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Nonlinearity Detection in Hyperspectral Images
Using a Polynomial Post-Nonlinear
Mixing Model

Yoann Altmann,Student Member, IEEENicolas DobigeonMember, IEEE
and Jean-Yves Tournere&denior Member, IEEE

Abstract—This paper studies a nonlinear mixing model as explained in [6], the linear mixing model (LMM) can be
for hyperspectral image unmixing and nonlinearity detection. inappropriate for some hyperspectral images, such as those
The proposed model assumes that the pixel reflectances areqqntaining sand, mineral mixtures, trees or vegetation areas.
nonlinear functions of pure spectral components contaminated . - . : - .
by an additive white Gaussian noise. These nonlinear functions Nonlinear m|X|ng mpdels PfO,V'O,'e gn interesting alternative
are approximated by polynomials leading to a polynomial for overcoming the inherent limitations of the LMM. Some
post-nonlinear mixing model. We have shown in a previous nonlinear models have been proposed in the literature to
paper that the parameters involved in the resulting model can be handle specific kinds of nonlinearity. For instance, the
estimated using least squares methods. A generalized likelihood bidirectional reflectance-basenodel studied in [7] has been

ratio test based on the estimator of the nonlinearity parameter . trod d for intimat it The i L del
is proposed to decide whether a pixel of the image results from introduced for inuimate mixtures. e linear mixing moade

the commonly used linear mixing model or from a more general assumes that the components present in a given pixel are
nonlinear mixing model. To compute the test statistic associated sitting side-by-side, leading to an observation that is the sum

with the nonlinearity detection, we propose to approximate of the individual contribution beach material. Conversely,
the variance of the estimated nonlinearity parameter by its intimate mixtures occur when the photons are interacting

constrained Cramér—Rao bound. The performance of the ith all th terials simult | hich h
detection strategy is evaluated via simulations conducted on with a € matenals simultaneously, which can occur when

Synthetic and real data. More precisely7 Synthetic data have the mate“als are not Spat'a”y dIStIngUIShab|e fOI’ II’lStance
been generated according to the standard linear mixing model This kind of mixtures if often associated with sand or mineral
and three nonlinear models from the literature. The real data areas. The bilinear models recently studied in [8]-[11] mainly
investigated in this study are extracted from the Cuprite image, fqcys on scattering effects, e.g., observed in vegetation areas.
which shows that some minerals seem to be nonlinearly mixed Radial basis functi t, K ' 121 13 d K l-based
in this image. Finally, it is interesting to note that the estimated adia aS|s. un.c ion networks [12], [13] an. erne— ase
abundance maps obtained with the post-nonlinear mixing Models studied in [14]-[17] have also been investigated for
model are in good agreement with results obtained in previous nonlinear SU.
studies. This paper considers a specific nonlinear model studied
Index Terms— Constrained Cramér—Rao bound, nonlinearity in [18] for nonlinear SU and referred to as polynomial
detection, post-nonlinear mixing model (PPNMM), spectral post-nonlinear mixing model (PPNMM). The PPNMM
unmixing (SU). belongs to the wide class of post-nonlinear mixing models
introduced in [19], [20] for source separation problems.
I. INTRODUCTION It is a flexible generalization of the standard LMM that can

STIMATING the macroscopic materials (endmemberﬁccuratew model many different nqnlinearities. The PPNMM

present in a hyperspectral image as well as thdi@S thg nice property to bg claaterl_zed by few parameters.
proportions (abundances) in each pixel of the scene is Ip particular, its nonlinearity part |s_gov§rned by a single
prime interest when analyzing hyperspectral images. md&al parameter referred to as nonhngarlty para_lmeter. The
spectral unmixing (SU) strategies used for endmember ap@rameters of the PPNMM can be estimated using standard
abundance estimation assume that the pixel reflectances Bg¥esian or least squares (LS) methods (see [18] for details).

