
Improving multifrontal methods by means of block

low-rank representations

Patrick R. Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari,

Jean-Yves L’Excellent, Clement Weisbecker

To cite this version:

Patrick R. Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent,
et al.. Improving multifrontal methods by means of block low-rank representations. [Research
Report] RR-8199, INRIA. 2013. <hal-00776859>

HAL Id: hal-00776859

https://hal.inria.fr/hal-00776859

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50538378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00776859

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
81

99
--

FR
+E

N
G

RESEARCH
REPORT
N° 8199
January 2013

Project-Team ROMA

Improving multifrontal
methods by means of
block low-rank
representations
Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari,
Jean-Yves L’Excellent, Clément Weisbecker

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Improving multifrontal methods by means of
block low-rank representations∗

Patrick Amestoy†, Cleve Ashcraft‡, Olivier Boiteau§, Alfredo
Buttari¶, Jean-Yves L’Excellent‖, Clément Weisbecker†

Project-Team ROMA

Research Report n° 8199 — January 2013 — 25 pages

Abstract: Matrices coming from elliptic Partial Differential Equations (PDEs) have been
shown to have a low-rank property: well defined off-diagonal blocks of their Schur complements
can be approximated by low-rank products. Given a suitable ordering of the matrix which gives
to the blocks a geometrical meaning, such approximations can be computed using an SVD or a
rank-revealing QR factorization. The resulting representation offers a substantial reduction of the
memory requirement and gives efficient ways to perform many of the basic dense algebra operations.
Several strategies have been proposed to exploit this property. We propose a low-rank format called
Block Low-Rank (BLR), and explain how it can be used to reduce the memory footprint and the
complexity of direct solvers for sparse matrices based on the multifrontal method. We present
experimental results that show how the BLR format delivers gains that are comparable to those
obtained with hierarchical formats such as Hierarchical matrices (H matrices) and Hierarchically
Semi-Separable (HSS matrices) but provides much greater flexibility and ease of use which are
essential in the context of a general purpose, algebraic solver.

Key-words: sparse direct methods, multifrontal method, low-rank approximations, elliptic PDEs

∗ Also available as IRIT report RT/APO/12/6.
† INPT(ENSEEIHT)-IRIT, Toulouse, France ({patrick.amestoy,clement.weisbecker}@enseeiht.fr).
‡ Livermore Software Technology Corporation, Livermore, CA, United States (cleve@lstc.com).
§ EDF Recherche et Développement, Clamart, France (olivier.boiteau@edf.fr).
¶ CNRS-IRIT, Toulouse, France (alfredo.buttari@enseeiht.fr).
‖ INRIA-LIP, Lyon, France (jean-yves.l.excellent@ens-lyon.fr).

Utilisation de représentations de rang faible par blocs
dans les méthodes multifrontales

Résumé : Il a été démontré que les matrices provenant d’équations aux dérivées par-
tielles elliptiques ont une propriété de rang faible: certains blocs hors diagonaux de leurs
compléments de Schur peuvent être approchés par des produits de rang faible. Etant donnée
une permutation de la matrice qui donne un sens géométrique aux blocs, de telles approxima-
tions peuvent être calculées avec une décomposition en valeurs singulières ou une factorisation
QR. La représentation correspondante offre une réduction significative en termes de besoins
mémoire tout en fournissant des moyens plus efficaces d’effectuer les opérations d’algèbre
linéaire dense. Plusieurs stratégies ont été proposées dans la littérature pour exploiter cette
propriété. Nous proposons un format Block Low Rank (BLR) et montrons comment il peut
être utilisé pour réduire les besoins mémoire et la complexité des solveurs directs pour matri-
ces creuses basées sur la méthode multifrontale. Des résultats expérimentaux montrent que le
format BLR donne des gains comparables à ceux obtenus avec des formats hiérarchiques, tout
en fournissant une plus grande flexibilité et facilité d’utilisation, qui sont essentielles dans un
solveur algébrique général.

Mots-clés : matrices creuses, méthodes directes, méthode multifrontale, approximation de
rang faible, EDP elliptique

Improving multifrontal methods by means of block low-rank representations 3

AMS subject classifications. 05C50, 65F05, 65F50

1. Introduction. We are interested in efficiently computing the solution of large sparse
linear systems which arise from various applications such as mechanics and fluid dynamics.
Modern applications commonly require the solution of linear systems stemming from the
discretization of partial differential equations with several millions of unknowns. A sparse
linear system is usually referred to as:

Ax = b , (1.1)

where A is a sparse matrix of order n, x is the unknown vector of size n and b is the right-hand
side vector of size n.

Two types of methods [17] are commonly used to solve (1.1). Iterative methods are cheap
in memory consumption and provide better scalability in parallel environments but their
effectiveness strongly depends on the numerical properties of the problem. Direct methods
are more robust and reliable but costly (in terms of flops and memory). As the problems
become larger and larger, time and memory complexity become critical in order to be able
to tackle challenging applicative problems.

This work focuses on a well known direct approach called the multifrontal method [1].
The objective is to compute a Cholesky LLT factorization of A:

A = LLT , (1.2)

where L is a lower triangular matrix. Without loss of generality, here and in the rest of
the paper we only discuss symmetric, positive definite systems for the sake of simplicity. In
practice and in the experimental section, the presented methods and algorithms have been
applied to the cases of symmetric, indefinite (LDLT factorization) and unsymmetric (LU
factorization) matrices.

We aim to improve the multifrontal method by means of low-rank approximation tech-
niques, which give the opportunity to reduce the memory requirements and the complexity
of dense factorizations.

After an introduction to the multifrontal method in the context of nested dissection, we
show how it is possible to exploit low-rank properties of matrices to decrease their storage
requirements as well as the complexity of some of the basic algebraic operations they are
involved in. Then, we present the relevant details of some low-rank formats proposed in the
literature and propose a new one called Block Low-Rank (BLR). Through a brief experimen-
tal comparison, we show that all these formats have comparable efficiency on a set of test
problems. We then show how the BLR format can be integrated within a general purpose
linear multifrontal solver. Lastly, we present and discuss experimental results in order to
show the efficiency of our implementation of a low-rank sequential multifrontal solver. The
study is carried out on a set of large-scale artificial and real life applicative problems.

2. The multifrontal method. The multifrontal method was first introduced by Duff
and Reid [13, 14] in 1983 and, since then, has been the object of numerous studies and
the method of choice for several, high-performance, software packages such as MUMPS [4],
UMFPACK [11], WSMP [21], HSL [18], PSPASES [20] and DSCPACK [27].

This section provides a brief presentation of the multifrontal algorithm based on the
nested dissection method which better suits the context of our work and allows for an easier
understanding of how low-rank approximation techniques can be used within sparse, multi-
frontal solvers; more general and formal presentations are available in the literature [1, 12].
We assume that the reader is familiar with the basics of graph theory.

It is well known that, despite their good reliability and numerical robustness, sparse direct
solvers pose heavy requirements in terms of computational and memory resources. This is
mostly due to the fact that the factors of a sparse matrix are, in general, much denser and
this, in turn, is due to the appearance of fill-in, i.e., new nonzero coefficients introduced by
the factorization process. Many methods and algorithms have been proposed in order to
reduce the amount of fill-in and, among them, one of the most commonly used is the nested
dissection method [15].

Given a sparse, symmetric matrix A of size n, its structure can be represented with an
adjacency graph, i.e., a graph G(V,E) containing n vertices (one for each unknown in A) and

RR n° 8199

4 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

edges (i, j) for all aij 6= 0. The fill-in can then be easily modeled using this graph. Specifically,
eliminating a variable of A amounts to removing the associated vertex from G along with all
incident edges and adding new edges that connect the neighbors of the eliminated vertex
that were not already connected to each other; these newly introduced edges represent fill-in
coefficients. Now assume that a vertex separator S of G is computed, i.e., a subset of vertices
which, if removed, splits the graph into two subgraphs D1 and D2 and assume that A is
permuted in such a way that all the variables in D1 are eliminated first, all those in D2 are
eliminated second and all those in S are eliminated last. Because all the neighbors of vertices
in D1 are either in D1 or in S, no fill-in will be generated inside the submatrix that connects
the variables in D1 to those in D2. This is illustrated in Figure 2.1 for the simple case of a
matrix from a 5-point stencil operator.

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

?
?
?
?
?

D1 D2S

(a) One level of nested
dissection based on a 5×5
square grid mesh.

A1,1

A2,2

AS,SAS,1 AS,2

0

(b) A is reordered with re-
spect to the nested dissec-
tion.

Figure 2.1. One level of nested dissection.

Because fill-in occurring inside the diagonal blocks A1,1 and A2,2 may still be excessive,
this procedure can be recursively and independently applied to the two subgraphs corre-
sponding to D1 and D2 until the fill-in inside diagonal blocks can be considered negligible or
not worth being reduced. This procedure essentially describes the nested dissection method
although modern nested dissection ordering tools [24, 26] employ much more sophisticated
algorithms.

Applying the nested dissection algorithm to a graph generates a separators tree which
implicitly defines a fill-in reducing permutation of the input matrix. This is shown in Fig-
ure 2.2, where, for the leaves of the tree, we assumed Si = Di which is equivalent to saying
that Si is a separator that splits Di into two empty subdomains.

The separators tree can also be regarded as an elimination or assembly tree – a data
structure introduced by Schreiber [28] which is at the base of all modern sparse factorization
algorithms. This tree defines the dependencies between the variables of a matrix and thus,
implicitly, the order in which they have to be eliminated. Specifically, the elimination tree
states that the elimination of the variables associated with a node (or with the corresponding
separator, in our case) only affects variables associated with ancestor nodes, that is, nodes
along the path that connects the eliminated node to the root of the tree. Therefore, all the
pivotal orders defined by topological traversals of the tree are equivalent in the sense that
they produce the same amount of fill-in.

