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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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IRIT - Université Toulouse 1 Capitole

2, rue du Doyen Gabriel Marty
Toulouse, France

patrick.taillandier@gmail.com

Serge Stinckwich
UMMISCO, UMI 209

IRD/IFI/Vietnam National University
CNRS, UMR 6072 GREYC

F-14032 Caen, France
serge.stinckwich@ird.fr

Abstract — The exploration of an unknown environment by a robot
system (an individual robot or a team of robots) is a well-studied
problem in robotics. This problem has many applications and, among
them, the post-disaster search of victims in an urban space. Most
of proposed exploration algorithms are based on the use of specific
criteria to define the quality of the possible movements. In this paper,
we propose an exploration approach based on the combination of
several criteria thanks to the PROMETHEE II multi-criteria decision
making method. The PROMETHEE II method allows one to establish
a complete ranking between possible movements based on outranking
relations. Experimental results show that this approach can be used to
effectively combine different criteria and outperforms several classic
exploration strategies.

Keywords: search and rescue robotics, exploration strate-
gies, multiple criteria decision making, PROMETHEE meth-
ods

I. INTRODUCTION

Improvement in robotics and in artificial intelligence has led
to imagining new applications for robots. One of them is the
use of robots for search and rescue operations during disasters.
Actually, in urban areas, most of the victims die during the
first 48 hours partly because they are not detected in time.
Moreover, the rescuers themselves face great dangers when
exploring the impacted sites.

The mapping task consists in constructing a spatial repre-
sentation of an unknown environment by robotic means. This
map is particularly useful during search and rescue operations
over a disaster area, where we want to search for points of
interest or victims. To construct this map, the robots must
move through the environment to acquire data. An exploration
strategy determines the future positions of robots when they
explore the environment. The aim of the exploration process
is to cover the whole environment in a minimum period of
time.

These algorithms are based on different criteria allowing the
robots to make the pertinent decisions concerning their next
displacement step. In this paper, we propose an exploration
approach based on the combination of these criteria. Our ap-
proach use the PROMETHEE II multi-criteria decision making

method in order to select the best decision the robots have
to make according to the context. In particular, our approach
allows to simply add context-specific criteria to improve the
exploration efficiency. In Section 2, the general context of our
work is introduced. Section 3 is devoted to the presentation of
the multi-criteria decision approach we propose to use. Section
4 present some experiments carried out. Section 5 concludes
and presents the perspectives of this work.

II. CONTEXT OF THE WORK

The definition of strategies for autonomous exploration of
unknown environments has been addressed by several works
in literature. Most of them are based on the Next-Best-View
(NBV) schema. In this family of algorithms, the exploration is
viewed as a sequence of two steps: a motion toward a location
and a new observation of the environment done by the robot at
this location. The location is chosen among a set of candidate
locations located on the frontier between free known space and
unexplored part of the environment. The first one to introduce
this approach was Yamauchi with his seminal work on frontier-
based exploration in 1998[1].

A. Criteria for NBV exploration strategies

In order to evaluate candidate locations p, a variety of
criteria for NBV-related exploration strategies has already been
proposed previously in literature:
• No criteria: the next location for observation is chosen in

a random way. This strategy might be useful as a bottom
line for comparison with other strategies.

• L(p) [1]: length of the minimum collision-free path to p.
• A(p) [2]: new information acquired from p and obtained

by simulating a perception from p.
• O(p) [3]: overlap between the current map and the area

visible from p. It evaluates the ease of robot localization
and is calculated as the length of the obstacle line
segments which are visible from p.

• P (p) [4]: probability that the robot will be able from p
to transmit information to the base station.