linear combinations of the endmembers [1]-[5]. However, MOSt existing unmixing algorithms can be decomposed into
two steps. The first step is an endmember identification using

all pixels of the image. In the last decades, many endmember
extraction algorithms (EEASs) have been developed to identify
the pure spectral components contained in a hyperspectral
image. Geometrical approaches can be used to select the purest
The authors are with the IRIT/NP-ENSEEIHT/TESA, University ofPIXelS Of the image. The VCA algorithm [21] used in this paper
Toulouse, Toulouse 31071, France (aim yoann.altmann@enseeiht.fr; belongs to this class of EEAs. This algorithm is known to be
nicolas.dobigeon@enseeiht.fr; jegwes.tourneret@enseeiht.fr). robust to the presence of weak nonlinearities in the image [11].
Other geometrical algorithms are based on the minimization
of the volume containing the data, which allows the absence



of pure pixels to be mitigated. Finally, non-geometrical EEAsrder polynomial functiorgy(-) defined by
based on statistical approaches and sparse regression have also

received a considerable attention in the literature. The reader O : [0,1]" — R
is invited to consult [22] for a recent review of these methods. X1+ bxf
After estimating the endmembers, we propose to estimate the X
abundances, the nonlinearity parameter and the noise variance oo
of the PPNMM using the subgradient method of [18]. XL +bx{
This paper addresses the problem of determining whethgg, , _ [X1,...,%x ]T. An interesting property of the

an observed pixel of an hyperspectral image is a linear Qlq,1ting PPNMM is that it reduces to the classical LMM
nonlinear function of endmembers using the PPNMM. No®. v = o Another motivation for using the PPNMM is
that the issue of nonlinearity detection in hyperspectral imaggs, \wejerstrass approximation theorem which states that any
has already been adressed in [23] to detected nonlinear aig&sinuous function defined on a bounded interval can be
in observed scenes using surrogate data. One of the M@skormiy approximated by a polynomial with any desired
interesting properties of .the PPNMM is that it general'zeﬁrecision [24, p. 15]. As explained in [9], it is reasonable
the LMM thanks to a unique nonlinearity parameter whosg consider polynomials with first and second order terms
value characterizes the nonlinearity in the considered p'xgince higher order terms can generally be neglected) which

In particular, when the nonlinearity parameter equals zef@gys g the following mixing model (for a given pixel of the
the resulting mixing model is linear. Consequently, it SeeM$age)

natural to use this parameter for deriving new nonlinearity

detectors. It is precisely the objective of this paper which y = g, (Ma) + n = Ma + b(Ma) © (Ma) +n 2)

is organized as follows. Section Il introduces the PPNMM

for hyperspectral image unmixing. Section Il derives th&shere® denotes the Hadamard (term-by-term) product. Note
statistical test for nonlinearity tkection based on the parametethat the resulting PPNMM includes bilinear terms such as
estimators provided by the LS unmixing procedure. Section IMose considered in [8]-[11]. However, the nonlinear terms
studies the constrained Cramér—Rao lower bou@RRLBs) are characterized by a single amplitude parambtewhich

of the PPNMM parameter estimators. These bounds will Iségnificantly simplifies the analysis.

used to approximate variance of the nonlinearity parameterDue to physical considerations, the abundance veator
estimator yielding an approximated test statistics for nonlisatisfies the following positivity and sum-to-one constraints
earity detection. Simulation results conducted on synthetic data R

are finally shown in Section V. Zaf =1 a >0 VvVre{l ...,R}. 3
r=1

Moreover, it has been shown in [18] that the PPNMM is

This section introduces the nonlinear mixing model usegbnera| enough to handle a wide class of nonlinear models.
for nonlinearity detection in hyperspectral images and the

associated estimation algorithm.

