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Abstract. We consider a model of individual clustering with two specific reproduction
rates and small diffusion parameter in one space dimension. It consists of a drift-diffusion
equation for the population density coupled to an elliptic equation for the velocity of
individuals. We prove the convergence (in suitable topologies) of the solution of the
problem to the unique solution of the limit transport problem, as the diffusion coefficient
tends to zero.

1 Introduction

In [6], a model for the dispersal of individuals with an additional aggregation mechanism
is proposed. More precisely, the population density u(t, z) at location z € 2 where 2 is an
open bounded domain of RY, 1 < N < 3, and time ¢ > 0 solves the convection-diffusion
equation

Ou=9 Au—V - (uw)+ruE(u), (1)

where § > 0, » > 0 and F is the net rate reproduction per individual . This equation is
coupled to an elliptic equation for the velocity w which is assumed to be in the direction
of increasing E(u), say, of the form AVE(u) with A > 0. The evolution of the velocity w
is described by

—¢ Aw+w =\ VE(u), (2)

where ¢ > 0 and ¢ Aw is simply to smooth out any sharp local variation in VE(u) so that
w represents a local average of the velocity A VE(u).
We supplement (1) and (2) with no-flux boundary conditions

n-Vu=n-w=0, z€dN,t>0, (3)

as suggested in [6] where n is the outward normal of 9. In addition, in dimension 2
or 3, we impose the following additional condition given in [3, 4, 12] to guarantee the
well-posedness of the elliptic system (2)

Opw xn =0, xcd,t>0. (4)

As usual, v X w is the number vy wy + v wy if N = 2 and the vector field (vy w3 —
U3 Wo, —U] W3 + V3 Wi, V] wy — vy wy) if N = 3.

We are interested here in the case where the aggregation mechanism is dominant,
that is, the diffusivity ¢ is small. For biological models, this can change dramatically
the dynamical behaviour of the solutions, and might generate finite time blow-up such



as for the Keller-Segel system, see [11] for instance. Nevertheless, there are situation
for which the small diffusivity limit is somehow “stable”, including some models from
semiconductor physics, see Markowich and Szmolyan [8], and for the Keller-Segel system
with volume-filling effect, see [5, 10]. There, the authors prove the convergence, in the
small diffusivity limit, of the solutions of the parabolic systems to weak entropy solutions
of the corresponding hyperbolic systems. A related field of research which is currently
very active is the analysis of the so-called aggregation equation dyu+ div(K (u)) = 0 where
K is a nonlocal linear operator, see [7, 1], and the references therein.

Taking the case of small diffusivity as a motivation, we will study the system (1), (2), (3)
and (4), in the limit of vanishing diffusivity §. More precisely, given a sufficiently smooth
function E, parameters 0 € (0,1), € > 0 and r > 0, our aim in this paper is to investigate
the limit 6 — 0 of the following one dimensional system

dpus = 0 Ojus — 0u(us ws) + 7 us Eus), =€ (=1,1),¢t>0
— 0205 + s = 0.F(us), xe(=1,1),t>0 (5)
Orus(t, £1) = ps(t,£1) =0, t>0
u5(0,a:) = uO(aj)v x € (_171)‘
where E has two specific forms suggested in [6], namely
Eu)=1-u (6)
or
E(u)=(1—-u)(u—a), for someac (0,1). (7)

Given ug € W12(—1,1), the existence and uniqueness of a global solution of (5) have
been shown in [9], and the purpose of this paper is to prove that (us,¢s) converges to a
solution of the nonlocal transport problem

O = -0, (uyp)+ruE), ze(-1,1),t>0,

—02p+¢ = 0.E(u), x e (—1,1),t >0, 3
o(t,£1) = 0, t>0, ®)
u(0, z) = wo(x), x € (—1,1),

as the diffusion coefficient § approaches zero. This leads, in a natural way, to the existence
of a smooth solution of (8), the uniqueness being established in Proposition 4.2.

Our paper is organized as follows. In Section 2, we state the main results and focus
on the two specific forms of E suggested in [6]: the “bistable case” (7), see Theorem 2.1,
and the “monostable case” (6), see Theorem 2.2. In Section 3, we recall some results of
existence and uniqueness of a global solution of (5) obtained in [9]. Section 4 is devoted
to the uniqueness issue of smooth solutions of the transport problem (8). In Section 5,
we focus on the bistable case (7). We derive a priori estimates on (ug,¢s), which are
uniformly valid in J, and particularly we derive a lower bound for 9,5 and an L>(W11)
estimate on us which leads to an L®(W?2?) bound on us. these estimates imply, by a
compactness argument, the existence of accumulation points of any sequence (ug, ©s)s-
Thanks to Section 3, we conclude that the limit of (us,ps)s is unique, and the whole
family (us, p5) converges to the unique solution of (8) with E(u) = (1 — u)(u — a). In
Section 6, we analyse the limit 6 — 0 of (5) in the monostable case (6). This analysis is
quite similar to that of the previous case, except for the first estimate.