The multifrontal method [1, 13, 14] achieves the factorization of a sparse matrix through
a sequence of operations on relatively small dense matrices called frontal matrices or, simply,
fronts. One of these matrices is associated with each node of the tree and is formed by
coefficients related to the variables associated with that node as well as their neighbors. Note
that the neighbors include those variables that have become such due to fill-in introduced by
the elimination of previous variables.

The multifrontal factorization consists in a topological order (i.e., bottom-up) traversal
of the tree where, each time a node is visited, two operations are performed:

• assembly: the frontal matrix is formed by summing the coefficients in the rows and
columns of the variables associated with the tree node with coefficients produced by
the factorization of its children.

• factorization: once the frontal matrix is formed, a partial Cholesky factorization is
performed on it in order to eliminate the variables associated with the tree node. The
result of this operation is a set of rows of the global L factor and a Schur complement,

Inria

Improving multifrontal methods by means of block low-rank representations 5

Figure 2.2. A general nested dissection and its corresponding separator tree.

also commonly referred to as contribution block (CB), containing coefficients that will
be assembled into the parent node.

FS NFS

FS

NFS

(a) Before elimination: the front
is assembled. FS variables are
ready to be eliminated. NFS vari-
ables will be updated.

L11

LT
11

L21

LT21

CB

(b) After elimination: FS vari-
ables are eliminated, CB is the
Schur complement that will as-
sembled into the parent front.

Figure 2.3. Structure of a front F .

As shown in Figure 2.3, the set of variables in a frontal matrix can be split into two
subsets:

• fully-summed (FS) variables: these are the variables associated with the tree node
or, equivalently, with the corresponding separator. They are called fully-summed
because the rows and columns in the front are up to date with respect to previously
eliminated variables, that is, those that have been eliminated at descendant nodes.

• non fully-summed (NFS) variables: this subset contains the neighbors of the
fully-summed variables and is formed by pieces of separators belonging to ancestor
nodes which form a border around the fully-summed variables. For the frontal matrix
at node S7 of the tree in Figure 2.2, this border is formed by half of the S1 separator
and the entire S3 separator; variables in this border have become neighbors of those
in S7 due to fill-in coefficients introduced by the eliminations of variables in S14 and
S15.

Once a frontal matrix is factorized, the resulting factors are stored apart while the con-
tribution block is held in a temporary memory area which is then freed when the parent front
is processed. For this reason the global amount of memory needed to run the multifrontal
factorization is, in general, bigger than the size of the resulting factors. The temporary mem-
ory area is managed as a stack which is very convenient if the tree is traversed in postorder.
In the rest of this paper we will refer to this area simply as CB stack.

This paper describes a technique based on the usage of low-rank approximations to rep-
resent frontal matrices and to perform all the operations they are involved in. This allows
to reduce both the memory consumption as well as the total volume of computations of the
multifrontal method.

3. Low-rank approximations. In this section, we present how low-rank properties of
matrices can be revealed and exploited. Several matrix representations are described and
discussed.

3.1. Low-rank property. A low-rank matrix can be represented in a form which de-
creases its memory requirements and the complexity of basic linear algebra operations it is
involved in, such as matrix-matrix products and triangular solves. This is formalized by
Definition 3.1.

RR n° 8199

6 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

Definition 3.1 ([7] Low-rank matrix). Let A be a matrix of size m × n. Let kε be the
approximated numerical rank of A at accuracy ε. A is said to be a low-rank matrix if there
exist three matrices U of size m× kε, V of size n× kε and E of size m× n such that :

A = U · V T + E ,

where ‖E‖2 ≤ ε and kε(m+ n) < mn.
The numerical rank at precision ε, kε, can be computed together with U and V with a

Singular Value Decomposition (SVD), in which case U and V are unitary, or, less precisely
but much faster, with a Rank-Revealing QR (RRQR) factorization, in which case only U is
unitary. Low-rank approximation techniques are based upon the idea to ignore E and simply
represent A as the product of U and V T . Thus, A = U · V T is said to be the low-rank form
of A and it is an approximation whose precision can be controlled through the parameter ε
called low-rank threshold. In the rest of this paper, the subscript ε in kε will be omitted for
the sake of clarity. Definition 3.1 simply states that k has to be small enough to guarantee
that the low-rank form of A takes less memory that the standard form. Analogous criteria can
be defined in the case where the objective is to reduce the complexity of operations involving
A. Table 3.1 shows the requirements on the rank k in order to reduce the operation count of
the matrix-matrix product and of the triangular system solve, when the resulting matrix is
stored in dense form.

Table 3.1
Cost of dense and low-rank basic linear algebra operations. A, L, A1 = U1V T

1 and A2 = U2V T
2 are

n × n, L is lower triangular, U1, V1, U2 and V2 are n × k. The bracketing is critical to exploit the smaller
dimension of each matrix.

operation type dense low-rank rank requirement

Cholesky factorization LLT n3/3 — —
RRQR compression U1V

T
1 6kn2 − 6k2n+ 10

3 k
3 — —

triangular solve U1(V T1 L
−T) n3 3kn2 k < n/3

matrix-matrix product U1(V T1 U2)V T2 2n3 2kn2 + 4k2n k < n/2

In practice, matrices coming from application problems are not low-rank, which means
that they cannot be directly written in low-rank form. However, Börm [8] and Bebendorf [7]
show that low-rank approximations can be performed on submatrices defined by an appro-
priately chosen partitioning of matrix indices. Assuming I = {1, . . . , n} is the set of row (and
column) indices of A, a set of indices σ ⊂ I is called a cluster. Then, a clustering of I is a
disjoint union of clusters which equals I. b = σ × τ ⊂ I × I is called a block cluster based
on clusters σ and τ . A block clustering of I × I is then defined as a disjoint union of block
clusters which equals I × I. Let b = σ × τ be a block cluster, Ab = Aστ is the subblock of A
with row indices σ and column indices τ .

A considerable reduction of both the memory footprint and of the operations complexity
can be achieved if the block clustering defines blocks whose singular values have a rapid decay
(for instance, exponential) in which case each block can be accurately represented by a low-
rank product U · V T . Clearly, this condition cannot be directly used in practice to define
the matrix block clustering. In many practical cases it is, however, possible to exploit the
knowledge of the mathematical problem or the geometrical properties of the domain where the
problem is defined in order to define an admissibility condition, i.e., a heuristic rule that can
be cheaply checked to establish whether or not a block is (likely to be) low-rank or that can be
used to guide the block clustering computation. For instance, in the case of matrices deriving
from discretized elliptic PDEs one such admissibility condition is presented in Definition 3.2.

Definition 3.2 ([7, 8] Admissibility condition for elliptic PDEs). Let b = σ × τ be a
block cluster. b is admissible if

diam(σ) + diam(τ) ≤ 2η dist(σ, τ) ,

where diam() and dist() are classical geometric diameter and distance, respectively, and η is
a problem dependent parameter.

This admissibility condition follows the intuition that variable sets that are far away
in the domain are likely to have weak interactions which translates into the fact that the

Inria

Improving multifrontal methods by means of block low-rank representations 7

corresponding block has a low rank; this idea is depicted in Figure 3.1(a). Figure 3.1(b)
shows that the rank of a block Aστ is a decreasing function of the geometric distance between
clusters σ and τ . This experiment has been done on a top-level separator of a 3D 1283 wave
propagation problem called Geoazur128 (and further described in Table 6.1), with square
clusters of dimension 16 × 16, so that each subblock has size 256. It shows that depending
on the distance between clusters, there is potential for compression which can be exploited.
The dashed line at y = 128 shows the cutoff point where it pays to store the subblock using
a low-rank representation.

hig
h r

an
k

low rank

complete domain

(a) Strong and weak interactions in the geometric do-
main.

ra
nk

 o
f

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

128

distance between and

(b) Correlation between graph distance and full ac-
curacy block rank.

Figure 3.1. Two illustrations of the admissibility condition for elliptic PDEs.

An admissibility condition being given, it is possible to define an admissible block cluster-
ing, i.e., a block clustering with admissible blocks, which can be used to efficiently represent a
dense matrix by means of low-rank approximations with an accuracy defined by the low-rank
threshold ε in Definition 3.1.

It has to be noted that, in practice, admissibility conditions may be even simpler than
the one presented above and may also take into account aspects that, for example, pertain to
the efficiency of basic linear algebra kernels on the U and V matrices of the low-rank form;
further details about admissibility conditions are given in Section 4.

3.2. Matrix representations. In order to exploit low-rank blocks arising from admis-
sible block clusterings, several matrix representations have been proposed in the literature. In
this section, we very briefly describe Hierarchical matrices [7] (H-matrices) and Hierarchically
Semi-Separable matrices [35] (HSS matrices) because they have been used in the context of
a multifrontal solver. The Hierarchically Block-Separable (HBS) format introduced by Gill-
man et al. [16] is highly relevant too but will not be discussed in details as it is essentially
equivalent to HSS. All these structures can be used to approximate fronts and thus globally
reduce the memory consumption as well as the flop count of the multifrontal process.

3.2.1. Hierarchical matrices (H-matrices). The H-matrix [7, 8] format, where H
stands for Hierarchical, is historically the first low-rank format for dense matrices. This
format is based on an admissible block clustering which is obtained by a recursive subdivision
of I × I. Algorithm 1 shows how the H-matrix format of a matrix A is built.

The result of this recursive procedure is a block cluster tree built in a top-down fashion.
Note that a set of siblings of the tree defines a block clustering of the block cluster associated
with their parent node and that the final admissible clustering is defined by the leaves of the
tree.

Figure 3.2 shows an example of a H-matrix with the corresponding block cluster tree.
In this case the block clustering has been defined by splitting the set of matrix indices as
I = I7 = I3 ∪ I6 = {I1 ∪ I2} ∪ {I4 ∪ I5}.

