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Abstract. In this paper we propose a logical system combining the
update logic of A. Baltag, L. Moss and S. Solecki (to which we will refer
to by the generic term BMS, [BMS04]) with the belief revision theory as
conceived by C. Alchouròn, P. Gärdenfors and D. Mackinson (that we
will call the AGM theory, [GardRott95]) viewed from the point of view
of W. Spohn ([Spohn90,Spohn88]). We also give a proof system and a
comparison with the AGM postulates.

Introduction and Motivation: Update logic is a modal logic trying to model
epistemic situations involving several agents, and changes that can occur in
these situations due to incoming information or more generally incoming action.
Belief revision theory typically deals with changes (revisions) that a database
representing a belief state of a unique agent must undergo after adding conflicting
information to the database. Roughly speaking, these two theories thus deal
with the same kind of phenomenon. However, there are some dissimilarities. On
the one hand, belief revision theory is not a logic and it deals with a single
agent, unlike update logic. On the other hand, belief revision theory deals with
revision (and expansion) of information unlike update logic which deals only
with expansion of information. Far from being in contradiction, it seems then
that these theories have a lot to give each other. So it makes sense to look for a
way in which they can be merged.

In Sect. 1, we will set out the BMS theory and the AGM theory viewed from
the point of view of W. Spohn. In Sect. 2 we will propose a system combining
these two theories. In Sect. 3, we will give an axiomatization of it with a sound-
ness and completeness proof. In Sect. 4, we will show that it fulfills the 8 AGM
postulates.

1 Update Logic and Belief Revision Theory

1.1 Update Logic

In this section we set out the core of update logic as viewed by BMS. We split this
account into three parts: 1. static part, 2. dynamic part (‘dynamic’ because we
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deal with actions) and 3. update mechanism. Throughout this exposition and this
paper we follow a simple example called the ‘coin’ example taken from [BMS04].
This is the following:

“A and B enter a large room containing a remote-control mechanical coin
flipper. One presses the button, and the coin spins through the air, landing in
a small box on a table. The box closes. The two people are much too far to see
the coin. The coin actually heads up.”

1. Static Part. We classically represent the above (static) situation s by the
‘epistemic model’ depicted in Fig. 1.

w : H
A,B

��

A,B

��
v : T��

A,B

��

Fig. 1. BMS model for the ‘coin’ example.

The tokens w and v represent possible worlds. The double border around w
means that it is the actual world. In this world, the coin is heads up. This last
point is rendered formally by assigning the propositional letter H to w, which
stands for ‘the coin is Heads up’. Similarly, in the possible world v the coin is
tails up. this is rendered formally by assigning the propositional letter T to v,
which stands for ‘the coin is Tails up’. This assignment of propositional letters
to worlds is rendered formally by what we call a valuation: see definition below.

The accessibility relation w →A v intuitively means that while A is in world
w where the coin is heads up, he still considers possible that he is in world v
where the coin is tails up (because he does not know whether the coin is heads
or tails up). More generally, we set an accessibility relation w →j v when ‘on
the basis of agent j’s information in world w, the world v is a possible world’.

This epistemic representation of a particular situation is caught by the fol-
lowing general definition:

Definition: We call epistemic model M a tuple M = (W,→j , V, w0) where W is
a set of possible worlds, →j are finitely many accessibility relations indexed by
the agents j, V is a valuation function which assigns a set of possible worlds to
each propositional letter, and w0 is the actual world. ⋄

We can then ‘say things’ about specific epistemic models (modeling specific
situations) by introducing a language whose one of the components is a knowl-
edge operator Kj defined like that:

M, w |= Kjφ iff for all v such that w →j v, M, v |= φ.

Intuitively M, w |= Kjφ means ‘in world w, j Knows that φ’ . We can
then check with this definition that in our example, the epistemic model of
Fig. 1 captures what we want (e.g. the sentence ‘in the actual world, A does
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not know whether the coin is Heads or Tails up’ is rendered by the formula
M, w |= ¬KAH ∧ ¬KAT ).

See [FHMV95] for an extensive account of what is just outlined here.

2. Dynamic Part. Now we consider the following epistemic action a: ‘A cheats
and learns that the coin is Heads up, B suspecting anything about it’. We use
the term “epistemic” (in “epistemic action”) in the sense that the action doesn’t
change facts in the world. We represent how this action is perceived by the agents
(just as we represented above how a situation is perceived by the agents) by the
action model depicted in Fig. 2.

µ : True

A,B

��

σ : H

A

��

B

��

Fig. 2. BMS action model for the action ‘A cheats’.

