
On the parametric maximum likelihood estimator for

independent but non-identically distributed observations

with application to truncated data

Fanny Leroy, Jean-Yves Dauxois, Pascale Tubert-Bitter

To cite this version:

Fanny Leroy, Jean-Yves Dauxois, Pascale Tubert-Bitter. On the parametric maximum likeli-
hood estimator for independent but non-identically distributed observations with application
to truncated data. 16 pages. 2013. <hal-00865962>

HAL Id: hal-00865962

https://hal.archives-ouvertes.fr/hal-00865962

Submitted on 25 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Villejuif, France; 3 Université de Toulouse-INSA, IMT UMR CNRS 5219, Toulouse, France

Abstract

We investigate the parametric maximum likelihood estimator for truncated data when

the truncation value is different according to the observed individual or item. We extend

Lehmann’s proof (1983) of the asymptotic properties of the parametric maximum likeli-

hood estimator in the case of independent non-identically distributed observations. Two

cases are considered: either the number of distinct probability distribution functions that

can be observed in the population from which the sample comes from is finite or this

number is infinite. Sufficient conditions for consistency and asymptotic normality are

provided for both cases.

Keywords: Parametric maximum likelihood estimator; Independent non-identically dis-

tributed observations; Consistency; Asymptotic normality; Truncated data.

1 Introduction

Truncated data arise frequently in survival analysis or in astronomy. For instance, left-

truncated data occur when one wants to estimate the luminosity of an astronomical object

but one can only detect astronomical objects which are sufficiently bright (Woodroofe, 1985).

⋆This work was supported by the Fondation ARC (fellowship DOC20121206119 to Fanny Leroy).
∗Corresponding author. Email address: fanny.leroy@inserm.fr (F. Leroy)
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In survival studies, data on time to onset of a disease that are collected retrospectively in

case registries are right-truncated because the sample includes only the cases, with their

information, that have already occurred and not the cases that may occur in the future. A

well-known example arised in the late eighties with the estimation issue of AIDS incubation

time distribution for transfusion-induced AIDS (Lagakos et al., 1988). In the same way, data

on incubation period of inhalational anthrax, from people living or working in a city of Russia

where an anthrax outbreak occurred in April 1979 and where a subsequent public health

intervention was led, are right-truncated because the public health intervention prevented

some deaths (Brookmeyer et al., 2001). In the last both cases, accurate estimation of the

distribution of the incubation time could help in setting up public health policies to diagnose

earlier or improve the treatment of infected people.

Let X be the random variable of interest, the luminosity of an astronomical object or

the incubation time of a disease in our examples. We assume a parametric model for the

distribution of the random variable X and the maximum likelihood estimator is considered.

Let θ be the vector of unknown parameters of the assumed parametric model. Let F (.; θ) be

the cumulative distribution function ofX and f(.; θ) its probability distribution function. Let

t belonging to R. The random variable X is said to be right-truncated (resp. left-truncated)

by the truncation value t when the variable X is observed only if its realization is smaller

(resp. larger) than t. The truncation value t may be different according to the individual

or item. Let (x1,t1), (x2,t2), . . . , (xn,tn) be the n truncated observations, where xi is the

realization of X and ti is the truncation value. All observed data meet the condition xi ≤ ti

in the case of right-truncated data or the condition xi ≥ ti in the case of left-truncated

data. Right-truncated (resp. left-truncated) data on X consist of independent realizations

of random variables with respective distribution the conditional distribution of Xi given

{Xi ≤ ti} (resp. {Xi ≥ ti}), that is with cumulative distribution function F (.; θ)/F (ti; θ)

(resp. F (.; θ)/ (1− F (ti; θ))) and probability distribution function fi(.; θ) = f(.; θ)/F (ti; θ)

(resp. fi(.; θ) = f(.; θ)/ (1− F (ti; θ))). Consequently, if the truncation value is different

according to the individual or item, truncated data consist of independent but non-identically
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distributed observations. In this paper, we deal with this case.