Il. POLYNOMIAL POST-NONLINEAR MIXING MODEL

B. Parameter Estimation

A. PPNMM Model The PPNMM parameters can lestimated by minimizing
The L-spectrumy = [y1,..., V1T of a mixed pixel is the following LS criterion
generally defined as a nonlinear transformatigl) of a

1 2
linear mixture of R endmembersny, ..., mg contaminated J(a b) > ly — gp(Ma) ||
by additive noise

= % ly — Ma — b(Ma) © (Ma)||? (4)

R
y= g(ga(mr)Jrn = g(Ma)+n @ subject to the constraints (3), whefi&|| = +/xTx is the
standardt? norm. After estimating: andb, the noise variance

where m; = [mpg1,...,m 17 is the spectrum of the 52 can be determined as follows

rth material present in the scene; is its corresponding 1

proportion, R is the number of endmembers contained in 62== Hy— Ma—bMa) © (Ma)

the image andg(-) is an appropriate nonlinear function. L

Moreover, L is the number of spectral bands andis an Since the additive noise vectar is i.i.d zero-mean and

additive independent and identically distributed (i.i.d) zerdSaussian, the resulting estimator ®f= [a, b, s2]7 is the

mean Gaussian noise sequence with variangedenoted as maximum likelihood estimator (MLE) of, denoted as.

n~ N (O, o2l), wherel_ is theL x L identity matrix. Note Consequently, the estimatér = [a",b, 52T is asymptoti-

that the matrix and vector notatiohd = [my,..., mr] and cally efficient and asymptotitlg distributed according to a

a=[ay,...,ar]" have been used in the right hand side of (1}5aussian distribution [25, Chap. 7] . Note that the asymptotic
Because of the lack of knowledge about the nonlinearitggion corresponds td. — oo. Since L is very large

in (1), we proposed in [18] to approximagg-) using a second (some hundreds of spectral bands) for hyperspectral images,

2

®)




the asymptotic region will be achieved in most practical applikelihood ratio test (GLRT) for (9). Using (6) and (7), the
cations! The two LS algorithms considered in [18] (i.e., baseGLRT consists of comparing the test statistic
on linearization and subgradient methods) for minimizing (4) sup p(b|Hy)
subject to the constraints (3) have provided very similar b
performance. As a consequence, this paper will concentrate @T (10)
0)
on one estimator only, namely the subgradient-based estimator.
The next section derives a nonlinearity detector based on tean appropriate threshold, WheFI{blHo) (resp. p(b|H1))
MLE of the nonlinearity parameter. is the probability density function db underHo (resp.Hi).
Obviously, (b|H1) is maximized forb = b. Straightforward
1. NONLINEARITY DETECTION computations lead to the following test strategy
As shown in Section I, the PPNMM allows the nonlinearity T b2 Hl (11)
to be characterized by the parameterfor each pixel of So Ho
the scene. An arbitrary threshold could be used to decide i
the observed pixel is better modeled by the LMM or by a
general nonlinear model defined by (2). However, it would B P [bz ’H ]
FA =

Leren is a threshold that is related to the test PFA as follows

be difficult to choose the appropriate threshold in order to 2"

guarantee a given probability of false alarm (PFA) or a given

probability of detection (PD). In this section, we propose =2¢(=V) (12)
a statistical test for a pixel-by-pixel nonlinearity detectiowhere ¢(-) is the cumulative distribution function of the
based on the distribution ob. Based on the asymptoticnormalized Gaussian distribution. For a given valuéothe
properties of the MLE and on the large number of spectrpbwer of the tesPp(b) can be computed as follows

bands available for a hyperspectral image, it makes sense to b2 B2

approximate the distribution df by the following Gaussian Po(b) =P {_2 > W‘Hlj| —P {_2 > ﬂ‘b + o]. (13)
distributior? $ $

b~ A (b, 52) (6) Straightforward computations lead to

R _ —S0/1—b S0/ —b
wheres? £ s2(a, b, 62) is the variance of the estimator It Po(b) =1+ ¢( s ) —¢ ( st - (14

is important to note that the variance bfis a function of
the parametera, b ando2. Obviously, when the observation
vectory results from the LMM (i.e.p = 0), then