2 Main results

Throughout this paper, and unless otherwise stated, we assume that
5€(0,1), e>0,r>0.

In [9], the global existence and uniqueness of smooth solution of (5) are shown when F(u)
has the structure (6) or (7). Our first result gives the limit 6 — 0 in (5) in the bistable
case, that is when E(u) = (1 — u)(u — a) for some a € (0,1).

Theorem 2.1. Assume that ug is a nonnegative function in W1H2(—1,1) and E(u) =
(1 —u)(u—a) for some a € (0,1). Ford > 0, let us be the global nonnegative solution to
(5) given by Theorem 3.2 below. Then, for all T >0

lim ||us(t) —u(t)||c =0 for all t € (0,7,
0—0

where uw € C ([0,T]; L*(—1,1)) N L*> ((0,T); W'?(=1,1)) is the unique smooth solution of
the corresponding transport system
ou=—-0, (up)+ru(l—u(u—a), ze(-1,1),t>0, 9)
—edp+p=(—2ut+a+1)du, x€(-1,1),t>0 (10)
with boundary and initial conditions
o(t,£1) =0, for all ¢ >0, and u(0,2) = up(z), v € (—1,1). (11)

As a consequence of (11) no boundary conditions for u are needed.
The proof of the previous theorem is performed by deriving estimates which are uniformly
valid for 0 < 6 < 1. This proof starts with the suitable cancellation of the coupling
terms in two equations which gives an estimate for us in L>°(L?) and for s in L2(W12).
Then we derive a lower bound for 9,5 and an L>(W!) bound on us which leads to an
L>®(Wh2) bound on us. We will, by a compactness argument, show the convergence of ug
to the smooth solution of the transport system (9), (10) and (11).

Next, we turn to the monostable case, that is when E(u) = 1 — u, and we study the
limit 6 — 0.

Theorem 2.2. Assume that ug is a nonnegative function in WH2(—1,1) and E(u) =
(1 —wu). For § > 0 let us be the global nonnegative solution of (5) given by Theorem 3.2
below. Then, for all T > 0

lim ||us(t) — u(t)|[c =0 for all t € (0,7,
6—0
where u € C ([O,T]; L?(—1, 1)) N L ((O,T); Wh2(—1, 1)) 1s the unique smooth solution of
the following transport system,
ou=—-0, (up)+ru(l—u), ze(-1,1),t>0, (12)
—e o+ o=—0,u, ze(-1,1),t>0, (13)
with boundary and initial conditions
o(t,£1) =0, for all t >0, and u(0,z) = up(z), = € (—1,1). (14)

The proof of Theorem 2.2 follows the same lines as that of Theorem 2.1. As in
the bistable case, there is a cancellation between the two equations but it only gives
an L>®(Llog L) bound on us and an L?(W1?2) bound on ¢s.



3 Well-Posedness of (5)

We first recall the notion of solution to (5) to be used in this paper.

Definition 3.1. Let T > 0, E € C%(R), and an initial condition ug € WH2(—1,1) . For
0 <6 <1, a strong solution to (5) on [0,T) is a function

us € C ([0,7), W"?(-1,1)) N C ((0,T), W??(-1,1)),

such that
Opug = 0 0%us — Oz (us ps) + 1 us E(us), a.e. in [0,T) x (—1,1)
us(0, x) = up(z), a.e. in (—1,1)
Ous(t,£1) = 0, a.e. on [0,T),

where, for all t € [0,T), ¢s5(t) is the unique solution in W*2(—1,1) of

{ —e02ps5(t) + ps(t) = 0.E(us(t)) ae. in (—1,1)
ws(t, £1) = 0

We now recall the global existence theorem which is proved in [9], where E(u) is given
by (6) or (7).

Theorem 3.2. Assume that ug is a nonnegative function in W1’2(—1, 1),
and E(u) = (1 — u)(u — a) for some a € (0,1) or E(u) =1 —wu. Then (5) has a unique
global nonnegative solution u in the sense of Definition 3.1.

