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Abstract

In this note we present a work in progress whose main purpose is to establish a categorified
version of sheaf theory. We present a notion of derived categorical sheaves, which is a categorified
version of the notion of complexes of sheaves of O-modules on schemes, as well as its quasi-coherent
and perfect versions. We also explain how ideas from derived algebraic geometry and higher cat-
egory theory can be used in order to construct a Chern character for these categorical sheaves,
which is a categorified version of the Chern character for perfect complexes with values in cyclic
homology. Our construction uses in an essential way the derived loop space of a scheme X, which
is a derived scheme whose theory of functions is closely related to cyclic homology of X. This work
can be seen as an attempt to define algebraic analogs of elliptic objects and characteristic classes
for them. The present text is an overview of a work in progress and details will appear elsewhere.
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1 Motivations and objectives

The purpose of this short note is to present a construction of a Chern character defined for certain
sheaves of categories rather than sheaves of modules (e.g. vector bundles or coherent sheaves). This
is part of a more ambitious project to develop a general theory of categorical sheaves, in the context
of algebraic geometry but also in topology, which is supposed to be a categorification of the theory of
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sheaf of modules. Our original motivations for starting such a project come from elliptic cohomology,
which we now explain briefly.

From elliptic cohomology to categorical sheaves

To any (complex oriented) generalized cohomology theory E∗ (defined on topological spaces) is
associated an integer called its chromatic level, which by definition is the height of the corresponding
formal group. The typical generalized cohomology theory of height zero is singular cohomology and
is represented by the Eleinberg-MacLane spectrum HZ. The typical generalized cohomology theory
of height 1 is complex K-theory which is represented by the spectrum BU ×Z. A typical cohomology
theory of height 2 is represented by an elliptic spectrum and is called elliptic cohomology. These
elliptic cohomologies can be combined altogether into a spectrum tmf of topological modular forms

(we recommend the excellent survey [Lu1] on the subject). The cohomology theories HZ and BU ×Z

are rather well understood, in the sense that for a finite CW complex X is possible to describe the
groups [X, HZ] and [X, BU × Z] easily in terms of the topology of X. Indeed, [X, HZ] ≃ H0(X, Z)
is the group of continuous functions X −→ Z. In the same way, [X, BU × Z] = Ktop

0 (X) is the
Grothendieck group of complex vector bundles on X. As far as we know, it is an open question to
describe the group [X, tmf] = Ell0(X), or the groups [X, E] for some elliptic spectrum E, in similar
terms, e.g. as the Grothendieck group of some kind of geometric objects over X (for some recent
works in this direction, see [Ba-Du-Ro] and [St-Te]).

It has been observed by several authors that the chromatic level of the cohomology theories HZ

and BU × Z coincide with a certain categorical level. More precisely, [X, HZ] is the set of continuous
functions X −→ Z. In this description Z is a discrete topological space, or equivalently a set, or
equivalently a 0-category. In the same way, classes in [X, BU × Z] can be represented by finite
dimensional complex vector bundles on X. A finite dimensional complex vector bundle on X is
a continuous family of finite dimensional complex vector spaces, or equivalently a continuous map

X −→ V ect, where V ect is the 1-category of finite dimensional complex vector spaces. Such an
interpretation of vector bundles can be made rigorous if V ect is considered as a topological stack. It
is natural to expect that [X, tmf] is related in one way or another to 2-categories, and that classes
in [X, tmf] should be represented by certain continuous applications X −→ 2 − V ect, where now
2 − V ect is a 2-category (or rather a topological 2-stack). The notation 2 − V ect suggests here that
2 − V ect is a categorification of V ect, which is itself a categorification of Z (or rather of C). If we
follow this idea further the typical generalized cohomology theory E of chromatic level n should itself
be related to n-categories in the sense that classes in [X, E] should be represented by continuous maps
X −→ n − V ect, where n − V ect is now a certain topological n-stack, which is supposed to be an
n-categorification of the (n− 1)-stack (n− 1)− V ect.

This purely formal observation relating the chromatic level to a certain categorical level is in fact
supported by at least two recent results. On the one hand, J. Rognes stated the so-called red shift

conjecture, which from an intuitive point of view stipulates that if a commutative ring spectrum E
is of chromatic level n then its K-theory spectrum K(E) is of chromatic level n + 1 (see [Au-Ro]).
Some explicit computations of K(BU × Z) proves a major case of this conjecture for n = 1 (see
[Ba-Du-Ro]). Moreover, K(BU × Z) can be seen to be the K-theory spectrum of the 2-category of
complex 2-vector spaces (in the sense of Kapranov-Voevodsky). This clearly shows the existence of
an interesting relation between elliptic cohomology and the notion of 2-vector bundles (parametrized
version of the notion 2-vector spaces), even though the precise relation remains unclear at the mo-
ment. On the other hand, the fact that topological K-theory is obtained as the Grothendieck group of
vector bundles implies the existence of equivariant K-theory by using equivariant vector bundles. It
is important to notice here that the spectrum BU × Z alone is not enough to reconstruct equivariant
K-theory and that the fact that complex K-theory is obtained from a categorical construction is used
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in an essential way to define equivariant K-theory. Recently J. Lurie constructed not only equivariant
versions but also 2-equivariant versions of elliptic cohomology (see [Lu1, §5.4]). This means that not
only an action of a group can be incorporated in the definition of elliptic cohomology, but also an
action of a 2-group (i.e. of a categorical group). Now, a 2-group G can not act in a very interesting
way on an object in a 1-category, as this action would simply be induced by an action of the group
π0(G). However, a 2-group can definitely act in an interesting manner on an object in a 2-category,
since automorphisms of a given object naturally form a 2-group. The existence of 2-equivariant ver-
sion of elliptic cohomology therefore suggests again a close relation between elliptic cohomology and
2-categories.

Towards a theory of categorical sheaves in algebraic geometry

The conclusion of the observation above is that there should exist an interesting notion of categorical
sheaves, which are sheaves of categories rather than sheaves of vector spaces, useful for a geometric
description of objects underlying elliptic cohomology. In this work we have been interested in this
notion independently of elliptic cohomology and in the context of algebraic geometry rather than
topology. Although our final motivations is to understand better elliptic cohomology we have found
the theory of categorical sheaves in algebraic geometry interesting in its own and think that it deserves
a fully independent development.

To be more precise, and to fix ideas, a categorical sheaf theory is required to satisfy the following
conditions.