Asymptotic properties of the parametric maximum likelihood estimator for independent

and identically distributed observations in the multiparameter case have been explored by

Chanda (1954) and Lehmann (1983). Chanda (1954) solved the normal equations to prove

the consistency of this estimator whereas Lehmann (1983) studied the sign of a function of

the log-likelihood on a sphere with center the true value of the parameter vector. While

Bradley and Gart (1962) developed the extension of the proof of Chanda (1954) for inde-

pendent but non-identically distributed observations, there is no extension of the proof of

Lehmann (1983). There are some other proofs of asymptotic properties like the proof using

empirical processes and exposed by Van der Vaart and Wellner (2000) that yields to dif-

ferent statements of assumptions that may not be easy to verify in specific situations. In

the present article, we develop the extension of the proof of Lehmann (1983) in the case of

independent but non-identically distributed observations. In their paper, Bradley and Gart

(1962) considered two cases: either the number of distinct probability distribution functions

that can be observed in the population from which the sample comes from is finite or this

number is infinite. For the sake of generality, we consider these both cases. In the case of

an infinite number of distinct probability distribution functions, the assumptions that are

sufficient conditions for consistency and asymptotic normality of the parametric maximum

likelihood estimator are slighlty different than in the paper of Bradley and Gart (1962). In

the remaining of this paper are presented the assumptions, the theorems and the proofs of

the asymptotic properties of the parametric maximum likelihood estimator.

2 Asymptotic properties

In this paper, for a sequence of random variables with index n, the convergence in probability

is written
P−→

n→+∞
and the convergence in distribution is written

d−→
n→+∞

.
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2.1 Infinite number of distinct probability distribution functions

Let (x1, x2, . . . , xn) be the observations of n independent random variables with respective

and not necessarily identical probability distribution functions fi(.; θ), for i = 1, . . . , n, where

θ = (θ1, θ2, . . . , θj, . . . , θr) is a vector of unknown parameters shared by all these random

variables. The vector θ belongs to Θ, an open subset of Rr. Let θ0 = (θ01, θ
0
2, . . . , θ

0
j , . . . , θ

0
r)

be the true value of the parameter. Let Si ⊂ R be the support of the probability distribution

function fi(.; θ). The support Si must be independent of the vector of unknown parameters

θ. As well-known, the likelihood of the sample is written L(x1, x2, . . . , xn; θ) =
∏n

i=1
fi(xi; θ)

and the maximum likelihood estimator is defined as θ̂n = argmax
θ∈Θ

L(x1, x2, . . . , xn; θ). The

normal equations are

∇θlog L(x1, x2, . . . , xn; θ) = 0,

where ∇θ is the gradient operator.

Remark 1. We assumed that the unknown parameter vector is shared by all the densities

because it is the case for truncated data. However, theorems and proofs remain valid when

it is not the case.

Let us introduce a set of sufficient conditions for the following theorems.

Assumption 1. The maximum likelihood estimator is solution of the normal equations.

Assumption 2. The normal equations have an unique root.

Assumption 3. For all θ ∈ Θ, i = 1, . . . , n and (j, p, q) ∈ {1, . . . , r}3, the partial derivatives

∂log fi(.; θ)

∂θj
,
∂2log fi(.; θ)

∂θj∂θp
and

∂3log fi(.; θ)

∂θj∂θp∂θq

exist for almost all x.

Assumption 4. For all θ ∈ Θ, i = 1, . . . , n and j ∈ {1, . . . , r}, the partial derivative
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∂

∂θj
fi(.; θ) is an integrable function on Si and

∫

Si

∂

∂θj
fi(x; θ)dx =

∂

∂θj

∫

Si

fi(x; θ)dx.

Assumption 5. For all θ ∈ Θ, i = 1, . . . , n and (j, p) ∈ {1, . . . , r}2, the partial derivative

∂2

∂θj∂θp
fi(.; θ) is an integrable function on Si and

∫

Si

∂2

∂θj∂θp
fi(x; θ)dx =

∂

∂θj

∫

Si

∂

∂θp
fi(x; θ)dx.