It can be observed that for a given value of the threshpld

the probability of detectiorPp(b) is an increasing function

of |b], which is an intuitive result. In order to apply the
b~ N (O, 55) @) detection strategy (11) and to compute the corresponBiag

and Pp(b), we need to know the parametexsands; whose

Wherescz) — sz(a, O’ 0-2)_ This interesting property can be usedietermination is the objective of the next section.

for testing the mixing model appropriate to the observation

vector. The resulting nonlinearity detection problem can B& Unknown Parametera and o2

considered as a two hypothesis testing problem, where therhe test (11) assumes known parametarsind o2 to

hypotheses are defined as computes? = s?(a, 0, 52). However, these parameters are
Ho : v is distributed according to the LMM unknown in practical applications. To alleviate this problem,
’ Hy : y is distributed according to the PPNMM (8) we propose to approximate the variancebainderHg by an

_ . . _ appropriate estimatdi leading to
HypothesisHg is characterized by = 0 whereas nonlinear

models 1) lead tob # 0. As a consequence, the two T2 * 15
. . — a2 < n. ( )
hypotheses in (8) can be rewritten as S Ho

r Ho : BwN(O, 5(2)) ©) More precisely, in order to bwldg we propose to use the
Hi: b~ A (b, ) constrained CRLB o# = [a', b, 0*]" under hypothesisio
(i.e.,b = 0) as explained in the next section.
wheres? = s2(a, b, ¢2) andb # 0.
IV. CONSTRAINED CRAMER—RAO BOUND

A. Known Parametera and o2 This section studies the constrained C[amér—Rao lower

For a given observation vectgr and its corresponding bound associa_ted with any unbiased estimatqnf the para-
estimated nonlinearity parameter we propose to decide meter vector0 involved in the PPNMM. Equation (2) shows

2
between hypothesad, and H; using a classical generallzedthatwa’ b,s? ~ N (gp (Ma), s?IL). As a consequence, the
likelihood function ofy is defined as

IThe asymptotic behavior of the considered MLEs will be discussed in

L
r = _ 2
Section V. o _ _ ' ' f(ylab,a?)= (27[102) ’ exp(_W). (16)

2This assumption will be validated in the simulation results. 202



My M, R=3 Re4
2 5 2 .
;] -2 2
= 4] = -4f 5 # B -
‘% ‘% [ =4 # 54 W
= B \\__\ = &t 3 . 3 »
5 g k= g /- Sy
= 4 = oz =] - £ 6 /
- 8 = -8 T y
| 8 il 8
1% 500 000 % 500 1000 . & =B ® 2 L .
L I log () log(s®)
R=5 R=&
.M-_v ./'\’f.'i
-2 -4y| 2 '_ﬁ/".' 2 >
- n d
— 4l _ N = il =
€§ ™ \ <§ 6\ {:% -4 ,:// g -4 v
= 3 = [ L
g -6 \ g “é - ‘é /'2.
g, - g8 I =
i g~ : g
1% 500 1000 -10{'] 500 1000 - 6 > 2 0 s ° 4 2 0
2 2
L L log(c™) log(c®)
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< 9 P an (R+ 2) x 1 vector, A is an R x (R + 2) matrix, ug is
S -10f ek ) the equality constraintyy is an R x 1 pure inequality vector
E’_gg?-f = "é' + g i (see [26] for details) anc denotes the termwise inequality.
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_ o subset ofRR*+2, the CCRLB associated with the covariance
Fig. 2. MSEs of the MLE (blue crosses) for the nonlinearity paramieter

versuso 2 compared with the CCRLBs (black lines).

matrix of any constrained unbiased estimatorfofs given
by [26]

The corresponding unconstrained CRLB for any unbiased

_ -1
estimator off constructed frony is given by CCRLB(6) = QJ¢

(20)
with

CRLB(9) = J:* (17)