In a more general case, the structure of a H-matrix is not necessarily as regular as in
the provided example which means that the diagonal blocks may not have the same size. For
more details about H-matrices, please refer to Bebendorf [7], Börm [8] or Hackbusch [22].

RR n° 8199

8 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

Algorithm 1 H-matrix construction

Input A, a matrix defined on row and column indices I.
Output Â, the H-matrix form of A.

1: initialize list with [I × I]
2: while list is not empty do
3: remove b from list

4: if b is admissible then
5: Âb ← low-rank form of Ab
6: else if b is large enough to split then

7:

(
b1 b2
b3 b4

)
= b

8: add b1, b2, b3 and b4 to list

9: else
10: Âb ← Ab
11: end if
12: end while

Ã =


D11 U12V

T
12 U36V

T
36U21V

T
21 D22

U63V
T

63
D44 U45V

T
45

U54V
T
54 D55


I7 × I7

I3 × I3 I3 × I6 I6 × I3 I6 × I6

I1 × I1 I1 × I2 I2 × I1 I2 × I2 I4 × I4 I4 × I5 I5 × I4 I5 × I5

Figure 3.2. H-matrix structure and associated block cluster tree

3.2.2. Hierarchically Semi-Separable matrices (HSS matrices). HSS matrices
are also based on a hierarchical blocking defined by a cluster tree which is built by recursively
splitting the set of matrix indices.

Definition 3.3 ([33] HSS matrix). Assume A is an n × n dense matrix, and I =
{1, 2, . . . , n}. I is recursively split into smaller pieces following a binary tree T with k nodes,
denoted by j = 1, 2, . . . , k ≡ root(T). Let tj ⊂ I be a cluster associated with each node j of
T . (T is used to manage the recursive partition of A.) We say A is an HSS form with the
corresponding postordered HSS tree T if :

1. T is a full binary tree in its postordering, or, each node j is either a leaf or a non-leaf
node with two children j1 and j2 which satisfy j1 < j2 < j ;

2. The index sets satisfy tj1 ∪ tj2 = tj and tj1 ∩ tj2 = ∅ for each non-leaf node j, with
tk ≡ I ;

3. For each node j, there exist matrices Di, Ui, Vi, Ri,Wi, Bi (called HSS generators),
which satisfy the following recursions for each non-leaf node j:

Dj ≡ A|tj×tj =

(
Dj1 Uj1Bj1V

T
j2

Uj2Bj2V
T
j1

Dj2

)
, Uj =

(
Uj1Rj1
Uj2Rj2

)
, Vj =

(
Vj1Wj1

Vj2Wj2

)
,

where Uk, Vk, Rk,Wk and Bk are not needed (since Dk ≡ A is the entire diagonal
block without a corresponding off-diagonal block). Due to the recursion, only the
Dj , Uj , Vj generators associated with a leaf node j of T are stored.

An example of a HSS matrix is given in Figure 3.3.
The construction of an HSS matrix is achieved through a topological order traversal

of the T tree, also referred to as HSS tree. Each time a node j is visited, the block-row
and block-column corresponding to the related cluster (i.e., Atj ,: = Atj ,(I\tj) and A:,tj =
A(I\tj),tj , respectively) are compressed into a low-rank form. Note that, apart from the leaves,
the compressed block-row or block-column is formed by combining the result of previous

Inria

Improving multifrontal methods by means of block low-rank representations 9

Ã =


D1 U1B1V

T
2 U1R1B3W

T
4 V

T
4 U1R1B3W

T
5 V

T
5

U2B2V
T
1 D2 U2R2B3W

T
4 V

T
4 U2R2B3W

T
5 V

T
5

U4R4B6W
T
1 V

T
1 U4R4B6W

T
2 V

T
2 D4 U4B4V

T
5

U5R5B6W
T
1 V

T
1 U5R5B6W

T
2 V

T
2 U5B5V

T
4 D5



D1

D2

D4

D5

D3

D6

Figure 3.3. Structure of a HSS matrix and its basic construction scheme

compressions. The bottom of Figure 3.3 shows this process when T has four leaves (seven
nodes, total).

Although it should be possible to have a different blocking for the upper and lower
triangular parts of the matrix as for the H-matrices, we have not found any example of this
case in the literature.

For a more detailed presentation and study of HSS matrices, please refer to Xia et al. [33,
35, 34] and Wang et al. [30, 32].

3.2.3. Block Low-Rank matrices (BLR matrices). We propose a new structure
based on a non-hierarchical blocking of the matrix.

Definition 3.4 (Block Low-Rank matrix (BLR)). Given an admissibility condition, let
P be an admissible block clustering with p2 clusters. Let A be an n× n matrix.

Ã =


B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

. . .
...

Bp1 Bp2 · · · Bpp


is called a “Block Low-Rank matrix” if ∃(σ, τ) ∈ {1, 2, . . . , p}2, there exists kστ such that
Bστ is a low-rank block with rank kστ .

The structure of a BLR matrix is not hierarchical: a flat block matrix structure is used,
as illustrated in Figure 3.4. Based on the same block clusters as in example Figures (3.2) and
(3.3), we show in Equation (3.1) an example of a 4× 4 BLR matrix. Remember that U and
V are not necessarily unitary.

Ã =


D1 U12V

T
12 U13V

T
13 U14V

T
14

U21V
T
21 D2 U23V

T
23 U24V

T
24

U31V
T
31 U32V

T
32 D3 U34V

T
34

U41V
T
41 U42V

T
42 U43V

T
43 D4

 . (3.1)

Figure 3.4 shows the global structure of the BLR representation of a dense Schur comple-
ment of order 128×128 corresponding to the top level separator of a 128×128×128 Laplacian

problem, with a low-rank threshold set to 10−14. The numbering scheme illustrated in 3.4(a)
is recursive although this is only required for H and HSS matrices.

BLR matrices can be viewed as a particular case of H-matrices where all the subblocks
have been subdivided identically, i.e., where all the branches of the block cluster tree have
the same depth.

RR n° 8199

10 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

17 18 21 22

19 20 23 24

25 26 29 30

27 28 31 32

(a) Numbering scheme of the
graph associated with the
Schur complement. The
numbers give the ordering of
the 32 blocks of 32 × 16 =
512 variables within the BLR
structure. Any other num-
bering of the clusters would
give equivalent results.

(b) Structure of a BLR matrix. The darkness of a block
is proportional to its storage requirement (the lighter a
block is, the smaller is the memory needed to store it).
Each block in the matrix is of size 512× 512.

Figure 3.4. Illustration of a BLR matrix of a dense Schur complement of a 128× 128× 128 Laplacian

problem with a low-rank threshold ε set up to 10−14. The corresponding clustering of its 128×128 plan graph
into 4× 8 = 32 blocks is also given.

3.2.4. Comparative study. A preliminary comparative study of the three formats de-
scribed above (both in terms of memory and computational costs) is presented in this section
in order to validate the potential of our BLR format in the context of the development of
algebraic methods for exploiting low-rank approximations within a general purpose, multi-
frontal solver. The H, HSS and BLR formats are used for compressing the Schur complement
associated with a separator of a cubic mesh (or graph) of size 128; the separator is a 128×128
surface lying in the middle of the cubic domain and the corresponding Schur complement is
a dense matrix of order 16384. This is assessed for two different problems: the Geoazur

problem (see Section 6.1) and a Laplacian operator discretized with a 11-point stencil. For
all three formats, the clustering was defined by a 8× 8 recursive checkerboard partitioning of
the separator into blocks of size 256, using the same approach as in the 4× 8 case from Fig-
ure 3.4(a); this clustering is essentially what is referred to as the weak admissibility condition
in Börm [8, Remark 3.17]. Other block sizes have been experimented and give comparable
results for both problems. These results are in compliance with what was observed in Wang
et al. [31].

In terms of memory compression, Figures 3.5(a) and 3.6(a) show that the three formats
appear to be roughly equivalent at low precision: the truncation is so agressive that almost no
information is stored anymore. In the case of the Geoazur problem, the three formats provide
comparable gains with BLR being slightly worse than the other two at high accuracy and
better when the approximation threshold is bigger than 10−10. For the Laplacian problem,
BLR is consistently better than the hierarchical formats although all three provide, in general,
considerable gains. These preliminary results suggest that the BLR format delivers gains that
are comparable to those obtained with the hierarchical ones on the test problems.

Figures 3.5(b) and 3.6(b) show the cost of computing the H, HSS and BLR formats
starting from a standard dense matrix. This is computed as the cost of the partial RRQR
factorizations; because forH and HSS matrices these operations are performed on much larger
blocks, the conversion to BLR format is much cheaper with respect to the cases of hierarchical
formats and also with respect to the cost of an LU factorization of the same front. The cost
of a full rank factorization is indeed 10 (Geoazur128 problem) or 100 (Laplacian problem)

Inria

Improving multifrontal methods by means of block low-rank representations 11

times larger than the BLR compression cost at full accuracy (ε = 10−14). Moreover, because
a truncated rank-revealing QR factorization is used to compress the blocks, the compression
cost decreases when the accuracy decreases. This property is extremely useful as it allows to
switch from full-rank to low-rank and vice versa at an acceptable cost compared to the dense
LU factorization cost.

A deep and detailed comparison of low-rank formats, both theoretical and experimental,
is out of the scope of this paper; nonetheless, it is the subject of ongoing research work and
collaborations.

10−14 10−12 10−10 10−8 10−6 10−4 10−2

low-rank threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fra
ct

io
n

of
 d

en
se

 s
to

ra
ge

BLR
HSS
H

(a) Memory compression

10−14 10−12 10−10 10−8 10−6 10−4 10−2

low-rank threshold

9

9.5

10

10.5

11

11.5

12

12.5

13

lo
g 1

0(
nu

m
be

r
of

 o
pe

ra
tio

ns
 fo

r
co

m
pr

es
sio

n)

BLR
HSS
H

(b) Compression cost (with rank-revealing QR)

Figure 3.5. Comparison between H, HSS and BLR formats on a 1283 Geozur problem. The matrix con-
sidered is the factorized Schur complement associated with the top level separator of a perfect hand generated
nested dissection tree. The clustering is hand-computed and geometrical.

