is equivalent to (ii). It remains to check that there is at most one strict HB-algebra
structure on E (up to homotopy), which follows from the fact that HB is the initial object in
the homotopy category of commutative monoids of the model category given by Theorem 7.1.8
applied to the model structure of Proposition 14.2.3. �

Corollary 14.2.17. One has the following properties.

(1) The ring structure on the spectrum HB is given by the following structural maps (with
the notations of 14.1.1).

HB ⊗HB

ι0⊗ι0−−−→ KGLQ ⊗KGLQ
µKGL
−−−→ KGLQ

π0−→ HB,

Q
ηKGL
−−−→ KGLQ

π0−→ HB.

(2) The map ı0 : HB → KGLQ is compatible with the monoid structures.
(3) Let HB[t, t

−1] =
⊕

i∈ZHB(i)[2i] be the free HB-algebra generated by one invertible gener-
ator t of bidegree (2, 1). Then the section u : Q(1)[2]→ KGLQ induces an isomorphism
of HB-algebras:

γ′u : HB[t, t
−1]→ KGLQ.

Proof. Property (1) follows from properties (2) and (3). Property (2) is a trivial consequence
of the previous corollary. Using the isomorphisms (14.1.4.1) of Lemma 14.1.4, we get a canonical
isomorphism

HB,S [t, t
−1]

∼
−→
⊕

i∈Z

KGL(i).

Through this isomorphism, the map γ′u corresponds to the Adams decomposition (i.e. to the
isomorphism (K5) of 14.1.1) from which we deduce property (3). �

Remark 14.2.18. One deduces easily, from the preceding proposition and from 14.1.6, another
proof of the fact that KGLQ is a strict commutative ring spectrum.

The isomorphism (3) is in fact compatible with the gradings of each term: the factor HB.t
i is

sent to the factor KGL(i). Recall also the parameter t corresponds to the unit β−1 in KGL∗,∗.

Corollary 14.2.19. The Adams decomposition is compatible with the monoid structure on
KGLQ: for any integer i, j, l such that l 6= i+ j, the following map is zero.

KGL(i) ⊗KGL(j) ιi⊗ ιj
−−−−→ KGLQ ⊗KGLQ

µ
−−→ KGLQ

πl−−→ KGL(l)
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14.2.20. Let R be a Q-algebra with structural morphism ϕ. Recall from Paragraph 5.3.36
that we get an adjunction of premotivic triangulated categories:

ϕ∗ : DA1,Q → DA1,R : ϕ∗.

Moreover, for any object M and N of DA1,Q(S), the canonical map

(14.2.20.1) Hom(M,N)⊗Q R→ Hom(ϕ∗(M), ϕ∗(N)).

is an isomorphism provided M is compact or R is a finite Q-vector space.
In particular, the ring spectrum KGLR := ϕ∗(KGLQ) represents Quillen algebraic K-theory

with coefficients in R over regular schemes. We can repeat Definition 14.2.1 with R-coefficients
and this gives the category DMB(S,R) of Beilinson motives with R-coefficients together with an
adjuntion:

ϕ∗ : DMB → DMB(−, R) : ϕ∗.

Moreover, using the canonical map (14.2.20.1) and the fact it is an isomorphism when M is
a constructible Beilinson motives, we immediately extend all the properties proved so far from
Q-coefficients to R-coefficients.

14.3. Motivic proper descent. Recall from Definition 4.3.2 we have defined the notion of
continuity for a triangulated premotivic category which is the homotopy category of a premotivic
model category, such as the triangulated motivic category DMB – in this case, the notion of
continuity is relative to the Tate twist.

Proposition 14.3.1. The motivic triangulated category DMB is continuous.

Proof. We consider the adjunction (14.2.4.1). According to Theorem 14.2.9, the functor β∗
commutes with pullbacks by arbitrary morphisms. Thus the continuity property for DMB follows
from the continuity property for DA1,Q which was established in Example 6.1.13. �

We will give the main applications of continuity in the section on constructible Beilinson
motives. Recall from 4.3.9 the following corollary of the continuity property of the motivic category
DMB:

Corollary 14.3.2. Let X be a scheme, and consider an X-scheme Y of finite type. Given
a point x ∈ X, we denote by Xh

x the spectrum of the local henselian ring of X at the point x. Let
ax : Y ×X Xh

x → Y be the canonical map. Then the family of functors

DMB(Y )→ DMB(Y ×X Xh
x ) , E 7→ a∗x(E)

is conservative.

As the reader might expect, this proposition is very useful to reduce global properties of
the motivic category DMB to local properties. This is in particular illustrated by the following
proposition.

Theorem 14.3.3. The motivic category DMB is separated (on the category of noetherian
schemes of finite dimension).

Proof. According to Proposition 2.3.9, it is sufficient to check that, for any finite surjective
morphism f : T → S, the pullback functor

f∗ : DMB(S)→ DMB(T )

is conservative.
We argue by induction on the dimension of S.
Let us first treat the case where dim(S) = 0. Using the localization property, we can assume

that S and T are reduced (cf. 2.3.6). Then S is a disjoint sum of spectra of fields. In particular,
f is not only finite surjective but also flat. Moreover, it is also globally free. It will be sufficient
to prove that, for any Beilinson motive E over S, the adjunction map

E → f∗f
∗(E)
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is a monomorphism in DMB. Using the projection formula in DMB applied to the finite morphism
f (point (5) of Theorem 2.4.50), this latter map is isomorphic to

(
HB → f∗f

∗(HB)
)
⊗ 1E .

We are finally reduced to prove that the map HB,S → f∗f
∗HB,S is a monomorphism in DMB

(any monomorphism of a triangulated category splits). As HB,S is a direct factor of KGLQ,S , it
is sufficient to find a retraction of the adjunction map

KGLQ,S → f∗f
∗KGLQ,S ,

and this follows from Proposition 13.7.6.
Let us finally solve the induction process. Applying the preceding proposition, we can assume

that S is local henselian. Let s be the closed point of S and U be the open complement. Let fs
(resp. fU ) be the pullback of f above s (resp. U). Using the localization property of DMB and
the base change isomorphisms (point (4) of Theorem 2.4.50), it is sufficient to treat the case of
the finite morphisms fU and fs. The case of fU follows by the induction hypothesis while the case
of fs follows from the case treated previously. This ends up the induction process. �

According respectively to Proposition 3.3.33 and Theorem 3.3.37, we deduce from the preced-
ing proposition the following result:

Theorem 14.3.4. (1) The motivic category DMB satisfies étale descent.
(2) The motivic category DMB satisfies h-descent when restricted to quasi-excellent schemes.

Recall this means that for any étale hypercover (resp. h-hypercover of a quasi-excellent
scheme) p : X → X and for any Beilinson motive E over X, the map

p∗ : RΓ(X,E)→ RΓ(X , E) = R lim
←−
n

RΓ(Xn, E)

is an isomorphism in the derived category of the category of Q-vector spaces (see Corollary 3.2.17
taking into account Definition 3.2.20).

14.4. Motivic absolute purity.

Theorem 14.4.1 (Absolute purity). Let i : Z → S be a closed immersion between regular
schemes. Assume i has pure codimension n.

Then, considering the notations of 14.1.1, definition 13.5.4, and the identification (14.1.4.1),
the composed map

HB,Z
ι0−→ KGLQ,Z

η′i−→ i!KGLQ,S
πn−−→ i!HB,S(n)[2n]

is an isomorphism.

This isomorphism, of equivalently the map obtained by adjunction:

i∗(HB,Z)→ HB,S(n)[2n]

is called the fundamental class associated with i. In fact, this is a canonical class in the Beilinson
motivic cohomology of X with support in Z of bidegree (2n, n).

Remark 14.4.2. It follows from Remark 13.5.5 that the fundamental class in Beilinson motivic
cohomology is compatible with pullback with respect to Tor-independant square.

Proof. We have only to check that the above composition induces an isomorphism after
applying the functor Hom(QS(X),−(a)[b]) for a smooth S-scheme X and a couple of integers
(a, b) ∈ Z2. Using Remark 13.5.5(3), this composition is compatible with smooth base change and
we can assume X = S. Let us consider the projector

pa : KZ
r (S)Q = Kr(S/S − Z)Q → Kr(S/S − Z)Q

induced by πa◦ιa : KGLQ → KGLQ, and denote by K
(a)
r (S/S−Z) (with r = 2a−b) its image. By

virtue of Propostion 13.6.1, we only have to check that the following composite is an isomorphism:

ρi : K
(a)
r (Z)

ιa−→ Kr(Z)Q
q
−1
i−−−→ Kr(S/S − Z)Q

πa−→ K(a+n)
r (S/S − Z).
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From 13.5.2, the morphism ρi is functorial with respect to Tor-independant cartesian squares of
regular schemes (cf. 13.5.1). Thus, using again the deformation diagram (13.6.1.1), we get a
commutative diagram

K
(a)
r (Z) //

ρi

��

K
(a)
r (A1

Z)

��

K
(a)
r (Z)

ρs

��

oo

K
(a+n)
r (S/S − Z) // K(a+n)

r (D/D −A1
Z) K

(a+n)
r (P/P − Z)oo

in which any of the horizontal maps is an isomorphism (as a direct factor of an isomorphism).
Thus, we are reduced to the case of the closed immersion s : Z → P , canonical section of the
projectivisation of a vector bundle E (where E is the normal bundle of the closed immersion i).
Moreover, as the assertion is local on Z, we may assume E is a trivial vector bundle.

Let p : P → Z be the canonical projection, j : P − Z → P the obvious open immersion.
Consider the element v = [O(1)] − 1 ∈ K0(P ). Because v has virtual rank 0, it belongs to

K
(1)
0 (P ).

Recall that, according to the projective bundle formula, the horizontal lines in the following
commutative diagram are split short exact sequences:

0 // Kr(P/P − Z)Q
ν //

��

Kr(P )Q
j∗ //

��

Kr(P − Z)Q

��

// 0

0 // K(a+n)
r (P/P − Z)

ν′

// K(a+n)
r (P ) // K(a+n)

r (P − Z) // 0.

By assumption on E, vn lies in the kernel of j∗ and the diagram allows to identify the graded

piece K
(a+n)
r (P/P − Z) with the submodule of K

(a+n)
r (P ) of the form K

(a)
r (Z).vn.

On the other hand, j∗s∗ = 0: there exists a unique element ǫ ∈ K0(Z) such that s∗(1) =
p∗(ǫ).vn in K0(P ). From the relation p∗s∗(1) = 1, we obtain that ǫ is a unit in K0(Z), with
inverse the element p∗(v

n). By virtue of [SGA6, Exp. VI, Cor. 5.8], p∗(v
n) belongs to the 0-th

γ-graded part of K0(P )Q so that the same holds for its inverse ǫ. In the end, for any element
z ∈ Kr(Z), we get the following expression:

s∗(z) = s∗(1.s
∗p∗(z)) = s∗(1).p

∗(z) = p∗(ǫ.z).vn.