The token σ represents the simple action ‘A looks at the coin and observes
that the coin is heads up’. A double border around σ means that it is the actual
action. For this action to be carried out in a particular possible world, the coin
needs to be Heads up in this possible world. That’s the intuitive meaning of the
precondition H in the action model. The token τ represents the simple action
‘nothing happens’. This action can be carried out in any possible world, hence
its precondition is the tautology True, which is true in any possible world.

The accessibility relation σ →B τ intuitively means that ‘while A looks at
the coin and observes that it is heads up (σ), for B nothing actually happens
(τ)’. More generally, we set an accessibility relation σ →j τ when the following
condition is fulfilled: ‘if σ occurs then in j’s view τ is one of the action that
might have happened’.

This epistemic representation of a particular action is caught by the following
general definition:

Definition: We call an action model Σ a tuple Σ= (Σ,→j, P re, σ0) where Σ is a
set of simple action tokens, →j are finitely many accessibility relations indexed
by the agents j, Pre is a function which assigns preconditions to each action
token, and σ0 is the actual action. ⋄

3. Update Mechanism. Now, in reality the agents update their beliefs accord-
ing to these two pieces of information: action a and situation s. This gives rise to
a new situation s × a. This actual update is rendered formally by the following
mathematical update product:
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Definition: Let M = (W,→j , V, w0) be an epistemic model and Σ =(Σ,→j, V, σ0)
an action structure. We define their update product to be the epistemic model
M ⊗ Σ = (W ⊗ Σ,→′

j , V
′, w′

0) where

1. W ⊗ Σ = {(w, σ) ∈ W × Σ; w ∈ V (Pre(σ))}.
2. (w, σ) →′

j (v, τ) iff w →j v and σ →j τ .
3. V ′(p) = {(w, σ) ∈ W ⊗ Σ; w ∈ V (p)}.
4. w′

0 = (w0, σ0). ⋄

Intuitive Interpretation: 1. The possible worlds that we consider after the update
are all the ones resulting from the performance of one of the actions in one of
the worlds, under the assumption that the action can ‘possibly’ take place in the
corresponding world (assumption expressed by the function Pre).

2. The components of our action model are ‘simple’ actions (in the sense of
BMS, see [BMS04] for more precision). It allows us to state that the accessibility
(or uncertainty) relations for the epistemic model and the epistemic action model
are independent from one another. This independence allows us to ‘multiply’
these uncertainties to compute the new accessibility (or uncertainty) relation.

3. The definition of the valuation exemplifies the fact that our actions do
not change facts. (That is why we call them epistemic actions, as already said
above.)

4. Finally, we naturally assume that the actual action can ‘possibly’ take
place in the actual world.

Let us get back to our ‘coin’ example. The update product of Fig. 1 and
Fig. 2 yields the model depicted in Fig. 3. This model presents some flaws and
will be discussed in the rest of the paper.

We have set out the core of update logic as viewed by BMS. Yet, bear in
mind that in [BMS04] a genuine logical system is built out of it, that we do not
expound here.

(t, µ) : H

A,B

��
A,B

�� (v, µ)

A,B

��
��

(w, σ) : H

A

��

B

		���������

B

��

Fig. 3. BMS model corresponding to the situation after the action ‘A cheats’.

1.2 Belief Revision Theory: W.Spohn’s Approach

In this section, we set out a simplified account of W.Spohn’s approach to belief
revision theory as conceived by AGM (see [GardRott95]).

Generally speaking, belief revision theory deals with changes that must un-
dergo a database representing a belief state of an agent after adding to the
database information. (Note that it deals only with the notion of belief and not
with the one of knowledge like in update logic.)
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The format of the database can take two main different forms: syntactic
and semantic. The former consists of a belief set K that consists of propositional
formulas (also called sentences, representing the facts accepted in the belief state)
and that is closed under logical consequences. The latter consists of a set W of
possible worlds (representing the narrowest set of possible worlds in which the
individual believes that the actual world is located). It can be shown that these
two representations are actually equivalent.

The type of change for a state of belief which interests us most is revision
(the other classical ones are expansion and contraction). It consists of adding to
the belief set K a new sentence φ that is typically inconsistent with K. In order
that the resulting belief set K ∗ φ be consistent, some of the old sentences in φ
are deleted. Now two basic questions come up to mind:

1. What general conditions this revised belief set K ∗ φ must fulfill in order
that the revision process be the closest possible to one performed by ratio-
nal agents? This is the concern of the 8 AGM postulates that can be found
in [GardRott95].