4 Uniqueness

In this section we prove the uniqueness of the solution of (8). Let us first give the definition
of the strong solution of (8).

Definition 4.1. Let T > 0, E € C*(R), and an initial condition ug € W12(—1,1) . A
strong solution on [0,T) to the transport system (8) is a function

ue C([0,T),L*(-1,1)) nC ((0,T),W"?(~1,1)),
such that

{ O = —0z(up)+ruE(), ae in0,T)x(-1,1)
u(0,z) = wo(x), a.e. in (—1,1),

where, for all t € [0,T), ¢(t) is the unique solution in W22(—1,1) of

{ —e2p(t) + o(t) = 0,F(u(t)) ae. in (—1,1)
o(t, £1) =0

The main result is contained in

Proposition 4.2. Assume that ug is a nonnegative function in WH?(—=1,1) and E €
C2(R). Then for all T > 0, there exists at most one solution u of (8) in the sense of
Definition 4.1, such that

ue L ((0,7),Wh'(=1,1)), and ¢ € L™ ((0,T); W">(-1,1)). (15)



Proof. Let us assume that there exist two different solutions u; and us to (8) corresponding
to the same initial conditions, and fix T" > 0. We put

(u7 SO) = (ul —U2,Y1 — 902)7 in [07T] X (_17 1)’

Then (u, ) satisfies

Oru = _a:c(u Sol) - 895(11/2 90) +rouy E(ul) — T U2 E(u2)7 in (O,T) X (_17 1)
—edp+¢ = E'(u1) Opur — E'(ug) Oyus, in (0,7) x (—1,1)
o(t, £1) =0 on (0,7)
u(0, ) = 0, in (—1,1).

(16)

We multiply the first equation in (16) by sign(u), and integrate it by parts over (—1,1) to
obtain

d 1 1
Gl = = [ v aulul o~ [ o u] do

1 1
= / sign(u) Oz ug dx —/ ¢ Ogug sign(u) dx
-1

-1

1
+ 7 /_1(u1 E(u1) —ug E(u2))) sign(u) dx

10zpll1 [Juzlloo + [[0zuallr [l¢lloo + 7 [lur E(ur) —uz E(ug)llr, (17)

IN

since the first line in the right-hand side vanishes. Using the fact that u; and uy are
bounded by (15) and the embedding of W1!(—1,1) in L>(—1,1) we estimate

[ur E(u1) —uz E(ug)|ly < C |lull;. (18)

Using (15), (18), and the continuous embedding of W11 (—1,1) in L>(—1,1) , (17) becomes

d
llulle < C IOzl + C lelleo + C [lull1. (19)
To complete the proof of Proposition 4.2, it remains to estimate ||0,¢||1 and ||¢||co-

For z,y € (—1,1), we integrate the second equation in (16) to obtain

- ) dz ' z)dz = ' 0, E(u1) — 0. E(u dz
o [Foter st [t [ @) - 0.50)
—¢ (Ozp(z) — Oup(y)) +/ p(z) dz = [E(ui(z)) — E(uz(z)) — E(u(y)) + E(uz(y))].

Next we integrate the above equality with respect to y over (—1,1) to obtain

1
Oupl 25/ / dZdy_‘ Eui(z ))J%E(W( ))+%/ (E(u1(y))—E(u2(y))) dy.

This gives

up@) < P4 2B ) — Blun(e)) + 5 1Bm) — Bws)].

Therefore

1 1
jonglly <2 B4 L jim) — B+ 2 11BGm) ~ Bl



Since u1 and uy are bounded and E € C%(R) we obtain
2
onglh <2 4 0 2y, (20)

It remains to prove an L! estimate to . For that purpose, we define, for i = 1,2, the
function v; € L>((0,T), W?>(—1,1)) solution of

{ _a:%wi(ta .’E)
;(t, +1)

(gii(t,m), in (—1,1) (21)

We multiply the second equation in (16) by ¢ = ¥; — 2 and integrate it over (—1,1) to
obtain

lel2 + 10013 = /a (u1) — E(uz))  da
< |1B(ur) - Buz)lln 110:%]]s0 < C Ilulls [10:9]loc.