Thus, the commutative diagram

K
(a)
r (Z) // Kr(Z)Q

q−1
s //

s∗ ((QQQQQQQQQQQ
Kr(P/P − Z)Q

ν

��

// K(a+n)
r (P/P − Z)

ν′

��
Kr(P )Q // K(n)

r (P )

implies that the isomorphism q−1
s preserves the γ-filtrations (up to a shift by n). Hence it induces

an isomorphism on the graded pieces by functoriality. �

15. Constructible Beilinson motives

15.1. Definition and basic properties. In this section, we apply the general results of
Section 4 to the triangulated motivic category DMB. Let us first recall the definition of con-
structibility (Def. 4.2.1) which corresponds to the Tate twist.

Definition 15.1.1. Given any scheme S, we define the category DMB,c(S) of constructible
Beilinson motives over S as the thick triangulated subcategory of DMB(S) generated by the
motives of the form MS(X)(i) for a smooth S-scheme X and an integer i ∈ Z.

Remark 15.1.2. Constructible Beilinson motives plays towards Beilinson motives the same
role than complexes of étale sheaves with bounded cohomology and constructible cohomology
sheaves plays agains complexes of étale sheaves (in the case of torsion coefficients primer to the
residue characteristics. This fact will be even more striking after Theorems 15.2.1 and 15.2.4.
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15.1.3. Recall from Corollary 6.2.2 that DA1,Q is compactly generated by the Tate twist.
According to Theorem 14.2.9, the same is true for the motivic category DMB. Thus Proposition
1.4.11 gives the following criterion of constructibility for Beilinson motives:

Proposition 15.1.4. Given any base scheme S, a Beilinson motiveM over S is constructible
if and only if it is compact.

Remark 15.1.5. In the sequel, we will give several concrete descriptions of the category of
constructible Beilinson motives (see Corollaries 16.1.6 and 16.2.16).

Recall from Proposition 14.3.1 that DMB is continuous (with respect to the Tate twist).
Proposition 4.3.4 thus implies the following properties of constructibles Beilinson motives:

Proposition 15.1.6. Let (Sα)α∈A be a pro-object of noetherian finite dimensional schemes
with affine transition maps and such that the scheme S = lim

←−α∈A
Sα is noetherian of finite di-

mension.
Then the canonical functor:

(15.1.6.1) 2- lim
−→
α

DMB,c(Sα)→ DMB,c(S)

is an equivalence of monoidal triangulated categories.

Example 15.1.7. Under the assumptions of the abobe proposition, for any couple of integers
(p, q), the canonical map

lim
−→
α

Hq
B
(Sα,Q(p))→ Hq

B
(S,Q(p))

is an isomorphism.89

15.2. Grothendieck 6 functors formalism and duality. The motivic triangulated cate-
gory DMB is separated (14.3.3) and weakly pure (see Definition 4.2.20 ; this follows directly from
Theorem 14.4.1). Thus the abstract Theorem 4.2.29 gives the finiteness theorem, which we state
here in an explicit way to help the reader:

Theorem 15.2.1. The triangulated subcategory DMB,c of DMB is stable by the following op-
erations:

(1) f∗ for any morphism of schemes f .
(2) f∗ for any morphism f : Y → X of finite type such that X is quasi-excellent (resp. any

proper morphism f).
(3) f! for any separated morphism of finite type f .
(4) f ! for any separated morphism of finite type f .
(5) ⊗X for any scheme X.
(6) HomX for any quasi-excellent scheme X.

To be more precise, point (1) and (5) are obvious, the non respe condition of point (2) is the
hardest fact and follows from Theorem 4.2.24, point (3) as well as the respe condition of point (2)
is Corollary 4.2.12, point (4) is Corollary 4.2.28 and point (6) is Corollary 4.2.25.

15.2.2. Let B be an excellent scheme such that dim(B) ≤ 2. Recall that B satisfies wide reso-
lution of singularities up to quotient singularities (see Def. 4.1.9 and the result of De Jong recalled
in 4.1.11). Thus according to Corollary 4.4.3, we get the following description of constructible
Beilinson motives:

Proposition 15.2.3. Let S be a separated B-scheme of finite type, and T ⊂ S a closed
subscheme. Then the triangulated category DMB,c(S) is the smallest triangulated category of
DMB(S) which contained motives of the form

f∗(1X)(n)

where n is an integer and f : X → S is a projective morphism such that X is regular connected
and f−1(T )red is either empty, either X of the support of a strict normal crossing divisor.

89This result is to be compared with [Qui73, Sec. 7, 2.2] – it concerns homotopy invariant K-theory rather
than K-theory.



16. COMPARISON THEOREMS 249

The main motivation to introduce the notion of constructibility is Grothendieck duality. We
obtain this duality from the theoretical result on motivic triangulated categories, more precisely
Corollary 4.4.24:

Theorem 15.2.4. Let B be an excellent scheme such that dim(B) ≤ 2 and S be a regular
separated B-scheme of finite type.

Then for any separated morphism f : X → S of finite type, the premotive f !(1S) is a dual-
izing object of DMB,c(X). In fact, if we put DX(M) := HomX(M, f !(1S)) for any constructible
Beilinson motives M , the following properties hold:

(a) For any separated S-scheme of finite type X, the functor DX preserves constructible
objects.

(b) For any separated S-scheme of finite type X, the natural map

M → DX(DX(M))

is an isomorphism for any constructible Beilinson motive M .
(c) For any separated S-scheme of finite type X, and for any Beilinson motive M and N

over X, if N is constructible then we have a canonical isomorphism

DX(M ⊗X DX(N)) ≃ HomX(M,N) .

(d) For any morphism between separated S-schemes of finite type f : Y → X, we have
natural isomorphisms

DY (f
∗(M)) ≃ f !(DX(M))

f∗(DX(M)) ≃ DY (f
!(M))

DX(f!(N)) ≃ f∗(DY (N))

f!(DY (N)) ≃ DX(f∗(N))

where M (resp. N) is a constructible Beilinson motive over X (resp. Y ).

15.2.5. Let R be a Q-algebra.90

We define the premotivic triangulated category of constructible Beilinson motives with coefficients
in R as the category of constructible objects of the category DMB(−, R) defined in Paragraph
14.2.20.

According to loc. cit., for any constructible Beilinson motives with coefficients in Q, we get
an isomorphism:

HomDMB ,c(S)(M,N)⊗Q R −→ HomDMB ,c(S,R)

(
Lϕ∗(M),Lϕ∗(N)

)
.

It is straightforward to see that this isomorphism allows to extend all the results proved so far for
Beilinson motives with coefficient in Q to the case of R-coefficients.

16. Comparison theorems

16.1. Comparison with Voevodsky motives.

16.1.1. We consider the premotivic adjunction of 11.4.1

(16.1.1.1) γ∗ : DA1,Q ⇄ DMQ : γ∗ .

For a scheme S, γ∗(1S) is a (strict) commutative ring spectrum, and, for any objectM of DMQ(S),
γ∗(M) is naturally endowed with a structure of γ∗(1S)-module. On the other hand, as we have
the projective bundle formula in DMQ(S) (11.3.4), γ∗(1S) is orientable (12.2.10), which implies
that, for any object M of DMQ(S), γ∗(M) is an HB,S-module, whence is HB-local (14.2.16). As
consequence, we get a canonical factorization of (16.1.1.1):

(16.1.1.2) DA1,Q
β∗

−→ DMB

ϕ∗

−−→ DMQ.

90The examples we have in mind are: R = E is a number field, R = C, R = Ql, Q̄l for a prime l.
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Consider the commutative diagram of premotivic categories

DA1,Q
γ∗

//

ρ♯

��

DMQ

ψ♯

��
DA1,Q

γ∗

// DMQ

(16.1.1.3)

in which the two vertical maps are the canonical enlargements, and, in particular, are fully faithful
(see 6.1.8).

Let t denotes either the qfh-topology or the h-topology. We also have the following commu-
tative triangle

DA1,Q

γ∗

//

a∗

55
DMQ

α∗

// DMt,Q
(16.1.1.4)

in which both a∗ and α∗ are induced by the t-sheafification functor; see 5.3.31 and 11.1.21. We
obtain from (16.1.1.2), (16.1.1.3), and (16.1.1.4) the commutative diagram of premotivic categories
below, in which χ♯ = ϕ∗α∗ψ♯.

DA1,Q
β∗

//

ρ♯

��

DMB

χ♯

��
DA1,Q

a∗ // DMt,Q

(16.1.1.5)

From now on, we shall fix an excellent noetherian scheme of finite dimension S.

Theorem 16.1.2. We have canonical equivalences of categories

DMB(S) ≃ DMqfh,Q(S) ≃ DMh,Q(S)

(recall that, for t = qfh, h, DMt,Q(S) stands for the localizing subcategory of DMt,Q(S), spanned
by the objects of shape Σ∞QS(X)(n), where X runs over the family of smooth S-schemes, and
n ≤ 0 is an integer; see 5.3.31).

Proof. Let t denote the qfh-topology or the h-topology. We shall prove that the functor

χ♯ : DMB(S)→ DMt,Q(S)

is fully faithful, and that its essential image is precisely DMt,Q. The functor

β∗ : DMB → DA1,Q(S)

is fully faithful, so that its composition with its left adjoint β∗ is canonically isomorphic to the
identity. In particular, we get isomorphisms of functors:

χ♯ ≃ χ♯ β
∗ β∗ ≃ a

∗ ρ♯ β∗ .

The right adjoint of a∗ is fully faithful, and its essential image consists of the objects of DA1,Q(S)
which satisfy t-descent (5.3.30). On the other hand, the functor ρ♯ is fully faithful, and an object of
DA1,Q(S) satisfies t-descent if and only if its image by ρ♯ satisfies t-descent (6.1.11). By virtue of
Theorem 14.3.4, this implies immediately that χ♯ is fully faithful. Let DMt,Q(S) be the localizing
subcategory of DM t,Q(S) spanned by the objects of shape Σ∞Q(X)(n), where X runs over the
family of smooth S-schemes, and n ≤ 0 is an integer (5.3.31). We know that DMt,Q(S) is compactly
generated (see 5.1.29, 5.2.38 and 5.3.40), and that χ♯ is a fully faithful exact functor which preserves
small sums as well as compact objects from DMB(S) to DMt,Q(S). As, by construction, there
exists a generating family of compact objects of DMt,Q(S) in the essential image of χ♯, this implies
that χ♯ induces an equivalence of triangulated categories DMB(S) ≃ DMt,Q(S) (see 1.3.21). �

Let us underline the following result which completes Corollary 14.2.16:

Theorem 16.1.3. Let E be an object of DA1(S,Q). The following conditions are equivalent:
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(i) E is a Beilinson motive;
(ii) E satisfies h-descent;
(iii) E satisfies qfh-descent;

Proof. We already know that condition (i) implies condition (ii) (second point of Theorem
14.3.4), and condition (ii) implies obviously condition (iii). It is thus sufficient to prove that
condition (iii) implies condition (i). If E satisfies qfh-descent, then ρ♯(E) satisfies qfh-descent in
DM(S,Q) as well. The commutativity of (16.1.1.4) implies then that ρ♯(E) belongs to the essential
image of γ

∗
(the right adjoint of γ∗). As ρ♯ is fully faithful, the commutativity of (16.1.1.3) thus

implies that E itself belongs to the essential image of γ∗ (the right adjoint to γ∗). In particular,
E is then a module over the ring spectrum γ∗(1S), which is itself an HB-algebra. We conclude by
Corollary 14.2.16. �

Theorem 16.1.4. If S is geometrically unibranch, then the comparison functor

ϕ∗ : DMB(S)→ DMQ(S)

is an equivalence of triangulated monoidal categories.