BLR
HSS
H

low-rank threshold
10−14 10−12 10−10 10−8 10−6 10−4 10−20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fra
ct

io
n

of
 d

en
se

 s
to

ra
ge

(a) Memory compression

lo
g 1

0(
nu

m
be

r
of

 o
pe

ra
tio

ns
 fo

r
co

m
pr

es
sio

n)

9

9.5

10

10.5

11

11.5

12

12.5

BLR
HSS
H

low-rank threshold
10−14 10−12 10−10 10−8 10−6 10−4 10−2

(b) Compression cost (with rank-revealing QR)

Figure 3.6. Comparison between H, HSS and BLR formats on a 1283 Laplacian problem. The matrix
considered is the factorized Schur complement associated with the top level separator of a perfect hand-
computed nested dissection tree. The clustering is hand-computed and geometrical.

RR n° 8199

12 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

3.3. Motivation to use BLR format in a multifrontal solver. H and HSS matri-
ces have been successfully used to accelerate multifrontal solvers and to reduce their memory
consumption [33]. These approaches, however, either rely on the knowledge of mathemat-
ical properties of the problem or on the geometric properties of the domain on which it is
defined (i.e., the discretization mesh) or lack some of the features that are essential for a
general purpose, sparse, direct solver like, for instance, robust threshold pivoting or dynamic
load balancing in a parallel environment. Our objective is, instead, to exploit low-rank ap-
proximations within a general purpose, multifrontal solver which aims at providing robust
numerical features in a parallel framework and where no knowledge of the problem can be
assumed except the matrix itself. In such a context, hierarchical structures are likely to be
too hard to handle and may severely limit the necessary flexibility:

• In a parallel multifrontal solver, frontal matrices may be statically or dynamically
partitioned, in an irregular way in order to achieve a good load and memory balance;
hierarchical formats may pose heavy constraints or may be complex to handle in this
case.

• The HSS format achieves good compression rates only if each node of the HSS tree de-
fines an admissible cluster. This means that the diagonal blocks cannot be permuted
in an arbitrary way but have to appear along the diagonal in a specific order which
depends on the geometry of the separator. This information may not be available or
too complex to extrapolate in a general purpose, algebraic solver.

• In HSS matrices the compressions are achieved through SVD or RRQR decomposi-
tions on block-rows and block-columns, i.e., strongly over or under-determined sub-
matrices. This has a twofold disadvantage. First it is based on the assumption
that all the columns in a block-row (or, equivalently, rows in a block-column) lie
in a small space which has been proven only for some classes of problems and may
not be true in general [9]. Second, due to the shape of the data, these operations
are often inefficient and difficult to parallelize; this has led researchers to consider
the use of communication-avoiding RRQR factorizations or the use of randomization
techniques.

• It is not natural, and does not seem to have been done in practical implementations,
to use the H or HSS formats on the L21 part of a frontal matrix (see Figure 2.3(b)).
The approach presented by Xia [33], for instance, handles this submatrix as a whole
low-rank block which may result in sub-optimal compression and which again requires
inefficient operations to compute the low-rank form.

• The assembly of a frontal matrix is very difficult to achieve if the contribution blocks
are stored in a hierarchical, low-rank format. For this reason, intermediate full-rank
representations are used in practice [33, 30, 34]. This, however, comes at a very
significant cost (see Figures 3.5(b) and 3.6(b)).

The analysis presented in Section 3.2.4, although restricted to a limited number of prob-
lems, suggests that a simpler format such as BLR delivers benefits comparable to the H and
HSS ones; BLR, though, represents a more suitable candidate for exploiting low-rank tech-
niques within a general-purpose, multifrontal solver as it presents several advantages over
hierarchical formats:

• The matrix blocking is flat, i.e., not hierarchical, and no relative order is imposed
between the blocks of the clustering. This is a very valuable feature because it allows
to compute the index clustering more easily and because it delivers much greater
flexibility for distributing the data in a parallel environment.

• The size of blocks is homogeneous and is such that the SVD or RRQR operations
done for computing the low-rank forms can be efficiently executed concurrently with
sequential code (for example, the LAPACK GESVD or GEQP3 routines). This prop-
erty is extremely valuable in a distributed memory environment where reducing the
volume of communications is important.

• The L21 submatrix can be easily represented in BLR format with a block clustering
induced by those of the L11 and L22 submatrices.

• Pivoting techniques seem hard and inefficient to use when factorizing a matrix stored
in a hierarchical format; this has led researchers to employ different types of factor-
izations, e.g. a ULV factorization [10, 35]. BLR format is more naturally suited for
applying partial threshold pivoting techniques within a standard LU factorization.

Inria

Improving multifrontal methods by means of block low-rank representations 13

• The assembly of frontal matrices is relatively easy if the contribution blocks are in
BLR format. We also have the option of switching to an intermediate full-rank format
because compression is relatively cheap (see Figures 3.5(b) and 3.6(b)).

Motivated by the previous observations, we focus in this paper on the BLR format for
exploiting, in an algebraic setting, low-rank techniques. The remainder of this paper describes
how block clustering is performed and the main algorithmic issues of the low-rank factorization
phase.

4. Block clustering. We describe in this section how block clusterings can be computed
in order to obtain efficient BLR representations of fronts.

4.1. Admissibility condition. The admissibility condition presented in Definition 3.2
requires geometric information in order to properly compute diameters and distances. In the
context of an algebraic solver, this is not conceivable because the only available information
is the matrix.

Thus, another condition must be used and a natural idea is to use the graph of the matrix.
In Börm [8] and Grasedyck [19], other admissibility conditions have been studied. They only
need the graph of the matrix G and are thus called black box methods. Definition 4.1 details
this graph version of Definition 3.2.

Definition 4.1 ([8, 19] Black box admissibility condition). Let b = σ× τ a block cluster
where σ and τ are sets of graph nodes. b is admissible if

diamG(σ) + diamG(τ) ≤ 2η distG(σ, τ) ,

where diamG and distG are classical graph diameter and distance in G, respectively, and η a
problem dependent parameter.

This admissibility condition may still be unpractical because, first, it is not clear how to
choose the η parameter in an algebraic context and, second, because computing diameters
and distances of clusters of a graph may be costly. This condition, however, can be further
simplified and complemented with other practical considerations in order to define a clustering
strategy suited for the BLR format:

1. For efficiency reasons, the size of the clusters should be chosen between a minimum
value that ensures a good efficiency of the BLAS operations performed later with U
and V matrices and a maximum value that allows to perform the SVDs or RRQRs
on the blocks with sequential routines as well as an easy and flexible distribution of
blocks in a parallel environment.

2. The distance between any two clusters σ and τ has to be greater than zero
(distG(σ, τ) > 0) which amounts to saying that all the clusters are disjoint. Note that
this point only is equivalent to the weak admissibility condition proposed by Börm [8,
Remark 3.17].

3. For a given size of clusters (and consequently a given number of clusters in G) the
diameter of each cluster should be as small as possible in order to group within a
cluster only those variables that are likely to strongly interact with each other. For
example, in the case where G is a flat surface, it is better off to define clusters by
partitioning G in a checkerboard fashion rather than cutting it into slices.

Once the size of the clusters is chosen, the objectives 2 and 3 can be easily achieved by feed-
ing the graph G to any modern graph partitioning tool such as METIS [24] or SCOTCH [26],
as discussed in the next two sections which show how to compute the clustering of the fully
assembled and non-fully assembled variables in a frontal matrix. Note that, in practice, par-
titioning tools take the number of partitions as input and not their size; however the size of
the resulting clusters will differ only slightly because partitioning methods commonly try to
balance the weight of the partitions. Because of the simple nature of the BLR format which
does not require a relative order between clusters, simpler and cheaper partitioning or clus-
tering techniques may be employed instead of complex tools such as METIS or SCOTCH.
Experimental results in Section 6 show that the cost induced by the separators clustering
using METIS is however acceptable.

4.2. Separator clustering. Remember that two sets of variables are present in a front.
An admissible partition of both sets must be computed. We consider GS , the graph induced
by the nodes of the separator S corresponding to front F . A graph partitioning tool such
as METIS or SCOTCH with a given partition size will compute BLR admissible blocks.

RR n° 8199

14 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

However, the connectedness of GS cannot be guaranteed. Figure 4.1(a) indeed shows the
worst case of disconnected separator.

In this case, any partitioner cannot do anything else than computing ten groups of size
one because only singletons would be given in input. This leads to a blocking made of 1× 1
blocks, which are not compressible. In this extreme case, the clustering computed by the
partitioning tool is completely useless.

Although in reality this would rarely occur, it is quite commonly the case where a sepa-
rator is formed by multiple connected components that are close to each other in the global
graph G. This may lead to a sub-optimal clustering because variables that strongly interact
due to their adjacency will end up in different clusters.

This problem may be overcome by reconnecting GS in a way that takes into account the
geometry and shape of the separator: variables close to each other in the original graph G
have to be still close to each other in the reconnected GS . We describe an approach that
achieves this objective by extending the subgraph induced by each separator with a halo
formed by a relatively small number of level sets. The graph partitioning tool is therefore run
on this extended graph and the resulting partitioning projected back on the original subgraph
GS . Figure 4.1 shows how this is done on the example above using just one level set. For
a limited number of level sets, the extended graph preserves the shape of the separator,
keeps the cost of computing the clustering limited and allows to compute clusterings that
better comply with the strategy presented in the previous section. In practice with complex
physical domains, more layers may be needed to effectively reconnect the separators. On
regular grids, we observed that two layers are enough to reconnect the separator and to
obtain good performance.