B. Combine Criteria

Some approaches use several of these criteria to combine
them in an ad hoc way in order to obtain more complex utility
functions. Most of the time, the result cannot be theoretically
justified (except for the ACG strategy). The criteria used are
not always of the same nature which makes them not easily
combinable. It is difficult in these conditions to add new
criteria.
• A(p) and L(p) are linearly combined in [5]:

u(p) = A(p)− βL(p)

• Gonzáles-Baños-Latombe (GBL) strategy[2] used a eval-
uation fonction defined on a candidate p as:

u(p) = A(p) ∗ exp(−λL(p))

where λ is a positive constant value. λ is a weight that
can be modified in order to adjust the cost of A versus
L. This formula is validated with experimental setup but
he is not well justified from a theoretical point of view.

• Amigoni-Caglioti-Galtarossa (ACG) strategy[6] is based
on the concept of relative entropy presented by the same
authors and theoretically founded in information theory.
This approach mixes the expected information of the
sensing activity and the distance travelled by the robot.

• Burgard strategy[7] is a probabilistic approach for multi-
robot exploration. This one used also the cost of moving
the robot to a location and the utility expected. The opti-
mal path from the current position to all frontier locations
used a variant of the ”value iteration” markov-decision
process algorithm. This non-deterministic approach tends
to favor candidate locations in open spaces rather than
narrow passages or obstacles.

Most approaches, however, do not consider the problem of
searching for interesting features (for example victims) inside
the environment, while doing the exploration.

More recently, researchers have proposed to combine cri-
teria with the help of MCDM (Multiple Criteria Decision
Making) framework, like the Choquet fuzzy integral [3], [4].
The main advantage of this approach is the possibility to
take into account relations between criteria like redundancy
or synergy explicitively.

III. APPROACH PROPOSED

As introduced in Section II, numerous strategies were
defined in literature for the robot exploration problem. In this
paper, we propose to follow the same general approach as
the one proposed by Basilico and Amigoni [3],[4] and to
use a multi-criteria decision making framework to combine
the different criteria. However, instead of using the Choquet
fuzzy integral, we propose to use the alternate PROMETHEE
II method to make decision.

This section is organized as follows. In section III-A, we
first describe state of the art of multi-criteria decision making
methods. Section III-B is dedicated to the presentation of
the multi-criteria decision making method that we propose

to use, the PROMETHEE II method. Section III-C presents
an example of use of the PROMETHEE II method with
some well-known criteria. Finally section III-D compare our
approach to the one proposed by Basilico and Amigoni [4].

A. State of the art of multi-criteria decision making methods

In literature, multi-criteria decision making methods are
[8] classifies in three groups. The first one, called partial
aggregation approaches, consists in comparing the different
possible decisions per pair by the means of outranking re-
lations [9], [10]. The second family of approaches, called
complete aggregation approaches, consists in aggregating all
criteria in a single criterion (utility function) which is then
used to make the decision [11], [12], [13]. The last family of
approaches, which is highly interactive, consists in devising a
preliminary decision and in comparing it with other possible
decisions to determine the best one [14], [15].

In this paper, we propose to use the PROMETHEE II
method. This method is based on partial aggregation: all
possible decisions are compared to each other by pair and
ranked. It is then possible to select a priori best decision.

PROMETHEE II method is particularly well-fitted in our
case, because it allows to make a decision from incomparable
criteria. Thus, it is possible to use criteria that are not directly
comparable to characterise a decision: for example, a time
criterion and a distance one. Compare to the well-established
ELECTRE decision making method (also based on partial
aggregation), the PROMETHEE II method is easier to use
and allow to get more robust results [16].

B. The PROMETHEE II method

PROMETHEE II (Preference Ranking Organization Method
for Enrichment Evaluations) has been used with success to
solve many problems [17]. This method is based on a com-
parison pair per pair of possible decisions along each criterion.
Possible decisions are evaluated according to different criteria,
which have to be maximised or minimised. The use of the
PROMETHEE II method requires two additional types of
information for each criterion: a weight and a preference
function.

The preference function characterises the difference for a
criterion between the evaluations obtained by two possible
decisions into a preference degree ranging from 0 to 1. In order
to ease the definition of these function, six basic preference
functions have been proposed in [18].

The decision making process by the PROMETHEE II
method is composed of four steps that are detailed hereafter.