• To any scheme X there exists a 2-category Cat(X), of categorical sheaves on X. The 2-category
Cat(X) is expected to be a symmetric monoidal 2-category. Moreover, we want Cat(X) to be
a categorification of the category Mod(X) of sheaves of OX -modules on X, in the sense that
there is a natural equivalence between Mod(X) and the category of endomorphisms of the unit
object of Cat(X).

• The 2-category Cat(X) comes equiped with monoidal sub-2-categories Catqcoh(X), Catcoh(X)
and Catparf (X), which are categorifications of the categories QCoh(X), Coh(X) and V ect(X),
of quasi-coherent sheaves, coherent sheaves, and vector bundles. The monoidal 2-category
Catparf (X) is moreover expected to be rigid (i.e. every object is dualizable).

• For a morphism f : X −→ Y of schemes, there is a 2-adjunction

f∗ : Cat(Y ) −→ Cat(X) Cat(Y )←− Cat(X) : f∗.

The 2-functors f∗ and f∗ are supposed to preserve the sub-2-categories Catqcoh(X), Catcoh(X)
and Catparf (X), under some finiteness conditions on f .

• There exists a notion of short exact sequence in Cat(X), which can be used in order to de-

fine a Grothendieck group K
(2)
0 (X) := K0(Catparf (X)) (or more generally a ring spectrum

K(Catparf (X))). This Grothendieck group is called the secondary K-theory of X and is ex-
pected to possess the usual functorialities in X (at least pull-backs and push-forwards along
proper and smooth morphisms).

• There exists a Chern character
K

(2)
0 (X) −→ H(2)(X),

for some secondary cohomology group H(2)(X). This Chern character is expected to be functorial
for pull-backs and to satisfy some version of the Grothendieck-Riemann-Roch formula for push-
forwards.
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As we will see in section §2, it is not clear how to develop a theory as above, and it seems to us that
a theory satisfying all the previous requirements cannot reasonably exist. One major observation here
is that the situation becomes more easy to handle if the categories Mod(X), QCoh(X), Coh(X) and
V ect(X) are replaced by their derived analogs D(X), Dqcoh(X), Db

coh(X) and Dparf (X). Our wanted
categorical sheaf theory should then rather a be derived categorical sheaf theory, and is expected to
satisfy the following conditions.

• To any scheme X is associated a triangulated-2-category Dg(X), of derived categorical sheaves

on X. Here, by triangulated-2-category we mean a 2-category whose categories of morphisms
are endowed with triangulated structure in a way that the composition functors are bi-exacts.
The 2-category Dg(X) is expected to be a symmetric monoidal 2-category, in way which is
compatible with the triangulated structure. Moreover, we want Dg(X) to be a categorification
of the derived category D(X) of sheaves of OX -modules on X, in the sense that there is a natural
triangulated equivalence between D(X) and the triangulated category of endomorphisms of the
unit object of Dg(X).

• The 2-category Dg(X) comes equipped with monoidal sub-2-categories Dgqcoh(X), Dgcoh(X)
and Dgparf (X), which are categorifications of the derived categories Dqcoh(X), Db

coh(X) and
Dparf (X), of quasi-coherent complexes, bounded coherent sheaves, and perfect complexes. The
monoidal 2-category Dgparf (X) is moreover expected to be rigid (i.e. every object is dualizable).

• For a morphism f : X −→ Y of schemes, there is a 2-adjunction

f∗ : Dg(Y ) −→ Dg(X) Dg(Y )←− Dg(X) : f∗.

The 2-functors f∗ and f∗ are supposed to preserve the sub-2-categories Dgqcoh(X), Dgcoh(X)
and Dgparf (X), under some finiteness conditions on f .

• There exists a notion of short exact sequence in Dg(X), which can be used in order to de-

fine a Grothendieck group K
(2)
0 (X) := K0(Dgparf (X)) (or more generally a ring spectrum

K(Dgparf (X))). This Grothendieck group is called the secondary K-theory of X and is ex-
pected to possess the usual functorialities in X (at least pull-backs and push-forwards along
proper and smooth morphisms).

• There exists a Chern character
K

(2)
0 (X) −→ H(2)(X),

for some secondary cohomology group H(2)(X). This Chern character is expected to be functorial
for pull-backs and to satisfy some version of the Grothendieck-Riemann-Roch formula for push-
forwards.

The purpose of these notes is to give some ideas on how to define such triangulated-2-categories
Dg(X), how to define the secondary cohomology H(2)(X) and how to define the Chern character. In
order to do this, we will follow closely one possible interpretation of the usual Chern character for
vector bundles as being a kind of function on the loop space.

The Chern character and the loop space

The Chern character we will construct for categorical sheaves is based on the following interpreta-
tion of the usual Chern character. Assume that X is a smooth complex algebraic manifold (or more
generally a complex algebraic stack) and that V is a vector bundle on X. Let γ : S1 −→ X be a loop
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in X. We do not want to specify want we mean by a loop here, and the notions of loops we will use in
the sequel is a rather unconventional one (see 3.1). Whatever γ truely is, we will think of it as a loop
in X, at least intuitively. We consider the pull-back γ∗(V ), which is a vector bundle on S1. Because of
the notion of loops we use this vector bundle is in fact locally constant on S1, and thus is completely
determined by a monodromy operator mγ on the fiber Vγ(0). The trace of mγ is a complex number,
and as γ varies in LX the loop space of X (again the notion of loop space we use is unconventional)
we obtain a function Ch(V ) on LX. This function can be seen to be S1-equivariant and thus provides
an element

Ch(V ) ∈ O(LX)S1

.

Our claim is that, if the objects S1 and LX are defined correctly, then there is a natural identification

O(LX)S1

≃ Hev
DR(X),

and that Ch(V ) is the usual Chern character with values in the algebraic de Rham cohomology of X.
The conclusion is that Ch(V ) can be seen as a S1-equivariant function on LX.

One enlightening example is when X is BG the quotient stack of a finite group G. The our loop
space LBG is the quotient stack [G/G], for the action of G on itself by conjugation. The space of
functions on LBG can therefore be identified with C(G), the space of class function on G. A vector
bundle V on BG is nothing else than a linear representation of G, and the function Ch(V ) constructed
above is the class function sending g ∈ G to Tr(g : V → V ). Therefore, the description of the Chern
character above gives back the usual morphism R(G) −→ C(G) sending a linear representation to its
class function.

