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Abstract. The success of Integrated Assessment and Modeling of social-ecological 

systems requires a framework allowing the members of such a process to share and 

gather their respective knowledge about the system under consideration and to get 

confidence into the reliability of the software that implements the system’s model 

they have produced. To this end, this paper presents an Entity-Process meta-model 

of SESs and outlines its use. 

1  Introduction 

Social-ecological systems (SES) are considered as complex adaptive systems that are 

characterised by self-organisation and distributed control. They encompass multiple 

actors with diverse and contrasting management interests and objectives, acting at 

different spatial and temporal levels (Reed, 2008; Pahl-Wostl, 2007; Giampietro 2002). 

In such systems, social, economic and ecological processes, in interaction at many 

organization levels, give rises to emergent structures and functions at the whole SES 

level. 

During the last decades integrated assessment (IA) has been playing an increasing 

role to better understand how complex systems function. Rotmans and Asselt (1996) 

define integrated assessment as an interdisciplinary and participatory process to 

combine, interpret and communicate knowledge from diverse scientific disciplines. IA 

approaches to assess system responses to scenarios of change have been commonly used 

to design sustainable management and development strategies. Mainstream in IA is 

based on modeling and simulation. This Integrated Assessment and Modeling (IAM) 

approach aims at describing quantitatively the causal relationships and the interactions 

between the various components of the investigated system. According to the problem at 

hand, IAM approach assembles the relevant information from a wide range of scientific 

disciplines and put them into a “policy oriented context” in order to analyze complex 

system behaviour (Toth and Hizsnyik, 1998). The potential of model-based methods is 

well-established for handling management and policy problems (Sterk et al., 2009; 

McIntosh et al., 2007; Jakeman et al, 2006; Oxley et al., 2004). 



 

 

When applying IAM to social-ecological systems, one of the main challenges lies in 

the integration of many different disciplinary viewpoints and forms of knowledge. One 

fruitful way to reach this objective consists in building up a well-funded and shared 

ontology of the SES, i.e. a formal specification of the concepts and relationships among 

these concepts (Beck et al., 2010). 

Another challenge is the confidence of the participants of the modeling process in the 

simulation results. This confidence is problematic if, once they have built the model 

together, they lose the control on the following of the process, that is the implementation 

by the computer scientists of the model as a piece of software. The use of a meta-model 

allows to produce a well-structured model whose implementation suffers from no 

technical distortion. 

This paper presents an ontology expressed as a meta-model, intended to provide 

scientists and stakeholders from various competencies and backgrounds with a generic 

and formal framework to coherently arrange their respective knowledge about SESs. It 

guides collective modeling processes aiming to assess SESs’ scenarios by using 

simulation models. Examples of models and corresponding specific diagrams (with a 

well-defined semantics) used for their graphical representation are presented in another 

paper (Therond et al., 2011). 

2  An Entity-Process Meta-model for SESs Modelling 

Working in an interdisciplinary environment requires a shared conceptual framework for 

a collective interpretation of the concepts put forward by one another. Accordingly, our 

meta-model uses terms understandable and usable both by stakeholders and by a large 

scientific community, rather than referring to domain specific terminologies. 

The primary function of the meta-model is to provide a formal framework facilitating the 

coherent description of SESs as formal models. The meta-model identifies the types of 

the constitutive elements that are considered in the design of SESs’ models and how they 

are related, as shown in Fig. 1 represented as an UML class diagram. According to this 

meta-model, the model of a SES includes a set of entities and a set of processes, together 

with relations between elements of these sets. The structure of a system is composed of 

entities and relations between entities, both being perceivable and more or less 

persistent. The dynamic character of SESs is handled through processes that involve one 

or more entities of the system, and make the state and also the structure of the system to 

evolve. Finally, we account for interactions between a SES and its environment.  

2.1  System structure: entities and relations  

The meta-model distinguishes three categories of entities: material resources, cognitive 

resources and actors. Instances of entities are the considered individual resources and 

actors that may appear or disappear over time, or experience changes of their state. 