Proof. If S is geometrically unibranch, then we know that the composed functor

DMQ(S)
ψ♯
−→ DMQ(S)

α∗

−−→ DMqfh,Q(S)

is fully faithful (11.1.22). The commutative diagram

DMB(S)
ϕ∗

//

χ♯

44
DMQ(S)

α∗ψ♯ // DMqfh,Q(S)

and Theorem 16.1.2 imply that ϕ∗ is fully faithful. As ϕ∗ is exact, preserves small sums as well
as compact objects, and as DMQ(S) has a generating family of compact objects in the essential
image of ϕ∗, the functor ϕ∗ has to be an equivalence of categories (1.3.21). �

Remark 16.1.5. Some version of the preceding theorem (the one obtained by replacing DMB

by Ho(HB-mod)) was already known in the case where S is the spectrum of a perfect field; see
[RØ08, theorem 68]. The proof used de Jong’s resolution of singularities by alterations and
Poincaré duality in a crucial way. The proof of the preceding theorem we gave here relies on
proper descent but does not use any kind of resolution of singularities.

The preceding theorem allows to give the following description of constructible Beilinson
motives over geometrically unibranch schemes:

Corollary 16.1.6. For any geometrically unibranch scheme S, the functor ϕ∗ induces an
equivalence of triangulated monoidal categories:

DMB,c(S)
∼
−−→ DMgm(S,Q)

where the right hand side is the Q-linear version of the category of geometric (Voevodsky) motives
(Definition 11.1.10).

Note that we also applied Proposition 11.1.5 to get this corollary.
We finally point out the following important fact about Voevodsky’s motivic cohomology

spectrum HM,S = γ∗(1S) with rational coefficients:

Corollary 16.1.7. (1) For any geometrically unibranch excellent scheme S, the canon-
ical map

HB,S → HQ
M,S

is an isomorphism of ring spectra.
(2) For any morphism f : T → S of excellent geometrically unibranch schemes, the canonical

map

f∗HQ
M,S → HQ

M,T

is an isomorphism of ring spectra.
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The second part is the last conjecture of Voevodsky’s paper [Voe02b] with rational coefficients
(and geometrically unibranch schemes) – see also Paragraph 11.2.21.

Proof. The first part is a trivial consequence of the previous theorem, and the second follows
from the first, as the Beilinson motivic cohomology spectrum is stable by pullbacks. �

16.2. Comparison with Morel motives.

16.2.1. Let S be a scheme. The permutation isomorphism

(16.2.1.1) τ : Q(1)[1]⊗L
Q Q(1)[1]→ Q(1)[1]⊗L

Q Q(1)[1]

satisfies the equation τ2 = 1 in DA1(S,Q). Hence it defines an element ǫ in EndD
A1 (S,Q)(Q) which

also satisfies the relation ǫ2 = 1. We define two projectors

(16.2.1.2) e+ =
ǫ− 1

2
and e− =

ǫ+ 1

2
.

As the triangulated category DA1(S,Q) is pseudo abelian, we can define two objects by the
formulæ:

(16.2.1.3) Q+ = Im e+ and Q− = Im e− .

Then for an object M of DA1(S,Q), we set

(16.2.1.4) M+ = Q+ ⊗
L
Q M and M− = Q− ⊗

L
Q M .

It is obvious that for any objects M and N of DA1(S,Q), one has

(16.2.1.5) HomD
A1 (S,Q)(Mi, Nj) = 0 for i, j ∈ {+,−} with i 6= j.

Denote by DA1(S,Q)+ (resp. DA1(S,Q)−) the full subcategory of DA1(S,Q) made of objects
which are isomorphic to someM+ (resp. someM−) for an objectM in DA1(S,Q). Then (16.2.1.5)
implies that the direct sum functor (M+,M−) 7→M+⊕M− induces an equivalence of triangulated
categories

(16.2.1.6) (DA1(S,Q)+)× (DA1(S,Q)−) ≃ DA1(S,Q) .

We shall call DA1(S,Q)+ the category of Morel motives over S. The aim of this section is to
compare this category with DMB(S) (see Theorem 16.2.13). This will consists essentially of
proving that Q+ is nothing else than Beilinson’s motivic spectrum HB (which was announced
by Morel in [Mor06]). The main ingredients of the proof are the description of DMB(S) as full
subcategory of DA1(S,Q), the homotopy t-structure on DA1(S,Q), and Morel’s computation of
the endomorphism ring of the motivic sphere spectrum in terms of Milnor-Witt K-theory [Mor03,
Mor04a, Mor04b, Mor12].

16.2.2. For a little while, we shall assume that S is the spectrum of a field k.
Recall that the algebraic Hopf fibration is the map

A2 − {0} → P1 , (x, y) 7→ [x, y] .

This defines, by desuspension, a morphism

η : Q(1)[1]→ Q

in DA1(S,Q); see [Mor03, 6.2] (recall that we identify DA1(S,Q) with SHQ(S) and that, under
this identification, Q(1)[1] corresponds to Σ∞(Gm)).

Lemma 16.2.3. We have η = ǫη in HomD
A1 (S,Q)(Q(1)[1],Q).

Proof. See [Mor03, 6.2.3]. �

16.2.4. Recall the homotopy t-structure on DA1(S,Q); see [Mor03, 5.2]. To remain close to
the conventions of loc. cit., we shall adopt homological notations, so that, for any object M of
DA1(S,Q), we have the following truncation triangle

τ>0M →M → τ≤0M → τ>0M [1] .
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We whall write H0 for the zeroth homology functor in the sense of this t-structure. This t-
structure can be described in terms of generators, as in [Ayo07a, definition 2.2.41]: the category
DA1(S,Q)≥0 is the smallest full subcategory of DA1(S,Q) which contains the objects of shape
QS(X)(m)[m] for X smooth over S, m ∈ Z, and which satisfies the following stability conditions:

(a) DA1(S,Q)≥0 is stable under suspension; i.e. for any object M in DA1(S,Q)≥0, M [1] is
in DA1(S,Q)≥0;

(b) DA1(S,Q)≥0 is closed under extensions: for any distinguished triangle

M ′ →M →M ′′ →M ′[1] ,

if M ′ and M ′′ are in DA1(S,Q)≥0, so is M ;
(c) DA1(S,Q)≥0 is closed under small sums.

With this description, it is easy to see that DA1(S,Q)≥0 is also closed under tensor product (be-
cause the class of generators has this property). The category DA1(S,Q)≤0 is the full subcategory
of DA1(S,Q) which consists of objects M such that

HomD
A1 (S,Q)(QS(X)(m)[m+ n],M) ≃ 0

for X/S smooth, m ∈ Z, and n > 0; see [Ayo07a, 2.1.72].
Note that the heart of the homotopy t-structure is symmetric monoidal, with tensor product

⊗h defined by the formula:

F ⊗h G = H0(F ⊗
L
S G)

(the unit object is H0(Q)).
We shall still write η : H0(Q(1)[1]) → H0(Q) for the map induced by the algebraic Hopf

fibration.

Proposition 16.2.5. Tensoring by Q(n)[n] defines a t-exact endofunctor of DA1(S,Q) for
any integer n.

Proof. As tensoring by Q(n)[n] is an equivalence of categories, it is sufficient to prove this
for n ≥ 0. This is then a particular case of [Ayo07a, 2.2.51]. �

Proposition 16.2.6. For any smooth S-scheme X of dimension d, and for any object M of
DA1(S,Q), the map

Hom(QS(X),M)→ Hom(QS(X),M≤n)

is an isomorphism for n > d.

Proof. Using [Mor03, lemma 5.2.5], it is sufficient to prove the analog for the homotopy

t-structure on Deff

A1,Q(S), which follows from [Mor05, lemma 3.3.3]. �

Proposition 16.2.7. The homotopy t-structure is non degenerated. Even better, for any
object M of DA1(S,Q), we have canonical isomorphisms

L lim
−→
n

τ>nM ≃M and R lim
←−
n

τ>nM ≃ 0 ,

as well as isomorphisms

L lim
−→
n

τ≤nM ≃ 0 and M ≃ R lim
←−
n

τ≤nM .

Proof. The first assertion is a direct consequence of propositions 16.2.5 and 16.2.6 (because
the objects of shape QS(X)(m)[i], for X/S smooth, and m, i ∈ Z, form a generating family).
As the objects QS(X)(m)[m+ n] are compact in DA1(S,Q), the category DA1(S,Q)≤0 is closed
under small sums. As DA1(S,Q)≥0 is also closed under small sums, we deduce easily that the
truncation functors τ>0 and τ≤0 preserve small sums, which implies that the homology functor H0

has the same property. Moreover, if

C0 → · · · → Cn → Cn+1 → · · ·



254

is a sequence of maps in DA1(S,Q), then C = L lim
−→n

Cn fits in a distinguished triangle of shape

⊕

n

Cn
1−s
→
⊕

n

Cn → C →
⊕

n

Cn[1] ,

where s is the map induced by the maps Cn → Cn+1. This implies that, for any integer i, we have

lim
−→
n

Hi(Cn) ≃ Hi(C)

(where the colimit is taken in the heart of the homotopy t-structure). As the homotopy t-structure
is non degenerated, this proves the two formulas

L lim
−→
n

τ>nM ≃M and L lim
−→
n

τ≤nM ≃ 0 .

Let X be a smooth S-scheme of finite type, and p, q be some integer. To prove that the map

Hom(QS(X)(m)[i],M)→ Hom(QS(X)(m)[i],R lim
←−
n

τ≤nM)

is bijective, we may assume that m = 0 (replacing M by M(−m)[−m] and i by i−m, and using
Proposition 16.2.5). Consider the Milnor short exact sequence below, with A = QS(X)[i]:

0→ lim
←−
n

1Hom(A[1], τ≤nM)→ Hom(A,R lim
←−
n

τ≤nM)→ lim
←−
n

Hom(A, τ≤nM)→ 0 .

Using Proposition 16.2.6, as lim
←−

1 of a constant functor vanishes, we get that the map

Hom(A,M)→ Hom(A,R lim
←−
n

τ≤nM)

is an isomorphism. This gives the isomorphism

M ≃ R lim
←−
n

τ≤nM .