By the continuous embedding of W12(—1,1) in L*°(—1,1) and by (21), the previous
inequality reads
10zl lwr2 < C fullx

and

el < C llellz = C [1879l]2 < C(10x¢ll2 + [1024112) < C [Jull1- (22)

Substituting (22) into (20), and by the continuous embedding of Wh1(—1,1) in L>(—1,1)
we obtain
lplloo < C I8zl < C [lulls- (23)

Finally, we substitute (23) into (19) we obtain
d
qellully < € llully + 7 C lulls- (24)

Gronwall’s inequality applied to inequality (24) implies that the two solutions are identical,
which proves Proposition 4.2. ]

5 The bistable case: F(u) = (1 —u)(u — a)

Let T > 0, the system (5) now reads

Opus =9 89%“6 - 896(“6 905) +7us (ZL5 - a)(l - U5), in (O,T) X (_17 1)
—c 2p5+ps = (—2us+ (a+1)) dyus, in (0,7) x (—1,1)
Bpus(t,£1) = g(t,£1) =0, on (0,7),
us (0, x) = wuo(x), in (—1,1),

(25)

for some a € (0,1).
Thanks to Theorem 3.2, (25) has a unique global nonnegative solution in the sense of the
Definition 3.1.
Integrating (25) over (0,7') x (—1,1) and using the nonnegativity of us, we first observe
that

Nus()|]1 <|uolli +27r (1 —a) T, foralltel0T]. (26)



5.1 Estimates
Lemma 5.1. There is C1(T") > 0 independent of § such that

T
9
| (5 ool + llosl +2 8 lowusllB) de < Co(), forall b€ 0,7) (21
0

[lus(t)||2 < C1(T), for all t € [0,T], (28)
and
T
/ sl 2 dt < C1(T) for all £ € [0,T]. (29)
0

Proof. Multiplying the first equation in (25) by 2 us and integrating it over (—1,1), we
obtain
1

d ! 1 1
T |ug|® dz = —2 (5/ |0,us)? dz+2 / us w5 Ogus de+2 7 / u} E(us) dz. (30)
-1 -1 -1 -1

Multiplying now the second equation in (25) by ¢s and integrating it over (—1,1) we
obtain

1 1 1 1
€ / |0 g05\2 dz +/ \gpg|2 dr = -2 / us s Ozus dx + (a + 1)/ Orus w5 dx. (31)
1 1 1 1

At this point we notice that the cubic terms on the right hand side of (30) and (31) cancel
one with the other, and summing (31) and (30) we obtain

1 1
u? E(us) dm+(a+1)/ Ozus s dx.
1 -1

(32)

d
sl I3+ 10upalI3-+110s1 3+2 6 110.0s] :2r/

We integrate by parts and use Cauchy-Schwarz inequality to obtain

1 (a+1)2

1
(a+1) / Opus s de = —(a + 1)/ ug Opips do < z—:
—1 —1

g
|us| |3 + 3 ||0x5]13-

On the other hand, u? E(us) <0 if us ¢ (a,1) so that
1
/ u} E(us) dz <2 (1 —a)
-1
The previous inequalities give that

(a+1)2

- llus||3+4 7 (1 —a).

d €
Sllusli3 + = 110005113 + sl +2 0 [19usl3 <

Therefore, by a time integration, there exists C;(T") such that (27) and (28) hold. By the
continuous embedding of W12(—1,1) in L>(—1,1) we obtain (29). O

Lemma 5.2. There is C2(T") > 0 independent of § such that

llos(t)|]l2 < Co(T), for all t € [0,T]. (33)



Proof. We define the function ¢ € L? (O, T, W22(-1, 1)) solution of

{ ~0%s = s L,1)

n (-1,
Ps(t,£1) = 0, in [O,T) (34)

Multiplying the second equation in (25) by s and integrating it over (—1,1) we obtain

< [wotwar [ guva = - [ B o a
e 103wl I3 + 10xvslls < [1E(us)ll1 1059s]|oo-
Using the embedding of W12(—1,1) in L°(—1, 1) and the specific form (7) of E we obtain
1025l lwrz < C || E(us)ll < C (1 + ||ug][3). (35)
Using (34) and (28) the above inequation becomes

llpsll2 = 1020sll2 < [10xsllwre < C. (36)

Lemma 5.3. For 0 < 6 < 1, there exists C(T") > 0 independent of 6 such that

(a+1)?

Oz ps(z) > —4 ||@s]|oo — e

—o(T). (37)

Proof. For z,y € (—1,1), we integrate the second equation in (25) to obtain

xT

ps(z) dz = / (—2us +a+1) Oyus dz
y y

—& (Oups() = Qaps(W)) + | ws(2) dz = —[uj(2) = u3(y)] + (a +1) (us(x) - us(y)).