2. What sentences should be actually deleted from the belief set in order to
form the new belief set K ∗ φ? In the literature, there are several explicit proce-
dures that compute the new belief set K ∗φ after a revision. We focus on the one
proposed by W.Spohn based on a possible world semantics ([Spohn90,Spohn88]).
His approach satisfies moreover the 8 AGM postulates.

Definition: An ordinal conditional function is a function κ from a given set W
of possible worlds into the class of ordinals such that some possible worlds are
assigned the smallest ordinal 0. ⋄

Intuitively, κ represents a plausibility grading of the possible worlds: the
worlds that are assigned the smallest ordinals are the most plausible, according
to the beliefs of the individual. Then,

Definition: We define κ(φ) as κ(φ) := min{κ(w); w ∈ φ}.
We say that a formula φ is believed ( with degree of firmness α) when κ−1(0) ⊆

{w; w ∈ φ} (resp. and κ(¬φ) = α).
The belief set K associated with the ordinal conditional function κ is the set

of all propositions believed in κ. ⋄

Now assume the sentence φ is announced and the agent believes it with
a degree of firmness α. We can then define the resulting ordinal conditional
function κ ∗ (φ, α) representing the new state of belief:

Definition: Let φ be a proposition such that {w; w ∈ φ} �= ∅. We define the
ordinal conditional function κ ∗ (φ, α) by:

κ ∗ (φ, α)(w) =

{

κ(w) − κ(φ) if w ∈ φ
α + κ(w) − κ(φc) if w ∈ φc. ⋄

Note that in this new belief state, φ is believed with firmness α. Finally,
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Proposition: If we define K ∗ φ as the belief set associated with κ ∗ (φ, α), the
revision function * thus defined satisfies the 8 AGM postulates. ⋄

So we have set out update logic and belief revision theory as viewed by W.
Spohn. Now we are going to propose a system combining these two theories and
see what insights it provides us regarding information change. As in the BMS
exposition, we split our account in three parts: 1. Static part 2. Dynamic part
3. Update mechanism (inspired from W. Spohn’s theory).

2 A Combined System

2.1 The Static Part

Definition. Just as in the BMS system, we want to represent how a static
situation is perceived by the agents from the point of view of their beliefs and
knowledge. That is to say, we want to represent what the agents know and believe
about the actual world and also about what the other agents know and believe
in general. We do that thanks to what we call a belief epistemic model.

From now on and in the rest of the paper, Max is an arbitrary fixed natural
number different from 0.

Definition 1. A belief epistemic model (be-model) M = (W, {∼j; j ∈ G},
{κj; j ∈ G}, V, w0) is a tuple where:

1. W is a set of possible worlds.
2. w0 is the possible world corresponding to the actual world.
3. ∼j is an equivalence relation defined on W for each agent j.
4. κj is an operator, ranging from 0 to Max, defined on the set of possible

worlds.
5. V is a valuation.
6. G is a set of agents.

Intuitive Interpretation. Points 1,2,5,6 are clear (see Sect. 1.1). It remains to
give intuitive interpretations for points 3 and 4.

3. The equivalence relation ∼j intuitively models the notion of knowledge. Its
intuitive interpretation is:

w ∼j v iff agent j’s knowledge in w and v is the same.

Note that this implies that j cannot distinguish world w from v (otherwise
she would not have the same knowledge in w and v) and that her information
is the same in w and v. This also implies that ∼j is an equivalence relation, as
mentioned in the definition.

4. The plausibility assignment κj intuitively models the notion of belief. Among
the worlds j cannot distinguish (the worlds where her knowledge is the same),
there are worlds that j might consider more plausible than others. This is ex-
pressed by the plausibility grading κj: the more plausible a world is for the agent
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j, the closer its plausibility value is to 0 (this is of course completely similar to
W. Spohn’s approach set out in Sect. 1.2). A maximal degree of plausibility
Max (originally needed for technical reasons: see Sect. 3.1) is introduced and we
assume that beyond a certain degree of plausibility (Max), the agent can not
distinguish two different worlds of different plausibility.

Remark 1. Note that one could argue that this plausibility assignment should
be dependent on the world w in which the agent dwells. This is wrong. Indeed,
in a particular world w, j bases her plausibility assignment only on information
she has in w. Yet this information is the same in any world indistinguishable
from w, as noted in point 3. So the assignment will be the same for any world
indistinguishable from w: that is why we consider a ‘global’ plausibility assign-
ment.

Static Language and Example. We can easily define a language LSt for
be-models (St for Static).

Definition 2. The syntax of the language LSt is defined by,

φ := p | ¬φ | φ ∧ ψ | Kjφ | Bn
j φ where n ∈ N

Its semantics is defined by,

M, w |= Kjφ iff for all v st w ∼j v, M, v |= φ.

