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Abstract. We consider a model of individual clustering with two specific reproduction
rates and small diffusion parameter in one space dimension. It consists of a drift-diffusion
equation for the population density coupled to an elliptic equation for the velocity of
individuals. We prove the convergence (in suitable topologies) of the solution of the
problem to the unique solution of the limit transport problem, as the diffusion coefficient
tends to zero.

1 Introduction

In [6], a model for the dispersal of individuals with an additional aggregation mechanism
is proposed. More precisely, the population density u(t, x) at location x ∈ Ω where Ω is an
open bounded domain of RN , 1 ≤ N ≤ 3, and time t > 0 solves the convection-diffusion
equation

∂tu = δ ∆u−∇ · (u ω) + r u E(u), (1)

where δ > 0, r ≥ 0 and E is the net rate reproduction per individual . This equation is
coupled to an elliptic equation for the velocity ω which is assumed to be in the direction
of increasing E(u), say, of the form λ∇E(u) with λ > 0. The evolution of the velocity ω

is described by
− ε ∆ω + ω = λ ∇E(u), (2)

where ε > 0 and ε ∆ω is simply to smooth out any sharp local variation in ∇E(u) so that
ω represents a local average of the velocity λ ∇E(u).
We supplement (1) and (2) with no-flux boundary conditions

n · ∇u = n · ω = 0, x ∈ ∂Ω, t ≥ 0, (3)

as suggested in [6] where n is the outward normal of ∂Ω. In addition, in dimension 2
or 3, we impose the following additional condition given in [3, 4, 12] to guarantee the
well-posedness of the elliptic system (2)

∂nω × n = 0, x ∈ ∂Ω, t ≥ 0. (4)

As usual, v × ω is the number v1 ω1 + v2 ω2 if N = 2 and the vector field (v2 ω3 −
v3 ω2,−v1 ω3 + v3 ω1, v1 ω2 − v2 ω1) if N = 3.

We are interested here in the case where the aggregation mechanism is dominant,
that is, the diffusivity δ is small. For biological models, this can change dramatically
the dynamical behaviour of the solutions, and might generate finite time blow-up such
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as for the Keller-Segel system, see [11] for instance. Nevertheless, there are situation
for which the small diffusivity limit is somehow “stable”, including some models from
semiconductor physics, see Markowich and Szmolyan [8], and for the Keller-Segel system
with volume-filling effect, see [5, 10]. There, the authors prove the convergence, in the
small diffusivity limit, of the solutions of the parabolic systems to weak entropy solutions
of the corresponding hyperbolic systems. A related field of research which is currently
very active is the analysis of the so-called aggregation equation ∂tu+div(K(u)) = 0 where
K is a nonlocal linear operator, see [7, 1], and the references therein.
Taking the case of small diffusivity as a motivation, we will study the system (1), (2), (3)
and (4), in the limit of vanishing diffusivity δ. More precisely, given a sufficiently smooth
function E, parameters δ ∈ (0, 1), ε > 0 and r ≥ 0, our aim in this paper is to investigate
the limit δ → 0 of the following one dimensional system















∂tuδ = δ ∂2xuδ − ∂x(uδ ϕδ) + r uδ E(uδ), x ∈ (−1, 1), t > 0

−ε ∂2xϕδ + ϕδ = ∂xE(uδ), x ∈ (−1, 1), t > 0
∂xuδ(t,±1) = ϕδ(t,±1) = 0, t > 0
uδ(0, x) = u0(x), x ∈ (−1, 1).

(5)

where E has two specific forms suggested in [6], namely

E(u) = 1− u (6)

or
E(u) = (1− u)(u− a), for some a ∈ (0, 1). (7)

Given u0 ∈ W 1,2(−1, 1), the existence and uniqueness of a global solution of (5) have
been shown in [9], and the purpose of this paper is to prove that (uδ, ϕδ) converges to a
solution of the nonlocal transport problem















∂tu = −∂x (u ϕ) + r u E(u), x ∈ (−1, 1), t > 0,

−ε ∂2xϕ+ ϕ = ∂xE(u), x ∈ (−1, 1), t > 0,
ϕ(t,±1) = 0, t > 0,
u(0, x) = u0(x), x ∈ (−1, 1),

(8)

as the diffusion coefficient δ approaches zero. This leads, in a natural way, to the existence
of a smooth solution of (8), the uniqueness being established in Proposition 4.2.

Our paper is organized as follows. In Section 2, we state the main results and focus
on the two specific forms of E suggested in [6]: the “bistable case” (7), see Theorem 2.1,
and the “monostable case” (6), see Theorem 2.2. In Section 3, we recall some results of
existence and uniqueness of a global solution of (5) obtained in [9]. Section 4 is devoted
to the uniqueness issue of smooth solutions of the transport problem (8). In Section 5,
we focus on the bistable case (7). We derive a priori estimates on (uδ, ϕδ), which are
uniformly valid in δ, and particularly we derive a lower bound for ∂xϕδ and an L∞(W 1,1)
estimate on uδ which leads to an L∞(W 2,2) bound on uδ. these estimates imply, by a
compactness argument, the existence of accumulation points of any sequence (uδ, ϕδ)δ.
Thanks to Section 3, we conclude that the limit of (uδ, ϕδ)δ is unique, and the whole
family (uδ, ϕδ) converges to the unique solution of (8) with E(u) = (1 − u)(u − a). In
Section 6, we analyse the limit δ → 0 of (5) in the monostable case (6). This analysis is
quite similar to that of the previous case, except for the first estimate.
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2 Main results

Throughout this paper, and unless otherwise stated, we assume that

δ ∈ (0, 1), ε > 0, r ≥ 0.

In [9], the global existence and uniqueness of smooth solution of (5) are shown when E(u)
has the structure (6) or (7). Our first result gives the limit δ → 0 in (5) in the bistable
case, that is when E(u) = (1− u)(u− a) for some a ∈ (0, 1).