Assumption 6. For all θ ∈ Θ and j ∈ {1, . . . , r},

1

n

n∑

i=1

∂logfi(Xi; θ)

∂θj

P−→
n→+∞

lim
n→+∞

1

n

n∑

i=1

E

(
∂logfi(Xi; θ)

∂θj

)
= 0.

Remark 2. Assumption 4 implies that the expectation E (∂logfi(Xi; θ)/∂θj) exists and is

naught for all i = 1, . . . , n and j ∈ {1, . . . , r}. Consequently, the limit on the right-hand part

in Assumption 6 exists.

Assumption 7. For all θ ∈ Θ, i = 1, . . . , n and (j, p) ∈ {1, . . . , r}2,

E

(
∂2logfi(Xi; θ)

∂θj∂θp

)
and lim

n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

)

exist and

1

n

n∑

i=1

∂2logfi(Xi; θ)

∂θj∂θp

P−→
n→+∞

lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

)
.

Assumption 8. For all θ ∈ Θ, i = 1, . . . , n and (j, p, q) ∈ {1, . . . , r}3,

E

(
∂3logfi(Xi; θ)

∂θj∂θp∂θq

)
and lim

n→+∞

1

n

n∑

i=1

E

(
∂3logfi(Xi; θ)

∂θj∂θp∂θq

)

exist and

1

n

n∑

i=1

∂3logfi(Xi; θ)

∂θj∂θp∂θq

P−→
n→+∞

lim
n→+∞

1

n

n∑

i=1

E

(
∂3logfi(Xi; θ)

∂θj∂θp∂θq

)
.
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Remark 3. The weak law of large numbers (Feller, 1968) give sufficient conditions for the

convergences in probability in Assumptions 6-8.

Assumption 9. There exists M such that for all θ ∈ Θ and (j, p, q) ∈ {1, . . . , r}3,

∣∣∣∣∣ limn→+∞

1

n

n∑

i=1

E

(
∂3logfi(Xi; θ)

∂θj∂θp∂θq

)∣∣∣∣∣ < M.

Assumption 10. The matrix I
(
θ0
)
=
(
Ijp
(
θ0
))

1≤j,p≤r
, where

Ijp
(
θ0
)
= lim

n→+∞

1

n

n∑

i=1

E

(
− ∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)
,

is positive definite.

Remark 4. From Assumption 5 and Assumption 7, we were already sure that I
(
θ0
)
exists

and is a positive semi-definite matrix.

Assumption 11. For all ǫ > 0,

lim
n→+∞

1

n

n∑

i=1

E




r∑

j=1

(
∂logfi(Xi; θ)

∂θj

∣∣∣∣
θ0

)2

I








r∑

j=1

(
∂logfi(Xi; θ)

∂θj

∣∣∣∣
θ0

)2




1

2

> ǫ
√
n






 = 0,

where I{A} is the indicator of set A.

Remark 5. Assumption 11 is the assumption required for the multivariate central limit

theorem for independent non-identically distributed observations (Feller, 1971).

The following theorem states the consistency of the parametric maximum likelihood

estimator.

Theorem 2.1.1. If Assumptions 1-10 are satisfied, the maximum likelihood estimator

θ̂n =
(
θ̂1n, . . . , θ̂rn

)
is a consistent estimator of θ0 =

(
θ01, . . . , θ

0
r

)
, i.e. for all ζ > 0,

P
(∥∥∥θ̂n − θ0

∥∥∥ < ζ
)

−→
n→+∞

1, where ‖.‖ is a norm on Θ.
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Proof. From the Taylor-Lagrange formula, from Assumption 3, for all i = 1, . . . , n and for

all θ ∈ Θ, one can write

logfi(xi; θ) = logfi(xi; θ
0) +

r∑

j=1

∂logfi(xi; θ)