Our construction of the Chern character for a categorical sheaf follows the same ideas. The
interesting feature of the above interpretation of the Chern character is that it can be generalized
to any setting for which traces of endomorphisms make sense. As we already mentioned, Dgparf (X)
is expected to be a rigid monoidal 2-category, and thus any endomorphism of an object possesses a
trace which is itself an object in Dparf (X) ≃ End(1). Therefore, if we start with a categorical sheaf
on X and do the same construction as above, we get a sheaf (rather than a function) on LX, or
more precisely an object in Dparf (LX). This sheaf is moreover invariant under the action of S1 and

therefore is an object in DS1

parf (LX), the perfect S1-equivariant derived category of LX. This sheaf as

itself a Chern character which is an element in HS1

DR(LX), the S1-equivariant de Rham cohomology of
LX. This element is by definition the Chern character of our categorical sheaf. The Chern character
should then expected to be a map

Ch : K
(2)
0 (X) −→ HS1

DR(LX).

Plan of the paper

The main purpose of this paper is to make precise all the terms of this construction. For this we
will start by the definitions of the 2-categories Dg(X), Dgqcoh(X), and Dgparf (X), but we do not
try to define Dgcoh(X) as the notion of coherence in this categorical setting seems unclear at the
moment. The objects in Dg(X) will be certain sheaves of dg-categories on X and our approach to the
notion of categorical sheaves heavily relies on the homotopy theory of dg-categories recently studied
in [Ta, To2]. In a second part we will recall briefly some ideas of derived algebraic geometry and of
derived schemes (and stacks) as introduced in [HAG-II, Lu2]. The loop space LX of a scheme X will
then be defined as the derived mapping stack from S1 = BZ to X. We will argue that the ring of
S1-invariant functions on LX can be naturally identified with HC−

0 (X), the negative cyclic homology
of X. We will also briefly explain how this can be used in order to interpret the Chern character
with values in cyclic homology as we have sketched above. Finally, in a last part we will present the
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construction of our Chern character for categorical sheaves. One crucial point in this construction is
to define an S1-equivariant sheaf on the loop space LX. The construction of the sheaf itself is easy
but the fact that it is S1-equivariant is a delicate question which we leave open in the present work
(see 4.1 and 5.1). Hopefully a detailed proof of the existence of this S1-equivariant sheaf will appear
in a future work.

2 Categorification of homological algebra and dg-categories

In this section we present our triangulated-2-categories Dg(X) of derived categorical sheaves on some
scheme X. We will start by an overview of a rather standard way to categorify the theory of modules
over some base commutative ring using linear categories. As we will see the notion of 2-vector spaces
appear naturally in this setting as the dualizable objects, exactly in the same way that the dualizable
modules are the projective modules of finite rank. After arguing that this notion of 2-vector space is
too rigid a notion to allow for push-fowards, we will consider dg-categories instead and show that they
can be used in order to categorify homological algebra in a similar way as linear categories categorify
linear algebra. By analogy with the case of modules and linear categories we will consider dualizable
objects as categorified versions of perfect complexes and notice that these are precisely the smooth
and proper dg-categories studied in [Ko-So, To-Va]. We will finally define the 2-categories Dg(X),
Dgqcoh(X) and Dgparf (X) for a general scheme X by some gluing procedure.

Let k be a commutative base ring. We let Mod(k) be the category of k-modules, considered as a
symmetric monoidal category for the tensor product of modules. Recall that an object M ∈ Mod(k)
is said to be dualizable if the natural morphism

M ⊗M∨ −→ Hom(M,M)

is an isomorphism (here Hom denotes the k-module of k-linear morphisms, and M∨ := Hom(M,k)
is the dual module). It is easy to see that M is dualizable if and only if it is projective and of finite
type over k.

A rather standard way to categorify the category Mod(k) is to consider k-linear categories and
Morita morphisms. We let Cat(k) be the 2-category whose objects are small k-linear categories.
The category of morphisms between two k-linear categories A and B in Cat(k) is defined to be the
category of all A ⊗k Bop-modules (the composition is obtained by the usual tensor product of bi-
modules). The tensor product of linear categories endow Cat(k) with a structure of a symmetric
monoidal 2-category for which k, the k-linear category freely generated by one object, is the unit.
We have EndCat(k)(k) ≃ Mod(k), showing that Cat(k) is a categorification of Mod(k). To obtain

a categorification of Modpft(k), the category of projective k-modules of finite type, we consider the
sub-2-category of Cat(k) with the same objects but for which the category of morphisms from A
to B is the full sub-category of the category of A ⊗k Bop-modules whose objects are bi-modules M
such that for any a ∈ A the Bop-module M(a,−) is projective of finite type (i.e. a retract of a
finit sum of representable Bop-modules). We let Catc(k) ⊂ Cat(k) be this sub-2-category, which is
again a symmetric monoidal 2-category for tensor product of linear categories. By definition we have
EndCatc(k)(k) ≃ Modpft(k). However, the tensor category Modpft(k) is a rigid tensor category in
the sense that every object is dualizable, but not every object in Catc(k) is dualizable. We therefore
consider Catsat(k) the full sub-2-category of dualizable objects in Catc(k). Then, Catsat(k) is a rigid
monoidal 2-category which is a categorification of Modpft(k). It can be checked that a linear category
A is in Catsat(k) if and only if it is equivalent in Cat(k) to an associative k-algebra B (as usual
considered as a linear category with a unique object) satisfying the following two conditions.
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1. The k-module B is projective and of finite type over k.

2. For any associative k-algebra A, a B ⊗k A-module M is projective of finite type if and only if it
is so as a A-module.

These conditions are also equivalent to the following two conditions.

1. The k-module B is projective and of finite type over k.

2. The B ⊗k Bop-module B is projective.

When k is a field, an object in Catsat(k) is nothing else than a finite dimensional k-algebra B
which is universally semi-simple (i.e. such that B ⊗k k′ is semi-simple for any field extension k → k′).
In general, an object in Catsat(k) is a flat family of universally semi-simple finite dimensional algebras
over Spec k. In particular, if k is an algebraically closed field any object in Catsat(k) is equivalent to
kn, or in other words is a 2-vector space of finite dimension in the sense of Kapranov-Voevodsky (see
for instance [Ba-Du-Ro]). For a general commutative ring k, the 2-category Catsat(k) is a reasonable
generalization of the notion of 2-vector spaces and can be called the 2-category of 2-vector bundles on

Spec k.
One major problem with this notion of 2-vector bundles is the lack of push-forwards in general.