Using the previous isomorphism, and by contemplating the homotopy limit of the homotopy cofiber
sequences

τ>nM →M → τ≤nM ,

we deduce the isomorphism R lim
←−n

τ>nM ≃ 0. �

Lemma 16.2.8. We have HB ∈ DA1(S,Q)≥0, so that we have a canonical map

HB → H0(HB)

in DA1(S,Q). In particular, for any object M in the heart of the homotopy t-structure, if M is
endowed with an action of the monoid H0(HB), then M has a natural structure of HB-module in
DA1(S,Q).

Proof. As HB is isomorphic to the motivic cohomology spectrum in the sense of Voevod-
sky (16.1.7), the first assertion is the first assertion of [Mor03, theorem 5.3.2]. Therefore, the
truncation triangle for HB gives a triangle

τ>0HB → HB → H0(HB)→ τ>0HB[1] ,

which gives the second assertion. For the third assertion, consider an object M in the heart of
the homotopy t-structure, endowed with an action of H0(HB). Note that DA1(S,Q)≥0 is closed
under tensor product, so that HB ⊗

L
S M is in DA1(S,Q)≥0. Hence we have natural maps

HB ⊗
L
S M → H0(HB ⊗

L
S M)→ H0(H0(HB)⊗

L
S M) = H0(HB)⊗

hM .

Then the structural map H0(HB) ⊗
h M → M defines a map HB ⊗

L
S M → M which gives the

expected action (observe that, as we already know that HB-modules do form a thick subcategory
of DA1(S,Q) (14.2.8), we don’t even need to check all the axioms of an internal module: it is
sufficient to check that the unit Q→ HB induces a sectionM → HB⊗

L
SM of the map constructed

above). �
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Lemma 16.2.9. We have the following exact sequence in the heart of the homotopy t-structure.

H0(Q(1)[1])
η
−→ H0(Q)→ H0(HB)→ 0

Proof. Using the equivalence of categories from the heart of the homotopy t-structure to
the category of homotopy modules in the sense of [Mor03, definition 5.2.4], by virtue of Corol-
lary 16.1.7 and [Mor03, theorem 5.3.2], we know that H0(HB) corresponds to the homotopy

module KM
∗ ⊗ Q associated with Milnor K-theory, while H0(Q) corresponds to the homotopy

module KMW
∗ ⊗ Q associated with Milnor-Witt K-theory (which follows easily from [Mor12,

theorems 2.11, 6.13 and 6.40]). Considering KM
∗ and KMW

∗ as unramified sheaves in the sense of
Morel [Mor12], this lemma is then a reformulation of the isomorphism

KMW
∗ (F )/η ≃ KM

∗ (F )

for any field F ; see [Mor12, remark 2.2]. �

Proposition 16.2.10. We have HB+ ≃ HB, and the induced map Q+ → HB gives a canonical
isomorphism H0(Q+) ≃ H0(HB).

Proof. The map ǫ(1)[1] : Q(1)[1]→ Q(1)[1] can be described geometrically as the morphism
associated with the pointed morphism

ı : Gm → Gm , t 7→ t−1

(see the second assertion of [Mor03, lemma 6.1.1]). In the decomposition

K1(Gm) ≃ k[t, t−1]× ≃ k× ⊕ Z ,

the map ı induces multiplication by −1 on Z. Using the periodicity isomorphism KGL(1)[2] ≃
KGL, we get the identifications:

K1(Gm) ⊃ HomSH(k)(Σ
∞(Gm)[1],KGL) ≃ HomKGL(KGL,KGL) ≃ K0(k) ≃ Z .

Therefore, ǫ acts as the multiplication by −1 on the spectrum KGLQ, whence on HB as well. This
means precisely that HB+ ≃ HB. By Lemma 16.2.3, the class 2η vanishes in Q+, so that, appyling
the (t-exact) functor M 7→ M+ to the exact sequence of Lemma 16.2.9, we get an isomorphism
H0(Q+) ≃ H0(HB+) ≃ H0(HB). �

Corollary 16.2.11. For any object M in the heart of the homotopy t-structure, M+ is a
Beilinson motive.

Proof. The object M is an H0(Q)-module, so that M+ is an H0(Q+)-module. By virtue
of Proposition 16.2.10, M+ is then a module over H0(HB), so that, by Lemma 16.2.8, M+ is
naturally endowed with an action of HB. �

Remark 16.2.12. Until now, we did not really use the fact we are in a Q-linear context
(replacing HB by Voevodsky’s motivic spectrum, we just needed 2 to be invertible in the preceding
corollary). However, the following result really uses Q-linearity (because, in the proof, we see
DMB(S) as a full subcategory of DA1(S,Q); see Proposition 14.2.3).

Theorem 16.2.13. For any noetherian scheme of finite dimension S, the map Q+ → HB is
an isomorphism in DA1(S,Q). As a consequence, we have a canonical equivalence of triangulated
monoidal categories

DA1(S,Q)+ ≃ DMB(S) .

This theorem has already been proved by Morel when S is the spectrum of a perfect field –
where the left hand side is the rational category of Voevodsky motives. Morel announced that
the category DA1(S,Q)+ should be the category of rational motives and this theorem confirm his
insight.
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Proof. Observe that, if ever Q+ ≃ HB, we have DA1(S,Q)+ ≃ DMB(S): this follows from
the fact that an object M of DA1(S,Q) belongs to DA1(S,Q)+ (resp. to DMB(S)) if and only if
there exists an isomorphism M ≃M+ (resp. M ≃ HB ⊗

L
S M ; see 14.2.16). It is thus sufficient to

prove the first assertion.
As bothQ+ andHB are stable by pullback, it is sufficient to treat the case where S = Spec (Z).

Using Corollary 14.3.2, we may replace S by any of its henselisations, so that, by the localization
property, it is sufficient to treat the case where S is the spectrum of a (perfect) field k.

We shall prove directly that, for any object M of DA1(S,Q), M+ is an HB-module (or,
equivalently, is HB-local). Note that DMB(S) is closed under homotopy limits and homotopy
colimits in DA1(S,Q): indeed the inclusion functor DMB → DA1,Q has a left adjoint which
preserves a family of compact generators, whence it also has a left adjoint (1.3.20). By virtue
of Proposition 16.2.7, we may thus assume that M is bounded with respect to the homotopy
t-structure. As DMB(S) is certainly closed under extensions in DA1(S,Q), we may even assume
that M belongs to the heart the homotopy t-structure. We conclude with Corollary 16.2.11. �

Corollary 16.2.14. For any noetherian scheme of finite dimension S, if −1 is a sum of
squares in all the residue fields of S (e.g. if S is a scheme over a finite field), then Q− ≃ 0 in
DA1(S,Q), and we have a canonical equivalence of triangulated monoidal categories

DA1(S,Q) ≃ DMB(S) .

Proof. It is sufficient to prove that, under this assumption, Q− ≃ 0. As in the preceding
proof, we may replace S by any of its henselisations (4.3.9), so that, by the localization property
(and by induction on the dimension), it is sufficient to treat the case where S is the spectrum of
a field k. We have to check that, if −1 is a sum of squares in k, then we have ǫ = −1. Using
[Mor03, remark 6.3.5 and lemma 6.3.7], we see that, if k is of characteristic 2, we always have
ǫ = −1, while, if the characteristic of k is distinct from 2, we have a morphism of rings

GW (k)→ HomD
A1,Q(Spec(k))(Q,Q) ,

where GW (k) denotes the Grothendieck-Witt ring91 over k. This morphism sends the class of the
quadratic form −X2 to −ǫ and this proves the result. (For a more precise version of this, with
integral coefficients, see [Mor12, proposition 2.13].) �

16.2.15. Recall from Example 5.3.43 that we can describe the category DA1,c(S,Q) of compact
objects of DA1(S,Q) as the triangulated monoidal category obtained from

(

Kb (Q(Sm/S)) /(BGS ∪ TA1
S
)
)♮

by formally inverting the Tate twist. The operation ǫ still acts on this category and the decom-
position in + and − part of a motive respects constructibility as this is a decomposition by direct
factors. The preceding theorem gives the following description of constructible Beilinson motives:

Corollary 16.2.16. For any noetherian scheme of finite dimension S, there is a canonical
equivalence of triangulated monoidal categories

DMB,c(S) ≃ DA1,c(S,Q)+

When −1 is a sum of square in all the residue fields of S, this equivalence can be written:

DMB,c(S) ≃ DA1,c(S,Q).

16.2.17. Consider the Q-linear étale motivic category DA1,ét(−,Q), defined by

DA1,ét(S,Q) = DA1(Shét(Sm/S,Q))

(see 5.3.31). The étale sheafification functor induces a morphism of motivic categories

(16.2.17.1) DA1(S,Q)→ DA1,ét(S,Q) .

We shall prove the following result, as an application of Theorem 16.2.13.

91i.e. the Grothendieck group of quadratic forms
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Theorem 16.2.18. For any noetherian scheme of finite dimension S, there is a canonical
equivalence of categories

DMB(S) ≃ DA1,ét(S,Q) .

As for Theorem 16.2.13, the idea of this result is from F. Morel who already proved it at least
in the case of a base field.

In order prove the above Theorem, we shall study the behaviour of the decomposition (16.2.1.3)
in DA1,ét(S,Q):

Lemma 16.2.19. We have Q− ≃ 0 in DA1,ét(S,Q).

Proof. Proceeding as in the proof of Theorem 16.2.13, we may assume that S is the spectrum
of a perfect field k. By étale descent, we see that we may replace k by any of its finite extension.
In particular, we may assume that −1 is a sum of squares in k. But then, by virtue of Corollary
16.2.14, Q− ≃ 0 in DA1(S,Q), so that, by functoriality, Q− ≃ 0 in DA1,ét(S,Q). �

Proof of Theorem 16.2.18. Note that the functor (16.2.17.1) has a fully faithful right
adjoint, whose essential image consists of objects of DA1(S,Q) which satisfy étale descent. As any
Beilinson motive satisfies étale descent (first point of 14.3.4), DMB(S) can be seen naturally as a
full subcategory of DA1,ét(S,Q). On the other hand, by virtue of the preceding lemma, any object
of DA1(S,Q) which satisfies étale descent belongs to DA1(S,Q)+. Hence, by Theorem 16.2.13,
any object of DA1(S,Q) which satisfies étale descent is a Beilinson motive. This achieves the
proof. �

Remark 16.2.20. If S is excellent, and if all the residue fields of S are of characteristic zero,
one can prove Theorem 16.2.18 independently of Morel’s theorem: this follows then directly from
a descent argument, namely from Corollary 3.3.38 and from Theorem 16.1.3.

Corollary 16.2.21. For any regular noetherian scheme of finite dimension S, we have canon-
ical isomorphisms

HomD
A1,ét(S,Q)(QS ,QS(p)[q]) ≃ GrpγK2p−q(S)Q .

Proof. This follows immediately from Theorem 16.2.18, by definition of DMB (14.2.14). �

Corollary 16.2.22. For any geometrically unibranch excellent noetherian scheme of finite
dimension S, there is a canonical equivalence of symmetric monoidal triangulated categories

DA1,ét(S,Q) ≃ DM(S,Q) .