M, w |= Bn
j φ iff for all v st w ∼j v and κj(v) ≤ n, M, v |= φ.

The intuitive meaning of M, w |= Bn
j φ is that ‘in world w, j believes with

plausibility (a degree of) at most n that φ is true’. The definition of Bn
j is taken

from [vDL03]. Kj is the usual knowledge operator (see [FHMV95] or Sect. 1.1).

Example 1. Let us get back to the ‘coin’ example introduced in Sect. 1.1. We
model the initial situation in our system by the be-model depicted in Fig. 4. The
same situation is modeled in the BMS system by the model depicted in Fig. 1.

w : H
A,B

v : T

κA(x) = κB(x) = 0 for all x.

Fig. 4. be-model for the ‘coin’ example.

The belief epistemic model depicted in Fig. 5 corresponds to the situation
resulting from the action ‘A cheats and learns that the coin is heads up’ occurring
in the initial situation. We assume moreover that in this action ‘B suspects that
A cheats’, unlike the BMS framework . The labeling of the worlds will become
clear in Sect. 2.3; for the time being, just ignore it. Relations in the model are
equivalence relations; again, H is for ‘Heads’, T is for ‘Tails’ and the double
bordered world corresponds to the actual world.
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In this model and in the actual world (w, σ), A knows that the coin is heads
up (formally: KAH) and B believes that A doesn’t know whether the coin is
Heads or Tails (formally: B0

B(¬KAH ∧ ¬KAT )).
The corresponding model of BMS is depicted in Fig. 6 (or Fig. 3.). In this

model, The nuance of concepts (belief B and knowledge K) is not displayed
because we use the same crude accessibility relation →j for both the notions of
knowledge and belief. So, when we read what is true in the actual world (w, σ), we
have personally to introduce this nuance of concept (belief B and knowledge K)
because it is not displayed in the formalism itself. This is of course a flaw of the
BMS system.

(t, µ) : H
A,B

B

(u, µ) : T

(w, σ) : H
B

(v, τ ) : T

B

κA(x) = 0 for all worlds x, and κB(w, σ) = α > 0, κB(v, τ ) = β > 0,
κB(t, µ) = κB(u, µ) = 0

Fig. 5. be-model corresponding to the situation after the action ‘A cheats’.

(t, µ) : H

A,B

��
A,B

�� (v, µ)

A,B

��
��

(w, σ) : H

A

��

B

		���������

B

��

Fig. 6. BMS model corresponding to the situation after the action ‘A cheats’.

2.2 The Dynamic Part

Again, just as in BMS, we want to represent how an action is perceived by several
agents from the point of view of their beliefs and knowledge. That is to say, we
want to do the same thing as in the last section, but with an action instead of
a static situation. We do that thanks to what we call a belief epistemic action
model.

Definition 3. A belief epistemic action model (be-action-model) Σ is a tuple
(Σ, {∼j; j ∈ G}, {κ∗

j ; j ∈ G}, P re, σ0) such that:

1. Σ is a set of possible actions.
2. σ0 is the possible action corresponding to the actual action.
3. ∼j is an equivalence relation on Σ indexed by the set of agents.
4. κ∗

j is an operator indexed by the set of agents, ranging from 0 to Max.
5. Pre is a function from the set of simple actions to the formulas of LSt.
6. G is a set of agents.



A Combined System for Update Logic and Belief Revision 9

The intuitive interpretation is very similar to the one spelled out for the no-
tion of a belief epistemic model. So we refer the reader to the previous section for
a correct interpretation of the definition: the term ‘world’ just has to be replaced
by the term ‘action’. The only differences concern the absence of a valuation and
the introduction of the function Pre. Intuitively, Pre(σ) is a necessary condition
for the action σ to be performed in a particular world (see Sect. 1.1).

Here again, ∼j and κj, modeling respectively the notions of knowledge and
belief, are refinements of the crude epistemic relation →j of BMS.

Example 2. We reconsider the example of cheating (see Sect. 1.1): ‘A cheats and
learns that the coin is heads up, B suspecting that A cheats’. We propose the
belief epistemic action model depicted in Fig. 7 for this action (where the double
border corresponds to the actual action and relations are equivalence relations).
In this be-action-model, while ‘A looks at the coin and observes H’ (action σ), B
believes ‘nothing happens’ (action µ) but nevertheless considers plausible (with
plausibility α and β) that A looked at the coin (actions σ and τ respectively),
because she suspects that A has cheated.