For instance, let X be a smooth and proper algebraic variety over some algebraically closed field k. We
can consider V ect, the trivial 2-vector bundle of rank 1 over X, which is the stack in categories sending
a Zariski open U ⊂ X to the linear category V ect(U) of vector bundles over U . The push-forward
of this trivial 2-vector bundle along the structure morphism X −→ Spec k is the k-linear category of
global sections of V ect, or in other words the k-linear category V ect(X) of vector bundles on X. This
is an object in Cat(k), but is definitely not in Catsat(k). The linear category V ect(X) is big enough
to convince anyone that it can not be finite dimensional in any reasonable sense. This shows that the
global sections of a 2-vector bundle on a smooth and proper variety is in general not a 2-vector bundle
over the base field, and that in general it is hopeless to expect a good theory of proper push-forwards
in this setting.

A major observation in this work is that considering a categorification of D(k) instead of Mod(k),
which is what we call a categorification of homological algebra, solves the problem mentioned above
concerning push-forwards. Recall that a dg-category (over some base commutative ring k) is a category
enriched over the category of complexes of k-modules (see [Ta]). For a dg-category T we can define
its category of T -dg-modules as well as as its derived category D(T ) by formally inverting quasi-
isomorphisms between dg-modules (see [To2]). For two dg-categories T1 and T2 we can form their
tensor product T1 ⊗k T2, as well as their derived tensor product T1 ⊗

L

k T2 (see [To2]). We now define
a 2-catgeory Dg(k) whose objects are dg-categories and whose category of morphisms from T1 to T2

is D(T1 ⊗
L

k T op
2 ). The composition of morphisms is defined using the derived tensor product

−⊗L

T2
− : D(T1 ⊗

L

k T op
2 )×D(T2 ⊗

L

k T op
3 ) −→ D(T1 ⊗

L

k T op
3 ).

Finally, the derived tensor product of dg-categories endows Dg(k) with a structure of a symmetric
monoidal 2-category.

The symmetric monoidal 2-category Dg(k) is a categorification of the derived category D(k) as
we have by definition

EndDg(k)(1) ≃ D(k).

To obtain a categorification of Dparf (k), the perfect derived category, we consider the sub-2-category
Dgc(k) having the same of objects as Dg(k) itself but for which the category of morphisms from T1 to
T2 in Dgc(k) is the full sub-category of D(T1 ⊗

L

k T op
2 ) of bi-dg-modules F such that for all t ∈ T1 the
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object F (t,−) ∈ D(T op) is compact (in the sense of triangulated categories, see [Ne]). The symmetric
monoidal structure on Dg(k) restricts to a symmetric monoidal structure on Dgc(k), and we have

EndDgc(k)(1) ≃ Dparf (k),

as an object of D(k) is compact if and only if it is a perfect complex. Finally, the symmetric monoidal
2-category Dgc(k) is not rigid and we thus consider Dgsat(k), the full sub-2-category consisting of
rigid objects in Dgc(k). By construction, Dgsat(k) is a rigid symmetric monoidal 2-category and we
have

EndDgsat(k)(1) ≃ Dparf (k).

The 2-category Dgsat(k) will be our categorification of Dparf (k) and its objects should be thought as
perfect derived categorical sheaves on the scheme Spec k.

It is possible to show that an object T of Dgc(k) belongs to Dgsat(k) if and only if it is equivalent
to an associative dg-algebra B, considered as usual as a dg-category with a unique object, satisfying
the following two conditions.

1. The underlying complex of k-modules of B is perfect.

2. The object B ∈ D(B ⊗L

k Bop) is compact.

In other words, a dg-category T belongs to Dgsat(k) if and only it is Morita equivalent to a smooth
(condition (2) above) and proper (condition (1) above) dg-algebra B. Such dg-categories are also often
called saturated (see [Ko-So, To-Va]).

As Dgsat(k) is a rigid symmetric monoidal 2-category we can define, for any object T a trace
morphism

Tr : EndDgsat(k)(T ) −→ EndDgsat(k)(1) ≃ Dparf (k).

Now, the category EndDgsat(k)(T ) can be naturally identified with D(T ⊗L

k T op)c, the full sub-category

of D(T ⊗L

k T op) of compact objects (here we use that T is saturated and the results of [To-Va, §2.2]).
The trace morphism is then a functor

Tr : D(T ⊗L

k T op)c −→ Dparf (k)

which can be seen to be isomorphic to the functor sending a bi-dg-module M to its Hochschild complex
HH(T,M) ∈ Dparf (k). In particular, the rank of an object T ∈ Dgsat(k), which by definition is the
trace of its identity, is its Hochschild complex HH(T ) ∈ Dparf (k).

To finish this section we present the global versions of the 2-categories Dg(k) and Dgsat(k) over
some base scheme X. We let ZarAff(X) be the small site of affine Zariski open sub-schemes of X.
We start to define a category dg − cat(X) consisting of the following data

1. For any SpecA = U ⊂ X in ZarAff(X), a dg-category TU over A.

2. For any SpecB = V ⊂ SpecA = U ⊂ X morphism in ZarAff(X) a morphism of dg-categories
over A

rU,V : TU −→ TV .

These data should moreover satisfy the equation rV,W ◦ rU,V = rU,W for any inclusion of affine opens
W ⊂ V ⊂ U ⊂ X. The morphisms in dg − cat(X) are defined in an obvious way as families of
dg-functors commuting with the rU,V ’s.

For T ∈ dg − cat(X) we define a category Mod(T ) of T -dg-modules in the following way. Its
objects consist of the following data
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1. For any SpecA = U ⊂ X in ZarAff(X), a TU -dg-module MU .

2. For any SpecB = V ⊂ SpecA = U ⊂ X morphism in ZarAff(X) a morphism of TU -dg-
modules

mU,V : MU −→ r∗U,V (MV ).

These data should moreover satisfy the usual cocyle equation for r∗U,V (mV,W ) ◦mU,V = mU,W . Mor-
phisms in Mod(T ) are simply defined as families of morphisms of dg-modules commuting with the
mU,V ’s. Such a morphism f : M −→ M ′ in Mod(T ) is a quasi-isomorphism if it is a stalkwise quasi-
isomorphism (note that M and M ′ are complexes of presheaves of OX -modules). We denote by D(T )
the category obtained from Mod(T ) by formally inverting these quasi-isomorphisms.

We now define a 2-categoryDg(X) whose objects are the objects of dg−cat(X), and whose category
of morphisms from T1 to T2 is D(T1 ⊗

L

OX
T op

2 ) (we pass on the technical point of defining this derived
tensor product over OX , one possibility being to endow dg − cat(X) with a model category structure
and to use a cofibrant replacement). The compositions of morphisms in Dg(X) is given by the usual
derived tensor product. The derived tensor product endows Dg(X) with a structure of a symmetric
monoidal 2-category and we have by construction

EndDg(X)(1) ≃ D(X),

where D(X) is the (unbounded) derived category of all OX -modules on X.