Step 1 This step computes for each pair of possible deci-
sions and for each criterion, the value of the preference degree.
Let gj(a) be the value of a criterion j for a decision a. We
note dj(a, b), the difference of value of a criterion j for two
decisions a and b.

dj(a, b) = gj(a)− gj(b) (1)



Pj(a, b) is the value of the preference degree of a criterion
j for two decisions a and b. The preference functions used to
compute these preference degrees are defined such as:

Pj(a, b) = F (dj(a, b)) with ∀x ∈]−∞,∞[ , 0 ≤ F (x) ≤ 1
(2)

Step 2 This step consists in aggregating the preference
degrees of all criteria for each pair of possible decisions.
For each pair of possible decisions, we compute a global
preference index. Let C be the set of considered criteria and wj

the weight associated to the criterion j. The global preference
index for a pair of possible decision a and b is computed as
follows:

π(a, b) =
∑
j∈C

wj × Pj(a, b) (3)

Step 3 The third step, which is the first that concerns the
ranking of the possible decisions, consists in computing the
outranking flows. For each possible decision a, we compute
the positive outranking flow φ+(a) and the negative outranking
flow φ−(a). Let A be the set of possible decisions and n the
number of possible decisions. The positive outranking flow of
a possible decision a is computed by the following formula:

φ+(a) =
1

n− 1

∑
x∈A

π(a, x) (4)

The negative outranking flow of a possible decision a is
computed by the following formula:

φ−(a) =
1

n− 1

∑
x∈A

π(x, a) (5)

Step 4 The last step consists in using the outranking flows
to establish a complete ranking between the possible decisions.
The ranking is based on the net outranking flows. These are
computed for each possible decision from the positive and
negative outranking flows. The net outranking flow φ(a) of a
possible decision a is computed as follows:

φ(a) = φ+(a)− φ−(a) (6)

The higher the value of the net outranking flow for a
decision, the better the decision is. In our application context
where we are only interested in the best decision to make, we
will choose the decision that maximises the net outranking
flows.

C. Example of use of the PROMETHEE II method

As an illustration on how to apply Promethee II method to
the exploration problem, we present examples of preference
functions that can be used for the three main criteria defined
in [4].
• L(p): length of the minimum collision-free path to p.

This preference function (see figure 1) is defined in such
a way as small variations of L are not very important
to determine if a location is better than another one,
whereas big differences are discriminatory. For example,
if a location is at 20m to the robot and another one at
19.5m, the difference of value will have a very slight

Fig. 1. Preference function for the L criterion. Let C1 and C2 be two
candidate locations, dL(C1, C2) = L(C2)− L(C1)

Fig. 2. Preference function for the A criterion. Let C1 and C2 be two
candidate locations, dA(C1, C2) = A(C1)−A(C2)

impact on the assertion that the first location is better than
the second one. However, if the difference is superior to
10m, then the closest location has strong chance to be
declared better than the second location.

• A(p): new information acquired from p and obtained by
simulating a perception from p. Figure 2 presents the
preference function defined. This function is defined in
such a way that small variations of A has no importance
to determine if a location is better than another one. This
criterion begins to be accounted only when the difference
of value is higher than a given threshold value (10m2).

• P (p): probability that the robot, once reached p, will
be able to transmit information. Figure 3 presents the
preference function defined. This function is very similar
to the one defined for the previous criterion. It is defined
in such a way as small variations of P have no importance
to determine if a location is better than another one. This
criterion begins to be accounted only when the difference
of value is higher than a given threshold value (0.5).

D. Comparison with the Basilico and Amigoni approach

We share with Basilico and Amigoni approach [3],[4] the
same objective: to propose a general approach allowing to
easily and robustly integrate new criteria in the candidate
location selection.