Q=Irt2— JE]'VU() {VuoT JE]'VUg} VU;-

where Jg is the Fisher information matrix whose
elements aré where, from (18),Vug = c is the gradient ofuy. It is
2Inf(yle)] . . 5 interesting to note that the CCRLB can be easily computed
[Jrlii = —Byio 06,00, hi=1...R+2 since this matrix results from simple operations applied on

o . the unconstraint CRLBIJ El and the vectorc. Moreover, no
However, the positivity and sum-to-one constraints (3) a§pjtrary reparametrization is needed. The CCRLB & then
not considered in this expression. Particularly, the sum-to—o&@en by the(R+1)th diagonal element dECRLB(¢) denoted
constraint in (3) enforce; trﬁ—QimensionaI abundgnce vectc_)raS CCRLED: a, ¢2). An estimator of the variance & under
ato belong to an(R—1)-dimensional subspace. This constraing, n,hesisHy is required to compute the test statistic (15).
can be considered by compugila reduced-rank Fisher matrix\ye propose to estima% as follows

yielding a constrained Cramér—Rao lower bou@CRLB).
The CCRLB principles have been inttuced in [26] for
parameters satisfying equality and/or inequality constraints.

The constraints for the abundance vector in (3) can Méeredands? are the MLEs ofa ands?. The next sections
study the performance of the nonlinearity detector defined

by (15) for synthetic and real hyperspectral data.

& = CCRLB(0; &4, 62) (21)

3The Fisher information matrixJ g is derived in Appendix.



Mo M of the initial L = 826 bands). These results confirm the
efficiency of the MLE for these four mixtures since the

20 1\ A f\ MSEs (crosses) are very close to the corresponGiGRLBs
I 4 § (continuous lines). Similarly, Fig. 2 compares the MSEs of
10| g 10 [\ | the MLE (estimated withN = 20000 noise realizations and
/ / L = 826) with theCCRLB versus the noise varianeé for the

mixed pixelsMg to M». These results show that the efficiency
property is valid for any value of2.

My My Fig. 3 compares the MSEs of the MLE (estimated with
N = 20000 noise realizations and = 826) with the

01 -005 0 005 01

20! & r = .-ﬁ-. CCRLB versus the noise variane® for R = 3,4, 5, 6. The
- a0 { ' considered endmembers are the three materials presented
10! fJ \ ! 20 U | above and construction concrete, micaceous loam and bare
\ 10 (! . red brick. The synthetic mixtures have been obtained using
sl N sl A K the following parameters
01 015 02 025 03 005 0 005

R=3:a=1[03,06,01", b=02

Fig. 4. Histograms ob (black lines) and associated Gaussian distributions
(red lines) for the four mixtures\g to Ms. R=4:a=10.20.3,0.3, O.Z]T, b=01

[

[
R=5:a=[01,0.150.150.2,0.4]", b=-0.2

[

V. SYNTHETIC DATA R=6:a=[0.15020025010102", b=-01.

A. Estimation

The statistical test proposed in (15) assumes the efficienE)eS€ results show that eh efficiency assumption of
and normality of the estimatdy resulting from the unmixing Section lil'is valid for different values oR. _
procedure. We first propose to show that the asymptotic!N€ @symptotic normality for the MLE ob is then
region in term of MLE efficiency is usually achieved in thdnvestigated by considering the distributions bffor the
hyperspectral imagery context [i.e., for largend high signal four mixtures Mo to Ms. The histograms ob estimated
to-noise ratio (SNR)]. Four different mixtures are considerd@®™ N = 20000 Monte Carlo runs are depicted in
to illustrate the estimator efficiency. These mixtures are coffild- 4 These results confirm that the distributions of the
posed of R = 3 materials (i.e., green grass, olive greefuPgradient-based algorithm can be approximated by a
paint and galvanized steel metal) whose endmember specffgussian distribution whose mean is the actual paraneter
composed ofL = 826 bands, have been extracted from th@"d Whose variance is given by the CCRLB.
spectral libraries provided with the ENVI software [27]. The
synthetic mixtures have been obtained using the followirg Detection Performance

parameters The performance of the proposed nonlinearity detection

Mixture Mog:a=[0.3,0.6,0.1]",b=0,02=3x 103 procedure can be measured by comparing the actual PFA
Mixture My :a=[05,01,04]T.b=0,02=3x 103 (given by (12)) with the empirical PFA defined as
Mixture Mz :a=[0.3,0.6,0.1]",b=02,02=3x 103 emp 1 N
Mixture Ms:a=[0.3,0.6,0.1]",b=0,02=1x 1073, PEx () = 7 2 () (23)
n=1