Definition 2.1 1. An object T ∈ Dg(X) is quasi-coherent if for any inclusion of affine open
subschemes

SpecB = V ⊂ SpecA = U ⊂ X

the induced morphism
TU ⊗A B −→ TV

is a Morita equivalence of dg-categories.

2. A morphism T1 −→ T2, corresponding to an object M ∈ D(T1⊗
L

OX
T op

2 ), is called quasi-coherent

if its underlying complex of OX -modules is with quasi-coherent cohomology sheaves.

The sub-2-category of Dg(X) consisting of quasi-coherent objects and quasi-coherent morphisms
is denoted by Dgqcoh(X). It is called the 2-category of quasi-coherent derived categorical sheaves on

X.

Let T1 and T2 be two objects in Dgqcoh(X). We consider the full sub-category of D(T1 ⊗
L

OX
T op

2 )
consisting of objects M such that for any Zariski open SpecA = U ⊂ X and any object x ∈ (T1)U ,
the induced dg-module M(a,−) ∈ D((T op

2 )U ) is compact. This defines a sub-2-category of Dgqcoh(X),
denoted by Dgc

qcoh(X) and will be called the sub-2-category of compact morphisms. The symmetric
monoidal structure on Dg(X) restricts to a symmetric monoidal structure on Dgqcoh(X) and on
Dgc

qcoh(X).

Definition 2.2 The 2-category of perfect derived categorical sheaves is the full sub-2-catgeory of
Dgc

qcoh(X) consisting of dualizable objects. It is denoted by Dgparf (X).

By construction, Dgparf (X) is a symmetric monoidal 2-category with

EndDgparf (X)(1) ≃ Dparf (X).
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It is possible to show that an object T ∈ Dqcoh(X) belongs to Dgparf (X) if and only if for any
affine Zariski open subscheme SpecA = U ⊂ X, the dg-category TU is saturated (i.e. belongs to
Dgsat(A)).

For a morphism of schemes f : X −→ Y it is possible to define a 2-adjunction

f∗ : Dg(Y ) −→ Dg(X) Dg(Y )←− Dg(X) : f∗.

Moreover, f∗ preserves quasi-coherent objects, quasi-coherent morphisms, as well as the sub-2-categories
of compact morphisms and perfect objects. When the morphism f is quasi-compact and quasi-
separated, we think that it is possible to prove that f∗ preserves quasi-coherent objects and quasi-
coherent morphisms as well as the sub-2-category of compact morphisms. We also guess that f∗ will
preserve perfect objects when f is smooth and proper, but this would require a precise investigation.
As a typical example, the direct image of the unit 1 ∈ Dgparf (X) by f is the presheaf of dg-categories
sending SpecA = U ⊂ Y to the dg-category Lparf (X ×Y U) of perfect complexes over the scheme
f−1(U) ≃ X ×Y U . When f is smooth and proper it is known that the dg-category Lparf (X ×Y U) is
in fact saturated (see [To2, §8.3]). This shows that f∗(1) is a perfect derived sheaf on Y and provides
an evidence that f∗ preserves perfect object. These functoriality statements will be considered in more
details in a future work.

3 Loop spaces in derived algebraic geometry

In this section we present a version of the loop space of a scheme (or more generally of an algebraic
stack) based on derived algebraic geometry. For us the circle S1 is defined to be the quotient stack
BZ, where Z is considered as a constant sheaf of groups. For any scheme X, the mapping stack
Map(S1, X) is then equivalent to X, as the coarse moduli space of S1 is simply a point. In other
words, with this definition of the circle there are no interesting loops on a scheme X. However, we
will explain in the sequel that there exists an interesting derived mapping stack RMap(S1, X), which
is now a derived scheme and which is non-trivial. This derived mapping stack will be our loop space.
In this section we recall briefly the notions from derived algebraic geometry needed in order to define
the object RMap(S1, X). We will also explain the relation between the cohomology of RMap(S1, X)
and cyclic homology of the scheme X.

Let k be a base commutative ring and denote by Schk, resp. Stk, the category of schemes over
k and the model category of stacks over k ([HAG-II, 2.1.1] or [To1, §2, 3]), for the étale topology.
We recall that the homotopy category Ho(Stk) contains as full sub-categories the category of sheaves
of sets on Schk as well as the 1-truncation of the 2-category of stacks in groupoids (in the sense of
[La-Mo]). In particular, the homotopy category of stacks Ho(Stk) contains the category of schemes
and of Artin stacks as full sub-categories. In what follows we will always consider these two categories
as embedded in Ho(Stk). Finally, recall that the category Ho(Stk) possesses internal Hom’s, that will
be denoted by Map.

As explained in [HAG-II, Ch. 2.2] (see also [To1, §4] for an overview), there is also a model
category dStk of derived stacks over k for the strong étale topology. The derived affine objects are
simplicial k-algebras, and the model category of simplicial k-algebras will be denoted by salgk. The
opposite (model) category is denoted by dAffk. Derived stacks can be identified with objects in
the homotopy category Ho(dStk) which in turn can be identified with the full subcategory of the
homotopy category of simplicial presheaves on dAffk whose objects are weak equivalences’ preserving
simplicial presheaves F having strong étale descent i.e. such that, for any étale homotopy hypercover
U• → X in dAffk ([HAG-I, Def. 3.2.3, 4.4.1]), the canonical map

F (X) −→ holimF (U•)

10



is a weak equivalence of simplicial sets. The derived Yoneda functor induces a fully faithful functor
on homotopy categories

RSpec : Ho(dAffk) →֒ Ho(dStk) : A 7→ ( RSpec(A) : B 7→ Mapsalgk
(A,B) ),

where Mapsalgk
denotes the mapping spaces of the model category salgk (therefore Mapsalgk

(A,B) ≃
Hom(Q(A), B), where Hom denotes the natural simplicial Hom’s of salgk and Q(A) is a cofibrant
model for A). Those derived stacks belonging to the essential image of RSpec will be called affine

derived stacks.
The category Ho(dStk) of derived stacks has a lot of important properties. First of all, being the

homotopy category of a model category, it has derived colimits and limits (denoted as hocolim and
holim). In particular, given any pair of maps F → S and G → S between derived stacks, there is
a derived fiber product stack holim(F → S ← G) ≡ F ×h

S G. As our base ring k is not assumed to
be a field, the direct product in the model category dStk is not exact and should also be derived.
The derived direct product of two derived stacks F and G will be denoted by F ×h G. This derived
product is the categorical product in the homotopy category Ho(dStk). The category Ho(dStk) also
admits internal Hom’s, i.e. for any pair of derived stacks F and G there is a derived mapping stack
denoted as

RMap(F,G)

with the property that
[F, RMap(G, H)] ≃ [F ×h G, H],

functorially in F , G and H.
The inclusion functor j of commutative k-algebras into salgk (as constant simplicial algebras)

induces a pair (i, t0) of (left,right) adjoint functors

t0 := j∗ : Ho(dStk)→ Ho(Stk) i := Lj! : Ho(Stk)→ Ho(dStk).