Next we integrate the above equality with respect to y over (—1,1) to obtain

1 x
—2€3x906(96)=—/ / 8(z) dady — 2 ud(x) +2 (a+ 1) us(@) + |lug|l3 — (a+ 1) |[us| 1.
—1Jy

1,2 (atl)

- (a+1)?
Since U Uy > e

4¢e

1 x 1 1
// os(2) ddy > —/1/1|\soa|\oo dzdy > —4 [|9s]]oor

it follows from (28) that

and

1 a—+1 1 a+1
o) = 5= [ [ ey ey S — st ol + % Il
(a+1)2
> _Z o — —C(T).
> gl - L )
]

We continue with estimates for the derivatives of us.



Lemma 5.4. There is C3(T") > 0 independent of § such that
[|0zus(t)|]1 < C3(T) for all t € [0,T]. (38)

Proof. We set g5 = 0,us to simplify the notation, and differentiate the first equation in
(25) with respect to z. This yields

Ahgs + 0x(us s) — 1 O (us (1 — ug) (us — a)) = & O2gs. (39)

We define an approximation of the sign function by o,(z) = 0(2), 0 <y < 1, with ¢
smooth and increasing, o(0) = 0, and o(z) = sign z for |z| > 1. Then, with abs,(z) =
J5 04(€) d&, the convergence of abs,(z) to |z| as v — 0 is uniform in z € R.

Multiplying (39) by 0,(gs) and integrating with respect to x yields

1 1
/ o+(95) Orgs dz + / 0(9s) [02(gs @s) + g5 Ouips + us O2p5] da
—1 —1

1
- r/ 0,(gs) (=3 u2+2 (a+1) us—a) gs dr
-1

1
= 5 [ (o) s do (40)
—1
Since ) )
/ 0+(95) Ox(9s ps) dx = —/ 0’,(9s) 0xgs 95 ws du,
-1 —1
and . .
/ o4(gs) D2gs dx = —/ (0295)° 0’ (gs) d,
-1 -1
we obtain
d 1 1 ,
&/ abs,(gs) dr — / 0-(9s) Oxgs gs ws dx
—1 -1
1 1
+ / 0(95) 95 Orips dx +/ 04(95) us Daps da
-1 -1
1
- r/ o,(gs) (=3 uj +2 (a+1) us — a) gs dx
-1
1
= -4 / (0295)% 0%,(g5) dz < 0. (41)
—1
The function f,(z) = 0,(z) 2z — abs,(2) satisfies f;(z) = /() 2 and converges to 0

uniformly in z € R. We integrate the second term in (41) by parts and we use the second
equation in (25) in the fourth one to obtain

d 1 1 1
&/ abs,(gs) dz  + / f+(g5) Ovps dx +/ 0+(95) 95 Oxps dx
~1 —1 -1

1 1

+ 2wl ws us—a=1) g5 do
1 1

+ g/_l%(g&) us s dv

1
<[ o) (Buir2@rD - gdn (@)
-1



Now, |g5] > 0,(95) g5 > 0 and (2us —a — 1) > 0 if us > “*1 , so that

1
[ onlos) us (us—a—1) gy do - / oo(95) us (2us —a—1) gy da
1 s>atl
+ / u? 0.(g5) g5 dx
SL
- (a+ ) o+(95) g5 (us) dx
S +
a+1
> ! 5 )/ |gs|dx
O<us<ett
and thus . s
a+1
[ onton) us @us—a-1) gy o=~ [ g (13)
—1 —1

Also, since =3 uZ +2 (a+1) us —a < % and |gs| > o(95) 95 > 0,

1 r(a+1)2 1
P [ ontos) (-3 uE+2 @+ 1) us—a) g5 do < O [ gan g
-1 -1

Passing to the limit v — 0 in (42) the first term on the right-hand side vanishes. And it
follows from Lemma 5.3, (43), (44) and (26) that

d ! 2 a+1 ! a+1)? [
s = (Zliesle+ S v ) [ g o= S [ g

dt 4 ¢
U a+1
< MH@&HMQ/ 5] de
15 2
Cc(T a+1
< A0 gy + D [ g (45)

Integrating (45) in time, and using (29) yield that there exists C3(7T") such that (38)
holds. O

Lemma 5.5. There is C4(T") > 0 independent of § such that
[lus(t)||oo < Ca(T) for all t € [0,T], (46)

and
110205 (t)||oo < C4(T) for all t € [0,T). (47)

Proof. For all T > 0, (26) and Lemma 5.4 guarantee that
llus(t)| |11 < C(T) for all t € [0,T]. (48)