The corresponding action model of BMS is depicted in Fig. 8 (or Fig. 2).
Contrary to this one, we add one other possible action, that B may consider
possible: ‘A looks at the coin and observes tail’ (depicted as τ). Indeed, in our
framework, B suspects A of having cheated but doesn’t know whether in that
case A has observed Heads or Tails. Hence we have to consider two possible
actions for cheating: ‘A looks at the coin and observes H’ ( action σ) and ‘A
looks at the coin and observes T’ (action τ). The third action µ represents the
action where ‘nothing happens’.

µ : True

B
B

���������

σ : H
B

τ : T

κA(x) = 0 for all x and κB(σ) = α > 0, κB(τ ) = β > 0 ,κB(µ) = 0.

Fig. 7. be-action-model for the action ‘A cheats’.

µ : True

A,B

��

σ : H

A

��

B

��

Fig. 8. BMS action model for the action ‘A cheats’.

Example 3. We consider the action consisting of the public announcement ‘A
knows whether the coin is Heads or Tails’ (formally: KAH ∨ KAT ). There is
no essential difference between our model (depicted in Fig. 9) and the BMS
model (depicted in Fig. 10) but we need their introduction for the purpose of
the following section.
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ρ : KAH ∨ KAT

κA(ρ) = κB(ρ) = 0.

Fig. 9. be-action-model for the action ‘public announcement that A knows whether
the coin is Heads or Tails’.

ρ : KAH ∨ KAT

A,B

��

Fig. 10. BMS action model for the action ‘public announcement that A knows whether
the coin is Head or Tail’.

2.3 The Update Mechanism

We now define the mathematical update product. It is supposed to render the
actual update performed by the agents which follows their apprehension of the
action. The apprehension (or perception) of the action corresponds to what
we modeled in the last section by a be-action-model. Note that this process
(apprehension + update) may be done simultaneously in reality, but in our
formalism we clearly separate it.

Definition 4. Given a belief epistemic model M = (W,∼j , κj, V, w0) and a
belief epistemic action model Σ = (Σ,∼j , κ

∗
j , P re, σ0) we define their update

product to be the belief epistemic model M ⊗Σ = (W ⊗Σ,∼′
j, κ

′
j , V

′, w′
0), where:

1. W ⊗ Σ = {(w, σ) ∈ W × Σ; w ∈ V (Pre(σ))}.
2. (w, σ) ∼′

j (v, τ) iff w ∼j v and σ ∼j τ
3. κ′

j(w, σ) = CutMax(κ∗
j (σ) + κj(w) − κw

j (φ)) where φ = Pre(σ), κw
j (φ) =

min{κj(v); v ∈ V (φ) and v ∼j w} and

CutMax(x) =

{

x if 0 � x � Max.
Max if x > Max

4. V ′(p) = {(w, σ) ∈ W × Σ; w ∈ V (p)}
5. w′

0 = (w0, σ0).

Intuitive Interpretation. Points 1,2,4,5 have exactly the same interpretation
as in BMS (see Sect. 1.1). It remains to motivate the key point concerning the
update of plausibility, which is inspired from W. Spohn’s ordinal conditional
function κ ∗ (φ, α) (see Sect. 1.2). We will give two justifications. The first one
is ‘intuitive’ and the second one is related to probability theory.

First of all, κ∗
j (σ) + κj(w) − κw

j (φ) is the core of the update. CutMax is just
a minor technical device so that the new plausibility assignment fits into the set
{0, .., Max}. However it has also an intuitive import if we refer to the assumption
motivating the introduction of Max in Sect. 1.1.

1. Now the first justification. We are interested in an update performing a gen-
uine belief revision. So, our rational intuition should guide us in order to deter-
mine the correct plausibility update. In that respect, it seems intuitively clear
that,



A Combined System for Update Logic and Belief Revision 11

‘If you believe an action has taken place, then after the update you should
believe what is then (after the update) true in the worlds where the action has
taken place.’

Or more generally and precisely,

‘In a current world w, if you believe with plausibility κ∗
j (σ) that an action σ

has taken place, then after the update you should believe with plausibility κ∗
j (σ)

what is then true in the worlds where the action has taken place and that you
cannot distinguish from your current world w.’

So we would be tempted to assign roughly to the worlds accessible from w
where the action σ has taken place the plausibility κ∗

j (σ). Yet doing so, we would
lose part of the overtones and information present in the former model amongst
the worlds where the action σ has taken place (and that are accessible from w).
So we add κj(w)−κw

j (φ) to κ∗
j (σ) in order to keep track of and incorporate this

former information (glance at the definition of κw
j (φ)).