Entities are characterized by properties whose values constitute the state of an entity 

instance. They are endowed with operations that process these property values.  

There are two types of relation between entities. A structural relation permanently 

associates entities related by their very nature (e.g. field – soil type).  A non-structural 



 

 

relation puts in association entities as the result of some action (e.g. farmer ([wner of an 

acquired] field). A link is an instance of a relation; it ties instances of the related entities. 

 

Fig. 1: A meta-model for the formal modeling of social-ecological systems represented as a UML 

class diagram. Cardinalities use the following conventions: *: any number of elements (including 

none) ; +: at least one element ; n: exactly n elements.  

Actors are human agents, be they an individual, a population of similar individuals or 

a group such as an organization, association, committee, enterprise, etc. Each actor 

executes at least one activity. 

Resources are objects of uses, or objects for uses. Material resources are physical 

resources spatially and temporally distributed (e.g. a water body, a field plot, a crop). 

Cognitive resources stay in the minds of human beings: they are information, believes or 

expectations about facts, procedures, values or aims, that humans use or consider in the 

activities they undertake, in designing strategies or in the formation of goals. A cognitive 

resource is for a single actor (e.g. the cropping system of a farmer) or shared by several 

actors (e.g. the weather forecasts). Many cognitive resources have a material counterpart 

– for example a legal norm (cognitive resource) has an official publication support 

(material resource) – which is most often not relevant to consider. It should be stressed 

that any knowledge about a material resource used by an actor or a process implies the 

existence of an own cognitive resource; such a cognitive resource will be considered in 

the model only if required (e.g. if its proprieties do not correspond to those of the 

material resource). Every resource must be either impacted or used by at least one 

process (this statement is the main integrity constraint of the meta-model, see 3.1 

below). 

At each time the structure of a system is defined as the sets of its entity instances and 

of its structural links (the instance of the structural relations). At each time the system’s 

state is defined as the states of these entities (i.e. the values of their properties) together 

with the existing non-structural links. 



 

 

2.2  System dynamics: processes and behaviors 

The processes generate the observed phenomena and make the structure or the state of 

the system to change. Each execution of a process impacts entities by changing their 

property values, or by creating or destroying entity instances or links. We distinguish 

three types of processes: activities, socio-economic processes and ecological processes. 

An Ecological process corresponds to an enactment of a biophysical law. It 

determines the evolution of the states of material resources (and possibly of actors).  

A Socio-economic process generates phenomena resulting from the human beings’ 

economic or social activities. Only the effects of a socio-economic process is described 

in the model, considering that it is not necessary to represent the actors’ activities at the 

origin of this phenomenon, that is how it is generated. 

An Activity is a process executed by an actor intending to achieve some goals. A goal 

is linked to the activity aiming at its achievement.  

Each actor is associated with one behavior that describes how he orchestrates his 

various activities, solves the conflict that could appear between them, and decides to 

execute (or not) at a given time an action rather than another one.   

The description of a process is broken down into actions that can themselves be 

decomposed into sub-actions. The dynamics of a process describes the scheduling of 

actions executions as a system of equations, an automaton, an algorithm, or a set of 

(event-condition-action) rules, according to the most appropriate representation for the 

considered process. A process dynamics uses entities (resources or actors) whose states 

condition its development. 

Processes interact by means of entities. Indeed, it is through changes in the states of 

the impacted entities that a process affects the course of the processes that depend on 

these entities. 

 

Fig. 2: The interactions between a SES and its environment (outside the dashed-dotted line box).  