Proof. This follows from theorems 16.1.4 and 16.2.18. �

Remark 16.2.23. The preceding corollary extends immediately to the case of coefficients in
a Q-algebra R (cf. Example 5.3.36 for the left hand side and Paragraph 14.2.20 for the right hand
side).

Corollary 16.2.24. Let S be an excellent noetherian scheme of finite dimension. An object
of DA1(S,Q) satisfies h-descent if and only if it satisfies étale descent.

Proof. This follows from theorems 16.1.3 and 16.2.18. �

17. Realizations

17.1. Tilting.

17.1.1. Let M be a stable perfect symmetric monoidal Sm-fibred combinatorial model category
over an adequate category of S-schemes S , such that Ho(M ) is motivic, with generating set of
twists τ .

Consider a homotopy cartesian commutative monoid E in M . Then E-mod is an Sm-fibred
model category, such that Ho(E-mod) is motivic, and we have a morphism of motivic categories
(see 7.2.13 and 7.2.18)

Ho(M )→ Ho(E-mod) , M 7→ E ⊗L M .
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In practice, all the realization functors are obtained in this way (at least over fields), which can be
formulated as follows (for simplicity, we shall work here in a Q-linear context, but, if we are ready
to consider higher categorical constructions, there is no reason to make such an assumption).

17.1.2. Consider a quasi-excellent noetherian scheme S of finite dimension, as well as two stable
symmetric monoidal Sm-fibred combinatorial model categories M and M ′ over the category of
S-schemes of finite type such that Ho(M ) and Ho(M ′) are motivic (as triangulated premotivic
categories). We also assume that both Ho(M ) and Ho(M ′) are Q-linear and separated, and are
generated by their Tate twists (1.1.41).

Consider a Quillen adjunction

(17.1.2.1) ϕ∗ : M ⇄ M
′ : ϕ∗ ,

inducing a morphism of Sm-fibred categories

(17.1.2.2) Lϕ∗ : Ho(M )→ Ho(M ′) .

Note that the functor Lϕ∗ preserves constructible objects, whence defines a morphism of motivic
categories

(17.1.2.3) Lϕ∗ : Ho(M )c → Ho(M ′)c .

Proposition 17.1.3. Under the assumptions of 17.1.2, if, for any regular S-scheme of finite
type X, and for any integers p and q, the map

HomHo(M )(X)(1X ,1X(p)[q])→ HomHo(M ′)(X)(1X ,1X(p)[q])

is bijective, then the morphism (17.1.2.3) is an equivalence of motivic categories. Moreover, if both
Ho(M ) and Ho(M ′) are compactly generated by their Tate twists, then the morphism (17.1.2.2)
is an equivalence of motivic categories.

Proof. Note first that, for any S-scheme of finite type X, and for any integers p and q, the
map

HomHo(M )(X)(1X ,1X(p)[q])→ HomHo(M ′)(X)(1X ,1X(p)[q])

is bijective: by h-descent (3.3.37) and by virtue of Gabber’s weak uniformization Theorem 4.1.2,
it is sufficient to treat the case where X is regular, which is done by assumption. Let S be a
S-scheme of finite type. To prove that the functor

Lϕ∗ : Ho(M )c(S)→ Hoc(M
′)(S)

is an equivalence, by virtue of Theorem 4.2.16, it is sufficient to prove that, for any projective
morphisms f : X → S and g : Y → S, and for any integers p and q, the map

HomHo(M )(X)(Rf∗(1X),Rg∗(1Y )(p)[q])→ HomHo(M ′)(X)(Rf∗(1X),Rg∗(1Y )(p)[q])

is an isomorphism. Consider the pullback square

X ×S Y
pr2 //

pr1

��

Y

g

��
X

f
// S

From Proposition 2.4.53, the functor ϕ∗ commutes with f! when f is a separated morphism of finite
type. One then easily concludes using this fact and the isomorphisms (obtained by adjunction
and proper base change)

Hom(Rf∗(1X),Rg∗(1Y )(p)[q]) ≃ Hom(Lg∗ Rf∗(1X),1X(p)[q])

≃ Hom(Rpr2,∗ Lpr
∗
1(1X),1X(p)[q])

≃ Hom(Rpr2,∗(1X×SY ),1X(p)[q]) ,

that (17.1.2.3) is an equivalence of motivic categories. If both Ho(M ) and Ho(M ′) are compactly
generated by their Tate twists, then the sum preserving exact functor

Lϕ∗ : Ho(M )(S)→ Ho(M ′)(S)
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is an equivalence at the level of compact objects, whence it is an equivalence of categories (1.3.21).
�

17.1.4. Under the assumptions of 17.1.2, assume that M and M ′ are strongly Q-linear (7.1.4),
left proper, tractable, satisfy the monoid axiom, and have cofibrant unit objects. Let E ′ be a fibrant
resolution of 1 in M ′(Spec (k)). By virtue of Theorem 7.1.8, we may assume that E ′ is a fibrant
and cofibrant commutative monoid in M ′. Then Rϕ∗(1) = ϕ∗(E

′) is a commutative monoid in
M . Let E be a cofibrant resolution of ϕ∗(E

′) in M (Spec (k)). Using Theorem 7.1.8, we may
assume that E is a fibrant and cofibrant commutative monoid, and that the map

E → Rϕ∗(E
′)

is a morphism of commutative monoids (and a weak equivalence by construction). We can see E and
E ′ as cartesian commutative monoids in M and M ′ respectively (by considering their pullbacks
along morphisms of finite type f : X → Spec (k)). We obtain the essentially commutative diagram
of left Quillen functors below (in which the lower horizontal map is the functor induced by ϕ∗ and
by the change of scalars functor along the map ϕ∗(E)→ E ′):

M //

��

M ′

��
E-mod // E ′-mod

(17.1.4.1)

where E-mod and E ′-mod are respectively the model premotivic categories of E-modules and
E ′-modules (see Proposition 7.2.11).

Note furthermore that the right hand vertical left Quillen functor is a Quillen equivalence
by construction (identifying M ′(X) with 1X -modules, and using the fact that the morphism of
monoids 1X → E

′
X is a weak equivalence in M ′(X)).

Theorem 17.1.5. Consider the assumptions of 17.1.4, with S = Spec (k) the spectrum of a
field k. We suppose furthermore that one of the following conditions is verified.

(i) The field k is perfect.
(ii) The motivic categories Ho(M ) and Ho(M ′) are continuous and semi-separated.

Then the morphism

Ho(E-mod)c → Ho(E ′-mod)c ≃ Ho(M ′)c

is an equivalence of motivic categories. Under these identifications, the morphism (17.1.2.3) cor-
responds to the change of scalar functor

Ho(M )c → Ho(E-mod)c , M 7→ E ⊗L M .

If moreover both Ho(M ) and Ho(M ′) are compactly generated by their Tate twists, then these
identifications extend to non-constructible objects, so that, in particular, the morphism (17.1.2.2)
corresponds to the change of scalar functor

Ho(M )→ Ho(M ′) ≃ Ho(E-mod) , M 7→ E ⊗L M .

Remark 17.1.6. This theorem can be thought as (a part of) a tilting theory for motivic
(homotopy) categories.

Proof. For any regular k-scheme of finite type X, and for any integers p and q, the map

HomHo(M )(X)(1X , EX(p)[q])→ HomHo(M ′)(X)(1X , E
′
X(p)[q])

is bijective: this is easy to check whenever X is smooth over k, which proves the assertion under
condition (i), while, under condition (ii), we see immediately from Proposition 4.3.15 that we may
assume condition (i). The first assertion is then a special case of the first assertion of Proposition
17.1.3. Similarly, by Proposition 7.2.7, the second assertion follows from the second assertion of
Proposition 17.1.3. �
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Example 17.1.7. Let M be the stable Sm-fibred model category of Tate spectra, so that
Ho(M ) = DA1,Q, and write MB for the left Bousfield localization of M by the class of HB-
equivalences (see 14.2.3), so that Ho(MB) = DMB.

Let k be a field of characteristic zero, endowed with an embedding σ : k → C. Given a
complex analytic manifold X, let Man(X) be the category of complexes of sheaves of Q-vector
spaces on the smooth analytic site of X (i.e. on the category of smooth analytic X-manifolds,
endowed with the Grothendieck topology corresponding to open coverings), endowed with its local

model structure (see [Ayo07b, 4.4.16] and [Ayo10]). We shall write M
eff
Betti(X) for the stable

left Bousfield localization of Man(X) by the maps of shape Q(U ×D1)→ Q(U) for any analytic
smooth X(C)-manifold U (where D1 = {z ∈ C, |z| < 1} denotes the open disc). We define at last
MBetti(X) as the stable model category of analytic Gm-spectra over X(C) (see [Ayo10, section
1]).

Given a k-scheme of finite type X, we shall write

(17.1.7.1) DBetti(X) := Ho(MBetti(X))

(where the topological space X(C) is endowed with its canonical analytic structure). According
to [Ayo10, 1.8 and 1.10], there exists a canonical equivalences of categories

(17.1.7.2) DBetti(X) ≃ Ho(M eff
Betti(X)) ≃ D(X(C),Q) ,

where D(X(C),Q) stands for the (unbounded) derived category of the abelian category of sheaves
of Q-vector spaces on the small site of X(C). By virtue of [Ayo10, section 2], there exists
a symmetric monoidal left Quillen morphism of monoidal Sm-fibred model categories over the
category of k-schemes of finite type

(17.1.7.3) An∗ : M →MBetti ,

which induces a morphism of motivic categories over the category of k-schemes of finite type. Hence
RAn∗(1) is a ring spectrum in DA1,Q(Spec (k)) which represents Betti cohomology of smooth k-
schemes. As DBetti satisfies étale descent, it follows from Corollary 3.3.38 that it satisfies h-descent,
from which, by virtue of Theorem 16.1.3, the morphism (17.1.7.3) defines a left Quillen functor

(17.1.7.4) An∗ : MB →MBetti ,

hence gives rise to a morphism of motivic categories

(17.1.7.5) DMB → DBetti ,

the Betti realization functor of Beilinson motives.
Appyling Theorem 17.1.5 to (17.1.7.4), we obtain a commutative ring spectrum EBetti =

RAn∗(1) which represents Betti cohomology of smooth k-schemes, such that the restriction of the
functor (17.1.7.5) to constructible objects corresponds to the change of scalars functors

(17.1.7.6) DMB,c(X)→ Ho(EBetti -mod)c(X) ≃ Dbc(X(C),Q) , M 7→ EBetti ⊗
L M .

In other words, once Betti cohomology of smooth k-schemes is known, one can reconstruct canon-
ically the bounded derived categories of constructible sheaves on X(C) for any k-scheme of finite
type X, from the theory of mixed motives. We expect all the realization functors to be of this
shape (which should follow from (some variant of) Theorem 17.1.5): the (absolute) cohomology
of smooth k-schemes with constant coefficients determines the derived categories of constructible
sheaves over any k-scheme of finite type, whatever this means. For instance, the whole theory of
variations of mixed Hodge structures should be obtained from Deligne cohomology, seen as a ring
spectrum in DMB(k) (or, more precisely, in MB(k)).