2. Now another justification. W. Spohn showed in [Spohn90] that we can draw
a precise and rigorous parallel between probability theory and his plausibility
theory. More precisely, he showed that sum, multiplication, and division of prob-
abilities can be replaced respectively by the minimum, addition, and subtraction
of plausibilities. This will be of interest for us: we will jump from plausibility to
probability, then use probability results to get what we want and finally jump
back to plausibility by translating our probabilistic outcome.

For our purpose, note that we can perfectly replace in this justification plau-
sibility of worlds κj(w) (and actions κj(σ)) by probability of worlds Pj(w) (and
actions Pj(σ) respectively). Now, we want to determine κj(w, σ). That is to say,
in a probabilistic setting, we want to determine Pj(w, σ) = Pj(W ∩A) where W
stands for ‘we were in world w’ and A for ‘action σ occurred in w’. Probability
theory tells us that

Pj(W ∩ A) = Pj(A).Pj(W |A).

Clearly,
Pj(A) = Pj(σ).

So it remains to determine Pj(W |A), that is to say the probability that we
were in world w given the extra assumption that action σ occurred in this world.
We reasonably claim

Pj(W |A) =
Pj(w)

∑

{Pj(v); w ∼j v and v ∈ V (Pre(σ))}
.

That is to say, we conditionalize the probability of w for j (Pj(w)) to the
worlds where the action σ has taken place and that may correspond for j to
the actual world w ({v; w ∼j v and v ∈ V (Pre(σ))}). That is how it would
be done in classical probability theory. The intuition behind it is that we now
possess the extra piece of information that σ occurred in w, so the worlds indis-
tinguishable from w where the action σ did not occur do not play a role anymore
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for the determination of the probability of w: we can then get rid of them and
conditionalize on the relevant worlds.

Finally we get:

Pj(w, σ) =
Pj(σ).Pj(w)

∑

{Pj(v); w ∼j v and v ∈ V (Pre(σ))}
.

Now with the translation from probability to plausibility proved in [Spohn90]
(‘sum → minimum’, ‘multiplication → addition’, ‘division → subtraction’), we
get the expected outcome:

κ′
j(w, σ) = κ∗

j (σ) + κj(w) − κw
j (φ)

Remark 2. The first justification of the plausibility assignment stresses the pri-
ority of the plausibility assignment of the be-action-model upon the plausibility
assignment of the be-model. So in a sense, it stresses also the priority of new
information upon former information, just as in belief revision theory. We think
this is how the plausibility assignment of action should be interpreted.

Remark 3. We have implicitly assumed in these two justifications that the plau-
sibility of the actions are independent from the worlds in which they are per-
formed. However, this is wrong for some cases. Indeed, for example consider a
vague announcement of a formula φ that the agent j cannot distinguish from φ′

because she is not sure whether she heard it correctly. In a ∼j-equivalence class
where the agent j knows more formulas that logically imply φ than φ′, j will find
the announcement φ more plausible than φ′ because she will have more actual
evidence at her disposal to think so. However, in another ∼j-equivalence class
of the same model where the agent j knows more formulas that logically imply
φ′ than φ, j will find the announcement of φ less plausible than φ′ because she
will have less actual evidence that would prompt her to think so.

Example 4. In this example, we are going to see the added value of a combined
system.

Yet, first, let us briefly give an example of update. If we update the be-model
depicted in Fig. 4 by the be-action-model depicted in Fig. 7, we get the be-model
depicted in Fig. 5. That is what we want. (Note that correlatively, in the BMS
system, the update of the model depicted in Fig. 1 by the action model depicted
in Fig. 8 (or Fig. 2) would yield the model depicted in Fig. 6 (or Fig. 3).)

Now in the actual world of the model depicted in Fig. 5 (respectively Fig. 6
for the BMS system), B believes that A doesn’t know whether the coin is Heads
or Tails. Yet, A actually knows whether the coin is Heads or Tails. B’s belief is
consequently wrong. So, what happens if we update these models by a public
announcement that ‘A knows whether the coin is Heads or Tails’? Indeed this
public announcement would contradict B’s beliefs and then B would have to
revise her beliefs.

This public announcement is depicted in Fig. 9 (respectively Fig. 10 for the
BMS system). This update yields the be-model depicted in Fig. 11 (respectively
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Fig. 12 for the BMS system). In this be-model (Fig. 11), B now believes that
A knows whether the coin is Heads or Tails, so B did revise her beliefs. On the
other hand, in the BMS model (Fig. 12) B now believes everything. In a sense
we could say that the announcement drives her ‘crazy’ because it contradicts
her beliefs.