∂θj

∣∣∣∣
θ0
(θj − θ0j )

+
1

2

r∑

j=1

r∑

p=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0
(θj − θ0j )(θp − θ0p)

+
1

6

r∑

j=1

r∑

p=1

r∑

q=1

∂3logfi(xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′
(θj − θ0j )(θp − θ0p)(θq − θ0q),

where θ′ belongs to the interior of the ball with center θ0 and with radius (θ − θ0). By

summation for i from 1 to n, inversion of sums, multiplication of both members by 1/n and

as (1/n)
∑n

i=1
logfi(xi; θ) = (1/n)logL(x1, . . . , xn; θ), that we note (1/n)logL(θ) to lighten

the notations, we have for all θ ∈ Θ:

1

n
logL(θ)− 1

n
logL(θ0) =

r∑

j=1

(θj − θ0j )
1

n

n∑

i=1

∂logfi(xi; θ)

∂θj

∣∣∣∣
θ0

+
1

2

r∑

j=1

r∑

p=1

(θj − θ0j )(θp − θ0p)

[
1

n

n∑

i=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0

− lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]

+
1

2

r∑

j=1

r∑

p=1

[
(θj − θ0j )(θp − θ0p) lim

n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]

+
1

6

r∑

j=1

r∑

p=1

r∑

q=1

[
(θj − θ0j )(θp − θ0p)(θq − θ0q)

1

n

n∑

i=1

∂3logfi(xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′

]
. (1)

Let us consider separately each term of the right-hand part of equation (1). From As-

sumption 6, we know that we have, for all j = 1, . . . , r,

1

n

n∑

i=1

∂logfi(Xi; θ)

∂θj

∣∣∣∣
θ0

P−→
n→+∞

0.
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From Assumption 7, we have for all (j, p) ∈ {1, . . . , r}2,

1

n

n∑

i=1

∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

− lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)
P−→

n→+∞
0.

Furthermore, for all θ ∈ Θ and for all (j, p) ∈ {1, . . . , r}2,

1

2

r∑

j=1

r∑

p=1

(θj − θ0j )(θp − θ0p) lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)

= −1

2

r∑

j=1

r∑

p=1

[
(θj − θ0j )(θp − θ0p) lim

n→+∞

1

n

n∑

i=1

E

(
− ∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]
,

which, from Assumption 10, is negative for all θ different from θ0. Finally, from Assumption

8, we have for all (j, p, q) ∈ {1, . . . , r}3,

∣∣∣∣∣
1

n

n∑

i=1

∂3logfi(Xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′

∣∣∣∣∣
P−→

n→+∞

∣∣∣∣∣ limn→+∞

1

n

n∑

i=1

E

(
∂3logfi(Xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′

)∣∣∣∣∣

and this last limiting term is bounded by M for all (j, p, q) ∈ {1, . . . , r}3 thanks to Assump-

tion 9.

Let (ζ, ε) be a vector of arbitrary positive constants. The results above allow to write

three clusters of inequalities. For all ζ, for all ε, there exists n0 such that for all n larger

than n0 and for all (j, p, q) ∈ {1, . . . , r}3, the following probabilities

P

(∣∣∣∣∣
1

n

n∑

i=1

∂logfi(Xi; θ)

∂θj

∣∣∣∣
θ0

∣∣∣∣∣ ≥ ζ2

)
,

P

(∣∣∣∣∣
1

n

n∑

i=1

∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

− lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)∣∣∣∣∣ ≥ ζ

)
,

P

(∣∣∣∣∣
1

n

n∑

i=1

∂3logfi(Xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′

∣∣∣∣∣ ≥ 2M

)
,

are bounded by ε/
(
r
(
1 + r + r2

))
. Let S denote the event involving these r(1 + r + r2)

8



inequalities:

{∣∣∣∣∣
1

n

n∑

i=1

∂logfi(Xi; θ)

∂θ1

∣∣∣∣
θ0

∣∣∣∣∣ < ζ2, · · · ,
∣∣∣∣∣
1

n

n∑

i=1

∂3logfi(Xi; θ)

∂θr∂θr∂θr

∣∣∣∣
θ′

∣∣∣∣∣ < 2M

}
.