2.3  Interactions between the system and its environment 

Social-ecological systems are open systems that interact with their environment, that is 

the entities and processes of the reality that are outside the system while having an 

influence on it. The meta-model considers these interactions through the setting of 

resources at the interface of the system. We call external process a process whose 

execution is not affected by the state of the modeled system and which changes the state 



 

 

of some entities that are, from this fact, qualified as interface entities (see Fig. 2). An 

interface entity may be impacted by both external and internal processes and it is similar 

in nature to other entities. Classically the dynamics of an external process is not 

represented but rather its impacts. These impacts are commonly framed as a (spatio-) 

temporal series, representing for each time step of the simulation, the new values (or the 

variations) of interface entities’ properties (e.g. climate data).  

We call external actor an actor who performs only external activities. 

Outputs of the system to the environment are considered only whether they constitute 

indicators to be considered. 

3  The Modeling Process 

Any interdisciplinary modeling of a SES requires, in addition to a conceptual framework 

such the one presented in the previous section, a methodological framework to structure 

and support the modeling process. The structure of the model to be built guides the 

structure of the modeling process by defining the objects it must produce. We here 

mainly address the main issues related to a tractable representation of models 

conforming with our meta-model, in order to illustrate its practical usability. 

The meta-model described in section 2 is a tool for supporting integrated modeling of 

a given reference system. By “reference system” we mean the collective representation 

that observers build of the knowledge they share about the reality they investigate 

regarding a given question (see Fig. 3). The first step of the modeling process consists in 

an instantiation of the meta-model into a conceptual model that identifies relevant 

entities (actors, material resources and cognitive resources), relations and processes 

when considering the question the model is intended to answer.  

Practically, several conceptual models are produced in the course of a progressive and 

iterative modeling process, along with the improvement of the understanding of the 

question at hand. They differ by their levels of granularity or of generality, their focus on 

the core of the system, or their boundary. The conceptual model to be simulated must be 

internally consistent in terms of (spatial, temporal, sociological, physical, etc.) 

granularity and ontological level of the represented entities and processes.  

The structural part of the conceptual model is in turn to be instantiated into a concrete 

model of the reference system. Indeed, the entities and relations of the conceptual model 

are just the types (or classes) of the reference system’s entities and relations to be 

considered. For example, if the conceptual model includes a “Water Agency” actor, the 

concrete model will include a single instance of this type whose properties values 

describe the particularities of the Water Agency at hand; a cognitive resource “Weather 

forecast” will be instantiated as many different instances (one for each time periods of 

the simulation); a material resource “Field plot” will be instantiated into the number of 

concrete plots necessary to cover the agricultural territory of the reference system. The 

same holds for the relations between entities: a relation “owns” between an actor 

“Farmer” and a resource “Field plot” in the conceptual model will give rise in the 

concrete model to concrete owns links between each Farmer instance and the field plot 

instances he posses.  



 

 

Finally, the concrete model will be implemented by the development of a computer 

program, the simulation model. 

The conceptual model of a SES includes too many elements to be represented at one 

single glance. Thus, its representation must be broken down into several diagrams, each 

one focused on an aspect and using specific notations. All these diagrams must be 

documented with the explanations necessary for their unambiguous understanding by all 

the participants of the modeling process. Indeed, the comprehensive view of the system’s 

representation that is embedded into the model is necessary for the correct interpretation 

of the simulation results, and thus for the achievement of the modeling process’s goals. 

All the diagrams regarding the system’s structure and dynamics must be carefully 

aligned to ensure the global coherence of the system’s conceptual model. Accordingly, 

this alignment is obtained through back and forth steps between the various diagrams. 

 

Fig. 3: The different models and their relations to the reference system. 

3.1  Actor-resource diagrams and integrity constraints 

The actor-resource diagram shows the actors and the resources of the conceptual model 

together with their relations, that is the structural part of the model. 

It may be represented by means of the widely used UML notation for class diagrams 

(OMG, 2005), but it could be represented using the Entity-Relationship formalism as 

well (Chen et Pin-Shan, 1976). To distinguish the actors, material resources, cognitive 

resources and interface entities, their surrounding boxes may have different colors or 

shape (see Plate 1 (a) for the conventions we use). 

