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Stéphane Vautier. How to state general qualitative facts in Psychology?. Quality and Quantity,
Springer Verlag, 2013, 47 (1), pp.49-56. <10.1007/s11135-011-9502-5>. <hal-00800183>

HAL Id: hal-00800183

https://hal.archives-ouvertes.fr/hal-00800183

Submitted on 13 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract In what form should qualitative psychological statements have to be in
order to be general and falsifiable? I show how basic qualitative measurement systems
can be defined that allow for the detection and testing of general relational facts of
the if-then form in a well-defined range of potential qualitative, static or dynamic,
multivariate observations. The formal framework permits the pointing out of general
research problems falling under the scope of empirical investigation.
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1 Introduction

Empirical scientists search for empirical statements that are general in a sense that,
supposedly, they can be fully specified. Moreover, empirical scientists praise falsi-
fiable statements, because recognizing error gives an opportunity to revise existing
knowledge [1,6]. Nevertheless, it does not seem straightforward to find examples of
general and falsifiable qualitative statements in psychology. In the present paper, I
investigate how general qualitative facts could be formulated in such a way that it
is made clear how to check and improve their empirical validity, reserving random
variables for interpretative purposes.

The first section criticizes the paradigm which consists of the routine statistical
operationalization of intuitive claims. Usual quantitative intuitions expressed in so-
called general hypotheses are not falsifiable without the help of operationalization.
Operationalization of a ‘general hypothesis’ involves a double process: quantitative
encoding, and statistical restatement [8]. The second section lays bare the formal
structure of the domain of observables, and focuses on the if-then rule as a special
form of a general qualitative relational factual statement. In the third section practical
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aspects of if-then rules, like their detection and what to do with falsifying cases, are
outlined.

2 Problems with Common Trends in Psychological Research

2.1 Statistical Operationalization of Intuitive Claims

A problematic trend in psychological research consists of dealing with statements
which do not fulfill the falsifiability criterion. For example, consider the following
statement:

H : Smokers trying to stop smoking feel more anxious than smokers not try-
ing.

Asking in what sense could such a statement be valid, one realizes that there is no
obvious answer; "to feel more anxious than" has no natural associated validity crite-
rion. Nevertheless, the statement refers purportedly to a general empirical fact, since
its applies to any smoker.

The statistical operationalization of that statement H would cause the investiga-
tor to estimate parameters of a random ‘anxiety’ sampling variable Y conditionally
to an independent variable X assessing the status of a smoker. The experimental ap-
proach would randomly assign smokers to experimental (X = 1) vs. control (X = 0)
conditions, whereas the observational approach would merely observe the statut of
each smoker on the independent variable X . In both cases, the null hypothesis of
equal means would be tested, and likely rejected—statement A :

µ(Y |X = 1)> µ(Y |X = 0), p < .05,

where the parameters to be estimated are defined with respect to normal density func-
tions of the same variance in an ad hoc probability space; moreover, an effect size
could be computed, indicating the magnitude of the mean effect—statement B, say:
d̂ = .3.

Are A and B general statements? Statements A and B are not intended to char-
acterize particular smokers at any time. It seems that statistical statements are specific
to random variables defined with respect to a specific probability space, which cannot
be falsified.

Moreover, the ANOVA approach to a statement like H has been considered a
methodological paradox, as

In the physical sciences, the usual results of an improvement in experimental
design, instrumentation, or numerical mass of data, is to increase the difficulty
of the "observational hurdle" which the physical theory of interest must suc-
cessfully surmount; whereas, in psychology and some of the allied behavior
sciences, the usual effect of such improvement in experimental precision is to
provide an easier hurdle for the theory to surmount ([3], p. 103).