From the above majorations of the different probabilities, we get P (S∗) < ε where S∗ is the

complementary of S and thus P (S) > 1− ε.

Now let us study the sign of the quantity (1/n) log L(θ) − (1/n) log L(θ0) under the

event S and for θ belonging to the sphere S(θ0, ζ) with center θ0 and with radius ζ. Since θ

belongs to S(θ0, ζ), there exists j ∈ {1, . . . , r} such that |θj − θ0j | < ζ. Thus we have,

∣∣∣∣∣∣

r∑

j=1

(θj − θ0j )
1

n

n∑

i=1

∂logfi(xi; θ)

∂θj

∣∣∣∣
θ0

∣∣∣∣∣∣
<

r∑

j=1

ζζ2

and

∣∣∣∣∣∣
1

2

r∑

j=1

r∑

p=1

(θj − θ0j )(θp − θ0p)

[
1

n

n∑

i=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0

− lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]∣∣∣∣∣ <
1

2

r∑

j=1

r∑

p=1

ζ2ζ.

Furthermore, as the matrix of a quadratic form is symmetric and thus diagonalizable in an

orthonormal base, we have

1

2

r∑

j=1

r∑

p=1

[
(θj − θ0j )(θp − θ0p) lim

n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]
=

r∑

j=1

γjβ
2
j ,

where

r∑

j=1

β2
j =

r∑

j=1

(θj − θ0j )
2
= ζ2. From Assumption 10,

r∑

j=1

γjβ
2
j ≤ max

j
(γj)

r∑

j=1

β2
j = max

j
(γj)ζ

2 < 0.
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Thus,

1

2

r∑

j=1

r∑

p=1

[
(θj − θ0j )(θp − θ0p) lim

n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]
≤ max

j
(γj)ζ

2 < 0.

A study of the sign of the function (1/2)r2ζ3 +max
j

(γj)ζ
2 proves that we can find ζ0 and a

positive such that for all ζ smaller than ζ0,

1

2

r∑

j=1

r∑

p=1

(θj − θ0j )(θp − θ0p)

[
1

n

n∑

i=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0

− lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]

+
1

2

r∑

j=1

r∑

p=1

[
(θj − θ0j )(θp − θ0p) lim

n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)]
< −aζ2.

Lastly

∣∣∣∣∣∣
1

6

r∑

j=1

r∑

p=1

r∑

q=1

[
(θj − θ0j )(θp − θ0p)(θq − θ0q)

1

n

n∑

i=1

∂3logfi(xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′

]∣∣∣∣ <
2

6

r∑

j=1

r∑

p=1

r∑

q=1

ζ3M = b ζ3,

where b = r3M/3. Gathering all the preceding inequalities, we get under S and for all θ in

S(θ0, ζ):

1

n
log L(θ)− 1

n
log L(θ0) < rζ3 − aζ2 + bζ3.

Assuming ζ < a/(r+b) we get under S, (1/n)logL(θ)−(1/n)logL(θ0) < 0 for all θ ∈ S(θ0, ζ).

Thus the event C involving for all θ ∈ S(θ0, ζ),

1

n
log L(θ)− 1

n
log L(θ0) < 0

is such that P (C) ≥ P (S) > 1− ǫ.

Finally we have, for all ζ lower than min (ζ0, a/(r + b)), the probability

P

(
∀θ ∈ S(θ0, ζ),

1

n
logL(θ)− 1

n
logL(θ0) < 0

)
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tends to 1 when n → +∞. There exists θ̂n belonging to the interior of the ball B(θ0, ζ) i.e

such that ||θ̂n − θ0|| < ζ, such that log L(θ) has a local maximum in θ̂n. Consequently,

∀ζ ≤ min

(
ζ0,

a

r + b

)
, P

(
||θ̂n − θ0|| < ζ

)
−→

n→+∞
1.