Theorem 2.1. Assume that u0 is a nonnegative function in W 1,2(−1, 1) and E(u) =
(1− u)(u − a) for some a ∈ (0, 1). For δ > 0, let uδ be the global nonnegative solution to
(5) given by Theorem 3.2 below. Then, for all T > 0

lim
δ→0

||uδ(t)− u(t)||C = 0 for all t ∈ (0, T ),

where u ∈ C
(

[0, T ];L2(−1, 1)
)

∩L∞
(

(0, T );W 1,2(−1, 1)
)

is the unique smooth solution of
the corresponding transport system

∂tu = −∂x (u ϕ) + r u (1− u)(u− a), x ∈ (−1, 1), t > 0, (9)

− ε ∂2xϕ+ ϕ = (−2 u+ a+ 1) ∂xu, x ∈ (−1, 1), t > 0 (10)

with boundary and initial conditions

ϕ(t,±1) = 0, for all t > 0, and u(0, x) = u0(x), x ∈ (−1, 1). (11)

As a consequence of (11) no boundary conditions for u are needed.
The proof of the previous theorem is performed by deriving estimates which are uniformly
valid for 0 < δ < 1. This proof starts with the suitable cancellation of the coupling
terms in two equations which gives an estimate for uδ in L∞(L2) and for ϕδ in L2(W 1,2).
Then we derive a lower bound for ∂xϕδ and an L∞(W 1,1) bound on uδ which leads to an
L∞(W 1,2) bound on uδ. We will, by a compactness argument, show the convergence of uδ
to the smooth solution of the transport system (9), (10) and (11).

Next, we turn to the monostable case, that is when E(u) = 1 − u, and we study the
limit δ → 0.

Theorem 2.2. Assume that u0 is a nonnegative function in W 1,2(−1, 1) and E(u) =
(1 − u). For δ > 0 let uδ be the global nonnegative solution of (5) given by Theorem 3.2
below. Then, for all T > 0

lim
δ→0

||uδ(t)− u(t)||C = 0 for all t ∈ (0, T ),

where u ∈ C
(

[0, T ];L2(−1, 1)
)

∩L∞
(

(0, T );W 1,2(−1, 1)
)

is the unique smooth solution of
the following transport system,

∂tu = −∂x (u ϕ) + r u (1− u), x ∈ (−1, 1), t > 0, (12)

− ε ∂2xϕ+ ϕ = −∂xu, x ∈ (−1, 1), t > 0, (13)

with boundary and initial conditions

ϕ(t,±1) = 0, for all t > 0, and u(0, x) = u0(x), x ∈ (−1, 1). (14)

The proof of Theorem 2.2 follows the same lines as that of Theorem 2.1. As in
the bistable case, there is a cancellation between the two equations but it only gives
an L∞(L logL) bound on uδ and an L2(W 1,2) bound on ϕδ.
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3 Well-Posedness of (5)

We first recall the notion of solution to (5) to be used in this paper.

Definition 3.1. Let T > 0, E ∈ C2(R), and an initial condition u0 ∈ W 1,2(−1, 1) . For
0 < δ < 1, a strong solution to (5) on [0, T ) is a function

uδ ∈ C
(

[0, T ),W 1,2(−1, 1)
)

∩ C
(

(0, T ),W 2,2(−1, 1)
)

,

such that






∂tuδ = δ ∂2xuδ − ∂x(uδ ϕδ) + r uδ E(uδ), a.e. in [0, T ) × (−1, 1)
uδ(0, x) = u0(x), a.e. in (−1, 1)
∂xuδ(t,±1) = 0, a.e. on [0, T ),

where, for all t ∈ [0, T ), ϕδ(t) is the unique solution in W 2,2(−1, 1) of

{

−ε∂2xϕδ(t) + ϕδ(t) = ∂xE(uδ(t)) a.e. in (−1, 1)
ϕδ(t,±1) = 0

We now recall the global existence theorem which is proved in [9], where E(u) is given
by (6) or (7).

Theorem 3.2. Assume that u0 is a nonnegative function in W 1,2(−1, 1),
and E(u) = (1 − u)(u − a) for some a ∈ (0, 1) or E(u) = 1 − u. Then (5) has a unique
global nonnegative solution u in the sense of Definition 3.1.

4 Uniqueness

In this section we prove the uniqueness of the solution of (8). Let us first give the definition
of the strong solution of (8).

Definition 4.1. Let T > 0, E ∈ C2(R), and an initial condition u0 ∈ W 1,2(−1, 1) . A
strong solution on [0, T ) to the transport system (8) is a function

u ∈ C
(

[0, T ), L2(−1, 1)
)

∩ C
(

(0, T ),W 1,2(−1, 1)
)

,

such that
{

∂tu = −∂x(u ϕ) + r u E(u), a.e. in [0, T )× (−1, 1)
u(0, x) = u0(x), a.e. in (−1, 1),

where, for all t ∈ [0, T ), ϕ(t) is the unique solution in W 2,2(−1, 1) of

{

−ε∂2xϕ(t) + ϕ(t) = ∂xE(u(t)) a.e. in (−1, 1)
ϕ(t,±1) = 0 .

The main result is contained in

Proposition 4.2. Assume that u0 is a nonnegative function in W 1,2(−1, 1) and E ∈
C2(R). Then for all T > 0, there exists at most one solution u of (8) in the sense of
Definition 4.1, such that

u ∈ L∞
(

(0, T ),W 1,1(−1, 1)
)

, and ϕ ∈ L∞
(

(0, T );W 1,∞(−1, 1)
)

. (15)

4



Proof. Let us assume that there exist two different solutions u1 and u2 to (8) corresponding
to the same initial conditions, and fix T > 0. We put

(u, ϕ) = (u1 − u2, ϕ1 − ϕ2), in [0, T ]× (−1, 1).