�
�
�
�
�
�
�
�
�

(a) separator sub-
graph GS

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

(b) halo subgraph GH

••
••
••

•
•
• ��

��
��

�
�
� ��

���
��

(c) 3 partitions of GH

•
•
•
�
�
�

�
�

�

(d) 3 partitions of GS

Figure 4.1. Halo-based partitioning of GS with depth 1. GH is partitioned using METIS.

4.3. Explicit border clustering. The previous section shows how the halo method can
be employed to compute clusterings of the separators. This method can obviously be used for
clustering any set of variables and, therefore, also those in the non fully-assembled part of the
front that form a border around the corresponding separator (see Section 2). Figure 4.2(a)
illustrates the way the clusters are computed using the halo method for both the separator
and the border.

S

(a) Explicit border clustering

S

1 2

(b) Inherited border clustering

Figure 4.2. Two different ways to perform the clustering of a border

Inria

Improving multifrontal methods by means of block low-rank representations 15

Although this approach will lead to an efficient clustering of the non fully-summed vari-
ables, it may suffer performance issues due to its high cost.

4.4. Inherited border clustering. As one can observe on Figure 4.2(b), one particular
variable belongs to one separator which, in turn, may be (partially) included in multiple
borders. Inversely, as Figure 2.2 illustrates, a border can be viewed as a union of parts of
separators lying on the path that connects the related node to the root of the elimination
tree. As a consequence, clustering the variables of all the separators is sufficient to obtain,
by induction, a clustering of the borders.

A top-down traversal of the separator tree is performed and the variables of each sep-
arator are clustered with the halo method proposed in Section 4.2. Then, the clustering of
a given border is inherited from the clustering of all the separators it is made of, as shows
Figure 4.2(b). Depending on where the separators intersect, small clusters, which are not
admissible, may indeed be formed; as a result, the CB may include blocks which are too
small to be effectively compressed and to achieve a good BLAS efficiency for the related op-
erations. Note that this problem also affects the blocking of the L21 submatrix but to a lower
extent because the effect is damped by the good clustering computed for the separator (see
Figure 4.3).

(a) L11 blocking : optimal
blocks because any block in-
terconnects two optimal groups
from the corresponding original
separator clustering

(b) L21 blocking : close to opti-
mal block because any block in-
terconnects at least one optimal
cluster from the corresponding
original separator clustering

1

2

1 2

(c) CB blocking : not always op-
timal because a block possibly in-
terconnects two non-optimal small
clusters from the inherited cluster-
ing of the border. Braces show a
reclustering possibility.

Figure 4.3. Relation between inherited clustering and front blocking. The small clusters correspond
to clusters located in corners in Figure 4.2(b). The large clusters correspond to optimal clusters which are
integrally kept in the current front. Note that not all the large clusters of Figure 4.2(b) are represented here.

To avoid having small blocks, reclustering strategies are being investigated. Figure 4.3(c)
shows a basic strategy which merges neighbor clusters together in order to improve the BLAS
efficiency as well as the compression gains.

It has to be noted that the inherited clustering also provides another convenient property:
the blocking of a frontal matrix is compatible with the blocking of its parent front. This
translates into the fact that one block of its Schur complement will be assembled into exactly
one block of the parent front. This may considerably ease the assembly of frontal matrices
especially in the parallel case where frontal matrices are distributed.

We will report in Section 6.3 on the effects of explicit and inherited clustering strategies
and show related experimental results.

5. Block Low-Rank multifrontal method. This section describes how the BLR for-
mat can be integrated within a multifrontal solver in order to reduce its complexity (and, thus,
its time to completion) as well as its memory footprint for solving problems with low-rank
properties.

The previous sections describe how the BLR format possesses properties and features that
are extremely favorable in a parallel fully functional general multifrontal solver. However,
presenting and analysing such a solver is out of the scope of this work. The main objective of
this article is, instead, to evaluate the potential of the BLR format and to show that, when
used within a multifrontal solver, it is a valid alternative to other approaches such as those
based on hierarchical formats.

RR n° 8199

16 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

BLR matrices can be efficiently employed to improve the multifrontal method. In partic-
ular, we will show how the fronts factorization (Section 5.2), where most of the computational
time of the global execution is spent, can benefit from the BLR representation of the fronts.
Clearly, using the BLR format also affects the way the fronts are assembled. This is described
in Section 5.1

5.1. Assembly. The assembly phase of the BLR multifrontal method depends on how
the BLR factorization (see Section 5.2) is done.

Because of their nature, assembly operations are relatively inefficient [6] and their cost
can significantly affect the speed of the overall multifrontal factorization. In the experimental
code we developed, we decided not to perform the assembly operations in BLR format in order
to avoid an excessive amount of indirect addressing which may seriously impact performance.
An analogous choice was also made in related work on the usage of HSS matrices within
multifrontal solvers [33].

Frontal matrices are, thus, assembled in full-rank form and compressed progressively,
by panels, as the partial front factorization proceeds, as shown in the next section. This,
however, does not mean that contribution blocks are not compressed; despite the fact that
compressing contribution blocks does not help reducing the overall number of floating point
operations, storing them in low-rank form has a twofold advantage:

1. It allows to reduce the peak of active memory. In a sequential, multifrontal method,
at any moment, the active memory is defined as the sum of the size of the CB
stack(described in Section 2) plus the size of the front currently being factorized.
Stacking the contribution blocks in low-rank form reduces the active memory. Al-
though this makes the relative weight of the current front in the active memory higher,
it has to be noted that if the partial front factorization is done in a left-looking fash-
ion, frontal matrices can be assembled panelwise which means that in the active
memory only one panel at a time is stored in full-rank. We have not implemented
this feature yet, and, as discussed in the next section, the front factorization is still
performed in a right-looking fashion.

2. In a parallel environment, it reduces the communications volume. In a parallel solver,
frontal matrices are generally mapped onto different nodes which means that assembly
operations involve transferring contribution blocks from one node to another. By
storing contribution blocks in low-rank form, the total volume of communications
can be reduced.

Because fronts are assembled in full-rank form, if a contribution block is in low-rank form,
it has to be decompressed before the associated assembly takes place. This only increases the
overall number of floating point operations by a small amount because the cost of converting
to and from the BLR format is contained, as shown in Figures 3.5 and 3.6. Because it is not
necessary to systematically compress the contribution blocks, in the experimental results of
Section 6 the gains provided by this operation and the associated cost are always reported
separately.

5.2. Factorization. Once a front has been assembled, a partial factorization is per-
formed in order to compute the corresponding part of the global factors. These computations
have a large influence on the global performance of the software. Moreover, the storage of
these factor parts becomes larger and larger as matrix size grows. It is thus critical to im-
prove this phase. We assume that clusterings CFS for the FS variables and CNFS for the NFS
variables have been computed, which give a blocking of the front. In the full-rank standard
case, four fundamental tasks must be performed in order to compute the blocked incomplete
factorization of the front F :

Inria

Improving multifrontal methods by means of block low-rank representations 17

1. factor (F) Lρ,ρL
T
ρ,ρ = Fρ,ρ for ρ ∈ CFS .

2. solve (S) Lτ,ρ = Fτ,ρL
−T
ρ,ρ for ρ ∈ CFS , τ ∈ CFS t CNFS ,

where τ > ρ (τ > ρ if Fτ,τ

appears after Fρ,ρ on the

diagonal).

3. internal update (U) Fτ,σ = Fτ,σ − Lτ,ρLTσ,ρ for ρ, σ ∈ CFS , τ ∈ CFS t CNFS ,
where τ ≥ σ > ρ.

4. external update (U) Fτ,σ = Fτ,σ − Lτ,ρLTσ,ρ for ρ ∈ CFS , τ, σ ∈ CNFS ,

where τ ≥ σ.

We add a new task which corresponds to the compression of a block defined by the clus-
terings:

5. compress (C) Lτ,ρ ' Uτ,α1
V Tρ,α2

for ρ ∈ CFS , τ ∈ CFS t CNFS ,
where |α1| = |α2| = numerical rank
of Lτ,ρ.

Due to the flexibility of the BLR format, several versions of the BLR factorization of
a front can be implemented based on these five tasks, depending on the position of the
compression. Figure 5.1 presents five different algorithms for the factorization of a front.
Note that for the sake of simplicity, the order relations between σ, ρ and τ are now ignored.
Similarly, the subscripts 1 and 2 in α1 and α2 will be omitted. Remember that U and V are
both unitary only if a SVD is used for the compression. The first algorithm is the conventional
full-rank partial factorization [17] and is called FSUU, which stands for Factor, Solve, internal
Update, external Update. The other four are based on the BLR representation of the front
and differ on when the compression is performed. As we move down the figure, from FSUUC
to FCSUU, the computational cost decreases as we are performing the compression earlier and
thus making more and more of an approximation to the factorization.

We decided to implement and study Algorithm FSCUU as it gives the best compromise
between savings (for both memory and flops) and robustness of the solver:

• The number of operations needed for the solve task is much lower than for the internal
and external updates so that we can focus on these two latter tasks.

• The approximation done in the factors is only due to approximations done at lower
levels of the elimination tree. The solve task is done accurately.

The algorithms in Figure 5.1 target different objectives in the context of applicative
solvers. For instance, FSUUC can be used to speed-up the solve phase based on a full off-line
compression of the accurate factors, which, for example, may be beneficial in Newton type
solvers where multiple solves have to be done based on the same factorization.

Note that a sixth task can be added which corresponds to the compression of the CB:

6. external compress (Ce) Fτ,σ ' Uτ,αV Tσ,α for τ, σ ∈ CNFS .

This task can be performed at the end of any of the algorithms in Figure 5.1 in order
to decrease the active memory size as well as the amount of communication necessary to
assemble the parent front in a parallel context, as explained in the previous section.