The paradox would vanish if the focus statement was represented by the null hypoth-
esis instead of its alternative, that is, the numerical values of µ(Y |X) were explicitly
hypothesized. Unfortunately, numerical values cannot be derived from quantitative
intuitions like H .
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2.2 Measurement Scales and Implicit Nominal Approximations

Another problematic trend in psychological research, which is closely related to the
former, consists of the preference for quantitative-like formulations, despite a lack of
evidence that there is something quantitative to be measured [2,4,5]. Numerical en-
coding of ‘anxiety’ is paradigmatic. A set of questionnaire items is selected, and self-
ratings are then assigned a numerical value, yielding a composite test score, which is
thought of as a more or less reliable and valid measurement of a ‘relative position’
on the ‘anxiety’ continuum—test scores allegedly vary on an interval scale. However,
test scores do not even possess the property of representing completely ordered sets
of responses.

One example is sufficient to highlight this point. Consider a very simple test Y
composed of two dichotomic items a, b. Each item refers to a psychological process
or concept allowing the ordering of the observed values: 0i ≤i 1i, i = a, b. The set
M(Y ) of the possible response vectors is

M(Y ) = {(0a, 0b), (0a, 1b), (1a, 0b), (1a, 1b)}.

Most pairs of response vectors in M(Y ) can be ordered by the relationship≤ab, which
is defined as follows:

(xa ≤a ya and xb ≤b yb)⇔ (xa, xb)≤ab (ya, yb), (1)

where {x, y} = {0, 1}. However, ≤ab is a partial order because it cannot order the
pair {(0a,1b), (1a,0b)}.

Now, consider the usual test scores associated with the test Y . They are elements
in the range of the aggregation function f , which assigns to any response vector of
M(Y ) the algebraic sum of its numerical values. According to Stevens [7], in or-
der to use test scores as measurements, their numerical properties should reflect the
empirical properties of the objects they represent, that is, the vectors yi of M(Y ),
i = 1, . . . , 4. But f (yi) does not reflect validly the empirical properties of the vec-
tors in M(Y ). In particular, it is contradictory to state that the vectors y2 = (0, 1)
and y3 = (1, 0) are distinct on the one hand, which means that they do not belong
to the same nominal class, and to state, on the other hand, that f [(0, 1)] = 1 and
f [(1, 0)] = 1 which means that (0, 1) and (1, 0) belong to the same nominal class.

From the representational point of view, test scores are replete with nominal ap-
proximations. Whether nominal approximations can be justified is not the point. The
point is that, to the best of my knowledge, test developers do not justify nominal
approximations. Hence, usual numerical psychological scales have no clear epis-
temological foundations. In the next section, I develop a qualitative measurement
perspective which does not require the kind of nominal approximations implied by
the "quantitative" interpretation of composite test scores, and which provides a clear
meaning of the word "general".
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3 Restrictive If-Then Rules in Multivariate Qualitative Measurement Systems

3.1 The Multivariate Qualitative Measurement System

A multivariate qualitative measurement system is composed of a vector

Z = (Z1, . . . , Zk)

of k ≥ 1 empirical variables, where at least one variable is qualitative, i.e., of the
nominal or ordinal type. Notice that the term "variable" does not refer to a probabil-
ity space, but is used to denote empirical values referring to an empirical attribute.
If some variables of Z are quantitative, there is no loss of generality to treat them
formally as qualitative—ordinal—variables. Each variable Zi, i∈ {1, . . . , k}, is char-
acterized by its set of possible values M(Zi). Thus, values of observables range in the
set M(Z), which is the Cartesian product of the sets M(Zi):

M(Z) = M(Z1)×·· ·×M(Zk). (2)

A multivariate qualitative measurement system may also comprise change vari-
ables. A change variable refers to a couple of (static) variables (Zi1, Zi2) associated
with two time points 1 and 2, and its values are vectors in M(Zi1)×M(Zi2). Such a
change variable can be labeled a 2-time variable. More generally, one can introduce
x-time variables in Z, where x denotes the number of time points.

The cardinality of M(Z) is given by

card[M(Z)] =
k

∏
i=1

mi, (3)

where mi is the cardinality of M(Zi). In practice, card[M(Z)] may be a huge number.
I will elaborate on this point later.