Then (u, ϕ) satisfies














∂tu = −∂x(u ϕ1)− ∂x(u2 ϕ) + r u1 E(u1)− r u2 E(u2), in (0, T )× (−1, 1)

−ε∂2xϕ+ ϕ = E′(u1) ∂xu1 − E′(u2) ∂xu2, in (0, T )× (−1, 1)
ϕ(t,±1) = 0 on (0, T )
u(0, x) = 0, in (−1, 1).

(16)
We multiply the first equation in (16) by sign(u), and integrate it by parts over (−1, 1) to
obtain

d

dt
||u||1 = −

∫ 1

−1
ϕ1 ∂x|u| dx−

∫ 1

−1
∂xϕ1 |u| dx

−
∫ 1

−1
sign(u) ∂xϕ u2 dx−

∫ 1

−1
ϕ ∂xu2 sign(u) dx

+ r

∫ 1

−1
(u1 E(u1)− u2 E(u2))) sign(u) dx

≤ ||∂xϕ||1 ||u2||∞ + ||∂xu2||1 ||ϕ||∞ + r ||u1 E(u1)− u2 E(u2)||1, (17)

since the first line in the right-hand side vanishes. Using the fact that u1 and u2 are
bounded by (15) and the embedding of W 1,1(−1, 1) in L∞(−1, 1) we estimate

||u1 E(u1)− u2 E(u2)||1 ≤ C ||u||1. (18)

Using (15), (18), and the continuous embedding ofW 1,1(−1, 1) in L∞(−1, 1) , (17) becomes

d

dt
||u||1 ≤ C ||∂xϕ||1 + C ||ϕ||∞ + C ||u||1. (19)

To complete the proof of Proposition 4.2, it remains to estimate ||∂xϕ||1 and ||ϕ||∞.

For x, y ∈ (−1, 1), we integrate the second equation in (16) to obtain

−ε
∫ x

y

∂2xϕ(z) dz +

∫ x

y

ϕ(z) dz =

∫ x

y

(∂xE(u1)− ∂xE(u2)) dz

−ε (∂xϕ(x)− ∂xϕ(y)) +

∫ x

y

ϕ(z) dz = [E(u1(x))− E(u2(x)) − E(u1(y)) + E(u2(y))].

Next we integrate the above equality with respect to y over (−1, 1) to obtain

∂xϕ(x) =
1

2 ε

∫ 1

−1

∫ x

y

ϕ(z) dzdy−1

ε
E(u1(x))+

1

ε
E(u2(x))+

1

2 ε

∫ 1

−1
(E(u1(y))−E(u2(y))) dy.

This gives

|∂xϕ(x)| ≤
||ϕ||1
ε

+
1

ε
|E(u1(x))− E(u2(x))| +

1

2 ε
||E(u1)− E(u2)||1.

Therefore

||∂xϕ||1 ≤ 2
||ϕ||1
ε

+
1

ε
||E(u1)−E(u2)||1 +

1

ε
||E(u1)− E(u2)||1.
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Since u1 and u2 are bounded and E ∈ C2(R) we obtain

||∂xϕ||1 ≤ 2
||ϕ||1
ε

+C
2

ε
||u||1. (20)

It remains to prove an L1 estimate to ϕ. For that purpose, we define, for i = 1, 2, the
function ψi ∈ L∞((0, T ),W 2,∞(−1, 1)) solution of

{

−∂2xψi(t, x) = ϕi(t, x), in (−1, 1)
ψi(t,±1) = 0.

(21)

We multiply the second equation in (16) by ψ = ψ1 − ψ2 and integrate it over (−1, 1) to
obtain

||ϕ||22 + ||∂xψ||22 =

∫ 1

−1
∂x (E(u1)−E(u2)) ψ dx

≤ ||E(u1)− E(u2)||1 ||∂xψ||∞ ≤ C ||u||1 ||∂xψ||∞.

By the continuous embedding of W 1,2(−1, 1) in L∞(−1, 1) and by (21), the previous
inequality reads

||∂xψ||W 1,2 ≤ C ||u||1
and

||ϕ||1 ≤ C ||ϕ||2 = C ||∂2xψ||2 ≤ C(||∂xψ||2 + ||∂2xψ||2) ≤ C ||u||1. (22)

Substituting (22) into (20), and by the continuous embedding of W 1,1(−1, 1) in L∞(−1, 1)
we obtain

||ϕ||∞ ≤ C ||∂xϕ||1 ≤ C ||u||1. (23)

Finally, we substitute (23) into (19) we obtain

d

dt
||u||1 ≤ C ||u||1 + r C ||u||1. (24)

Gronwall’s inequality applied to inequality (24) implies that the two solutions are identical,
which proves Proposition 4.2.

5 The bistable case: E(u) = (1− u)(u− a)

Let T > 0, the system (5) now reads















∂tuδ = δ ∂2xuδ − ∂x(uδ ϕδ) + r uδ (uδ − a)(1− uδ), in (0, T )× (−1, 1)

−ε ∂2xϕδ + ϕδ = (−2uδ + (a+ 1)) ∂xuδ, in (0, T )× (−1, 1)
∂xuδ(t,±1) = ϕδ(t,±1) = 0, on (0, T ),
uδ(0, x) = u0(x), in (−1, 1),

(25)
for some a ∈ (0, 1).
Thanks to Theorem 3.2, (25) has a unique global nonnegative solution in the sense of the
Definition 3.1.
Integrating (25) over (0, T ) × (−1, 1) and using the nonnegativity of uδ, we first observe
that

||uδ(t)||1 ≤ ||u0||1 + 2 r (1− a) T, for all t ∈ [0, T ]. (26)
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5.1 Estimates