From Assumption 1 and Assumption 2, θ̂n is the maximum likelihood estimator.

The following theorem states the asymptotic normality of the parametric maximum like-

lihood estimator.

Theorem 2.1.2. If Assumptions 1-11 are satisfied, the random vector
√
n(θ̂n−θ0) is asymp-

totically normal with zero mean and covariance matrix
[
I(θ0)

]−1
.

Proof. From the Taylor-Lagrange formula and from Assumption 3, we have the following

system: for all θ ∈ Θ, there exists θ′ ∈ B0(θ0, θ − θ0), the interior of the ball with center θ0

and radius θ − θ0 such that for all k = 1, . . . , r we have,

1

n

n∑

i=1

∂logfi(xi; θ)

∂θj

∣∣∣∣
θ

=
1

n

n∑

i=1

∂logfi(xi; θ)

∂θj

∣∣∣∣
θ0

+

r∑

p=1

(θp − θ0p)
1

n

n∑

i=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0

+
1

2

r∑

p=1

r∑

q=1

(θp − θ0p)(θq − θ0q)
1

n

n∑

i=1

∂3logfi(xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′
.

But for θ = θ̂, we have

1

n

n∑

i=1

∇θlogfi(xi; θ)|θ̂ = 0.

So, for all k = 1, . . . , r we have,

−
r∑

p=1

(θ̂p − θ0p)
1

n

n∑

i=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0

− 1

2

r∑

p=1

r∑

q=1

(θ̂p − θ0p)(θ̂q − θ0q)
1

n

n∑

i=1

∂3logfi(xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′
=

1

n

n∑

i=1

∂logfi(xi; θ)

∂θj

∣∣∣∣
θ0
.
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Factorizing by
∑r

p=1
(θ̂p − θ0p) and multiplying by

√
n,

−
√
n

r∑

p=1

(θ̂p − θ0p)

[
1

n

n∑

i=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0

+
1

2

r∑

q=1

(θ̂q − θ0q)
1

n

n∑

i=1

∂3logfi(xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′


 =

1√
n

n∑

i=1

∂logfi(xi; θ)

∂θj

∣∣∣∣
θ0
.

In terms of matrix,




a11n a12n · · · a1rn
...

. . .
...

ar1n ar2n · · · arrn







√
n(θ̂1 − θ01)

...
√
n(θ̂r − θ0r)




=
1√
n

n∑

i=1




∂logfi(xi; θ)

∂θ1

∣∣∣∣
θ0

...

∂logfi(xi; θ)

∂θr

∣∣∣∣
θ0




,

where

ajpn = − 1

n

n∑

i=1

∂2logfi(xi; θ)

∂θj∂θp

∣∣∣∣
θ0

− 1

2

r∑

q=1

(θ̂q − θ0q)
1

n

n∑

i=1

∂3logfi(xi; θ)

∂θj∂θp∂θq

∣∣∣∣
θ′
.

The vectors ∇θlogfi(Xi; θ)|θ0 , for all i = 1, . . . , n, are independent but not identically

distributed with zero mean and covariance matrix Vi(θ
0) =

(
Vijp(θ

0)
)
1≤j,p≤r

, where

Vijp(θ
0) = E

(
∂logfi(Xi; θ)

∂θj

∣∣∣∣
θ0

∂logfi(Xi; θ)

∂θp

∣∣∣∣
θ0

)
.

We know from Assumption 5 that

Vijp(θ
0) = E

(
− ∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)

and from Assumption 10 that

lim
n→+∞

1

n

n∑

i=1

Vi(θ
0) = I(θ0).

So, from Assumption 11 and the multivariate central limit theorem for independent non-
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identically distributed random variables, we get

1√
n

n∑

i=1

∇θlogfi(Xi; θ)|θ0
d−→

n→+∞
N(0, I(θ0)).