17.2. Mixed Weil cohomologies. Let S be an excellent (regular) noetherian scheme of
finite dimension, and K a field of characteristic zero, called the field of coefficients.

17.2.1. Let E be a Nisnevich sheaf of commutative differential graded K-algebras (i.e. is a
commutative monoid in the category of sheaves of complexes of K-vector spaces). We shall write

Hn(X,E) = HomDeff

A1,Q
(X)(QX , E[n])
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for any smooth S-scheme of finite type X, and for any integer n (note that, if E satisfies Nisnevich
descent and is A1-homotopy invariant, which we can always assume, using 7.1.8, then Hn(X,E) =
Hn(E(X))).

We introduce the following axioms :

W1 Dimension.— Hi(S,E) ≃

{

K if i = 0,

0 otherwise.

W2 Stability.— dimKH
i(Gm, E) =

{

1 if i = 0 or i = 1,

0 otherwise.

W3 Künneth formula.— For any smooth S-schemes X and Y , the exterior cup product
induces an isomorphism

⊕

p+q=n

Hp(X,E)⊗K Hq(Y,E)
∼
→ Hn(X ×S Y,E) .

W3′ Weak Künneth formula.— For any smooth S-scheme X, the exterior cup product induces
an isomorphism

⊕

p+q=n

Hp(X,E)⊗K Hq(Gm, E)
∼
→ Hn(X ×S Gm, E) .

17.2.2. Under assumptions W1 and W2, we will call any non zero element c ∈ H1(Gm, E) a
stability class. Note that such a class corresponds to a non trivial map

c : QS(1)→ E

in Deff

A1,Q(S) (using the decomposition Q(Gm) = Q ⊕Q(1)[1]). In particular, possibly after re-

placing E by a fibrant resolution (so that E is homotopy invariant and satisfies Nisnevich descent),
such a stability class can be lifted to an actual map of complexes of presheaves. Such a lift will
be called a stability structure on E.

Definition 17.2.3. A sheaf of commutative differential graded K-algebras E as above is a
mixed Weil cohomology (resp. a stable cohomology) if it satisfies the properties W1, W2 and W3
(resp. W1, W2 and W3′) stated above.

Proposition 17.2.4. Let E be a stable cohomology. There exists a (commutative) ring spec-
trum E in DMB(S) with the following properties.

(i) For any smooth S-scheme X, and any integer i, there is a canonical isomorphism of
K-vector spaces

Hi(X,E) ≃ HomDMB (S)(MS(X), E [i]) .

(ii) Any choice of a stability structure on E defines a map Q(1) → E in DMB(S), which
induces an E-linear isomorphism E(1) ≃ E.

Proof. By [CD12, Proposition 2.1.6], there exists a commutative ring spectrum E in DA1,Q(S)
such that, for any smooth S-scheme X, and any integer i, there is a canonical isomorphism of
K-vector spaces

Hi(X,E) ≃ HomD
A1,Q(S)(MS(X), E [i]) ,

and such that any choice of a stability structure on E defines an isomorphism E(1) ≃ E . By virtue
of [CD12, corollary 2.2.8] and of Theorem 12.2.10, this ring spectrum E is oriented, so that, by
Corollary 14.2.16, E is an HB-module, i.e. belongs to DMB(S). �

17.2.5. Given a stable cohomology E and its associated ring spectrum E , we can see E as a
cartesian commutative monoid: we define, for an S-scheme X, with structural map f : X → S:

EX = Lf∗(E) ,

and put

(17.2.5.1) D(X, E) := Ho(E-mod)(X) = Ho(EX -mod) .
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We thus have realization functors

(17.2.5.2) DMB(X)→ D(X, E) , M 7→ EX ⊗
L
X M

which commute with the six operations of Grothendieck. Furthermore, D(−, E) is a motivic
category which is Q-linear (in fact K-linear), separated, and continuous. Observe furthermore
that, if S is the spectrum of a field , then D(−, E) is also pure (4.4.16), so that the six Grothendieck
operations preserves constructible objects in D(−, E) (4.2.29).

For an S-scheme X, define

Hq(X,E(p)) = HomDMB (X)(QX , E(p)[q]) ≃ HomD(X,E)(EX , EX(p)[q])

(this notation is compatible with 17.2.1 by virtue of Proposition 17.2.4).

Corollary 17.2.6. Any stable cohomology (in particular, any mixed Weil cohomology) ex-
tends naturally to S-schemes of finite type, and this extension satisfies cohomological h-descent
(in particular, étale descent as well as proper descent).

Proof. This follows immediately from the construction above and from Theorem 14.3.4. �

17.2.7. We denote by D∨(S, E) the localizing subcategory of D(S, E) generated by its rigid
objects (i.e. by the objects which have strong duals). For instance, for any smooth and proper
S-scheme X, E(X) = E ⊗L

S MS(X) belongs to D∨(S, E); see 2.4.31.
If we denote by D(K) the (unbounded) derived category of the abelian category of K-vector

spaces, we get the following interpretation of the Künneth formula.

Theorem 17.2.8. If E is a mixed Weil cohomology, then the functor

RHomE(E ,−) : D
∨(S, E)→ D(K)

is an equivalence of symmetric monoidal triangulated categories.

Proof. This is [CD12, theorem 2.6.2]. �

Theorem 17.2.9. If S is the spectrum of a field, then D∨(S, E) = D(S, E).

Proof. This follows then from Corollary 4.4.17. �

Remark 17.2.10. It is not reasonnable to expect the analog of Theorem 17.2.9 to hold when-
ever S is of dimension > 0; see (the proof of) [CD12, corollary 3.2.7]. Heuristically, for higher
dimensional schemes X, the rigid objects of D(X, E) are extensions of some kind of locally constant
sheaves (in the ℓ-adic setting, these correspond to Qℓ-faisceaux lisses).

Corollary 17.2.11. If E is a mixed Weil cohomology, and if S is the spectrum of a field,
then the functor

RHomE(E ,−) : D(S, E)→ D(K)

is an equivalence of symmetric monoidal triangulated categories.

Remark 17.2.12. This result can be thought as a tilting theory for the spectra associated
with stable cohomologies.

17.2.13. Assume that E is a mixed Weil cohomology, and that S is the spectrum of a field k.
For each k-scheme of finite type X, denote by Dc(X, E) the category of constructible objects of
D(X, E): by definition, this is the thick triangulated subcategory of D(X, E) generated by objects
of shape E(Y ) = E⊗L

XMX(Y ) for Y smooth overX (we can drop Tate twists because of 17.2.4 (ii)).
The category Dc(X, E) also coincides with the category of compact objects in D(X, E); see 1.4.11.

Write Db(K) for the bounded derived category of the abelian category of finite dimensional K-

vector spaces. Note that Db(K) is canonically equivalent to the homotopy category of perfect
complexes of K-modules, i.e. to the category of compact objects of D(K).

Corollary 17.2.14. Under the assumptions of 17.2.13, we have a canonical equivalence of
symmetric monoidal triangulated categories

Dc(Spec (k) , E) ≃ Db(K) .
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Proof. This follows from 17.2.11 and from the fact that equivalences of categories preserve
compact objects. �

Corollary 17.2.15. Under the assumptions of 17.2.13, if E′ is another K-linear stable coho-
mology with associated ring spectrum E ′, any morphism of presheaves of commutative differential
K-algebras E → E′ inducing an isomorphism H1(Gm, E) ≃ H1(Gm, E

′) gives a canonical iso-
morphism E ≃ E ′ in the homotopy category of commutative ring spectra. In particular, we get
canonical equivalences of categories

D(X, E) ≃ D(X, E ′)

for any k-scheme of finite type X (and these are compatible with the six operations of Grothendieck,
as well as with the realization functors).

Proof. This follows from Theorem 17.2.9 and from [CD12, theorem 2.6.5]. �

Remark 17.2.16. The preceding result can be stated in the following way: if E and E ′ are
two (strict) commutative ring spectra associated to K-linear mixed Weil cohomologies defined
on smooth k-schemes, then any morphism E → E ′ in the homotopy category of (commutative)
monoids in the model category of K-linear Tate spectra is invertible.

Theorem 17.2.17. Under the assumptions of 17.2.13, the six operations of Grothendieck
preserve constructibility in D(−, E).

Proof. Observe that D(−, E) is Q-linear and separated (because DMB is so, see 7.2.18), as
well as pure (by Proposition 4.4.16). We conclude with 4.2.29. �

17.2.18. As a consequence, we have, for any k-scheme of finite type X, a realization functor

DMB,c(X)→ Dc(X, E)

and we deduce from Theorem 4.4.25 that it preserves all of Grothendieck six operations. For
X = Spec (k), by virtue of Corollary 17.2.14, this corresponds to a symmetric monoidal exact
realization functor

R : DMB,c(Spec (k))→ Db(K) .

This leads to a finiteness result:

Corollary 17.2.19. Under the assumptions of 17.2.13, for any k-scheme of finite type X,
and for any objects M and N in Dc(X, E), HomE(M,N [n]) is a finite dimensional K-vector space,
and it is trivial for all but a finite number of values of n.

Proof. Let f : X → Spec (k) be the structural map. By virtue of 17.2.17, as M and N are
constructible, the object Rf∗ RHomX(M,N) is constructible as well, i.e. is a compact object of
D(Spec (k) , E). But RHomE(M,N) is nothing else than the image of Rf∗ RHomX(M,N) by the
equivalence of categories given by Corollary 17.2.11. Hence RHomE(M,N) is a compact object of

D(K), which means that it belongs to Db(K). �

17.2.20. For a K-vector space V and an integer n, define

V (n) =

{

V ⊗K HomK(H1(Gm, E)⊗n,K) if n > 0,

V ⊗K H1(Gm, E)⊗(−n) if n ≤ 0.

Any choice of a generator in K(−1) = H1(Gm, E) ≃ H2(P1
k, E) defines a natural isomorphism

V (n) ≃ V for any integer n. We have canonical isomorphisms

Hq(X,E(p)) ≃ Hq(X,E)(p)

(using the fact that the equivalence of Corollary 17.2.14 is monoidal). The realization functors
(17.2.5.2) induce in particular cycle class maps

clX : Hq
B
(X,Q(p))→ Hq(X,E)(p)

(and similarly for cohomology with compact support, for homology, and for Borel-Moore homol-
ogy).
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Example 17.2.21. Let k be a field of characteristic zero. We then have a mixed Weil coho-
mology EdR defined by the algebraic de Rham complex

EdR(X) = Ω∗
A/k

for any smooth affine k-scheme of finite type X = Spec (A) (algebraic de Rham cohomology of
smooth k-schemes of finite type is obtained by Zariski descent); see [CD12, 3.1.5]. We obtain
from 17.2.4 a commutative ring spectrum EdR, and, for a k-scheme of finite type X, we define

DdR(X) = Dc(X, EdR) .

We thus get a motivic category DdR, and we have a natural definition of algebraic de Rham
cohomology of k-schemes of finite type, given by

Hn
dR(X) = HomDdR(X)(EdR,X , EdR,X [n]) .