Lemma 5.1. There is C1(T ) > 0 independent of δ such that

∫ T

0

(ε

2
||∂xϕδ||22 + ||ϕδ ||22 + 2 δ ||∂xuδ||22

)

dt ≤ C1(T ), for all t ∈ [0, T ] (27)

||uδ(t)||2 ≤ C1(T ), for all t ∈ [0, T ], (28)

and
∫ T

0
||ϕδ ||2∞ dt ≤ C1(T ) for all t ∈ [0, T ]. (29)

Proof. Multiplying the first equation in (25) by 2 uδ and integrating it over (−1, 1), we
obtain

d

dt

∫ 1

−1
|uδ|2 dx = −2 δ

∫ 1

−1
|∂xuδ|2 dx+2

∫ 1

−1
uδ ϕδ ∂xuδ dx+2 r

∫ 1

−1
u2δ E(uδ) dx. (30)

Multiplying now the second equation in (25) by ϕδ and integrating it over (−1, 1) we
obtain

ε

∫ 1

−1
|∂x ϕδ|2 dx+

∫ 1

−1
|ϕδ |2 dx = −2

∫ 1

−1
uδ ϕδ ∂xuδ dx+ (a+ 1)

∫ 1

−1
∂xuδ ϕδ dx. (31)

At this point we notice that the cubic terms on the right hand side of (30) and (31) cancel
one with the other, and summing (31) and (30) we obtain

d

dt
||uδ||22+ε ||∂xϕδ||22+ ||ϕδ ||22+2 δ ||∂xuδ||22 = 2 r

∫ 1

−1
u2δ E(uδ) dx+(a+1)

∫ 1

−1
∂xuδ ϕδ dx.

(32)
We integrate by parts and use Cauchy-Schwarz inequality to obtain

(a+ 1)

∫ 1

−1
∂xuδ ϕδ dx = −(a+ 1)

∫ 1

−1
uδ ∂xϕδ dx ≤ (a+ 1)2

2 ε
||uδ||22 +

ε

2
||∂xϕδ||22.

On the other hand, u2δ E(uδ) ≤ 0 if uδ /∈ (a, 1) so that

∫ 1

−1
u2δ E(uδ) dx ≤ 2 (1− a)

The previous inequalities give that

d

dt
||uδ||22 +

ε

2
||∂xϕδ||22 + ||ϕδ ||22 + 2 δ ||∂xuδ||22 ≤

(a+ 1)2

2 ε
||uδ||22 + 4 r (1− a).

Therefore, by a time integration, there exists C1(T ) such that (27) and (28) hold. By the
continuous embedding of W 1,2(−1, 1) in L∞(−1, 1) we obtain (29).

Lemma 5.2. There is C2(T ) > 0 independent of δ such that

||ϕδ(t)||2 ≤ C2(T ), for all t ∈ [0, T ]. (33)
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Proof. We define the function ψ ∈ L2
(

0, T ;W 2,2(−1, 1)
)

solution of

{

−∂2xψδ = ϕδ in (−1, 1)
ψδ(t,±1) = 0, in [0, T ).

(34)

Multiplying the second equation in (25) by ψδ and integrating it over (−1, 1) we obtain

−ε
∫ 1

−1
ϕδ ∂

2
xψδ dx−

∫ 1

−1
∂2xψδ ψδ dx = −

∫ 1

−1
E(uδ) ∂xψδ dx

ε ||∂2xψδ||22 + ||∂xψδ ||22 ≤ ||E(uδ)||1 ||∂xψδ||∞.

Using the embedding of W 1,2(−1, 1) in L∞(−1, 1) and the specific form (7) of E we obtain

||∂xψδ||W 1,2 ≤ C ||E(uδ)||1 ≤ C (1 + ||uδ||22). (35)

Using (34) and (28) the above inequation becomes

||ϕδ ||2 = ||∂2xψδ||2 ≤ ||∂xψδ||W 1,2 ≤ C. (36)

Lemma 5.3. For 0 < δ < 1, there exists C(T ) > 0 independent of δ such that

∂xϕδ(x) ≥ −4 ||ϕδ||∞ − (a+ 1)2

4 ε
−C(T ). (37)

Proof. For x, y ∈ (−1, 1), we integrate the second equation in (25) to obtain

−ε
∫ x

y

∂2xϕδ(z) dz +

∫ x

y

ϕδ(z) dz =

∫ x

y

(−2uδ + a+ 1) ∂xuδ dz

−ε (∂xϕδ(x)− ∂xϕδ(y)) +

∫ x

y

ϕδ(z) dz = −[u2δ(x)− u2δ(y)] + (a+ 1) (uδ(x)− uδ(y)).

Next we integrate the above equality with respect to y over (−1, 1) to obtain

−2 ε ∂xϕδ(x) = −
∫ 1

−1

∫ x

y

ϕδ(z) dzdy− 2 u2δ(x) + 2 (a+1) uδ(x) + ||uδ||22 − (a+1) ||uδ||1.

Since 1
ε
u2δ −

(a+1)
ε
uδ ≥ − (a+1)2

4 ε
, and

∫ 1

−1

∫ x

y

ϕδ(z) dzdy ≥ −
∫ 1

−1

∫ 1

−1
||ϕδ ||∞ dzdy ≥ −4 ||ϕδ ||∞,

it follows from (28) that

∂xϕδ(x) =
1

2 ε

∫ 1

−1

∫ x

y

ϕδ(z) dzdy +
1

ε
u2δ(x)−

a+ 1

ε
uδ(x)−

1

2 ε
||uδ||22 +

a+ 1

2 ε
||uδ ||1

≥ −2

ε
||ϕδ ||∞ − (a+ 1)2

4 ε
− C(T ).