The efficiency of the proposed unmixing algorithm i?/vi
evaluated by comparing the CCRLB presented in Section IV

with the mean square errors (MSES) _ )0 if Ta<npy
N dn(n) = 1 if T (24)
N 1 ~ 2
MSE(b) = N Z [b(”) - b(”)] , i=1,...,R+2 (22) whereN is the number of noisy realizations of a given mixture
n=1 underHo, 5 is the theoretical test threshol, is the value of

associated with the nonlinearity parametemwhereN is the the test statistic for theth noise realization and, (-) is its cor-

number of pixels to be unmixed amd? is the estimated value fésponding decisiordg(-) =i means hypothesisli has been

of the nth actual parametes(™. accepted with € {0, 1}). The actual PFA is also compared to
Fig. 1 compares the MSEs of the subgradient-basgﬁ approximation obtained by approximating the CCRLB

estimator estimated withN = 20000 noise realizations, with 1N

the CCRLB versus the number_ of spectral bands (the numb_er p'ij‘/gp(”) =N Za”(”) (25)

of spectral bands has been adjusted by a regular subsampling 1

“Note thatM7, My, and M3 have been obtained by changiagb, and Where
o2 in My, respectively.
5Similar results have been obtained using the linearization-based estimator dn(n) = [ (26)

and are reported in [28].
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Fig. 5. (a) Actual values ob, and detection maps for (bpra = 0.01 53 54
and (c) Pea = 0.05, using the subgradient-based algorithm. Black pixels
correspond to pixels detected as linearly mixed. White pixels correspond to
pixels detected as nonlinearly mixed. )

. em appr H
Fig. 5 comparesPra, Pgy P and P,:Xp as a function of Fig. 6. (a) Actual location of the four sub-imag& (LMM), S, (FM),
the thresholdy for N = 20000 noisy realizations of the %b(GBdM), 3nd 34 (IPPNr'\]/IM)- |(b)kAssolciated deteC(tjion malci U(;sing thc?
: - : gradient-based algorithm. Black pixels correspond to pixels detected as
mIXtL'JI:e Mo. Thesg re,SUItS first show that the theoretlcal, arﬁ#early mixed. White pixels correspond to pixels detected as nonlinearly
empirical PFAs coincide. Moreover, the CCRLB approXimanixed.

tion proposed for the final test does not modify the perfor-

mance in term of PFA. _ . extracted from the spectral liries provided with the ENVI

F|g._6 shows the_te_st performance in term of receivehvare [27] (.e., green grass, olive green paint and
operating characteTr|st|cs (ZROCS) [29, 'S 74-75]  falvanized steel metal). Thewsidered image is divided into
a_1=_2[0.3, 06, 9'1] and 0° = 3 x 107 (SNR = four 50x 50 sub-images as follows. The first synthetic sub-
L~*s~?]gp(a)|" =~ 15 dB). Four different values °2b imagesS; has been generated using the standard linear mixing
have begn assumezd under hypgthelsﬁ i.e., b = 505 model (LMM). A second sub-imagé, has been generated
b=100% b = 15%* andb = 20s°. The theoretical ROCS according to the bilinear mixingnodel introduced in [10],
are compared with the empirical and approximated ROGgserred to as “Fan model” (FM). A third sub-imagsy

where the probabilities of detection are defined as has been generated according to the generalized bilinear
1 N mixing model (GBM) recently introduced in [11], [30],
P R(n) = N Zdn(n) (27) whereas a fourth sub-imag& has been generated according
n=1 to the proposed PPNMM. For each sub-image, the abundance
and uniform distribution in the admissible set defined by the pos-
N itivity and sum-to-one constraints. All sub-images have been
ngp(n*) _ 1 zan(n) (28) corrupted by an additive white Gaussian noise corresponding
N — to SNR= 15 dB. The nonlinearity coefficients are uniformly