It can be proved that i is fully faithful. In particular we can, and will, view any stack as a derived
stack (we will most of the time omit to mention the functor i and consider Ho(Stk) as embedded in
Ho(dStk)). The truncation functor t0 acts on affine derived stacks as t0(RSpec(A)) = Spec(π0A). It
is important to note that the inclusion functor i does not preserve derived internal hom’s nor derived
fibered products. This is a crucial point in derived algebraic geometry: derived tangent spaces and
derived fiber products of usual schemes or stacks are really derived objects. The derived tangent space
of an Artin stack viewed as a derived stack via i is the dual of its cotangent complex while the derived
fiber product of, say, two affine schemes viewed as two derived stacks is given by the derived tensor
product of the corresponding commutative algebras

i(Spec S)×h
i(Spec R) i(Spec T ) ≃ RSpec (S ⊗L

R T ).

Both for stacks and derived stacks there is a notion of being geometric ([HAG-II, 1.3, 2.2.3]),
depending, among other things, on the choice of a notion of smooth morphism between the affine
pieces. For morphisms of commutative k-algebras this is the usual notion of smooth morphism, while
in the derived case, a morphism A → B of simplicial k-algebras is said to be strongly smooth if the
induced map π0A→ π0B is a smooth morphism of commutative rings, and π∗A⊗π0A π0B ≃ π∗B. The
notion of geometric stack is strictly related to the notion of Artin stack ([HAG-II, Prop. 2.1.2.1]). Any
geometric derived stack has a cotangent complex ([HAG-II, Cor. 2.2.3.3]). Moreover, both functors
t0 and i preserve geometricity.
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Let BZ be the classifying stack of the constant group scheme Z. We view BZ as an object of Stk,
i.e. as the stack associated to the constant simplicial presheaf

BZ : algk → SSets , R 7→ BZ,

where by abuse of notations, we have also denoted as BZ the classifying simplicial set, i.e. the nerve
of the (discrete) group Z. Such a nerve is naturally a pointed simplicial set, and we call 0 that point.

Definition 3.1 Let X be a derived stack over k. The derived loop stack of X is the derived stack

LX := RMap(BZ, X).

We will be mostly interested in the case where X is a scheme or an algebraic (underived) stack.
Taking into account the homotopy equivalence

BZ ≃ S1 ≃ ∗

h∐

∗
‘

∗

∗ ,

we see that we have
LX ≃ X ×h

X×hX X,

where X maps to X ×h X diagonally and the homotopy fiber product is taken in dStk. Evaluation
at 0 ∈ BZ yields a canonical map of derived stacks

p : LX −→ X.

On the other hand, since the limit maps canonically to the homotopy limit, we get a canonical
morphism of derived stacks X → LX, a section of p, describing X as the “constant loops” in LX.

If X is an affine scheme over k, X = SpecA with A a commutative k-algebra, we get that

LX ≃ RSpec(A⊗L

A⊗LA A),

where the derived tensor product is taken in the model category salgk. One way to rephrase this is
by saying that “functions” on LSpecA are Hochschild homology classes of A with values in A itself.
Precisely, we have

O(LX) := RHom(LX, A1) ≃ HH(A,A),

where HH(A,A) is the simplicial set obtained from the complex of Hochschild homology of A by the
Dold-Kan correspondence, and RHom denotes the natural enrichment of Ho(dStk) into Ho(SSet).
When X is a general scheme then O(LX) can be identified with the Hochschild homology complex of
X, and we have

πi(O(LX)) ≃ HHi(X).

In particular, when X is a smooth and k is of characteristic zero, the Hochschild-Kostant-Rosenberg
theorem implies that

π0(O(LX)) ≃ ⊕iH
i(X, Ωi

X/k).

The stack S1 = BZ is a group stack, and it acts naturally on LX for any derived stack X by
“rotating the loops”. More precisely, there is a model category dStS1

/k , or S1-equivariant stacks, and

LX is naturally an object in the homotopy category Ho(dStS1

/k ). This way, the simplicial algebra of

functions O(LX) is naturally an S1-equivariant simplicial algebra, and thus can also be considered
as an S1-equivariant complex or in other words as an object in DS1

(k), the S1-equivariant derived
category of k. The category DS1

(k) is also naturally equivalent to D(k[ǫ]), the derived category of
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the dg-algebra k[ǫ] freely generated by an element ǫ of degree −1 and with ǫ2 = 0. The derived
category DS1

(k) is thus naturally equivalent to the derived category of mixed complexes (see [Lo])
(multiplication by ǫ providing the second differential). When X = SpecA is an affine scheme, O(LX)
can be identified, as a mixed complex, with the Hoschschild complex HH(A), with its canonical mixed
complex structure. As a consequence, we have

πi(O(LX)hS1

) ≃ HC−
i (A),

where HC− denotes negative cyclic homology and KhS1

denotes the simplicial set of homotopy fixed
points of an S1-equivariant simplicial set K. In other words, there is a natural identification between
S1-invariant functions on LX and negative cyclic homology of X. This statement of course can be
generalized to the case of a scheme X.

Proposition 3.2 For a scheme X we have

π0(O(LX)hS1

) ≃ HC−
0 (X),

where the right hand side denotes negative cyclic homology of the scheme X.

When k is of characteristic zero and X is smooth over k then proposition 3.2 states that

π0(O(LX)hS1

) ≃ Hev
DR(X/k).

The even part of de Rham cohomology of X can be identified with S1-equivariant functions on the
derived loop space LX. This fact can also be generalized to the case where X is a smooth Deligne-
Mumford stack over k (again assumed to be of characteristic zero), but the right hand side should
rather be replaced by the (even part of) de Rham orbifold cohomology of X, which is the de Rham
cohomology of the inertia stack IX ≃ t0(LX).