However, the methods proposed for the decision making
differ: the method we propose is based on partial aggregation
(PROMETHEE II) and Basilico and Amigoni approach is
based on complete aggregation (Choquet fuzzy integral). In
the context of the Basilico and Amigoni approach, the value
of a criterion has a direct influence on the general quality of a



Fig. 3. Preference function for the P criterion. Let C1 and C2 be two
candidate locations, dP (C1, C2) = P (C1)− P (C2)

possible location (its utility). In the context of our approach,
this influence is indirect: it is the difference of the criterion
value between two candidate locations that has a direct impact
on the final decision.

The advantage of our approach is to take into account the
fact that for some criteria the impact of the criterion difference
value is non-linear. Section III-C gives examples of criteria of
this kind.

One of the main advantages of the Basilico and Amigoni
approach is its clarity: the criterion value has a direct impact on
the final decision. This clarity can make this approach easier to
use. A second advantage of the Basilico and Amigoni approach
is that it allows one to take into account the redundancy of
the criteria.

To sum up, both approaches can be relevant depending on
the set of criteria used to make the decision. If some criteria
require considering the fact that the impact of their difference
value is non-linear, our approach is more relevant. If it is not
the case or if many criteria are redundant, then the Basilico
and Amigoni approach is more relevant.

IV. EXPERIMENTAL EVALUATION

A. Experimental context

1) General context: In order to validate our approach,
we propose to compare it with several known exploration
strategies. In this context, we propose to compare the travelled
distance necessary for each strategy to cover 90% of the
total free area of several environments. The choice of this
percentage (which is similar to the percentage used in [3])
reflects the fact that the last explored 10% is usually composed
of corners and minor features of the environment that does not
contribute significantly in evaluating strategies.

The experiments were carried out with the GAMA sim-
ulation platform [19]. This platform provides a complete
modelling and simulation development environment for build-
ing spatially explicit multi-agent simulations. In particular,
it integrates many built-in algorithms concerning the multi-
criteria decision making.

2) Robot characteristics: For the purpose of our experi-
ments, we assume that the robot used is holonomous and is
equipped with a laser range finder sensor. For the sake of

Fig. 4. Open environment used for the experiments

Fig. 5. Clustered environment used for the experiments

simplicity, we also assume that the robot location is known
from the beginning to the end of the mission. The sensor
acquire 360◦ range date with a resolution of 0.5◦ and a range
of 5m. The speed of the robot is 0.5m.s−1.

3) Tested environments: In order to evaluate the different
exploration strategies, we choose to use two different en-
vironments already used by [3]. They represent two usual
exploration scenarios:

1) Open environment (Figure 4). The total area is approx-
imatively 10000m2

2) Clustered environment (Figure 5). The total area is
approximatively 15000m2

B. Tested strategies

Here is the list of the tested strategies:
1) DistMin: selection of the candidate that minimizes L(p).
2) GBL: strategy proposed by Gonzales-Banos and

Latombe [2]. Tested with lambda = 0.2 (the same value
reported in the original paper [2]).

3) MCDM BA: strategy proposed by Basilico and
Amigoni [4]. Tested with the three criteria defined in
Section III-C and the weights found in the paper [4]:

Criteria Weigth
L 0.3
A 0.5
P 0.2
A, L 0.95
A, P 0.7
L, P 0.4



Fig. 6. Results for the open environment. X-axis: travelled distance; Y-axis:
percentage of covered area

4) Promethee: Tested with the three criteria defined in
Section III-C (with the same value for the thresholds).
Tested with the following weigths:

Criterion Weigth
L 0.6
A 0.3
P 0.1

The weights were assigned manually. We chose to assign
more importance to L than to A and P in order to limit
back-and-forth movements. Concerning the two other
criteria, we chose to assign more importance to A than
to P in order to push the robot to discover new areas,
even if risking a loss of communication.

C. Results

1) Open environment: The results obtained with the dif-
ferent exploration strategies are presented Figure 6. It corre-
sponds to the average results obtained after 10 simulations.

We can observe that the best results were obtained with the
PROMETHEE strategies (1208m travelled to cover 90% of
the total free area). MCDM BA and GBL strategies obtained
close results, but not quite as good (respectively, 1244m and
1270m travelled to cover 90% of the total free area). The
DistMin strategy obtained bad results in comparison to the
other strategies (more than 1600m travelled to cover 90% of
the total free area).