It is likely that the readability constraints of the actor-resource diagram do not agree 

with a layout on a single page. Helpfully the diagram can be split into several sub-

diagrams, leading to the identification of sub-domains of the system’s model. 

An actor-resource diagram must be accompanied with the statement of its integrity 

constraints. Integrity constraints are restrictions on the instantiation of entities and 

relations that ensure the possibility to interpret the concrete model as a description of a 

coherent and feasible world. Cardinalities of the relations express some of such 



 

 

constraints, e.g. in the UML class diagram of Fig. 1, each process has to impact at least 

one entity. Other constraints deserve to be explicitly stated, which bear on the values of 

properties of an entity or of linked entities, or on the existence of links or entities. For 

example, in a conceptual model including actors “Farmer”, the value of the property 

“income” of any farmer must be the sum of the incomes of the fields crop he works.  

It is often the case that a system’ model requires to refer to different theories that 

represent a same item of the reality by different entities (Quesnel et al., 2007). For 

example, the representation of water flow and plant growth processes often needs to 

represent the investigated area by resources that differ with regard to their properties or 

spatial delineation. Whether the area is represented through different resources by the 

two processes, the state of resources used and impacted by the plant growth process must 

take into account the effect of the water flow process and conversely. Integrity 

constraints allow specifying how the relations between the states of the two types of 

resources have to be handled. The UML proposes to formally express these constraints 

using the Object Constraints Language (OMG, 2010) but any means for unambiguous 

statement may be used. 

 

(a) 

 

Graphical conventions for the entities (actor, 

material resource and cognitive resource 

respectively) 

(b) 

 

An ecological or socio-economic process that 

impacts resource R2 is dependent on the state 

of resource R1. 

(c) 

                             

An ecological or socio-economic process 

impacts resource R. 

(d) 

 

An ecological or socio-economic process 

being dependent on the state  of the resource it 

impacts. 

(e) 

 

Actor A performs an activity that impact the 

resource R. 

(f) 

 

Actor A uses the resource R to execute at least 

one of his activities; the relation can be 

labeled or not. 

(g) 

 

 

Actor A performs an activity that 

simultaneously impacts resources R1 and R2, 

their respective states being inter-dependent. 

(h) 

 

Actor A performs an activity that changes the 

realization of a process being dependent on 

the state of resource R1 and impacting 

resource R2. 

Plate 1: Graphical conventions for entities are given in panel (a). In panels (b) to (h) resources can 

be indifferently material or cognitive. 



 

 

3.2  Process diagrams 

The process diagram displays the processes and the entities they impact, the actors 

performing the activities and the most relevant entities used by their dynamics. For 

readability, it may be broken down into several sub-diagrams. To get a synthetic 

representation, Plate 1 suggests graphical conventions for basic patterns.  

To be illustrative, Fig. 4 shows the process diagram of the quantitative water 

management in a French association of irrigators. In such associations the water 

withdrawals are generally carried out through collective equipment (pump) and water is 

distributed to irrigators’ fields by water pipes. Association often withdraws water in 

several water resources like reservoir hills and rivers. Water withdrawals in river are 

generally limited by a water quota attributed to the association. The association defines 

its management rules to distribute available water resources among association’s 

members. The president of the association is generally one of the irrigators and often 

plays the role of coordinator and regulator. The process diagram of Fig. 4 presents is 

aimed at simulating impacts of management rules scenarios on different indicators 

regarding water withdrawals (quantity and dynamics), nitrogen pollution and farmer 

income. The considered time horizon of scenarios is a short term one (about 15 years).  

 

Fig. 4: A process diagram of water management at the scale of an irrigator association in France. 

SW&P means “Soil Water and Plant”. See Plate 1 for the graphical conventions. Resources 

positioned on the dashed-dotted boundary line are interface resources. 