To finish this part, we would like to mention that the construction of the Chern character for
vector bundles we suggested in section §1 can now be made precise, and through the identification
of proposition 3.2 this Chern character coincides with the usual one. We start with a vector bundle
V on X and we consider its pull-back p∗(V ) on LX, which is a vector bundle on the derived scheme
LX. This vector bundle p∗(V ) comes naturally equipped with an automorphism u. This follows by
considering the evaluation morphism π : S1 × LX −→ X, and the vector bundle π∗(V ). As S1 = BZ,
a vector bundle on S1 × LX consists precisely of a vector bundle on LX together with an action of
Z, or in other words together with an automorphism. We can then consider the trace of u, which is
an element in π0(O(LX)) ≃ HH0(X). A difficult issue here is to argue that this function Tr(u) has
a natural refinement to an S1-invariant function Tr(u) ∈ π0(O(LX)hS1

) ≃ HC−
0 (X), which is the

Chern character of V . The S1-invariance of Tr(u) will be studied in a future work, and we refer to
our last section below, for some comments about how this would follow from the general theory of
rigid tensor ∞-categories.

4 Construction of the Chern character

We are now ready to sketch the construction of our Chern character for a derived categorical sheaf.
This construction simply follows the lines we have just sketched for vector bundles. We will meet the
same difficult issue of the existence of an S1-invariant refinement of the trace, and we will leave this
question as an conjecture. However, in the next section we will explain how this would follow from a
very general fact about rigid monoidal ∞-categories.
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Let T ∈ Dgparf (X) be a perfect derived categorical sheaf on some scheme X (or more generally
on some algberaic stack X). We consider the natural morphism p : LX −→ X and we consider p∗(T ),
which is a perfect derived categorical sheaf on LX. We have not defined the notions of categorical
sheaves on derived schemes or derived stacks but this is rather straightforward. As in the case of
vector bundles explained in the last section, the object p∗(T ) comes naturally equipped with an
autoequivalence u. This again follows from the fact that a derived categorical sheaf on S1×LX is the
same thing as a derived categorical sheaf on LX together with an autoequivalence. We consider the
trace of u in order to get a perfect complex on the derived loop space

Tr(u) ∈ EndDgparf (LX)(1) = Dparf (LX).

The main technical difficulty here is to show that Tr(u) possesses a natural lift as an S1-equivariant
complex on LX. We leave this as a conjecture.

Conjecture 4.1 The complex Tr(u) has a natural lift

TrS1

(u) ∈ DS1

parf (LX),

where DS1

parf (LX) is the S1-equivariant perfect derived category of LX.

The above conjecture is not very precise as the claim is not that a lift simply exists, but rather
than there exists a natural one. One of the difficulty in the conjecture above is that it seems difficult
to characterize the required lift by some specific properties. We will see however that the conjecture
can be reduced to a general conjecture about rigid monoidal ∞-categories.

Assuming conjecture 4.1, we have TrS1

(u) and we now consider its class in the Grothendieck group
of the triangulated category DS1

parf (LX). This is our definition of the categorical Chern character of
T .

Definition 4.2 The categorical Chern character of T is

Chcat(T ) := [TrS1

(u)] ∈ KS1

0 (LX) := K0(D
S1

parf (LX)).

The categorical Chern character Chcat(T ) can be itself refined into a cohomological Chern character

by using now the S1-equivariant Chern character map for S1-equvariant perfect complexes on LX.
We skip some technical details here but the final result is an element

Chcoh(T ) := ChS1

(Chcat(T )) ∈ π0(O(L(2)X)h(S1×S1)),

where L(2)X := RMap(S1×S1, X) is now the derived double loop space of X. The space π0(O(L(2)X)h(S1×S1))
can reasonably be called the secondary negative cyclic homology of X and should be thought (and
actually is) the S1-equivariant negative cyclic homology of LX. We therefore have

Chcoh(T ) ∈ HC−,S1

0 (LX).

Definition 4.3 The cohomological Chern character of T is

Chcoh(T ) := ChS1

(Chcat(T )) ∈ HC−,S1

0 (LX) := π0(O(L(2)X)hS1×S1

)

defined above.

Obviously, it is furthermore expected that the constructions T 7→ Chcat(T ) and T 7→ Chcoh(T )
satisfy standard properties such as additivity, multiplicativity and functoriality with respect to pull-
backs. The most general version of our Chern character map should be a morphism of commutative
ring spectra

Chcat : Kg(X) −→ KS1

(LX),

where Kg(X) is a ring spectrum constructed using a certain Waldhausen category of perfect derived
categorical sheaves on X and KS1

(LX) is the K-theory spectrum of S1-equivariant perfect complexes
on LX. This aspect of the Chern character will again be investigated in more details in a future work.
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5 Final comments

On S1-equivariant trace maps

Our conjecture 4.1 can be clarified using the language of higher categories. Recall that a (1,∞)-
category is an∞-category in which all n-morphisms are invertible (up to higher morphisms) as soon as
n > 1. There exist several well behaved models for the theory of (1,∞)-categories, such as simplicially
enriched categories, quasi-categories, Segal categories and Rezk’s spaces. We refer to [Ber1] for an
overview of these various notions. What we will say below can be done in any of these theories, but,
to fix ideas, we will work with S-categories (i.e. simplicially enriched categories).

We will be using Ho(S−Cat) the homotopy category of S-categories, which is the category obtained
from the category of S-categories and S-functors by inverting the (Dwyer-Kan) equivalences (a mixture
between weak equivalences of simplicial sets and categorical equivalences). An important property of
Ho(S−Cat) is that it is cartesian closed (see [To2] for the corresponding statement for dg-categories
whose proof is similar). In particular, for two S-categories T and T ′ we can construct an S-category
RHom(T, T ′) with the property that

[T ′′, RHom(T, T ′)] ≃ [T ′′ × T, T ′],

where [−,−] denote the Hom sets of Ho(S−Cat). Any S-category T gives rise to a genuine category
[T ] with the same objects and whose sets of morphisms are the connected components of the simplicial
sets of morphisms of T .

We let Γ be the category of pointed finite sets and pointed maps. The finite set {0, . . . , n} pointed
at 0 will be denoted by n+. Now, a symmetric monoidal S-category T is a functor

T : Γ −→ S− Cat

such that for any n ≥ 0 the so-called Segal morphism

T (n+) −→ T (1+)n,

induced by the various projections n+ → 1+ sending i ∈ {1, . . . , n} to 1 and everything else to 0, is an
equivalence of S-categories. The full sub-category of the homotopy category of functors Ho(S−CatΓ)
consisting of symmetric monoidal S-categories will be denoted by Ho(S − Cat⊗). As the category
Ho(S−Cat) is a model for the homotopy category of (1,∞)-categories, the category Ho(S−Cat⊗) is
a model for the homotopy category of symmetric monoidal (1,∞)-categories. For T ∈ Ho(S− Cat⊗)
we will again use T to denote its underlying S-category T (1+). The S-category T (1+) has a natural
structure of a commutative monoid in Ho(S− Cat). This monoid structure will be denoted by ⊗.