Figure 7 shows the path followed by the robot for the
open environment while using the PROMETHEE exploration
strategy.

2) Clustered environment: The results obtained with the
different exploration strategies are presented Figure 8. It cor-
responds to the average results obtained after 10 simulations.

We can observe that the best results were obtained with the
PROMETHEE and the GBL strategies (respectively, 2961m
and 3032m travelled to cover 90% of the total free area), the
worse results with the DistMin strategy (more than 3200m

Fig. 7. In red: the path followed with the PROMETHEE strategy for the
open environment

Fig. 8. Results for the clustered environment. X-axis: travelled distance;
Y-axis: percentage of covered area

travelled to cover 90% of the total free area). The MCDM BA
strategy obtained results close to the DistMin strategy (3142m
travelled to cover 90% of the total free area).

Figure 9 shows the path followed by the robot for the clus-
tered environment while using the PROMETHEE exploration
strategy

D. Conclusion about the experiments

We can observe that the best results were obtained with the
PROMETHEE strategy. The GBL and MCDM BA strategies
allowed to obtain good result. The results obtained with
the DistMin strategy were the worst for both environments.

Fig. 9. In red: the path followed with the PROMETHEE strategy for the
clustered environment



To conclude, these experiments show that our approach is
very effective and permits us to get very good exploration
results. Moreover, one of the other advantages of our approach
(and of the MCDM BA strategy) is that it is based on a
well-established multi-criteria decision making framework that
allows easy addition of new criteria.

V. CONCLUSION

In this paper, we proposed an new approach to combine
several criteria to select the best candidate location for NBV
exploration algorithms thanks to the PROMETHEE II multi-
criteria decision making method. Experimental result show
that our approach can allow to obtain better results than classic
NBV approaches such as GBL [2] and close to other MCMD
work [4].

An important issue when using a multi-criteria decision
making method concerns their parametrization. In fact, the
quality of the decision making is directly linked to the rel-
evance of the values chosen for the parameters. It is thus
important to choose relevant parameter values. Several works
propose approaches to elicit parameters values. In our context,
an approach based on Machine Learning such as the one
proposed by [20] seems to be very suitable.

A perspective would be to test other multi-criteria decision
making methods. Indeed, in this paper, we propose to use
the PROMETHEE II method, which is well-suited for our
problem. However, other methods such as the ones based on
the Dempster-Shafer theory [21] (e.g. the one proposed in
[22]) could also be used.

Another perspective of this work would be to define new
criteria. In particular, criteria specially dedicated to rescue
mission. For example, it could be interesting to take into
account information such as the type of buildings in the area
(e.g. during the night, most of the disaster victims are located
in residential areas).
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[2] H. H. Gonzáles-Baños and J.-C. Latombe, “Navigation strategies for
exploring indoor environments,” International Journal of Robotics Re-
search, vol. 21, no. 10-11, pp. 829–848, 2002.

[3] N. Basilico and F. Amigoni, “Exploration strategies based on multi-
criteria decision making for an autonomous mobile robot,” in Proceed-
ings of the European Conference on Mobile Robots (ECMR), pp. 259–
264, 2009.

1French Ministry of Foreign Affairs/INRIA/CNRS/IRD

[4] N. Basilico and F. Amigoni, “Exploration strategies based on multi-
criteria decision making for search and rescue autonomous robots,” in
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pp. 99–106, 2011.

[5] C. Stachniss and W. Burgard, “Exploring unknown environments with
mobile robots using coverage maps,” in Proceedings of the International
Conference on Artificial Intelligence (IJCAI), 2003.

[6] F. Amigoni, V. Caglioti, and U. Galtarossa, “A mobile robot mapping
system with an information-based exploration strategy,” in Proceedings
of the International Conference on Informatics in Control, Automation
and Robotics (ICINCO 2004), pp. 71–78, 2004.

[7] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp. 376–386, 2005.
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