This definition coincides with the usual one: this is true by definition for smooth k-schemes of finite
type, while the general case follows from h-descent (17.2.6) and from de Jong’s Theorem 4.1.11
(or resolution of singularities à la Hironaka). We have, by construction, a de Rham realization
functor

RdR : DMB,c(X)→ DdR(X)

which preserves the six operations of Grothendieck (Theorem 4.4.25). In particular, we have cycle
class maps

Hq
B
(X,Q(p))→ Hq

dR(X)(p) .

Note that, for any field extension k′/k, we have natural isomorphisms

Hn
dR(X)⊗k k

′ ≃ Hn
dR(X ×Spec(k) Spec (k

′)) .

Example 17.2.22. Let k be a field of characteristic zero, which is algebraically closed and
complete with respect to some valuation (archimedian or not). We can then define a stable
cohomology EdR,an as analytic de Rham cohomology of Xan , for any smooth k-scheme of finite
type X; see [CD12, 3.1.7]. As above, we get a ring spectrum EdR,an , and for any k-scheme of
finite type, a category of coefficients

DdR,an(X) = Dc(X, EdR,an) ,

which allows to define the analytic de Rham cohomology of any k-scheme of finite type X by

Hn
dR,an(X) = HomDdR,an(X)(EdR,an,X , EdR,an,X [n]) .

We also have a realization functor

RdR,an : DMB,c(X)→ DdR,an(X)

which preserves the six operations of Grothendieck.
We then have a morphism of stable cohomologies

EdR → EdR,an

which happens to be a quasi-isomorphism locally for the Nisnevich topology (this is Grothendieck’s
theorem in the case where K is archimedian, and Kiehl’s theorem in the case where K is non-
archimedian; anyway, one obtains this directly from Corollary 17.2.15). This induces a canonical
isomorphism

EdR ≃ EdR,an

in the homotopy category of commutative ring spectra. In particular, EdR,an is a mixed Weil
cohomology, and, for any k-scheme of finite type, we have natural equivalences of categories

DdR(X)→ DdR,an(X) , M 7→ EdR,an ⊗
L
EdR

M

which commute with the six operations of Grothendieck and are compatible with the realization
functors.

Note that, in the case k = C, EdR,an coincides with Betti cohomology (after tensorization by
C), so that we have canonical fully faithful functors

DBetti,c(X)⊗Q C→ DdR,an(X)
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which are compatible with the realization functors. More precisely, we have equivalences

Dbc(X(C),C) ≃ Ho(EBetti ⊗Q C-mod)c(X) ≃ DdR,an(X) .

In particular, by the Riemann-Hilbert correspondence, DdR,an(X) is equivalent to the bounded
derived category of analytic regular holonomic D-modules on X which are constructible of geo-
metric origin. (A purely algebraic proof of this equivalence would furnish a new proof of the
Riemann-Hilbert correspondence, using Corollary 17.2.15.)

Example 17.2.23. Let V be a complete discrete valuation ring of mixed characteristic with
perfect residue field k and field of functions K. The Monsky-Washnitzer complex defines a stable
cohomology EMW over smooth V -schemes of finite type, defined by

EMW (X) = Ω∗
A†/V ⊗V K

for any affine smooth V -scheme X = Spec (A) (the case of a smooth V -scheme of finite type is
obtained by Zariski descent); see [CD12, 3.2.3]. Let EMW be the corresponding ring spectrum in
DMB(Spec (V )), and write j : Spec (K)→ Spec (V ) and i : Spec (k)→ Spec (V ) for the canonical
immersions. As we obviously have j∗EMW = 0 (the Monsky-Washnitzer cohomology of a smooth
V -scheme with empty special fiber vanishes), we have a canonical isomorphism

EMW ≃ Ri∗ Li
∗EMW .

We define the rigid cohomology spectrum Erig in DMB(Spec (k)) by the formula

Erig = Li∗EMW .

This is a ring spectrum associated to a K-linear mixed Weil cohomology: cohomology with co-
efficients in Erig coincides with rigid cohomology in the sense of Berthelot, and the Künneth
formula for rigid cohomology holds for smooth and projective k-schemes (as rigid cohomology co-
incides then with cristalline cohomology), from which we deduce the Künneth formula for smooth
k-schemes of finite type; see [CD12, 3.2.10]. As before, we define

Drig(X) = Dc(X, Erig)

for any k-scheme of finite type X, and put

Hn
rig(X) = HomDrig(X)(Erig,X , Erig,X [n]) .

Here again, we have, by construction, rigid realization functors

Rrig : DMB,c(X)→ Drig(X)

which preserve the six operations of Grothendieck (Theorem 4.4.25), as well as (higher) cycle class
maps

Hq
B
(X,Q(p))→ Hq

rig(X)(p) .
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acyclic, HB -acyclic, 241

adequate, category of schemes, 21

adjunction

of P-fibred categories, see also morphism of

of premotivic categories, see also morphism of

Quillen adjunction, 61

admissible topology, see also topology

admissible, class of morphisms, 2

algebra

E∞-algebra, 164

HB -algebra, 244

alteration, 92

Galois alteration, 92, 107

Auslander-Buchsbaum theorem, 222

base change

P-base change, 5

proper base change, 6

smooth base change, 6

bifibred category, 5

Bott isomorphism, 233

bounded (topology), 126

bounded generating family, 126

Brown representability theorem, 17, 31, 36

bundle

normal, 48, 49

tangent, 49, 55

virtual vector bundle, 42

cartesian morphism, see also morphism

cd-structure, 24, 208

lower, 24

upper, 24

Chow’s lemma, 21, 35

class

Chern, 224, 238

fundamental, 236, 246

coefficients, for Beilinson motives, 245, 249

cofibration, 121

termwise, 59

coherence, 3, 5, 8, 13

cohomology

algebraic De Rham, 264

analytic De Rham, 264

Beilinson motivic, 243

Betti, 260

Chow group, see also group

effective motivic, 218

higher Chow group, see also group

K-theory, see also K-theory

Landweber exact, 241

mixed Weil, 261

Monsky-Washnitzer, 265

motivic, 218

representable, 230

rigid, 265

stable, 261

commute, see also functor

compact, 16, 128, 141, 216

compatible with (a topology) t, 120, 125

compatible with transfers, see also topology

compatible with twists, 13, 20

complex

algebraic De Rham, 264

Monsky-Washnitzer, 265

conservative, 33, 36, 104

constructibility, see also constructible

constructible, see also τ -constructible

(Z× τ)-constructible, 151

τ -constructible, 20, 93–113, 128, 141

Beilinson motive, 247–249

motive, 215, 216

motivic complex, 215

A1-contractible, 135

cotransversality property, 6

cover, 68

Galois cover, 80

h-cover, 86, 91

pseudo-Galois cover, 80

qfh-cover, 85, 86

cycle

Λ-cycle, 172, see also cycle

Λ-universal (morphism of), 182

associated, 172

Hilbert, 173

pre-special (morphism of), 175

pseudo-equidimensional, 191

pullback, 178

associativity, 183

commutativity, 182

of Hilbert cycles, 174

projection formulas, 184

pushforward, 173

restriction, 173

Samuel specialization, 189

special (morphism of), 177

specialization, 176

standard form, 173

trivial, 186

decomposition, Adams, 240, 244

deformation space, 48

derivator, Grothendieck, 66, 73, 75, 124

derived
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derived P-premotivic category, 132

descent

cdh-descent, 78, 86

cohomological h-descent, 262

cohomological t-descent, 120, 123

étale, 84, 86, 89, 246, 257

Galois, 175

h-descent, 86, 88, 89, 246, 257

Nisnevich, 77

qfh-descent, 85, 86, 88, 217

t-descent, 69, 123, 132, 148

dg-structure, 120, 131

diagram

S -diagram, 57, 122, 131

direct image with compact support, see also
functor, left exceptional

divisor

Weil, 221

domain (of a Λ-cycle), 172

dual, strong, 47, 225

duality

local duality, 111

duality, Grothendieck, 113, 249

dualizable, strongly, 47, 51

dualizing

τ -dualizing, 108

embedding, Segre, 231

enlargement, of premotivic categories, see also
premotivic

equidimensional

absolutely, 173

flat morphism, 173

equivalence

A1-equivalence, 135

HB -equivalence, 241

of motivic categories, 258

of triangulated monoidal categories, 243, 251

strong A1-equivalence, 135

termwise weak equivalence, 59

weak equivalence of commutative monoids, 160

weak equivalence of modules, 164

weak equivalence of monoids, 160

W -equivalence, 130

equivalence, of categories, 23

exceptional functor, see also functor

exchange

isomorphism, 4, 9, 34, 157–159

morphism, see also exchange transformation

transformation, 3, 5, 7, 8, 12, 29

fibrant

A1-fibrant, 135

fibration

t-fibration, 120

algebraic Hopf, 252

of commutative monoids, 160

of modules, 164

of monoids, 160

termwise, 59

W -fibration, 130

fibred

fibred category, 2

monoidal pre-P-fibred category, 7

monoidal P-fibred category, 8

model (category), 18

of finite correspondences, 200

P-fibred category, 5

τ -generated, see also generated

abelian, 15

abelian monoidal, 15

canonical, 5

canonical monoidal, 8

complete, 5

complete monoidal, 8

finitely τ -presented , see also finitely presented

geometrically generated, see also generated

Grothendieck abelian, 15

Grothendieck abelian monoidal, 15

homotopy, 19

homotopy monoidal, 19

model, 18

monoidal P-fibred model category, 121

triangulated, 16

triangulated monoidal, 16

pre-P-fibred category, 2

filtration, γ-filtration, 240

finite correspondence, 194

composition, 195

finite S-correspondence, see also finite
correspondence

graph functor, see also functor

tensor porduct, see also tensor product

transpose, see also morphism

finitely presented

finitely τ -presented, 16, 128, 141, 151

object of a category, 15

finiteness theorem, 101, 248

flasque, t-flasque complex, 120

formalism, Grothendieck 6 functors, 54, 243

functor

commutes, 5

evaluation, 58, 63, 143

exceptional, 30, 55

graph, 196

infinite suspension, 20

left exceptional, 26

Quillen, 63

t-exact endofunctor, 253

Galois group, see also group

generated

τ -generated, 10, 20

compactly (Z× τ)-generated, 151

compactly τ -generated, 20

triangulated P-fibred, 16, 31, 128, 141

compactly generated, 16, 248, 258

triangulated P-fibred, 16

geometrically generated, 10

well generated, 16

triangulated P-fibred, 16

global section, see also section

group

Chow, 219

Galois group, 80

H-group, 231

higher Chow, 218

Picard, 221

relative Picard, 220
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henselisation, 104