We continue with estimates for the derivatives of uδ.
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Lemma 5.4. There is C3(T ) > 0 independent of δ such that

||∂xuδ(t)||1 ≤ C3(T ) for all t ∈ [0, T ]. (38)

Proof. We set gδ = ∂xuδ to simplify the notation, and differentiate the first equation in
(25) with respect to x. This yields

∂tgδ + ∂2x(uδ ϕδ)− r ∂x (uδ (1− uδ) (uδ − a)) = δ ∂2xgδ. (39)

We define an approximation of the sign function by σγ(z) = σ( z
γ
), 0 < γ ≪ 1, with σ

smooth and increasing, σ(0) = 0, and σ(z) = sign z for |z| > 1. Then, with absγ(z) =
∫ z

0 σγ(ξ) dξ, the convergence of absγ(z) to |z| as γ → 0 is uniform in z ∈ R.
Multiplying (39) by σγ(gδ) and integrating with respect to x yields

∫ 1

−1
σγ(gδ) ∂tgδ dx +

∫ 1

−1
σγ(gδ) [∂x(gδ ϕδ) + gδ ∂xϕδ + uδ ∂

2
xϕδ] dx

− r

∫ 1

−1
σγ(gδ) (−3 u2δ + 2 (a+ 1) uδ − a) gδ dx

= δ

∫ 1

−1
σγ(gδ) ∂

2
xgδ dx. (40)

Since
∫ 1

−1
σγ(gδ) ∂x(gδ ϕδ) dx = −

∫ 1

−1
σ′γ(gδ) ∂xgδ gδ ϕδ dx,

and
∫ 1

−1
σγ(gδ) ∂

2
xgδ dx = −

∫ 1

−1
(∂xgδ)

2 σ′γ(gδ) dx,

we obtain

d

dt

∫ 1

−1
absγ(gδ) dx −

∫ 1

−1
σ′γ(gδ) ∂xgδ gδ ϕδ dx

+

∫ 1

−1
σγ(gδ) gδ ∂xϕδ dx+

∫ 1

−1
σγ(gδ) uδ ∂

2
xϕδ dx

− r

∫ 1

−1
σγ(gδ) (−3 u2δ + 2 (a+ 1) uδ − a) gδ dx

= −δ
∫ 1

−1
(∂xgδ)

2 σ′γ(gδ) dx ≤ 0. (41)

The function fγ(z) = σγ(z) z − absγ(z) satisfies f ′γ(z) = σ′γ(z) z and converges to 0
uniformly in z ∈ R. We integrate the second term in (41) by parts and we use the second
equation in (25) in the fourth one to obtain

d

dt

∫ 1

−1
absγ(gδ) dx +

∫ 1

−1
fγ(gδ) ∂xϕδ dx+

∫ 1

−1
σγ(gδ) gδ ∂xϕδ dx

+
1

ε

∫ 1

−1
σγ(gδ) uδ (2uδ − a− 1) gδ dx

+
1

ε

∫ 1

−1
σγ(gδ) uδ ϕδ dx

≤ r

∫ 1

−1
σγ(gδ) (−3 u2δ + 2 (a+ 1) uδ − a) gδ dx. (42)
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Now, |gδ | ≥ σγ(gδ) gδ ≥ 0 and (2uδ − a− 1) ≥ 0 if uδ ≥ a+1
2 , so that

∫ 1

−1
σγ(gδ) uδ (2uδ − a− 1) gδ dx =

∫

uδ≥
a+1

2

σγ(gδ) uδ (2uδ − a− 1) gδ dx

+ 2

∫

0<uδ≤
a+1

2

u2δ σγ(gδ) gδ dx

− (a+ 1)

∫

0<uδ≤
a+1

2

σγ(gδ) gδ (uδ) dx

≥ −(a+ 1)2

2

∫

0<uδ≤
a+1

2

|gδ |dx

and thus
∫ 1

−1
σγ(gδ) uδ (2uδ − a− 1) gδ dx ≥ −(a+ 1)2

2

∫ 1

−1
|gδ | dx. (43)

Also, since −3 u2δ + 2 (a+ 1) uδ − a ≤ (a+1)2

2 and |gδ| ≥ σγ(gδ) gδ ≥ 0,

r

∫ 1

−1
σγ(gδ) (−3 u2δ + 2 (a+ 1) uδ − a) gδ dx ≤ r (a+ 1)2

2

∫ 1

−1
|gδ| dx. (44)

Passing to the limit γ → 0 in (42) the first term on the right-hand side vanishes. And it
follows from Lemma 5.3, (43), (44) and (26) that

d

dt

∫ 1

−1
|gδ | dx −

(

2

ε
||ϕδ ||∞ +

(a+ 1)2

4 ε
+ C2(T )

)
∫ 1

−1
|gδ | dx− (a+ 1)2

2 ε

∫ 1

−1
|gδ| dx

≤ ||uδ ||1
ε

||ϕδ ||∞ +
r (a+ 1)2

2

∫ 1

−1
|gδ| dx

≤ C(T )

ε
||ϕδ||∞ +

r (a+ 1)2

2

∫ 1

−1
|gδ | dx. (45)

Integrating (45) in time, and using (29) yield that there exists C3(T ) such that (38)
holds.

Lemma 5.5. There is C4(T ) > 0 independent of δ such that

||uδ(t)||∞ ≤ C4(T ) for all t ∈ [0, T ], (46)

and
||∂xϕδ(t)||∞ ≤ C4(T ) for all t ∈ [0, T ]. (47)

Proof. For all T > 0, (26) and Lemma 5.4 guarantee that

||uδ(t)||W 1,1 ≤ C(T ) for all t ∈ [0, T ]. (48)

Therefore, the continuous embedding of W 1,1(−1, 1) in L∞(−1, 1) implies that (46) holds.
On the other hand, Lemma 5.4, Lemma 5.2, (46) and the second equation in (25) ensure
that ∂xϕδ(t) is bounded in W 1,1(−1, 1) and by the continuous embedding of W 1,1(−1, 1)
in L∞(−1, 1) we get (47).