So, we see in this example that the BMS system does not perform belief
revision, unlike our system. This is of course a flaw of the BMS system.

((w, σ), ρ) : H
B

((v, τ ), ρ) : T

κB((w, σ), ρ) = κB((v, τ ), ρ) = 0.

Fig. 11. be-model corresponding to the situation after the announcement ‘A knows
whether the coin is Head or Tail’.

((w, σ), ρ) : H

A

��

Fig. 12. BMS model corresponding to the situation after A has cheated and after the
announcement ‘A knows whether the coin is Head or Tail’.

Generally speaking, it seems that a system allowing for misperception (like
cheating) has to incorporate a revision of belief feature.

2.4 The Full Language L(Σsg)

We extend the static language defined in Sect. 2.1. in order to incorporate the
dynamic feature. This dynamic feature will be displayed in the full language by
the programs and the modality [π].

Let Σsg = (Σ,∼j, κ
∗
j ) be a fixed action signature (see [BMS04]).

Definition 5. The syntax of the language L(Σsg) is defined by,

– Sentences φ := True | p | ¬φ | φ ∧ ψ | Kjφ | Bn
j φ | [π]φ where n ∈ N

– Programs π := σψ | π + ρ | π.ρ (see [BMS04])

Its semantics is completely similar to the BMS one (see [BMS04]), except for
the operator Bn

j (see Sect. 2.1).

Intuitively, M, w |= [π]φ says that ‘in world w, after the action corresponding
to the program π has been performed, φ will hold’.

Our system is a semantically driven logical system. So naturally, we can try
to find an axiomatization and a completeness proof for it. That is the concern
of the next section.
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3 Logic of Combined Update and Revision

3.1 The Full Proof System

We set out in this section the core of the proof system AX w.r.t. the semantics
of L(Σsg). The core of the sub-proof system AX’ w.r.t. the semantics of LSt

(see Sect. 2.1) is labeled with *. (For a full version of the proof system, see the
web-site http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL.)

1. ⊢ [σiψ]p ↔ (ψi → p)
2. ⊢ [σiψ]¬χ ↔ (ψi → ¬[σiψ]χ)
3. ⊢ [σiψ]φ ∧ χ ↔ ([σiψ]φ ∧ [σiψ]χ)
4. ⊢ [σiψ]Kjφ ↔ {ψi →

∧

{Kj[σkψ]φ; σk ∼j σi}}

5. ⊢ [σiψ]Bn
j φ ↔ (ψi →

∧

{Bp−1
j ¬ψk ∧ ¬Bp

j¬ψk → B
n+p−κ∗

j (Pre(σk))

j [σkψ]φ;
σk ∼j σi and p ∈ {0..Max}}) where n < Max.

6. ⊢ [π.ρ]φ ↔ [π][ρ]φ
7. ⊢ [π + ρ]φ ↔ [π] ∧ [ρ]φ
8. *⊢ Kjφ → φ
9. *⊢ Bn

j φ → KjB
n
j φ for all n ∈ N

10. *⊢ ¬Bn
j φ → Kj¬Bn

j φ for all n ∈ N

11. *⊢ Bn
j φ → Bn′

j φ for all n ≥ n′

12. *⊢ Kjφ ↔ Bn
j φ for all n ≥ Max.

Axiom 12 is somewhat problematic. Indeed, we ‘jump’ from the notion of
belief with highest plausibility to the notion of knowledge: this is somewhat
mysterious! Note that we could avoid that by allowing an infinite number of
degrees of belief (and then get rid of Max), but then in axiom 5 we would get
an infinite conjunction in the second term.

Moreover, it seems unfortunately impossible to give an intuitive import to
axiom 5.

3.2 Completeness and Soundness Proofs

An exhaustive completeness and soundness proof can be found on the web-
site http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL . We only
provide a sketch of the proof here.

Soundness Proof. We only give the soundness proof of axiom 5. The soundness
of the other axioms can be easily checked or are spelled out in [BMS04].

First, note that in any be-model M ,

Fact: κw
j (φ) = l ⇔ M, w |= Bl−1

j ¬φ ∧ ¬Bl
j¬φ.

Now, if we spell out the definition of M, w |= [σiψ]Bn
j φ, we get at a certain

point to the expression CutMax(κ∗
j (σj) + κj(v) − κw

j (ψj)) ≤ n. Yet, n < Max,
so this expression is equivalent to κ∗

j (σj) + κj(v) − κw
j (ψj) ≤ n which is again

equivalent to κj(v) ≤ n + κw
j (ψj) − κ∗

j (σj). That is how the positions of [σiψ]
and Bj are swapped in axiom 5. Finally the value of κw

j (ψj) is determined by
the Fact.
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Completeness Proof. First we show:

Theorem 1. AX’ is a sound and strongly complete axiomatization with respect
to the semantics of LSt.