homeomorphism, universal, 23, 189, 219

homotopic, A1-homotopic, 135

homotopy

colimit, 61

limit, 61

object of homotopy fixed points, 83

homotopy cartesian, 78, 84, 85, 88, 107, 133

object over a diagram, 67

square, 77

homotopy category, 3, 19, 48, 137

homotopy linear, 168

homtopy pullback, see also homotopy cartesian

hypercover, 68, 132

Čech t-hypercovers, 203

ind-constructible, 186

infinite suspension, see also functor

K-theory

homotopy invariant, 232

Milnor, 255

Milnor-Witt, 255

Quillen, 232

with support, 234

law, formal group, 231

linear

Q-linear (stable model category), 73

strongly Q-linear, 160

local, 120

W -local, 130

A1-local, 135, 138

HB -local, 241

localization

triangle, seetriangle, 32

map, trace, 228, 238

model structure

t-descent, 121

injective (diagrams), 60

positive stable model structure, 164

projective (diagrams), 59

W -local, 130

module

HB -module, 242, 244

strict HB -module, 244

modules

KGL-modules, 234

over a homotopy cartesian commutative monoid,
167, 259

over a monoid, 164

monoid, 160, 167

cartesian, 166, 168

cartesian commutative monoid, 142

commutative monoid, 160

homotopy cartesian, 167

monoid axiom, 160, 164, 165, 168

monoidal stable homotopy 2-functor, 54

morphism

T -pure, see also morphism, pure

cartesian —- of S -diagrams, 64

cocontinuous, 73

degree, 196

faithfully flat, 34

finite Λ-universal, 219

Gysin, 225

of P-fibred categories, 12

of P-fibred model categories, 18

of P-premotivic categories, 19, 20

of Λ-cycles, 172

of abelian P-fibred categories, 15

of abelian P-premotivic categories, 19

of abelian monoidal P-fibred categories, 15

of complete P-fibred categories, 12

of derivators, 73

of monoidal P-fibred model category, 18

of S -diagrams, 58

of triangulated P-fibred categories, 16

of triangulated P-premotivic categories, 19

of triangulated monoidal P-fibred categories, 16

of triangulated premotivic categories, 56

pseudo-dominant, 172

pure, 45, 47, 51

pure (proper case), 43

Quillen —- of P-fibred model categories, 68

radicial, 23, 34

separated, 26, 172

transpose, 194

universally T -pure (proper case), 43

motive, 213

Beilinson, 241, 255

Chow (strong), 226

constructible, see also constructible

effective h-motives, 134

effective qfh-motives, 134

generalized, 216

geometric, 20, 215, 251

geometric effective, 215

h-motive, 149

qfh-motive, 149

Morel, 252–257

motivic complex, 213

constructible, see also constructible

generalized, 216

stable, 213, see also motive

multiplicity

geometric, 172

Samuel (of a cycle), 189

Samuel (of a module), 188

Suslin-Voevodsky, 181

nilpotent, 231

Nisnevich

distinguished square, see also distinguished

topology, see also topology

orientable, 244

orientation, 51

of a ring spectrum, 230

of a triangulated premotivic category, 49, 51

perfect, 164, 167

perfect pairing, 47

Picard category, 42

point, 172

fat point (of a cycle), 175

generic (of a cycle), 172

geometric, 172

of a cycle, 175
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pointed, smooth S-scheme, 39

prederivator, 72

premotive, 19

Tate premotive, 42

premotivic

case, 22

category, 19

category of h-motives, 149

category of qfh-motives, 149

enlargement of —- category, 21, 154, 213, 217

generalized —- category, 19

morphism, see also morphism of premotivic
categories

P-premotivic

A1-derived category, 134

abelian category, 19

category, 19

derived category, 122

stable A1-derived category, 146

triangulated category, 19

stable A1-derived premotivic category, 148

presentation

local presentation of a simplicial object, 69

presented, see also finitely presented

presheaf

Λ-presheaf, 118

with transfers, 201

projection formula

P-projection formula, 8

projective system, of schemes, xi, 101, 129, 186, 202,
209

pseudo-Galois, see also cover or distinguished

pullback

of fundamental class, 246

purity

absolute, 237, 246

isomorphism (relative), 43, 49, 50, 225

quasi-excellent, 91

quotient

Gabriel, 152

radicial, see also morphism

realization functor

(associated with a stable cohomology), 262

Betti, 260

de Rham, 264

of construcible motives, 263

rigid, 265

resolution of singularities, 91

canonical —- up to quotient singularities, 92

canonical dominant —- up to quotient
singularities, 92

wide —- up to quotient singularities, 92, 248

Riemann-Hilbert, 265

ring

Grothendieck-Witt, 256

schematic closure, 172

scheme

excellent, 91, 212, 217

geometrically unibranch, 190, 194, 212, 217, 251

quasi-excellent, 91, 97, 246

regular, 193–195, 214, 222

strictly local, 191

unibranch, 190

section

absolute derived global section, 76

cartesian, 142

geometric, 10, 12, 36

geometric derived global section, 72

sequence

symmetric sequence, 143

sheaf

étale sheaf with transfers, 202

generalized sheaf with transfers, 209

h-sheaf, 134, 149

qfh-sheaf, 134, 149, 211

sheaf with transfers, 202, 209

t-sheaf of Λ-modules, 119

t-sheaf with transfers, 202

sieve, 22, 24

singular

Suslin singular complexe, 140

specialization, 226

spectra, see also spectrum

spectrum

abelian Tate spectrum, 144

absolute Tate spectrum, 144

algebraic cobordism, 230

Beilinson motivic cohomology spectrum, 240

motivic cohomology ring spectrum, 223, 230

rational, 232

ring —-, 230

ring —- (associated with a stable cohomology),

261

strict ring —-, 230

Tate spectrum, 145

Tate Ω-spectrum, 147

universal oriented ring —- with additive formal
group law, 243

sphere

simplicial, 230

square

P -distinguished, 24

cdh-distinguished, 78, 127

Nisnevich distinguished, 24, 76, 127

proper cdh-distinguished, 24

pseudo-Galois qfh-distinguished, 81

qfh-distinguished, 81, 88, 127

Tor-independant, 235, 246

stable homotopy category of schemes, 19

strict transform, 175, 178

strictification theorem, 164

strongly dualizable, see also dualizable

Tate

motivic complex, 214

twist, see also twist, 230

tensor product

of finite correspondences, 197

Thom

adjoint transformation, 39

class, 50

isomorphism, 49

premotive, 41

transformation, 39

tilting, 259, 262

topology
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admissible, 119
cdh-topology, 24
compatible with transfers, 203, 208
h-topology, 80, 250
mildly compatible with transfers, 204, 206, 208
Nisnevich, 24
P-admissible, 119
proper cdh, 24

qfh-topology, 80, 250
weakly compatible with transfers, 203

tractable, 67, 160
trait

of a cycle, 175
transfer, see also presheaf or sheaf
transversal

M -transversal square, 6
transversality property, 6
triangle

Gysin, 225

localization triangle, 32
Mayer-Vietoris triangle, 78

t-structure
heart, 254
non degenerated, 253

t-structure, homotopy, 252
twist, 10, 19

commutes with τ -twists (or twists), 10, 11, 13
of a triangulated monoidal P-fibred category, 16
Tate, 19, 20, 42, 147
τ -twisted, 10

underlying simplicial set
of a simplicial object, 69

universal, 133

weak equivalence, see also equivalence





Index of notations

α⊗♭
S S

′, 177

α⊗S
S s, 192

α⊗tr
S α′, 200

α̃, 178

A S, 144

β ◦ α, 198

βR,k, 179

β ⊗α α′, 181

〈Z〉X , 175

cS (X,Y )Λ, 197

C∗, 141

c0(X/S,Λ), 197

DA1(A ), 147

DA1,gm(AS), 152

DA1,Λ, 149

DA1,Λ, 150

DA1 (S,Λ)+, 256

DBetti (X), 264

degx(f), 199

Deff

A1(A ), 135

Deff

A1,Λ
, 135

DMB ,c(S), 251

DMB (S), 245

DMeff
gm(S,Λ), 219

DMgm(S,Λ), 219

DMh,Λ, 150

DMΛ, 217

DMΛ, 219

DMeff
Λ , 217

DMeff
Λ , 219

DMqfh,Λ, 150

DM eff
h,Λ, 135

DM eff
qfh,Λ, 135

•−→, 197

D(X, E), 266

eAq (M), 191

HB , 246

Hq
B
(X,Q(p)), 247

Hn,m
M,eff (S,Λ), 221

Hn,m
M

(S,Λ), 221

Hom•(−,−), 118

H•(S), 3

KGLβ , 237

KGL′, 237

KGLQ, 244

KGLS , 236

KGL
(i)
S , 244

Λt
S(X), 119

Λtr
S (X), 205

Λtr
S (X), 206

Man(X), 264

M
eff
Betti

(X), 264
MBetti (X), 264
MGL, 234
mSV (x;β ⊗α α′), 184

MS(X), 217
MS(X), 220

Pcor
Λ,S , 199

Pcart , 65
PSh(P/S,Λ), 118
Pcor

Λ,S , 205

RA1 , 139

SH(S), 19
Sht(P/S,Λ), 119

Sht
(

Pcor
Λ,S

)

, 206

Shtr (−,Λ), 213
Shtr (−,Λ), 213
Sym(A), 144

⊗S, 144

Totπ , 118
tf , 198

TrKGL
p , 242

Λt
S(X), 135
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APPENDIX A

Index of properties of P-fibred triangulated categories

Name Symbol Def. related Remark
result

additive 2.1.1
adjoint property (Adj) 2.2.13 2.2.14
adjoint property for f (Adjf ) 2.2.13 f morphism of schemes
cotransversality property 1.1.17 defined for any P-fibred category
homotopy property (Htp) 2.1.3
localization property (Loc) 2.3.2 2.4.26

6.3.15
localization property for i (Loci) §2.3.1 i closed immersion
motivic 2.4.45 2.4.50 for premotivic triangulated categories,

14.2.11 means: (Htp), (Stab), (Loc), (Adj)
oriented 2.4.38 2.4.43 for triangulated premotivic categories

satisfying (wLoc)
projection formula (PF) 2.2.13
projection formula for f (PFf ) 2.2.13 2.4.26 f morphism of schemes
proper base change property (BC) 2.2.13 2.4.26
proper base change property for f (BCf ) 2.2.13 f morphism of schemes
purity property (Pur) 2.4.21 2.4.26
separated (Sep) 2.1.7 4.2.24

4.4.21
14.3.3

semi-separated (sSep) 2.1.7 3.3.33
stability property (Stab) 2.4.4
support property (Supp) 2.2.5 2.2.12

2.2.14
11.4.2

τ -compatible 4.2.20 4.2.29 τ set of twists
τ -continuous 4.3.2 6.1.13 for homotopy P-fibred categories,

11.1.24 τ set of twists
14.3.1

τ -dualizable 4.4.13 4.4.21 τ set of twists
t-descent property 3.2.5 for homotopy P-fibred categories,

t topology
transversality property 1.1.17 for any P-fibred category
t-separated (t-sep) 2.1.5 t topology
weak localization property (wLoc) 2.4.7 11.4.2
weak purity property (wPur) 2.4.21 2.4.26

2.4.43
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