5.3. Front selection. It is not necessary, nor efficient, to use low-rank approximations
on all the frontal matrices. Indeed, to obtain good compression rates which overcome the
compression costs, it is better to consider only larger fronts. How much work and memory
is done and consumed in fronts larger than a given size can be easily assessed on a regular
9-point stencil by reusing some work and notations by Alan George [15] on nested dissection;
the results of this analysis are shown in Figure 5.2. The elimination tree directly based on a
complete nested dissection is used (i.e. a nested dissection where the smallest separators have
size 1). However, in practice, the nested dissection is stopped before the separators reach size
1 and the corresponding elimination tree is post-processed with different techniques, such as
amalgamation, which aim at merging fronts in order to increase efficiency. The resulting tree
is called the assembly tree and contains basically less fronts but larger ones. For this reason,
in a practical context, the graphs shown in Figure 5.2(a) would be translated upwards. This
remark should be taken into account when reading the analysis below.

RR n° 8199

18 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

Figure 5.1. Standard and BLR factorizations of a front. The flexibility of the BLR format allows

to define 4 different BLR factorization algorithms. When two different compressed blocks have to be used,

variable β is used in addition to α.

FSUU : no compression

for ρ ∈ CFS in ascending order

F factor Fρ,ρ = Lρ,ρL
T
ρ,ρ

S solve Lτ,ρ = Fτ,ρL
−T
ρ,ρ for τ ∈ CFS t CNFS

U internal update Fτ,σ = Fτ,σ − Lτ,ρLTσ,ρ for σ ∈ CFS , τ ∈ CFS t CNFS
U external update Fτ,σ = Fτ,σ − Lτ,ρLTσ,ρ for τ, σ ∈ CNFS

FSUUC : compress after updates

for ρ ∈ CFS in ascending order

F factor Fρ,ρ = Lρ,ρL
T
ρ,ρ

S solve Lτ,ρ = Fτ,ρL
−T
ρ,ρ for τ ∈ CFS t CNFS

U internal update Fτ,σ = Fτ,σ − Lτ,ρLTσ,ρ for σ ∈ CFS , τ ∈ CFS t CNFS
U external update Fτ,σ = Fτ,σ − Lτ,ρLTσ,ρ for τ, σ ∈ CNFS
C compress Lτ,ρ ' Uτ,αV Tρ,α for τ ∈ CFS t CNFS

FSUCU : compress after internal and before external updates

for ρ ∈ CFS in ascending order

F factor Fρ,ρ = Lρ,ρL
T
ρ,ρ

S solve Lτ,ρ = Fτ,ρL
−T
ρ,ρ for τ ∈ CFS t CNFS

U internal update Fτ,σ = Fτ,σ − Lτ,ρLTσ,ρ for σ ∈ CFS , τ ∈ CFS t CNFS
C compress Lτ,ρ ' Uτ,αV Tρ,α for τ ∈ CFS t CNFS
U external update Fτ,σ = Fτ,σ − Uτ,α

(
V Tρ,αVρ,β

)
UTσ,β for τ, σ ∈ CNFS

FSCUU : compress before updates

for ρ ∈ CFS in ascending order

F factor Fρ,ρ = Lρ,ρL
T
ρ,ρ

S solve Lτ,ρ = Fτ,ρL
−T
ρ,ρ for τ ∈ CFS t CNFS

C compress Lτ,ρ ' Uτ,αV Tρ,α for τ ∈ CFS t CNFS
U internal update Fτ,σ = Fτ,σ − Uτ,α

(
V Tρ,αVρ,β

)
UTσ,β for σ ∈ CFS , τ ∈ CFS t CNFS

U external update Fτ,σ = Fτ,σ − Uτ,α
(
V Tρ,αVρ,β

)
UTσ,β for τ, σ ∈ CNFS

FCSUU : compress before solve

for ρ ∈ CFS in ascending order

F factor Fρ,ρ = Lρ,ρL
T
ρ,ρ

C compress Fτ,ρ ' Uτ,αZTρ,α for τ ∈ CFS t CNFS
S solve Lτ,ρ = Uτ,α(ZTρ,αL

−T
ρ,ρ) for τ ∈ CFS t CNFS

i.e, Lτ,ρ = Uτ,αV
T
ρ,α with V Tρ,α = ZTρ,αL

−T
ρ,ρ

U internal update Fτ,σ = Fτ,σ − Uτ,α
(
V Tρ,αVρ,β

)
UTσ,β for σ ∈ CFS , τ ∈ CFS t CNFS

U external update Fτ,σ = Fτ,σ − Uτ,α
(
V Tρ,αVρ,β

)
UTσ,β for τ, σ ∈ CNFS

Figures 5.2(a) and 5.2(b) show that most of the factor entries are computed and almost
all of the floating point operations are done within fronts of relatively large size. This is
particularly interesting considering that these larger fronts only account for a very small
fraction of the total number of fronts in the elimination tree, as shown in Table 5.1.

This shows that there is no need to compress small fronts for two reasons:

Inria

Improving multifrontal methods by means of block low-rank representations 19

N = 200
N = 400
N = 600
N = 800
N = 1000

10

20

30

40

50

60

70
pe

rc
en

t o
f t

he
 e

nt
rie

s
of

 th
e

fa
ct

or
 c

om
pu

te
d

in
 fr

on
ts

 la
rg

er
 th

an
 N

213

mesh s ize
210

211 212 214 215

(a) Proportion of entries of the factors computed in
the top levels of the multifrontal tree.

N =1000

N =200
N =400
N =600
N =800

55

60

65

70

75

80

85

90

95

100

pe
rc

en
to

fo
pe

ra
tio

ns
pe

rfo
rm

ed
in

fro
nt

s
la

rg
er

th
an

N

213

mesh size
210

211 212 214 215

(b) Proportion of the total number of operations per-
formed for the partial factorization of the top levels
of the multifrontal tree.

Figure 5.2. Proportions of entries of the factors and of number of operations in the top levels of the
multifrontal tree. The problem studied is a 2D Laplacian on a 9-point stencil. The corresponding matrix size
is the square of the mesh size. Note that the largest fronts we look at in these plots represent very few fronts
compared to the total number of fronts, as shows Table 5.1.

Table 5.1
Proportion of fronts larger than N with respect to the total number of fronts in the elimination tree, for

different mesh sizes.

mesh size

210 211 212 213 214 215

N = 200 1.61h 1.68h 1.71h 1.73h 1.74h 1.74h
N = 400 0.37h 0.40h 0.42h 0.42h 0.43h 0.43h
N = 600 0.17h 0.20h 0.21h 0.22h 0.23h 0.23h
N = 800 0.07h 0.09h 0.10h 0.11h 0.11h 0.11h
N = 1000 0.05h 0.06h 0.06h 0.06h 0.06h 0.06h

1. It would be too much work for a small gain (in small fronts we can only target a few
entries and a few computations, and moreover the SV D compression has a cost) ;

2. It is more critical to focus on the top of the tree because the corresponding large
fronts represent most of the work to be done in the multifrontal process, in terms of
computations and memory.

6. Experiments. This section presents experimental results on the set of problems
described in Section 6.1. Our methods have been developed and incorporated in the general
purpose symmetric and unsymmetric sparse linear solver MUMPS [2] (in complex and real
arithmetic) but can be applied to any multifrontal solver.

• For each test matrix, we study a linear system whose right-hand side is a vector of
ones. To measure the effectiveness of our approach, several metrics are presented in
Section 6.2.

• The global ordering used for MUMPS is METIS [24], although experiments have shown
comparable results with other global orderings such as AMD [3].

• Only fronts larger than 100 are candidate for compression. The halo depth used
during the clustering phase is 2. Inherited clustering with cluster size set up to 200
is used, except in Section 6.3 where the clustering strategy is studied.

• The compression is achieved through a truncated rank-revealing QR factorization
(modified from Lapack’s CGEQP3) with an absolute low-rank threshold. We are cur-
rently investigating the efficiency of a relative dropping in terms of compression,

RR n° 8199

20 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

stability and accuracy.
• Results are obtained with a sequential code and only from the factorization phase.

For the solve phase, the flops reduction is equal to the factor memory reduction. The
supercomputer used for these experiments is a SMP Altiv UV (ccNUMA architecture)
equipped with 48 WESTMERE EX octo-core processors @2.67GHz and 3TB of RAM.

6.1. Set of problems. The experiments presented throughout this paper have been
run on a set of problems coming from different physics applications. These matrices will be
used all along this section to illustrate each aspect of our work and are described in Table 6.1.
They correspond to four important classes of applications within the field of elliptic PDEs.

Name Prop. Arith. N NZ factors flops CSR application
(×106) (×109) storage (×1012) (full rank) field

Curl5000 2D/sym. D 50 0.2 27 GB 5 2× 10−15 electromag.
Geoazur128 3D/unsym. Z 2 55 46 GB 62 2× 10−12 wave prop.
TH RAFF7 3D/sym D 8 118 138 GB 100 8× 10−15 thermal
ME RAFF12 2D/sym. D 134 1 215 GB 200 4× 10−15 mechanical

Table 6.1
Set of problems used for the experimentations. They are finite-difference or finite elements methods sim-

ulations. CSR = Componentwise Scaled Residual = max
i

|b−Ax̄|i
(|b|+ |A| |x̄|)i

. D=double precision real, Z=double

precision complex.

Curl5000 is an academic problem and corresponds to the curl-curl operator, which is
widely used in computational electromagnetism. Geoazur128 matrix is a complex-valued
impedance matrix resulting from the finite-difference discretization of the heterogeneous
Helmholtz equation which is the second-order visco-acoustic time-harmonic wave equation
for pressure p. The aim is the modeling of visco-acoustic wave propagation in a 3D visco-
acoustic medium parameterized by wavespeed, density and quality factor. For more details
about these matrices, see Operto [25]. The last two matrices are thermal and mechanical
simulations from the French Electricity Company (EDF). For matrix ME RAFF12, we will also
study different mesh refinements of the model to analyse the impact on the LR properties of
the matrix. Finally, various sizes of a 3D Laplacian problem defined on an 11-point stencil
are also used to demonstrate the potential of a BLR based factorization.