The complete definition of the measurement system requires the definition of its
domain, viz., the population U of individuals who are supposed to possess a value in
M(Z) at time t ∈ T , where T denotes an appropriate time interval.1 Coming back to
the smokers’ example, should John, who smokes no more than 10 cigarettes a year,
be included in the population of ‘smokers’? The inclusion problem can be restated
by defining the population U as the population of animals; then, being or not being a
‘smoker’ pertains to the specification of Z, by introducing in Z the variable, say, Z1,
which assigns a value to each individual with respect to what is meant by ‘smoker’—
Z1 may be a Cartesian product of variables allowing the convenient specification of a
‘smoker’.

3.2 Restrictive If-Then Rules

Given a well-defined measurement system [U, T, M(Z)], what kind of general facts
can be formulated? I will focus on relational facts, that is, on statements specifying

1 When measurements refer to x time points, t may be defined as a convenient vector in T x.
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associations between an independent, multivariate variable X , and a dependent, possi-
bly multivariate variable Y . Thus, the vector Z decomposes as the couple Z = (X , Y ),
and the codomain M(Z) decomposes as the Cartesian product M(Z) =M(X)×M(Y ).

Various kinds of relational facts can be defined with respect to the measurement
system [U, T, M(X)×M(Y )]. I will focus on factual statements having the form
of restrictive if-then rules. Restrictive if-then rules in [U, T, M(X)×M(Y )] refer to
observations performed on any individual at any time in an appropriate time interval
t ∈ T . They express formally as

∃ α(X)⊂M(X), β (Y )⊂M(Y ),

∀ (u, t) ∈U×T,

X [(u, t)] ∈ α(X)⇒ Y [(u, t)] ∈ β (Y ),
(4)

which reads

at least a strict subset α(X) of values on X and a strict subset α(Y ) of values
on Y exist, such that for any pair of an individual u observed at time t in
the appropriate time interval T , falling in the class associated with the subset
α(X) implies falling in the class associated with the subset α(Y ).2

Such rules can be noted Rβ

α . They are general in the sense that they are supposed to
be valid for any (u, t) ∈U ×T . They are restrictive in the sense that they apply to
strict subsets of values α(X) and β (Y ). The conditions α(X) allow the specification
of a subpopulation of individuals and possible experimental conditions affecting their
responses on Y .

For example, consider the statement "each time a smoker tries to stop smoking,
she or he get anxious." Let Z = (X1, X2, Y ), where X1 takes the value 1 when u
is a smoker, 0 otherwise, X2 takes the value 1 when "u’s trying to stop smoking" is
valid, 0 otherwise, and Y takes the value 1 when u endorses the item questionnaire "I
feel anxious", and 0 otherwise. X = (X1, X2). Thus, expressing the statement as the
restrictive if-then rule R1

(1, 1) yields

R1
(1, 1) : ∀ (u, t) ∈U×T, X(u, t) = (1, 1)⇒ Y (u, t) = 1, (5)

which makes it a falsifiable statement, provided (i) the decision rules used to assign a
value in M(Z) to any individual are objective—objective rules are rules which yield
rater-invariant measurements in M(Z)—, and (ii) there is no logical impossibility to
observe a counterexample.

3.3 Falsification of a Restrictive If-Then Rule

To falsify R1
(1, 1), it is sufficient to find one counterexample, that is, one occurrence

of the form

¬R1
(1, 1) : ∃ u ∈U, ∃ t ∈ T, X(u, t) = (1, 1) and Y (u, t) = 0. (6)

2 In the sequel, the notation X [(u, t)] will be simplified by the notation X(u, t).
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Whether formal falsification should entail the withdrawal of the statement in the set
of "interesting" statements will be discussed later.

The preceding development gives the form of a restrictive if-then empirical rule
on [U, T, M(X)×M(Y )]. Suppose that an investigator is able to state the restrictive
if-then empirical rule Rβ

i :

∃ i ∈ {1, . . . , card[M(X)]},
∃ β (Y )⊂M(Y ),

∀ (u, t) ∈U×T,

X(u, t) = xi⇒ Y (u, t) ∈ β (Y ).