. rawn in the set(0,1) for the GBM and the parametdy
and where the data have been generated according to hypo 1€ e generated uniformly in the $et0.3,0.3) for the
sisH1. These results show that the proposed test provides sirl‘g O

lar performance when compared to the original likelihood rat'(gLRT for Pea = 0.05. From this figure, it can be seen that

test (assuming the actual paramet@rs ando? are known). . . ; :
. . the location of the nonlinear mixtures on the detection maps
The performance of the proposed nonlinearity detector

: : : T el straightforward. Note that for the GBM and the PPNMM,
is also investigated by testing independently each pixel of. : ) .
mixed pixels can be close to the simplex corresponding to

100 x 1 nthetic im ner rdin ; . .
a 100 00 synthetic image generated according to tqﬁe noise-free LMM and can be detected as linearly dis-
PPNMM. The abundance vectoag,n = 1, ...,10000, have . .

. R . tributed pixels. Conversely, for the FM, only almost pure
been randomly drawn from a uniform distribution in the. . .
. . s ._pixels are close to that simplex, leading to a larger number
simplex defined by the positivity and sum-to-one constraints

All pixels have been corrupted by an additive Gaussian noigfe pixels detected as nonlinear. This remark is illustrated

of variances? = 3 x 10-3, corresponding to SNR-15 dB. in” Fig. 7 which shows the location of the pixels detected

The nonlinearity parameters have been chosen in the agtnonllnear in the 3-dimensional subspace spanned by the

{502, 1002, 2002, 3002}, defining four different nonlinearity ree (_jominant axes resulting from a principal component

levels. Fig. 5 presents the actual nonlinearity parameters and lysis.

the detection maps using the subgradient-based estimation

procedure forPra = 0.01 and P = 0.05. The white VI. ANALYSIS OF REAL DATA

(resp. black) pixels are detect as nonlinearly (resp. linearly) The performance of the proposed nonlinearity detector has

distributed pixels. Note that similar results would be obtaindzeen evaluated on a real hyperspectral image composed of

when using the Taylor-based estimation procedure (see [28}k 189 spectral bands. The selected scene has been extracted

for details). from the AVIRIS Cuprite image, acquired over a mining site in
The capacity of the PPNMM to detect various nonlinearitiddevada, in 1997. The geologic characteristics of the complete

is then investigated by unmixing a 180100 synthetic image data have been described in [31]. The area of interest of size

generated according to four different mixing models. Th#90 x 250 is represented in Fig. 8 and has been previously

R = 3 end members contained in this image have bestudied in [21] to test the VCA algorithm witiR = 14

BNMM. Fig. 6 shows the detection maps obtained with the



Fig. 7. Pixels detected as linear (red crosses) and nonlinear (blue do

for the four subimage$; (LMM), S (FM), S3 (GBM), and & (PPNMM).
Black lines depict the simplex cosponding to the noise-free case LMM.

road is clearly identiéd at the top right corner, especially for
Pea = 1072, A spread nonlinear area is also detected (at the
bottom left corner of the image). It can be noted from the
classification map of [32] thahis area is mainly composed of
several kinds of Kaolinite. The proposed nonlinearity detector
shows that nonlinear effects occur between the different kinds
of Kaolinite in this area.