In the model presented in Fig. 4 two types of actors perform activities: irrigators and 

the association president (AP). “Cooperative group” and “Irrigator association” are 

external actors. They are represented to ensure that modelers share understanding of the 

nature and origin of interface resources. Irrigators execute two activities: “allocate crop 

acreage” and “irrigate”. The AP checks the compliance of irrigators’ behaviors with the 

association rules and if necessary puts fine to irrigators to regulate their behavior. The 

resource “Water level” is generated by the AP’s activity “measure”. Both the AP and 

irrigators use “Association rules” as cognitive resources. The definition of association is 



 

 

provided by external process scenarios. The relations between the cognitive resource 

“Water level” and the material resources “River water” and “Hill reservoir water” 

express integrity constraints between these entities: “Water level” directly corresponds to 

“River water” and “Hill reservoir water”. To execute the activity “allocate crop acreage” 

irrigators use “Market price”, ”Expected CAP premium” as resources. To perform 

“irrigate” they use the cognitive resource “Weather forecast”.  

Only one internal ecological process is considered in this model: “soil water and plant 

dynamics” (SW&P dynamics). It allows simulating crop growth, water and nitrogen 

cycle and crop yield in each irrigated field plot. The graphical features of plate 1 allow 

representing that the activity “irrigate” performs a water transfer from rivers or hill 

reservoirs to soil-crop resources (i.e. plot field).   

Only one internal socio-economic process is considered in this model: irrigation 

technology dissemination. It allows representing evolution of agricultural irrigation 

practices over the temporal extent of scenarios without considering by who and how it is 

performed. 

3.3  Dynamics and Behavior diagrams 

A dynamics diagram describes the dynamics of one process, so that there is a dynamics 

diagram for each internal process. It describes the actions of the process and which ones 

must be performed at each time step of the simulation. As there are many ways to 

formalize the dynamics of a process, no standard representation is proposed. What about 

the multiplicity of the entities instances of the concrete model impacted by the execution 

of a process at each time step of the simulation? The better is to consider that each 

process occurs only once and applies to every (concrete) instance of the impacted 

entities. As an example in the model shown in Fig. 4, every occurrence of the Soil Water 

& Plant dynamics process applies to each instance of the Soil crop resource. The correct 

time and spatial resolutions of the model should be the finest one making sense for all 

the processes. 

The processes interact through the entities of the model’s structure. To ensure that 

they act within the same structure, there must be no ambiguity about the identities and 

the properties of the entities involved in their respective executions. They must also 

specify the entities’ operations they need for their processing, in order to complete the 

actor-resource diagram. A dynamics diagram is to be precise enough so that it can be 

implemented as a computer routine without ambiguity. 

An actor’s behavior diagram describes how an actor having several activities to 

execute selects, among the actions of these activities enabled by the current system’s 

state, the ones to be effectively executed. The various activities of an actor should be 

described using the same formalism, which can also be used for the description of the 

actor’s behavior diagram. 

3.4  Scenarios and indicators 

 Scenarios intend to study the effect upon the behavior of the system of various 

hypothesizes. They are expressed as variations of the concrete model. They can 

encompass changes into (i) the dynamics of internal processes, notably their parameters 



 

 

(ii) the impact of external processes upon interface entities, or (iii) the initial states of 

entities and links of the concrete model. In our example on water management (see Fig. 

4), the scenarios of rainfall over several decades are introduced in the form of 

spatiotemporal series on the hydrological.  

The integrated assessment of scenarios is achieved by analyzing the value of 

indicators derived from the final value or from the evolution, in the course of the 

simulation, of the state of entities of interest for scientists and stakeholders. 

3.5  Documentation of the concrete model and scenarios 

The system’s concrete model describes the initial structure and state of the system to 

be simulated that is the instances of the entities and their state, together with their links. 

It includes too many elements to be displayed as diagrams. A comprehensive 

documentation of the concrete model must describe: 

1. the concrete instances of the model’s entities, including the values of their properties 

and their links, together with the sources of the data used to define these instances; 

if the instances of some entities are very numerous, they are not described 

individually but by a probabilistic law that distributes the values of their properties; 

2. the sources of the data that are used to feed the external processes and how they are 

processed, if necessary, to fit the structure of the interface entities; 

3. an implementable specification of the dynamics and the actions of each process; 

4. the algorithms allowing to calculate the values of indicators. 