Lemma 5.6. There is C5(T ) > 0 independent of δ such that

||∂xuδ(t)||2 ≤ C5(T ) for all t ∈ [0, T ]. (49)
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Proof. Coming back to (39) , gδ = ∂xuδ satisfies

∂tgδ = −∂xgδ ϕδ − 2 gδ ∂xϕδ − uδ ∂
2
xϕδ + r ∂x (uδ (1− uδ) (uδ − a)) + δ ∂2xgδ. (50)

We multiply (50) by gδ and integrate it over (−1, 1) to obtain

1

2

d

dt
||gδ ||22 = −

∫ 1

−1
∂xgδ ϕδ gδ dx− 2

∫ 1

−1
|gδ|2 ∂xϕδ dx−

∫ 1

−1
uδ ∂

2
xϕδ gδ dx

+ r

∫ 1

−1
∂x (uδ (1− uδ) (uδ − a)) gδ dx+ δ

∫ 1

−1
∂2xgδ gδ dx.

We integrate by parts the last term of the right-hand side, and use the second equation in
(25) to obtain

1

2

d

dt
||gδ ||22 = −

∫ 1

−1
∂x(

|gδ |2
2

) ϕδ dx− 2

∫ 1

−1
|gδ|2 ∂xϕδ dx+

1

ε

∫ 1

−1
uδ (−ϕδ + E′(uδ) gδ) gδ dx

+ r

∫ 1

−1

(

−3 u2δ + 2(a+ 1)uδ − a
)

|gδ|2 dx− δ

∫ 1

−1
|∂xgδ|2 dx.

We integrate the first term in the right-hand side by parts and use Hölder inequality to
obtain

1

2

d

dt
||gδ ||22 =

∫ 1

−1

|gδ|2
2

∂xϕδ dx− 2

∫ 1

−1
|gδ|2 ∂xϕδ dx− 1

ε

∫ 1

−1
uδ ϕδ gδ dx

+
1

ε

∫ 1

−1
uδ (−2uδ + a+ 1) |gδ |2 dx+ r

∫ 1

−1

(

−3 u2δ + 2(a+ 1)uδ − a
)

|gδ|2 dx

≤ 3

2
||gδ||22 ||∂xϕδ||∞ +

1

ε
||uδ ||∞ ||ϕδ ||2 ||gδ||2

+
1

ε
||uδ (−2uδ + a+ 1)||∞ ||gδ ||22 + r || − 3 u2δ + 2(a+ 1)uδ − a||∞ ||gδ ||22.

Using (46), (47) and Young inequality we obtain

d

dt
||gδ||22 ≤ C ||gδ ||22 + C ||ϕδ ||22, (51)

it follows from (27) after integration that (49) holds.

Lemma 5.7. There is C6(T ) > 0 independent of δ such that

||∂tuδ(t)||2(W 1,2)′ ≤ C6(T ) for all t ∈ [0, T ], (52)

where (W 1,2)′ denotes the dual space of W 1,2.

Proof. Consider ψ ∈W 1,2(−1, 1) and t ∈ (0, T ). We have by the first equation in (25)

∣

∣

∣

∣

∫ 1

−1
∂tuδ ψ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

−1
[∂x (δ ∂xuδ − uδ ϕδ) + r uδ E(uδ)] ψ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

−1
(−δ ∂xuδ ∂xψ + uδ ϕδ ∂xψ + r uδ (1− uδ) (uδ − a) ψ) dx

∣

∣

∣

∣

≤ δ ||∂xψ||2 ||∂xuδ||2 + ||∂xψ||2 ||uδ ||∞ ||ϕδ ||2 + r ||uδ (1− uδ)(uδ − a)||2 ||ψ||2.
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Using (49), (46) and Lemma 5.2 we end up with

∣

∣

∣

∣

∫ 1

−1
∂tuδ ψ dx

∣

∣

∣

∣

≤ (δ + 1 + r) C(T ) ||ψ||W 1,2 ≤ C(T ) ||ψ||W 1,2

since 0 < δ < 1. A duality argument gives

||∂tuδ(t)||(W 1,2)′ ≤ C6(T ), t ∈ [0, T ]

and the proof of Lemma 5.7 is complete.

5.2 Convergence

In this section we discuss the limit of (uδ, ϕδ) as δ → 0. For that purpose, we study the
compactness properties of (uδ , ϕδ).

Proof of Theorem 2.1. Thanks to Lemma 5.6 and (27), (uδ)δ is bounded in
L∞

(

(0, T );W 1,2(−1, 1)
)

while (∂tuδ)δ is bounded in L∞
(

(0, T ); (W 1,2)′(−1, 1)
)

by Lemma 5.7.
SinceW 1,2(−1, 1) is compactly embedded in C[−1, 1] and C[−1, 1] is continuously embed-
ded in (W 1,2)′(−1, 1), it follows from [13, Corollary 4] that (uδ)δ is relatively compact in
C ([0, T ]× [−1, 1]). Therefore, there are a sequence (δj) of positive real numbers, δj → 0,
and u ∈ L∞

(

(0, T );W 1,2(−1, 1)
)

such that

uδj ⇀ u in L2
(

(0, T );W 1,2(−1, 1)
)

, (53)

and
uδj −→ u in C ([0, T ]× [−1, 1]) . (54)

Owing to Lemma 5.1 and Lemma 5.6, we may also assume that

ϕδj ⇀ ϕ in L2
(

(0, T );W 1,2(−1, 1)
)

as δj → 0, (55)

and
δj ∂xuδj −→ 0 in L2 ((0, T ) × (−1, 1)) as δj → 0. (56)

Owing to (53)-(56), it is straightforward to deduce from (25) that (u, ϕ) satisfies