VIl. CONCLUSION

A nonlinearity detector was presented for hyperspectral
image analysis. This detector decided if a pixel of a
hyperspectral image is a linear combination of endmembers
or results from a general nonlinear mixture. It assumed that
the hyperspectral image pixels are related to the endmembers
by a polynomial post-nonlinear mixing model generalizing
the widely used linear mixing model. A subgradient-based
algorithm was used to estimate the model parameters.
Constrained Cramér—Rao lower bounds were also derived for

U§% PPNMM parameters. These bounds provide a reference
in term of estimation variance for estimators satisfying the
positivity and sum-to-one constraints of the abundances.
The bound for the nonlinearity parameter was also used
to approximate the variance of the nonlinearity detector
investigated in this paper. Results obtained on synthetic and
real images illustrated the accuracy of the polynomial post-
nonlinear model for detectingonlinearities in hyperspectral
images.

It is interesting to note that the proposed nonlinearity detec-
tion strategy assumed fixed endmembers for all the pixels of
the observed image. Accounting for the endmember variability
is a problem that have recently received some attention in
[3], [33], [34] and that might be considered for the proposed
nonlinearity detector. This problem will be tackled in future
works. The consideration of spatial correlation between pixels
of the hyperspectral image to improve unmixing and detection

Fig. 8. AVIRIS image of 190« 250 pixels extracted from Cuprite sceneresults is also an interesting prospect.

observed in composite natural colors.

APPENDIX

endmembers. Therefore, in shéxperiment, the same number FISHER INEORMATION MATRIX

of endmembers has been extracted by VCA.

The subgradient-based estimator has been used to estimate

El'he likelihood function ofy can be expressed as

the parameters of the PPNMM related to the analyzed image, 2 2 ly — gp (Ma) |1
i.e., the abundance vectors, the nonlinearity parameters and (¥1& b, %) = (znaz) exp(— 252 )

the noise variances associated with all image pixeg. 9

shows the abundance maps corresponding tdtke14 com-
ponents. The proportions of pure materials obtained with t

where g, (Ma) = Ma + b(Ma) © (Ma) is the estimated
ﬁgectrum ofy. The corresponding log-likelihooltl can be

PPNMM are in good agreement with those obtained with gygiten ,
LMM. However, the PPNMM has the advantage of providing | =In f(ylab 02) _ _E In(27m2) B w
b - 2 .

additional information regarding the linearity or nonlinearity of

endmember mixtures via the nonlinearity parambtefig. 10

202
The partial derivatives ofl with respect to the model

shows the estimated nonlinearity parameter map. Examplespafameters are

decision maps associated with the subgradient-based estimator al 1 T 29, (Ma)
are also depicted in this figure. These decision maps have been = =53 [y — O (Ma)] —

. . . . oar 20 oay
obtained by applying the test (15) for all pixels of the image ol 1 o9, (Ma)
for two PFAs. Fig. 10 highlights some structures, e.g., the b= 2.2 [y —op (Ma)]T bT

o
2
8similar results have been obtained using the linearization-based method. In a_l — _L + w

the sequel of the paper, they are omitted for brevity but are reported in [28]. o2 202 204



Fig. 9. Fourteen abundance maps estimated thithsubgradient algorithm for the Cuprite scene.

PFA=10"2 PFA=10"
(@) (b) (©

Fig. 10. (a) Map ofb for the Cuprite scene. Associated detection map forRfg) = 102 and (c) for Pea = 10-8. Black pixels correspond to pixels
detected as linearly mixed. White pixels correspond to pixels detected as nonlinearly mixed.

Straightforward computations lead to where
_E[ o }: _E[ o) } 789‘;;'\/'61) = m; +2b(Ma) © m;
0904, 0a;og; M
1 (agy(Ma) T o9y (Ma) %ba) = (Ma) © (Ma).
T 202 ( 08 ) 0q, It can be easily shown that
_E[ o2 }:_E[ Gl } _E[ oA __E[ o }_0
dajob oboa; 08002 | d020a |
1 (ags(Ma)\T agp (Ma) 02 7 22
= 252 ( oa ) ab - [W_ - _E[a(ﬂab} =0
_E[a_ZI] _i(aguMa))Tagb(Ma) _E[ﬁ' _ L
b | 202 ob ob 262 | 204
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