Therefore, the continuous embedding of W1(—1,1) in L>°(—1,1) implies that (46) holds.
On the other hand, Lemma 5.4, Lemma 5.2, (46) and the second equation in (25) ensure
that 0,s(t) is bounded in W11(—1,1) and by the continuous embedding of Wi1(—1,1)
in L*°(—1,1) we get (47). O

Lemma 5.6. There is C5(T) > 0 independent of § such that

[|0zus(t)|]2 < C5(T) for all t € [0,T]. (49)

10



Proof. Coming back to (39) , g5 = Oyus satisfies
Orgs = —0rgs ©5 — 2 gs Outps — us ooy +1 O (us (1 — us) (us — a)) + 6 drgs.  (50)
We multiply (50) by gs and integrate it over (—1,1) to obtain

1d

1 1 1
5 dt||g5||2 = — | 0x95 5 g5 dx — 2/ \95|% Oups da —/ us 0205 gs da
—1 —1 —1

1 1
4+ r / O (us (1 —us) (usg —a)) gs dv+9 / Q,%g(; gs dx.
-1 -1

We integrate by parts the last term of the right-hand side, and use the second equation in
(25) to obtain

1d 52 1 [t
sl = = [ 055y o2 [ oty do L [ ws (st B g5) 0
-1

+ 1"/ ( 3u5+2(a+1)u5—a) |g(;| da:—é/ |8gcg(;|2 dz.
-1

We integrate the first term in the right-hand side by parts and use Hélder inequality to

obtain
1 2 1 1
gs 1
H 5112 / lgs” Dpips da — 2/ |gs|* Orps da — —/ us @5 gs dx
2dt _1 €J

2
1 /1 1
+ g/ us (—2us +a+1) |gs|* de +r / (=3 uj +2(a+ us —a) |gs|* dx
-1 -1
3 1
< 5 llgsllz [19zpslloc + = lluslloo llesll2 [lgsl2

1
2 s (=2u5 +a+ Dlloo [lgsll3 + 7 || =3 ug +2(a + Dus — alloo [lgsll3.

Using (46), (47) and Young inequality we obtain

S llosl3 < € ool + € sl (1)
it follows from (27) after integration that (49) holds. O
Lemma 5.7. There is Cs(T") > 0 independent of § such that
10¢us(t)[[Fy1.20 < Co(T) for all ¢ € [0,T], (52)
where (W2 denotes the dual space of W2,

Proof. Consider ¢ € W12(—1,1) and t € (0,T). We have by the first equation in (25)

1
/ Orug W dx
-1

1

- /J&@@w—wmﬂwwEMMwm

1
= /1 (=0 Opus 020 + us 05 Opth + 1 us (1 — us) (us —a) ¥) dz

< O 10l [|10zusllz + 10:9l2 [uslloo [[wsll2 + 7 [lus (1= us)(us — a)ll2 {92

11



Using (49), (46) and Lemma 5.2 we end up with

1
‘/ Orugs Y dx
—1

since 0 < § < 1. A duality argument gives

<@+ 1+7) CT) [[Pllwre <CT) 9]l

||8tu5(t)||(W1,2)/ < Cg(T), te€]0,T]

and the proof of Lemma 5.7 is complete. O

5.2 Convergence

In this section we discuss the limit of (us,ps) as 6 — 0. For that purpose, we study the
compactness properties of (ug, @s)-

Proof of Theorem 2.1. Thanks to Lemma 5.6 and (27), (us)s is bounded in

L*> ((0,T); W'2(—1,1)) while (8yus)s is bounded in L> ((0,T); (W'?)'(—1,1)) by Lemma 5.7.
Since W12(—1,1) is compactly embedded in C[—1,1] and C[~1, 1] is continuously embed-
ded in (W12)/(—1,1), it follows from [13, Corollary 4] that (us)s is relatively compact in

C ([0,7T] x [-1,1]). Therefore, there are a sequence (d;) of positive real numbers, §; — 0,
and u € L* ((0,T); W"2?(—1,1)) such that

us, = u in L* ((0,T); W"?(-1,1)), (53)
and
us, — u in C([0,T] x [-1,1]). (54)
Owing to Lemma 5.1 and Lemma 5.6, we may also assume that
@5, — ¢ in L* ((0,7); Wh?(=1,1)) as §; — 0, (55)
and
8; Ozus, — 0in L* ((0,T) x (=1,1)) as §; — 0. (56)
Owing to (53)-(56), it is straightforward to deduce from (25) that (u, ) satisfies