∫ T

0
〈∂tu, ψ〉 dt =

∫ T

0

∫ 1

−1
(u ϕ ∂xψ + r u (1− u)(u− a) ψ) dx dt, (57)

and

ε

∫ T

0

∫ 1

−1
∂xϕ ∂xψ dxdt+

∫ T

0

∫ 1

−1
ϕ ψ dxdt =

∫ T

0

∫ 1

−1
(−2 u+ a+ 1) ∂xu ψ dxdt. (58)

for all test functions ψ ∈ C2 ([0, T ] × (−1, 1)). Since (u, ϕ) satisfies (57) and (58), then
(u, ϕ) is a weak solution of (9), (10) and (11). Recalling that u ∈ L∞

(

(0, T );W 1,2(−1, 1)
)

and ϕ ∈ L∞
(

(0, T );W 1,2(−1, 1)
)

by Lemma 5.5 and Lemma 5.6, we deduce from (57)
that ∂tu ∈ L2 ((0, T )× (−1, 1)) and from (58) that ϕ ∈ L∞

(

(0, T );W 2,2(−1, 1)
)

, so that
u solves (9) and (11) in the sense of Definition 4.1 with the regularity (15). By Proposi-
tion 4.2, such a solution is unique so that u is the only possible cluster point of (uδ)δ in
C ([0, T ]× [−1, 1]). Therefore, the whole family (uδ)δ converges to u in C ([0, T ] × [−1, 1])
as δ −→ 0.
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6 The monostable case, E(u) = 1− u

Let T > 0, system (5) now reads















∂tuδ = δ ∂2xuδ − ∂x(uδ ϕδ) + r uδ (1 − uδ) x ∈ (−1, 1), t > 0

−ε ∂2xϕδ + ϕδ = − ∂xuδ, x ∈ (−1, 1), t > 0
∂xuδ(t,±1) = ϕδ(t,±1) = 0 t > 0,
uδ(0, x) = u0(x) x ∈ (−1, 1),

(59)
Thanks to Theorem 3.2, system (59) has a unique global nonnegative solution in the sense
of Definition 3.1.
Unlike the previous case, it does not seem to be possible to begin the proof with an L∞(L2)
estimate on uδ. Nevertheless, there is still a cancellation between the two equations which
actually gives an L∞(L logL) bound on uδ and a L2 bound on ∂x

√
uδ as we shall see

below. Integrating (59) over [0, T ] × (−1, 1) and using the nonnegativity of uδ, we first
observe that,

||uδ(t)||1 ≤ ||u0||1 + 2 r t, for all t ∈ [0, T ]. (60)

6.1 Estimates

Lemma 6.1. There is C7(T ) > 0 independent of δ such that

∫ T

0

(

ε ||∂xϕδ||22 + ||ϕδ ||22 + 4 δ ||∂x
√
uδ||22

)

dt ≤ C7(T ), for all t ∈ [0, T ], (61)

∫ T

0
||ϕδ ||2∞ dt ≤ C7(T ), for all t ∈ [0, T ]. (62)

Proof. The proof goes as follows. On the one hand, we multiply the first equation in (59)
by (log uδ+1) and integrate it over (−1, 1). Since uδ (1−uδ) log uδ ≤ 0 and uδ (1−uδ) ≤ 1,

d

dt

∫ 1

−1
uδ log uδ dx = −

∫ 1

−1
(δ ∂xuδ − uδ ϕδ) (

1

uδ
∂xuδ) dx

+ r

∫ 1

−1
uδ (1− uδ) (log uδ + 1) dx

≤ −
∫ 1

−1

δ

uδ
(∂xuδ)

2 dx+

∫ 1

−1
ϕδ ∂xuδ dx+ 2 r. (63)

On the other hand, we multiply the second equation in (59) by ϕδ and integrate it over
(−1, 1) to obtain

ε

∫ 1

−1
|∂xϕδ|2 dx+

∫ 1

−1
|ϕδ|2 dx = −

∫ 1

−1
∂xuδ ϕδ dx. (64)

Adding (63) and (64) yields

d

dt

∫ 1

−1
uδ log uδ dx+ ε ||∂xϕδ||22 + ||ϕδ ||22 ≤ −4 δ

∫ 1

−1
|∂x

√
uδ|2 dx+ 2 r. (65)

Then, (61) is obtained by a time integration of (65). Finally, by the continuous embedding
of W 1,2(−1, 1) in L∞(−1, 1) we obtain (62).
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Lemma 6.2. For 0 < δ < 1, there exists C8(T ) > 0 independent of δ such that

∂xϕδ(x) ≥ −4 ||ϕδ ||∞ − C8(T ) for all t ∈ [0, T ]. (66)

Proof. For x, y ∈ (−1, 1), we integrate the second equation in (59) to obtain

−ε
∫ x

y

∂2xϕδ(z) dz +

∫ x

y

ϕδ(z) dz = −
∫ x

y

∂xuδ dz

−ε (∂xϕδ(x)− ∂xϕδ(y)) +

∫ x

y

ϕδ(z) dz = −[uδ(x)− uδ(y)].

Next we integrate the above equality with respect to y over (−1, 1) to obtain

−2 ε ∂xϕδ(x) = −
∫ 1

−1

∫ x

y

ϕδ(z) dzdy − 2 uδ(x) + ||uδ ||1.

Since
∫ 1

−1

∫ x

y

ϕδ(z) dzdy ≥ −4 ||ϕδ ||∞,

and uδ ≥ 0, it follows from (60) that

∂xϕδ(x) =
1

2 ε

∫ 1

−1

∫ x

y

ϕδ(z) dzdy +
1

ε
uδ(x)−

1

2 ε
||uδ||1

≥ −2

ε
||ϕδ ||∞ − C8(T ).

Lemma 6.3. There is C9(T ) > 0 independent of δ such that

||ϕδ(t)||2 ≤ C9(T ), for all t ∈ [0, T ]. (67)

Proof. The proof is similar to that of Lemma 5.2.