6.2. Metrics. The effectiveness of the proposed techniques will be measured with dif-
ferent metrics mostly related to the reduction of memory and flops:

• The factor compression |L| is defined as the ratio of the number of entries needed to
store the factor computed with the BLR approach over the number of entries needed
to store the regular factor.

• The maximum size of CB stack compression |CB| is the ratio of the maximum size
of the CB stack with the BLR approach over the maximum size of the CB stack with
a regular full rank approach. For a definition of the CB stack, please refer to Section
2.

• For each task (or tasks combination) defined in Section 5.2, we will indicate either the
corresponding absolute low-rank flop count (execution time), either the corresponding
flops (execution time) compression as a percentage of the full-rank factorization (FR
facto) flop count (execution time).
For instance, a column called “F+S” shows absolute data or percentages related to
flops or execution time (it is always indicated) related to the “Factorization” and
“Solve” tasks of the algorithm.

6.3. Clustering strategies. Table 6.2 reports experimental results related to the clus-
tering strategies. As the problem size grows, the explicit border clustering time becomes
excessively time consuming. Experiments confirm that the inherited clustering is 2 to 8 times
faster than the explicit border clustering, with a comparable efficiency. The overhead due to
this specific phase is very low compared to the full rank analysis time. In pratice, a basic
reclustering strategy (as explained in Section 4) can be performed in a negligible time. It
improves slightly the compression rates and substantially the BLAS operations, which was
our target.

Inria

Improving multifrontal methods by means of block low-rank representations 21

Table 6.2
Comparison of the efficiency of the explicit and inherited clustering strategies. Each inh column gives

results with the clustering done during the analyis. Each exp column gives results with the clustering done
during the factorization. The clustering time is the total time spent for the clustering of all the fronts. The
low-rank threshold is 10−8. The full rank analysis time is the time spent in the analysis phase for a regular
full rank multifrontal factorization (excluding clustering time).

memory flops time

|L| |CB| F+S+C+U+U clustering full rank
analysisclustering inh exp inh exp inh exp inh exp

Curl5000 63.7% 62.4% 7.0% 5.5% 10.9% 11.1% 13 s 27 s 897 s
Geoazur128 79.0% 77.0% 47.0% 45.0% 60.8% 59.1% 5 s 42 s 62 s

TH RAFF7 34.1% 30.7% 17.5% 16.2% 7.2% 6.6% 34 s 206 s 387 s
ME RAFF12 52.9% 51.1% 4.8% 4.1% 6.1% 6.1% 121 s 239 s 1971 s

6.4. Influence of the cluster size. By definition of the BLR admissibility condition
described in Section 4.1, a target block size has to be chosen in order to define suitable
admissible blocks. For a general algebraic multifrontal solver, having such a parameter can
be a constraint if it has to be tuned finely to ensure a good efficiency of the method for a given
problem. Although block sizes of 100 or 150 are too small to achieve good compression rates,
results presented in Table 6.3 show that the dependence between compression and block size
is usually quite small, so that a variation in the block size does not have a critical impact on
the global efficiency of the method.

Table 6.3
Influence of the block size used for the BLR compression on the efficiency of the BLR multifrontal

method. Study for Geoazur128 with basic reclustering and low-rank threshold set to 10−8.

memory flops

block size |L| |CB| F+S+C+U+U F+S+U+U C

100 88% 55% 75% 4.6E+13 9.8E+11
150 83% 50% 68% 4.1E+13 1.5E+12
200 79% 46% 63% 3.7E+13 1.9E+12
250 76% 45% 60% 3.4E+13 2.4E+12
300 75% 44% 58% 3.3E+13 2.7E+12
350 74% 44% 56% 3.2E+13 3.1E+12
400 73% 45% 56% 3.1E+13 3.4E+12
450 73% 44% 56% 3.1E+13 3.7E+12
500 73% 44% 57% 3.1E+13 4.4E+12

This property is very desirable because it will ease the unsymmetric (and symmetric
indefinite) pivoting, which can in some cases modify dynamically the number of fully summed
variables within a front. From a more general point of view, block sizes can also be modified
by reclustering (see Section 4), or because of out-of-core and parallelism, which are already
strong algorithmic constraints in a general purpose sparse solver. Thus, the flexibility in the
block sizes is very desirable to suppress a new constraint.

6.5. Memory, flops and accuracy. In this section we present global results related
to memory, flops and accuracy with different low-rank thresholds. Figure 6.1 shows the cost
and memory occupancy of the BLR based solver relative to the full-rank one; for instance, for
problem TH RAFF7 with ε = 10−14, the number of operations needed for the factorization is
divided by 5, the maximum size of CB stack by 4 and the factor memory by 2. In the figure,
also the accuracy of the computed solution is reported, measured in terms of Componentwise

Scaled Residual [29, 23, 5], defined as CSR = max
i

|b−Ax̄|i
(|b|+ |A| |x̄|)i

.

The accuracy of the solution follows the low-rank threshold used for the compression. No
propagation is observed and ε gives to the user a good control over the numerical behaviour
of the solver.

RR n° 8199

22 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

10−14 10−12 10−10 10−8 10−6 10−4 10−2

0
10
20
30
40
50
60
70
80
90

100
110

10−16

10−14

10−12

10−10

10−8

10−6

low-rank threshold

|L|
flops F+S+C+U+U
CSR

|CB|

(a) Curl5000

10−14 10−12 10−10 10−8 10−6 10−4 10−2

0

10

20

30

40

50

60

70

80

90

100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

low-rank threshold

|L|
flops F+S+C+U+U
CSR

|CB|

(b) ME RAFF12

0

10

20

30

40

50

60

70

80

90

100

10−14 10−12 10−10 10−8 10−6 10−4 10−2

10−12

10−10

10−8

10−6

10−4

10−2

100

low-rank threshold

|L|
flops F+S+C+U+U
CSR

|CB|

(c) Geoazur128

10−14 10−12 10−10 10−8 10−6 10−4 10−2

0

10

20

30

40

50

60

70

80

90

100

10−12

10−10

10−8

10−6

10−4

10−2
|L|
flops F+S+C+U+U
CSR

|CB|

low-rank threshold

(d) TH RAFF7

Figure 6.1. Global results of the BLR methods implemented within MUMPS. The solver is fully algebraic.
Compression results are shown for the memory needed to store the factors and the contribution blocks, and for
the number of operations needed to perform the factorization (left-hand side vertical axis). Results related to
the accuracy of the computed solution (right-hand side vertical axis) are also given. For the exact definition
of the metrics used in these graphs, please refer to Section 6.2.

As far as memory compression is concerned, the method shows good efficiency at high
to middle accuracy. At low accuracy, the results are even better. With the ME RAFF12 and
TH RAFF7 matrices, good compression rates are also obtained at full accuracy. At full accu-
racy, the compression of the maximum size of CB stack (|CB|) can be quite interesting even
when we do not have a global gain in terms of factor compression (|L|) and flops reduction
(F+S+C+U+U flops), see Figure 6.1(a). This is probably due to the fact that the full-rank
maximum size of CB stack is reached on large fronts on which the compression of the CB
block is quite large. It is an interesting feature which could be exploited to limit the memory
requirement for the factorization or to compress the multifrontal CB stack on demand.

In terms of computational cost compression, gains are almost always higher than those
due to memory compression for two reasons:

• as shows Figure 5.2, for a given front size, the top level fronts concentrate a higher
flops ratio than entries in factor ratio (with respect to the global flops and entries in
factor).

• operations on blocks have a cubic complexity whereas memory has a square complex-
ity.

For matrix Curl5000, with ε = 10−14 and ε = 10−12, we do slightly more operations than in
a usual multifrontal solver because of the additional cost for QR factorizations performed to
reveal uncompressable subblocks (|L| = 100%).

6.6. Scalability with respect to the problem size. The efficiency of low-rank ap-
proximation techniques on multifrontal factorizations can strongly depend on the size of the
problem. Table 6.4 illustrates this idea on different mesh refinements of the applicative prob-

Inria

Improving multifrontal methods by means of block low-rank representations 23

lem class ME RAFF*. The efficiency of the low-rank methods increases when refining the mesh.

Table 6.4
Overview of the influence of the mesh refinement degree on the memory and flops reductions. The

low-rank threshold is set up to 10−8.

memory flops

Refinement N |L| |CB| F+S+C+U+U

ME RAFF8 2, 101, 258 71% 27% 32%
ME RAFF11 33, 570, 826 59% 11% 12%
ME RAFF12 134, 250, 506 52% 7% 6%

In order to further investigate this behavior, a full set of tests were conducted on ma-
trices of increasing size from the Laplacian operator discretized with a 3D 11-point stencil.
Table 6.5 shows how the effectiveness of low-rank techniques obtained with the BLR format
increases with the mesh size, in terms of memory, flops and time reductions.

Table 6.5
Scalability of the BLR factorization with respect to the mesh size M . Results are given for a matrix

coming from the Laplacian operator discretized with a 3D 11-point stencil. The low-rank threshold is set
up to 10−14 so that a full accuracy is kept. FR facto is a full rank factorization obtained with MUMPS. The
percentages are given with respect to FR facto. Ce can be viewed as the price to pay to obtain the memory
reduction |CB|. See Section 6.2 for more details about the metrics.

flops memory

low-rank CB

M FR facto F+S+C+U+U C Ce |CB| |L|
32 1.2E+10 1.1E+10 94.0% 17.5% 22.4% 85.6% 94.5%
64 7.8E+11 3.0E+11 38.2% 5.3% 11.8% 49.1% 70.0%
96 9.1E+12 1.6E+12 17.9% 2.0% 6.2% 26.5% 52.5%

128 5.2E+13 5.0E+12 9.7% 0.9% 3.2% 17.4% 41.9%
160 2.1E+14 1.2E+13 5.7% 0.5% 1.7% 12.3% 33.5%
192 6.4E+14 2.5E+13 3.9% 0.3% 1.1% 8.8% 28.2%
224 1.6E+15 4.5E+13 2.8% 0.2% 0.8% 7.5% 24.5%
256 3.6E+15 8.1E+13 2.2% 0.1% 0.5% 6.2% 21.2%

time (in s.)