T T 1
/O Oy, 1) dt:/O /_1(u<p8mw+ru(1—u)(u—a) ) de dt, (57)

and
T o1 T /1 T /1
€ / / Oz Ogtp dxdt +/ / Y Y dxdt = / / (=2 u+a+1) 0yu ¢ dxdt. (58)
0 J-1 0 J-1 0o J-1

for all test functions 1 € C?([0,7] x (—1,1)). Since (u, ) satisfies (57) and (58), then
(u, ) is a weak solution of (9), (10) and (11). Recalling that u € L> ((0,T); WH?(—1,1))
and ¢ € L= ((0,T); WH?(—1,1)) by Lemma 5.5 and Lemma 5.6, we deduce from (57)
that dyu € L? ((0,T) x (—1,1)) and from (58) that ¢ € L> ((0,T); W??(—1,1)), so that
u solves (9) and (11) in the sense of Definition 4.1 with the regularity (15). By Proposi-
tion 4.2, such a solution is unique so that u is the only possible cluster point of (us)s in
C ([0, T] x [-1,1]). Therefore, the whole family (ugs)s converges to v in C ([0,T] x [—1,1])
as 0 — 0. O
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6 The monostable case, F(u) =1—u

Let T > 0, system (5) now reads

Opus = 0 02us — Op(us o) +7 us (1 —us) x€(=1,1), t>0
— 85305 + @5 = — Ogug, xe(-1,1), t>0
Orpus(t,£1) = ps(t,£1) = 0 t >0,

u5(0,az) = UO(aj) VS (_171)7

(59)
Thanks to Theorem 3.2, system (59) has a unique global nonnegative solution in the sense
of Definition 3.1.
Unlike the previous case, it does not seem to be possible to begin the proof with an L>°(L?)
estimate on us. Nevertheless, there is still a cancellation between the two equations which
actually gives an L°°(Llog L) bound on us and a L? bound on 8,/us; as we shall see
below. Integrating (59) over [0,7] x (—1,1) and using the nonnegativity of us, we first
observe that,
lus(t)|]1 < |uo|l +2 r t, forallt €[0,T]. (60)

6.1 Estimates
Lemma 6.1. There is C7(T) > 0 independent of § such that

T
/ (e [10wspsll3 + [l@slls +4 6 [|0y/usll3) dt < Co(T), forallte[0,T],  (61)
0
T
/ sl 2 dt < Co(T), for all £ € [0,T]. (62)
0

Proof. The proof goes as follows. On the one hand, we multiply the first equation in (59)
by (log us+1) and integrate it over (—1,1). Since us (1—us) logus < 0 and us (1—us) < 1,

1 1
1
— us logus dv = —/ (0 Opus —ug @s) (— Opus) dx
dt 1 1 us

1
+ r/ us (1 —us) (logus + 1) dr
—1

1 1
< —/ 9 (Opus)? dx +/ o5 Ozug dx + 2 7. (63)
- 1

1 Us _

On the other hand, we multiply the second equation in (59) by s and integrate it over
(—=1,1) to obtain

1 1 1
5/ |8xg05|2 dx +/ |g05|2 dr = —/ Orus o5 dx. (64)
—1 -1 -1

Adding (63) and (64) yields
1

d 1
[ s togus da -+ < 10upsl§ + gl < — 5/ OuyTs2 dz 427 (65)
—1 -1

Then, (61) is obtained by a time integration of (65). Finally, by the continuous embedding
of W12(—1,1) in L>(—1,1) we obtain (62). O
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Lemma 6.2. For 0 <6 < 1, there exists Cs(T) > 0 independent of § such that
Opps() > —4 ||@slloo — Cs(T') for all ¢t € [0,T]. (66)

Proof. For z,y € (—1,1), we integrate the second equation in (59) to obtain

—€ / dz+/mg05(z) dz = —/w&cu(g dz
Y Y
e (Baps(®) — Ouips(y)) + / os(z) dz = —[us(x) — us(y)]
Y

Next we integrate the above equality with respect to y over (—1,1) to obtain

—2 ¢ Opp5(x //905 ) dzdy — 2 us(x) + ||us]]1-

1 T
/ / ps(2) dzdy > —4 [|95]]oos
—1Jy

and ug > 0, it follows from (60) that

Since

doose) = = [ [ st asay+ L us) - 5Ll
2e )1y € 2¢
> =2 |lpslloo — C(T)

]

Lemma 6.3. There is Cy(T") > 0 independent of § such that
llos(t)|]2 < Co(T), for all ¢t €[0,T]. (67)
Proof. The proof is similar to that of Lemma 5.2. O

Now, we continue with estimates for the derivatives of ug.