Now, we continue with estimates for the derivatives of uδ.

Lemma 6.4. There is C10(T ) > 0 independent of δ such that

||∂xuδ(t)||1 ≤ C10(T ) for all t ∈ [0, T ]. (68)

Proof. Differentiating the first equation in (59) with respect to x and setting gδ = ∂xuδ
yield

∂t(gδ) + ∂2x(uδ ϕδ)− r ∂x (uδ (1− uδ)) = δ ∂2xgδ. (69)

We define as in the bistable case an approximation of the sign function by σγ(z) = σ( z
γ
),

0 < γ ≪ 1, with σ smooth and increasing, σ(0) = 0, and σ(z) = sign z for |z| > 1. Then,
with absγ(z) =

∫ z

0 σγ(ξ) dξ, the convergence of absγ(z) to |z| as γ → 0 is uniform in z ∈ R.
Multiplying (69) by σγ(gδ) and integrating with respect to x yields

∫ 1

−1
σγ(gδ) ∂t(gδ) dx +

∫ 1

−1
σγ(gδ) [∂x(gδ ϕδ) + gδ ∂xϕδ + uδ ∂

2
xϕδ ] dx

− r

∫ 1

−1
σγ(gδ) (1− 2 uδ) gδ dx

= δ

∫ 1

−1
σγ(gδ) ∂

2
xgδ dx. (70)
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Since
∫ 1

−1
σγ(gδ) ∂x(gδ ϕδ) dx = −

∫ 1

−1
σ′γ(gδ) ∂xgδ gδ ϕδ dx

and

δ

∫ 1

−1
σγ(gδ) ∂

2
xgδ dx = −δ

∫ 1

−1
(∂xgδ)

2 σ′γ(gδ) dx

we obtain

d

dt

∫ 1

−1
absγ(gδ) dx −

∫ 1

−1
σ′γ(gδ) ∂xgδ gδ ϕδ dx

+

∫ 1

−1
σγ(gδ) gδ ∂xϕδ dx+

∫ 1

−1
σγ(gδ) uδ ∂

2
xϕδ dx

− r

∫ 1

−1
σγ(gδ) (1− 2 uδ) gδ dx

= −δ
∫ 1

−1
(∂xgδ)

2 σ′γ(gδ) dx ≤ 0. (71)

The function fγ(z) = σγ(z) z − absγ(z) satisfies f ′γ(z) = σ′γ(z) z and converges to 0
uniformly in z ∈ R. We integrate the second term in (71) by parts and we use the second
equation in (59) in the fourth one to obtain

d

dt

∫ 1

−1
absγ(gδ) dx +

∫ 1

−1
fγ(gδ) ∂xϕδ dx+

∫ 1

−1
σγ(gδ) gδ ∂xϕδ dx

≤ −1

ε

∫ 1

−1
σγ(gδ) uδ gδ dx− 1

ε

∫ 1

−1
σγ(gδ) uδ ϕδ dx

+ r

∫ 1

−1
σγ(gδ) (1− 2 uδ) gδ dx.

≤ 1

ε
||uδ ||1 ||ϕδ ||∞ + r

∫ 1

−1
|gδ| dx,

since uδ ≥ 0, 1−2uδ ≤ 1 and 0 ≤ σγ(gδ) gδ ≤ |gδ |. Passing to the limit γ → 0 in the above
inequality, the second term on the left-hand side vanishes. It follows from Lemma 6.2 and
(60) that

d

dt

∫ 1

−1
|gδ| dx −

(

2

ε
||ϕδ ||∞ +C8(T )

)
∫ 1

−1
|gδ| dx

≤ C(T )

ε
||ϕδ ||∞ + r

∫ 1

−1
|gδ| dx. (72)

Integrating (72) in time, and using (62) yield that there exists C10(T ) such that (68)
holds.

As in the previous section, we have the following consequence of Lemma 6.3 and
Lemma 6.4.

Lemma 6.5. There is C11(T ) > 0 independent of δ such that

||∂xϕδ(t)||∞ + ||uδ(t)||∞ ≤ C11(T ) for all t ∈ [0, T ]. (73)
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Lemma 6.6. There is C12(T ) > 0 independent of δ such that

||∂xuδ(t)||2 ≤ C12(T ) for all t ∈ [0, T ]. (74)

Proof. Since (73) holds, we argue as in the proof of Lemma 5.6 to obtain (74).

Lemma 6.7. There is C13(T ) > 0 independent of δ such that

||∂tuδ(t)||2(W 1,2)′ ≤ C13(T ) for all t ∈ [0, T ]. (75)

Proof. Consider ψ ∈W 1,2(−1, 1) and t ∈ (0, T ). We have by the first equation in (59)

∣

∣

∣

∣

∫ 1

−1
∂tuδ ψ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

−1
(−δ ∂xuδ ∂xψ + uδ ϕδ ∂xψ + r uδ (1− uδ) ψ) dx

∣

∣

∣

∣

≤ δ ||∂xψ||2 ||∂xuδ||2 + ||∂xψ||2 ||uδ ||∞ ||ϕδ ||2 + r ||uδ (1− uδ)||2 ||ψ||2.

Using Lemma 6.3, Lemma 6.5 and Lemma 6.6, we end up with

∣

∣

∣

∣

∫ 1

−1
∂tuδ ψ dx

∣

∣

∣

∣

≤ C(T ) ||ψ||W 1,2 ,

and a duality argument gives

||∂tuδ(t)||(W 1,2)′ ≤ C(T ), t ∈ [0, T ]

and the proof of Lemma 6.7 is complete.

6.2 Convergence

Proof of Theorem 2.2. Thanks to the previous analysis, the proof of Theorem 2.2 can then
be done as that of Theorem 2.1.
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conditions aux limites couplées. Annales de la Faculté des Sciences de Toulouse 5e
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