M FR facto F+S+C+U+U C Ce

32 1.6 2.1 131.3% 50.0% 43.8%
64 99.3 55.2 55.6% 15.1% 23.8%
96 1133.2 327.0 28.9% 6.0% 12.7%

128 6351.4 1148.0 18.1% 2.9% 6.6%
160 25742.8 3415.6 13.3% 1.6% 3.9%
192 78049.0* 8607.0 11.0% 1.0% 2.6%
224 195120.0* 19496.3 9.9% 0.8% 1.8%
256 439020.0* 40221.7 9.2% 0.7% 1.2%

For a mesh size of 160, a factor of almost 20 is obtained in terms of flops reduction. The
flop counts reveal an O(N4/3) complexity, which is comparable to what is obtained in 3D
with an HSS solver [31, 33].

The overhead due to the compression of CBs appears to be globally very small, which is
critical to decrease the active memory consumption. The same behavior is observed in terms
of memory: for mesh size of 160, the size of the factors has been reduced by a factor of 3 and
the maximum size of CB stack by a factor of almost 10.

The second part of Table 6.5 shows how the flops reduction is translated into time reduc-
tion. Results show that a large part of the flops reduction is converted into time reduction.
When the flops compression rate is important, the benefits of BLAS 3 operations are partly

RR n° 8199

24 Amestoy, Ashcraft, Boiteau, Buttari, L’Excellent, Weisbecker

lost because of the very low rank of the blocks, which explains why the efficiency decreases
slightly. However, for large enough mesh sizes, very interesting time reductions are obtained
(a factor of 7 is already obtained for mesh size 160), that are increasing with the size of the
problem.

7. Conclusion. A new format for low-rank multifrontal solvers has been presented.
More flexible than other low-rank matrix structures, the BLR format shows a high efficiency
on applicative problems, both in terms of memory and flops reduction. The low-rank threshold
ε gives a full control on the global accuracy of the solver and no error propagation has been
observed. We showed that this format is very suitable for the algorithmic requirements of
a robust, general multifrontal solver, and presents some distinctive features over hierarchical
formats such as HSS and H that make its usage more immediate and, likely, more effective.
By means of an experimental comparison, we showed that the gains achieved with the BLR
format are comparable to those obtained with hierarchical formats. Through this comparison
we also showed that the cost of constructing the low-rank representation is much lower in
the case of the BLR format with respect to the HSS and H approaches; this provides an
additional property which is very favorable in the context of a sparse, multifrontal solver
involving operations with complex data access patterns. We proposed a method for computing
the blocking of frontal matrices for the BLR format; thanks to the properties of BLR, this
technique does not require any knowledge of the geometry of the problem and can be run at
a cost which is marginal relative to the cost of the analysis phase of a multifrontal solver.

In order to evaluate the potential of the proposed techniques, we integrated the BLR
format and the blocking technique in the sequential version of the MUMPS solver and we ran
experiments on a number of problems from real world applications as well classical, textbook
problems. The experimental results show that considerable gains can be achieved already
at very accurate approximation levels, in which case the final solution backward error is
comparable to the one obtained with a standard, full-rank solver. Experimental results also
show that the BLR format is tolerant with respect to variations in the size of the blocks –
a property that may be used to accommodate the BLR format of frontal matrices to data
distribution in a parallel environment as well as to classical pivoting techniques.

The work presented in this document lays the foundations of an ongoing research effort
which aims at exploiting the BLR format within a parallel, fully featured multifrontal solver.

Acknowledgment. We wish to thank Xiaoye S. Li (LBNL) and Artem Napov (LBNL)
for the helpful discussions on low-rank techniques and for the experimental HSS code used in
Section 3. This work was granted access to the HPC resources of CALMIP under the alloca-
tion 2012-p0989 and is funded by EDF under collaboration contract 8610-AAP-5910070284.

REFERENCES

[1] P. R. Amestoy, A. Buttari, I. S. Duff, A. Guermouche, J.-Y. L’Excellent, and B. Uçar,
The multifrontal method, in Encyclopedia of Parallel Computing, David Padua, ed., Springer,
http://www.springerlink.com, 2010.

[2] , MUMPS (MUltifrontal Massively Parallel Solver), in Encyclopedia of Parallel Computing, David
Padua, ed., Springer, http://www.springerlink.com, 2010.

[3] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering algorithm,
SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886–905.

[4] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, MUMPS: a general purpose distributed
memory sparse solver, in Proceedings of PARA2000, the Fifth International Workshop on Applied
Parallel Computing, Bergen, June 18-21, A. H. Gebremedhin, F. Manne, R. Moe, and T. Sørevik,
eds., Springer-Verlag, 2000, pp. 122–131. Lecture Notes in Computer Science 1947.

[5] M. Arioli, J. Demmel, and I. S. Duff, Solving sparse linear systems with sparse backward error,
SIMAX, 10 (1989), pp. 165–190.

[6] C. Ashcraft and R. Grimes, The influence of relaxed supernode partitions on the multifrontal method,
ACM-TOMS, 15 (1989), pp. 291–309.

[7] M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems
(Lecture Notes in Computational Science and Engineering), Springer, 1 ed., 2008.

[8] S. Börm, Efficient Numerical Methods for Non-local Operators, European Mathematical Society, 2010.
[9] S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, On the numerical rank of the

off-diagonal blocks of Schur complements of discretized elliptic PDEs, SIAM Journal on Matrix
Analysis and Applications, 31 (2010), pp. 2261–2290.

[10] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically semisep-
arable representations, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 603–622.

Inria

Improving multifrontal methods by means of block low-rank representations 25

[11] T. A. Davis, Algorithm 832: UMFPACK V4.3 — an unsymmetric-pattern multifrontal method, ACM
Trans. Math. Softw., 30 (2004), pp. 196–199.

[12] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University
Press, London, 1986.

[13] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear systems,
ACM Trans. Math. Softw., 9 (1983), pp. 302–325.

[14] , The multifrontal solution of indefinite sparse symmetric linear systems, ACM Trans. Math.
Softw., 9 (1983), pp. 302–325.

[15] A. George, Nested dissection of a regular finite element mesh, SIAM Journal on Numerical Analysis,
(1973), pp. 345–363.

[16] A. Gillman, P. Young, and P.-G. Martinsson, A direct solver with O(N) complexity for integral
equations on one-dimensional domains, Frontiers of Mathematics in China, 7 (2012), pp. 217–247.
10.1007/s11464-012-0188-3.

[17] G. Golub and C. Van Loan, Matrix computations, Johns Hopkins University Press, 3 ed., 1996.
[18] N. I. M. Gould and J. A. Scott, A numerical evaluation of HSL packages for the direct solution of

large sparse, symmetric linear systems of equations, ACM Transactions on Mathematical Software,
30 (2004), pp. 300–325.

[19] L. Grasedyck, R. Kriemann, and S. Le Borne, Parallel black box H -LU preconditioning for elliptic
boundary value problems, Computing and Visualization in Science, 11 (2008), pp. 273–291.

[20] A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar, PSPASES: An efficient and scalable
parallel sparse direct solver, Kluwer International Series in Engineering and Computer Science, 515
(1999).

[21] A. Gupta and M. Joshi, WSMP: A high-performance shared- and distributed-memory parallel sparse
linear equation solver, 2001.

[22] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices,
Computing, 62 (1999), pp. 89–108.

[23] D. J. Higham and N. J. Higham, Componentwise perturbation theory for linear systems with multiple
right-hand sides, Linear algebra and its applications, 174 (1992), pp. 111–129.

[24] G. Karypis and V. Kumar, MeTiS: A Software Package for Partitioning Unstructured Graphs, Parti-
tioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 4.0, University
of Minnesota, Army HPC Research Center, Minneapolis, 1998.

[25] S. Operto, J. Virieux, P. R. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. Ben Hadj Ali, 3D
finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively
parallel direct solver: A feasibility study, Geophysics, 72 (2007), pp. 195–211.

[26] F. Pellegrini, Scotch and libscotch 5.0 User’s guide, Technical Report, LaBRI, Université Bor-
deaux I, 2007.

[27] P. Raghavan, DSCPACK: Domain-separator codes for the parallel solution of sparse linear systems, Tech.
Report CSE-02-004, Department of Computer Science and Engineering, The Pennsylvania State
University, 2002.

[28] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Transactions on Mathe-
matical Software, 8 (1982), pp. 256–276.

[29] R. D. Skeel, Scaling for numerical stability in Gaussian elimination, Journal of the ACM (JACM), 26
(1979), pp. 494–526.

[30] S. Wang, M. V. de Hoop, and J. Xia, On 3D modeling of seismic wave propagation via a structured
parallel multifrontal direct Helmholtz solver, Geophysical Prospecting, 59 (2011), pp. 857–873.

[31] S. Wang, M. V. de Hoop, J. Xia, and X. S. Li, Massively parallel structured multifrontal solver for
time-harmonic elastic waves in 3D anisotropic media, Geophysical Journal International, (2012).

[32] S. Wang, X. S. Li, J. Xia, Y. Situ, and M. V. De Hoop, Efficient scalable algorithms for hierarchically
semiseparable matrices, Submitted SIAM Journal on Scientific Computing, (2012).

[33] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, Submitted to
SIAM Journal on Scientific Computing, (2012).

[34] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large structured
linear systems of equations, SIAM Journal on Matrix Analysis and Applications, 31 (2009), pp. 1382–
1411.

[35] , Fast algorithms for hierarchically semiseparable matrices, Numerical Linear Algebra with Ap-
plications, 17 (2010), pp. 953–976.

RR n° 8199

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