(7)

Rβ

i is falsified by

∃ (u, t) ∈U×T,

X(u, t) = xi and Y (u, t) ∈M(Y )\β (Y ).
(8)

However, considering a given data sample, Rβ

i cannot be falsified if no (u, t) can
be observed such that X(u, t) = xi. Whether some (u, t) can be observed such that
X(u, t) = xi is an empirical issue. Reporting the evidenced validity of a given restric-
tive if-then rule requires two empirical data: (i) the number n of relevant cases that
have been observed, and (ii) the number e of exceptions that have been discovered.
Thus, a given if-then rule Rβ

i , which is a theoretical, and general statement about
observables, can be associated with its empirical counterpart Rβ

i (n, e).
Obviously, being able to report general facts is a prerequisite to being able to

explain them. The next section focuses on data analysis oriented toward the finding
of potentially interesting findings in an observed contingency table associated with
the measurement codomain.

4 Practicing Restrictive If-Then Rules

Given a measurement system [U, T, M(X)×M(Y )], the contingency table associated
with a relevant data sample is useful to detect two kinds of interesting regularities,
viz., sufficient conditions, and necessary conditions.

4.1 Detection of Potential Sufficient Conditions

Let the rows and columns of the observed contingency table be associated with the
values xi on X , and the values y j on Y , respectively, where i = 1, . . . , card[M(X)] and
j = 1, . . . , card[M(Y )]. Let n, ni•, n• j, and ni j denote the sample size, the frequency of
the row i, the frequency of the column j, and the frequency of the cell i j, respectively.

Potential restrictive if-then rules correspond to interesting rows in the contingency
table. An interesting row i is defined as a row such that

ni• > 0,
∃ j ∈ {1, . . . , card[M(Y )], ni j ≈ 0,

(9)
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where the sign ≈ means that the cell frequency ni j can be viewed as no quantity or
negligible quantity of exceptions falsifying R j

i . The sufficient condition associated
with Y (u, t) = y j is X(u, t) = xi.

The screening of the entire contingency table associated with the data may pro-
vide a series of findings of the form R j

i (ni•, ni j), where ni j ≈ 0, that are eligible for
introduction into the list of basic nomothetic statements relevant to M(X)×M(Y ).
Whether such general empirical statements are of substantive import is a theoretical
issue.

To illustrate, consider the following observed contingency table associated with
the bivariate independent variable X = (X1, X2) and the univariate dependent variable
Y .

0 1
00 1 4
01 1 0
10 6 0
11 2 0

(10)

A potential restrictive if-then rule is R0
¬(0, 0); in other words, a potential sufficient

condition associated with Y (u, t) = 1 is negatively formulated as X(u, t) 6= (0, 0).

4.2 Detection of Potential Necessary Conditions

The data also suggests a necessary condition associated with Y (u, t) = 1, that is,
X2(u, t) = 0. This necessary condition can be stated as the following restrictive if-
then rule:

X2(u, t) 6= 0⇒ Y (u, t) 6= 1, (11)

which is equivalent to
Y (u, t) = 1⇒ X2(u, t) = 0. (12)

More generally, necessary conditions associated with a given subset δ (Y ) of states
on Y are states γ(X) on X such that

Y (u, t) ∈ δ (Y )⇒ X(u, t) ∈ γ(X). (13)

The systematic detection of necessary conditions on X associated with a given state
on the dependent variable is out of the scope of the present paper.

5 Discussion

Psychological research that rests on so-called general hypotheses operationalized
through ad hoc probability spaces is unlikely to discover general relational empirical
facts, if the word "general" means that what is stated is valid for any (u, t) ∈U ×T
[8]. Furthermore, a basic requirement of scientific inquiry is making clear what can
be observed, which is hardly achieved with pseudo-quantitative measurements. Start-
ing from a domain of observables based on a finite set of independent and dependent
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possibly multivariate qualitative attributes, I have shown that empirical statements
having the form of restrictive if-then rules are general statements. Actually, restric-
tive if-then rules define special relations (M(X), M(Y ), G), where G is a graph such
that there is at least one possible row with at least one impossible cell. The words
"possible" and "impossible" refer to observations (u, t) drawn in U×T .