Proof. We use the following canonical model:

M c = (W c,∼j , κj , V ) where,
– W c = {wW ; W maximal AX’-consistent set}.
– ∼j= {(wV , wW ); V/Kj

⊆ W} where V/Kj
= {φ; Kjφ ∈ V }.

– κj(wW ) = min{n; W/Bn
j
⊆ W}.

– wW ∈ V (p) iff p ∈ W .

Lemma 1. For all φ ∈ L(Σsg), there is φSt ∈ LSt such that ⊢ φ ↔ φSt

Proof. We prove it by successive inductions (see the web-site mentioned above).
We use in great extent the ‘reduction’ axioms 1 to 5: they all ‘push through’
the epistemic operators and connectives, except for the basic case 1 where [σiψ]
disappears.

Theorem 2. AX is strongly complete with respect to the semantics of L(Σsg).

Proof. Thanks to lemma 1 and the soundness of our logic, the completeness proof
with respect to the semantics of the full language boils down to the completeness
proof with respect to the static language. This last point has been shown in
theorem 1, so we have the expected result.

4 Comparison with the AGM Postulates

To check whether the AGM postulates are fulfilled, we first need to define, rel-
atively to a world w and for an agent j, the belief set, the expanded belief set
and the revised belief set. We will deal with propositional language as in the
AGM theory (see Sect. 1.2). The type of be-action-model we naturally consider
for the update is a public announcement of a propositional formula φ, depicted
in Fig. 13.

σ : φ

κj(σ) = 0 for all j.

Fig. 13. be-action-model for the action ‘public announcement of the propositional for-
mula φ’.

Definition 6. For each world w, we define

– the belief set Kw = {φ ∈ L; M, w |= B0
j φ},

– the revision of the belief set Kw by φ, Kw ∗φ = {ψ ∈ L; M, w |= [σ, φ]B0
j ψ},

– the expansion of the belief set Kw by φ, Kw + φ = {ψ ∈ L; M, w |=
B0

j [σ, φ](φ → ψ)},

where L is the propositional language.
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Theorem 3. (If M, w |= ¬Kj¬φ then) * defined by Kw ∗φ satisfies the 8 AGM
postulates.

Proof. The proof is standard and can be found on the web-site
http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL.

Note 1. In the theorem, the assumption within brackets is a natural one.

Remark 4. If we consider the epistemic language (i.e. with knowledge) instead
of the propositional language L for the formation of belief sets, then some AGM
postulates are not fulfilled. This failure is due to the fact that the epistemic
formulas satisfiable in any world may change after an update with a public
announcement (phenomenon called ‘persistence’). Yet, assume we slightly change
the be-action-model depicted in Fig. 13 and replace it with the one depicted in
Fig. 14.

σ : φ
j

τ : ¬φ

κ∗j (σ) = 0 and κ∗j (τ ) = αj for all agents j.

Fig. 14.

Then the 8 AGM postulates are satisfied for the epistemic language. (For a
proof see the web-site mentioned above.) Indeed, the epistemic formulas satisfi-
able in any world are the same after an update with this type of be-action-model.

Moreover, after the update, φ is believed by all the agents j with firmness
αj in world w (see Sect. 1.2 for a definition of the notion of firmness).

General Conclusion: We have set out a logical system merging update logic
and belief revision theory. This system satisfies the AGM postulates. However,
extending the BMS framework with an accessibility relation for the notion of
belief and updating it by ‘multiplication’ does not perform a revision of belief
but rather an expansion of beliefs.

Nevertheless, our system presents some limitations. First, as mentioned in
remark 3, we assume that the plausibility of an action does not depend on the
world in which it is performed. Unfortunately, we cannot make small variations
to our current system in order to avoid this assumption. This then shrinks the
set of actions we can consider in our system. Second, the relationship between
the notions of knowledge and belief is not properly rendered as it is suggested
in axiom 12, and the theorem ¬Kjφ → Kj¬Kjφ is inadmissible in many types
of situations (although not in our example).

Concerning the second point, we believe one can tackle epistemic issues and
describe (actual) epistemic situations accurately only with an epistemic formal-
ism which renders properly all the nuances and overtones within and between
these notions. This paper is a first step towards it: we enriched and refined our
epistemic formalism by introducing the notion of belief explicitly. Further and
better refinement is the concern of ongoing research.
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