Lemma 6.4. There is C1o(T) > 0 independent of § such that
[|0pus(t)||1 < Cio(T') for all ¢t € [0,T]. (68)

Proof. Differentiating the first equation in (59) with respect to x and setting gs = Jyus
yield
01(g5) + 03 (us s) — 7 Ox (us (1= us)) = 6 D3gs. (69)

We define as in the bistable case an approximation of the sign function by o, (z) = o(%),
0<ykl, With o smooth and increasing, o(0) = 0, and o(z) = sign z for |z| > 1. Then,
with abs, (z) = [ 0-(£) d&, the convergence of abs,(z) to |z| as v — 0 is uniform in z € R.
Multlplylng (69) by 0,(gs) and integrating with respect to x yields

1 1
/ 0+(9s) O¢(g5) dz + / 0(95) [0:(95 ©s) + g5 Oups + us O2p5) da
—1 -1

1
- 7“/ o+(95) (1 =2 us) g5 dx

-1
1

= 6 [ o(gs) B2gs da. (70)
-1

14



Since

1 1
/ 0+(9s) 0x(gs ps) dx = —/ 0’,(95) 0zgs 95 s dx

-1 -1

and . .
5 [ ortan) g5 dn = =5 [ (@105 o409 do
—1 —1
we obtain
d 1 1
E/ abs,(gs) dz — / 0295 9s ps dx
-1
1
+ / oy(95) 95 Onips du +/ o (g5) us Ozps da
1 -1
1
- 7’/07 (1 —2ug) gs dz
= =4 / Dr95)? o’ (gs) dz < 0. (71)
The function f,(2) = 0,(2) 2z — abs,(z) satisfies f(2) = 0,(2) 2z and converges to 0

uniformly in z € R. We integrate the second term in (71) by parts and we use the second
equation in (59) in the fourth one to obtain

1 1 1
— / abs,(gs) do  + f+(g5) Ovps dx + / 0+(95) 95 Oxps dx
—1 -1 -1

1 [t 1 (!
——/ o+(9s) us gs dx — —/ o~(gs) us s dx
g J1 g J1

1
+ 7’/ oy(95) (1 =2 us) g5 dx.
1

1 1
= Husly eollos +7 [ ol da,

IN

since us > 0, 1 —2us < 1and 0 < 0,(gs5) g5 < |gs|- Passing to the limit v — 0 in the above
inequality, the second term on the left-hand side vanishes. It follows from Lemma 6.2 and
(60) that

1

9 1
dx — — 00 T d
G [ atae (el ca) [ ool as

(T !
< Djgsll+r [ ol to (72)
-1

Integrating (72) in time, and using (62) yield that there exists Cio(7") such that (68)
holds. O

As in the previous section, we have the following consequence of Lemma 6.3 and
Lemma 6.4.

Lemma 6.5. There is C11(T") > 0 independent of 6 such that

10z05(t) oo + [[us(t)|loo < C11(T)) for all t € [0,T7]. (73)
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Lemma 6.6. There is C12(T") > 0 independent of § such that
10zus(t)]]2 < Cr2(T) for all ¢ € [0,T]. (74)
Proof. Since (73) holds, we argue as in the proof of Lemma 5.6 to obtain (74). O
Lemma 6.7. There is C13(T) > 0 independent of § such that
|100us (0)|[Ey1.2y, < Cr3(T) for all ¢ € [0,T]. (75)

Proof. Consider ¢ € W2(—1,1) and t € (0,7). We have by the first equation in (59)

1
‘/ Orugs Y dx
-1

1
= '/ (=0 Opus Op® + us @5 00 + 1 us (1 —ug) ) de
1

< 010912 [|0zusll2 + 110292 |uslloo [l@sll2 + 7 [fus (1 —us)ll2 [[¢]l2-

Using Lemma 6.3, Lemma 6.5 and Lemma 6.6, we end up with

1
‘/ Orugs Y dx
-1

and a duality argument gives

< ) [[¥llwrz,

1Bus(t)]| w2y < C(T), ¢ €[0,T]

and the proof of Lemma 6.7 is complete. O

6.2 Convergence

Proof of Theorem 2.2. Thanks to the previous analysis, the proof of Theorem 2.2 can then
be done as that of Theorem 2.1. O
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