For each scenario, the changes have to be documented in the same way. 

3.6  Simulation model 

The simulation model is an implementation of the concrete model (or one of the 

scenarios) as a software3. Classically in IAM approaches the simulation model looks like 

a black box for most of the participants to the modeling process (Resnick et al., 2000). 

They do not know to what extent the simulation model is a faithful implementation of 

the concrete one. This lack of comprehensive view of the simulation model often leads 

to little or even no confidence in the simulation results.  

Using the entity-process meta-model, the structure of the simulation model can mirror 

the one of the concrete model and so prevent the occurrence of distortions between the 

two models. Using an object-oriented language such as Java, each entity of the 

conceptual model is implemented as an object class provided with the corresponding 

attributes and methods. The relations are implemented as entities’ attributes, according 

to the navigability4 of the relations that can be deduced from the processes’ actions. 

These classes will be instantiated as objects according to the concrete model. Each 

process will be implemented as a class including class attributes and a method that 

                                                           
3 According to the terminology of logic, the concrete model would be considered as a theory, and 

the SES and the simulation model as two models (or interpretations) of this theory in the worlds 

of perceivable reality and software respectively. 
4 The navigability of a relation between entities specifies which of the related entities needs to 

access to the other. 



 

 

implements its dynamics. Each actor class will be in addition provided with a method 

that implements its behavior. 

The simulation model can be developed using a simulation platform providing useful 

services such as Cormas (Bousquet et al. 1998), Mimosa (Müller, 2010), Record (Bergez 

et al., submitted), Gamma (Taillandier et al., 2010), Repast (North et al. 2006) or many 

others - see the simulation platforms reviewed in (Schreinemachers et Berger, 2011).  

Thanks to the structure of the behavior of the model, as a set of processes that interact 

in an asynchronous way by means of entities, the engine that makes the simulation to 

progress is quite simple. Assuming that the time scales of all the processes are nested, at 

each time step it has to carry out the following: 

1. for every internal ecological and socio-economic process, activate its dynamics to 

select the actions to be performed; 

2. for each actor, activate its behavior to select the actions of each of his activities that 

are enabled, and then, according to his behavior, select the action(s) to be 

performed; 

3. perform the update of the state of the interface entities (as a result of the effect of 

external processes);  

4. perform the actions selected by each internal bio-physical process, by each socio-

economic process and then by each actor’s behavior; in case of conflicts between 

some actions (e.g. the execution of one action disabled a selected other one), the 

conflict must be solved either at random or by following well-specified rules. 

A simulation corresponds to a numerical experiment performed by applying the 

simulation engine to the simulation model of a given scenario. Each numerical 

experiment allows assessing indicators. Comparisons of indicator values of a given 

scenario to the ones of a reference, either the current situation or a reference scenario, 

allow the integrated assessment of scenarios.  

Conclusion 

The concepts proposed by the Entity-Process meta-model are elementary, while the 

proper modeling of complex SESs requires recourse to much more elaborated concepts 

such as “territory”, “public resource” or “policy”. We believe this meta-model can be 

specialized for specific modeling purpose (regarding the type of the investigated 

reference SES and investigated question) by providing rigorous definitions of higher 

level concepts, built upon concepts of this meta-model. This is nothing but the “profile” 

feature of the UML. 

The meta-model presented in the paper can be used for two different purposes: to 

support a priori the Integrated Assessment and Modeling process of a SES or to make 

explicit a posteriori the conceptual model of an already implemented model or of a quite 

informal model that does not satisfactorily manage the complexity of the system at hand. 

In both cases, the formal nature of the meta-model allows a quite easy comparison of 

models and of their components (Bezivin 2005). 
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