We say that a symmetric monoidal S-category T is rigid if for any object x ∈ T there is an objetc
x∨ ∈ T and a morphism 1→ x⊗ x∨ such that for any pair of objects y, z ∈ T , the induced morphism
of simplicial sets

T (y ⊗ x, z) −→ T (y ⊗ x⊗ x∨, z ⊗ x∨) −→ T (y, z ⊗ x∨)

is an equivalence. In particular, the identity of x∨ provides a trace morphism x ⊗ x∨ → 1 (y = x∨,
z = 1). Therefore, for any rigid symmetric monoidal S-category T and an object x ∈ T we can define
a trace morphism

Trx : T (x, x) ≃ T (1, x⊗ x∨) −→ T (1, 1).

Let T be a fixed rigid symmetric monoidal S-category and S1 = BZ be the groupoid with a unique
object with Z as automorphism group. The category S1 is an abelian group object in categories and
therefore can be considered as a group object in S-categories. The S-category of functors RHom(S1, T )
is denoted by T (S1), and is equiped with a natural action of S1. We consider the sub-S-category of
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invertible (up to homotopy) morphisms in T (S1) whose classifying space is an S1-equivariant simplicial
set. We denote this simplicial set by LT (“L” stands for “loops”). It is possible to put all the trace
morphisms Trx defined above into a morphism of simplicial sets (well defined in Ho(SSet))

Tr : LT −→ T (1, 1).

Note that the connected components of LT are in one to one correspondence with the set of equiv-
alences classes of pairs (x, u), consisting of an object x in T and an autoequivalence u of x. The
morphism Tr is such that Tr(x, u) = Trx(u) ∈ π0(T (1, 1)). We are in fact convinced that the trace
map Tr can be made equivariant for the action of S1 on LT , functorially in T . To make a precise
conjecture, we consider S−Catrig the category of all rigid symmetric monoidal S-categories (note that
S − Catrig is not a homotopy category, it is simply a full sub-category of S − CatΓ). We have two
functors

S− Catrig −→ S1 − SSet,

to the category of S1-equivariant simplicial sets. The first one sends T to LT together with its natural
action of S1. The second one sends T to T (1, 1) with the trivial S1-action. These two functors are
considered as objects in Ho(Fun(S−Catrig, S1 − SSet)), the homotopy category of functors. Let us
denote these two objects by L : T 7→ LT and E : T 7→ T (1, 1).

Conjecture 5.1 There exists a morphism in Ho(Fun(S− Catrig, S1 − SSet))

Tr : L −→ E,

in such a way that for any rigid symmetric monoidal S-category T the induced morphism of simplicial

sets

Tr : LT −→ T (1, 1)

is the trace map described above.

It can be shown that conjecture 5.1 implies conjecture 4.1. In fact the tensor 2-categories Dgparf (X)
are the 2-truncation of natural rigid symmetric monoidal (2,∞)-categories, which can also be con-
sidered as (1,∞)-categories by only considering invertible higher morphisms. An application of the
above conjecture to these rigid symmetric monoidal (1,∞)-categories give a solution to conjecture
4.1, but this will be explained in more detailed in a future work. To finish this part on rigid (1,∞)-
categories let us mention that a recent work of J. Lurie and M. Hopkins on universal properties of
(1,∞)-categories of 1-bordisms seem to solve conjecture 5.1 ([Lu3]). We think to have another so-
lution to the part of conjecture 5.1 concerned with the rigid symmetric monoidal (1,∞)-categories
of saturated dg-categories, which is surely enough to also imply conjecture 4.1. This again will be
explained in a future work.

Relations with variations of Hodge structures

The derived loop space LX and the S1-equivariant derived category DS1

parf (LX) have already been

studied in [Be-Na]. In this work the category DS1

parf (LX) is identified with a certain derived category
of modules over the Rees algebra of differential operators on X (when, say, X is smooth over k of
characteristic zero). We do not claim to fully understand this identification but it seems clear that
objects in DS1

parf (LX) could be identified with some kind of fltered complexes of D-modules on X.

Using this identification our categorical Chern character Chcat(T ) probably encodes the data of the
negative cyclic complex HC−(T ) of T over X together with its Gauss-Manin connection and Hodge

filtration. In other words, Chcat(T ) seems to be nothing more than the variation of Hodge structures
induced by the family of dg-categories T over X. As far as we know the construction of such a structure
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of variations of Hodge structures on the family of complexes of cyclic homology associated to a family
of sturated dg-categories is, up to conjecture 4.1, a new result (see however [Ge] for the construction
of a Gauss-Manin connection on cyclic homology). We also think it is a remarkably nice fact that
variations of Hodge structures appear naturally out of the construction of our Chern character for
categorical sheaves.

It is certainly possible to describe the cohomological Chern character of 4.3 using this point of view

of Hodge structure. Indeed, HC−,S1

0 (LX) is close to be the S1-equivariant de Rham cohomology of LX,

and using a localization formula it is probably possible to relate HC−,S1

0 (LX) with HP0(X)[[t]][t−1],
where HP0(X) is periodic cyclic homology of X and t is a formal paramater. We expect at least a
morphism

HC−,S1

0 (LX) −→ HP0(X)[[t]][t−1].

The image of Chcoh(T ) by this map should then be closely related to the Hodge polynomial of T ,
that is

∑
p Ch(GrpHC−(T ))tp, where GrpHC−(T ) is the p-th graded piece of the Hodge filtration of

Hochschild homology and Ch is the usual Chern character for sheaves on X.

Back to elliptic cohomology ?

In the introduction of this work we mentioned that our motivation to start thinking about cate-
gorical sheaf theory was elliptic cohomology. However, our choice to work in the context of algebraic
geometry drove us rather far from elliptic cohomology and it is at the moment unclear whether our
work on the Chern character can really bring any new insight on elliptic cohomology. About this
we would like to make the following remark. Since what we have been considering are categorified
version of algebraic vector bundles, it seems rather clear that what we have done so far might have
some relations with what could be called algebraic elliptic cohomology (by analogy with the distinction
between algebraic and topological K-theory). However, the work of M. Walker shows that algebraic
K-theory determines completely topological K-theory (see [Wa]), and that it is possible to recover
topological K-theory from algebraic K-theory by an explicit construction. Such a striking fact sug-
gest the possibility that an enough well understood algebraic version of elliptic cohomology could also
provide some new insights on usual elliptic cohomology. We leave this vague idea for future works.
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