From Assumptions 7-8, the consistency of the maximum likelihood estimator and the

Slutsky’s theorem, one obtains for all (j, p) ∈ {1, . . . , r}2,

ajpn
P−→

n→+∞
Ijp(θ

0).

These convergences in probability and the weak convergence of
1

n

n∑

i=1

∇θlogfi(Xi; θ)|θ0

yield 


√
n(θ̂1 − θ01)

...

√
n(θ̂r − θ0r)




d−→
n→+∞

N(0,
[
I(θ0)

]−1
).

2.2 Finite number of distinct probability distribution functions

Let N be the number of distinct probability distribution functions that can be observed in

the population from which the sample comes from. For i = 1, . . . , N , let ni be the number of

observations with density fi(.; θ) and n =
∑N

i=1
ni be the total number of observations. For

i = 1, . . . , N , let µi = ni/n be the proportion of observations with density fi(.; θ). One can

easily prove that there exists constants (λi)1≤i≤N in ]0, 1[N such that for all i = 1, . . . , N ,

the proportion µi tends to λi when n tends to +∞. These quantities satisfy
∑N

i=1
λi = 1.

Remark 6. Note that the case where there exists q such that λq = 0 (resp. λq = 1) corre-

sponds to the case where there are in fact only N − 1 distinct distributions (resp. there is

only one distribution).

Let Assumptions 1-5 be the same assumptions than in the previous case, except that n

is replaced by N in the Assumptions 3-5.
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Assumption 12. There exists M such that for all θ ∈ Θ, i = 1, . . . , N and (j, p, q) ∈

{1, . . . , r}3,

E

(
∂3logfi(Xi; θ)

∂θj∂θp∂θq

)

exists and ∣∣∣∣∣

N∑

i=1

λiE

(
∂3logfi(Xi; θ)

∂θj∂θp∂θq

)∣∣∣∣∣ < M.

Assumption 13. For all θ ∈ Θ, i = 1, . . . , N and (j, p) ∈ {1, . . . , r}2,

E

(
∂2logfi(Xi; θ)

∂θj∂θp

)

exists and the matrix I
(
θ0
)
=
(
Ijp
(
θ0
))

1≤j,p≤r
, where

Ijp
(
θ0
)
=

N∑

i=1

λiE

(
− ∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)
,

is positive definite.

Remark 7. From Assumption 5, we were already sure that I
(
θ0
)
is a positive semi-definite

matrix.

The asymptotic behavior of the parametric maximum likelihood estimator in this case is

given in the following two theorems.

Theorem 2.2.1. If Assumptions 1-5 and Assumptions 12-13 are satisfied, the maximum

likelihood estimator θ̂n =
(
θ̂1n, . . . , θ̂rn

)
is a consistent estimator of θ0 =

(
θ01, . . . , θ0r

)
, i.e.

for all ζ > 0, P
(∥∥∥θ̂n − θ0

∥∥∥ < ζ
)

−→
n→+∞

1.

Proof. Proof of Theorem 2.2.1 is similar to the proof of Theorem 2.1.1. It is sufficient to

gather the observations with respect to their densities and to replace

lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)
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by
N∑

i=1

λiE

(
− ∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)
.

In the case of a finite number of distinct densities, the convergences in probability are given

straight by the weak law of large numbers and the Slutsky’s theorem.

Theorem 2.2.2. If Assumptions 1-5 and Assumptions 12-13 are satisfied, the random vector

√
n(θ̂n − θ0) is asymptotically normal with zero mean and covariance matrix

[
I(θ0)

]−1
.

Proof. Proof of Theorem 2.2.2 is similar to the proof of Theorem 2.1.2. It is sufficient to

gather the observations with respect to their densities, replace

lim
n→+∞

1

n

n∑

i=1

E

(
∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)

by
N∑

i=1

λiE

(
− ∂2logfi(Xi; θ)

∂θj∂θp

∣∣∣∣
θ0

)

and use the classical multivariate central limit theorem and the Slutsky’s theorem.
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