The range within which restrictive if-then rules can be stated and falsified is ex-
plicit. An investigator interested in finding potential restrictive if-then rules in the
empirical world of interest only has to search for "gaps" in actualized rows of the ob-
served contingency table associated with M(X)×M(Y )—actualized "gaps" suggest
impossible cells in possible rows. Also, restrictive if-then rules can serve to define
necessary conditions associated to a given state β (Y ) on the dependent variable Y .

Sufficient or necessary conditions are theoretical statements because they are sup-
posed to be valid for any case (u, t) which can be observed (measured). Contrary to
what happens in physics, psychology stumbles over identity of people, which could
be understood as a sufficient condition for making generality impossible. It is note-
worthy that the formulation displayed in Equation 4 allows for different levels of
generality. Levels of generality are partially ordered because they refer to conjunc-
tions of restrictions on the codomain of X . For example, adding an identity variable
in X allows for the selection of a specific person in U . Thus, the generality of suf-
ficient or necessary conditions that are restricted to a given person lies on T . Then,
generality is possible as soon as T is not a point.

Restrictive if-then rules state a necessity principle: if some conditions α(X) are
fulfilled on X , it is necessary that other conditions β (Y ) be fulfilled on Y too. Thus,
one can wonder whether it is reasonable to expect valid restrictive if-then rules in
psychology. There are some reasons to expect that psychological if-then rules may be
formulated with a high degree of corroboration: robust effects do exist in psychology.

Although one counterexample suffices to falsify a restrictive if-then rule, it would
be unwise to automatically deny the interest of that rule. As the result of a measure-
ment process, falling in a given observational class may be considered a fallible ob-
servation. Thus, exceptions may result from measurement error. However, suspecting
measurement error should yield the investigator to repeat his or her observation rather
than to interpret automatically the exception as the effect of randomness. Counterex-
amples can be analyzed according to their epistemic value and their practical impact
in decision settings.

From the epistemic viewpoint, counterexamples may be trivial or non-trivial.
Trivial counterexamples are those that could be easily eliminated if additional, ex-
cluding conditions were taken into account, yielding a more detailed characterization
of (u, t) at the level of the independent variables—and a new if-then rule—, or those
that could be eliminated if problems in measurement turned out to explain the excep-
tions. Non-trivial counterexamples are those cases which cannot be eliminated within
the current state of knowledge. Can unknown excluding independent variables be dis-
covered? Can the tuning of the dependent variable be improved in order to eliminate
the exceptions?

From the practical viewpoint, a rule of type Rβ

α (see Equation 9) allows one
to predict Y (u, t) ∈ β (Y ) given X(u, t) ∈ α(X). Let n be the number of observed
cases falling in the class α(X), and e the number of relevant counterexamples. The
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predictive interest of the rule Rβ

α (n, e) is threatened by the ratio e/n, which gives the
proportion of counterexamples to the rule. This ratio can be used as an estimate of a
probability to be wrong when predicting Y (u, t) ∈ β (Y ) given X(u, t) ∈ α(X), if the
probability space underlying such an interpretation is specified appropriately.

Sufficient or necessary conditions associated with a restrictive if-then rule may
be interpreted in terms of causality. However, causal interpretations require avail-
able general facts. An important task of the scientific endeavor in psychology is to
find corroborated general facts, and facts of the form of restrictive if-then rules are
potential candidates. If a given measurement system [U, T, M(Z)] turns out to be
unproductive, that is, if everything is possible in M(Z), the scientific challenge be-
comes: find another form of general facts that can be stated in [U, T, M(Z)], or find a
new observational domain M(Z′) within which restrictive if-then rules can be found.
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