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Abstract

This work deals with sequential and batch-sequential evaluation strate-

gies of real-valued functions under limited evaluation budget, using

Gaussian process models. Optimal Stepwise Uncertainty Reduction

(SUR) strategies are investigated for two different problems, motivated

by real test cases in nuclear safety. First we consider the problem of

identifying the excursion set above a given threshold T of a real-valued

function f . Then we study the question of finding the set of “safe

controlled configurations”, i.e. the set of controlled inputs where the

function remains below T , whatever the value of some others non-

controlled inputs. New SUR strategies are presented, together with

efficient procedures and formulas to compute and use them in real-

world applications. The use of fast formulas to recalculate quickly the

posterior mean or covariance function of a Gaussian process (referred

to as the “kriging update formulas”) does not only provide substantial

computational savings. It is also one of the key tools to derive closed-

form formulas enabling a practical use of computationally-intensive

sampling strategies. A contribution in batch-sequential optimization

(with the multi-points Expected Improvement) is also presented.



Contents

Contents viii

List of Figures xi

Introduction 1

I General context 4

1 Motivations, Gaussian processes (GPs) 5

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Gaussian process, standard definition and properties . . . . . . . . . 8

1.2.1 Gaussian random variable . . . . . . . . . . . . . . . . . . . 8

1.2.2 Gaussian vector . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Advanced properties on Gaussian vectors . . . . . . . . . . . . . . . 12

1.3.1 Tallis formulas for the expectation of the maximum . . . . . 12

1.3.2 Updating the mean and covariance function of a Gaussian

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Kriging 16

2.1 Kriging basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Simple kriging . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Universal kriging . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Kriging with the Gaussian assumption . . . . . . . . . . . . 21

2.2 The Kriging update equations . . . . . . . . . . . . . . . . . . . . . 22

viii



CONTENTS

2.3 Global Optimization using kriging, the Multi-points Expected Im-

provement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II The Stepwise Uncertainty Reduction paradigm 29

3 Stepwise Uncertainty Reduction (SUR) 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 k-steps lookahead optimal SUR strategies . . . . . . . . . . . . . . . 32

3.3 The example of the Expected Improvement . . . . . . . . . . . . . . 34

3.4 SUR strategies in inversion . . . . . . . . . . . . . . . . . . . . . . . 35

4 Contribution in SUR strategies for inversion 38

4.1 Fast computation of batch-sequential existing SUR strategies . . . . 38

4.2 New SUR strategies using notions from random set theory . . . . . 45

4.3 R programming: KrigInv package and auxiliary problems . . . . . . 51

4.3.1 KrigInv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Numerical integration, toward the Sequential Monte-Carlo

sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III Contribution in robust inversion 57

5 Motivations in Nuclear Safety 58

5.1 Introduction to Nuclear Criticality Safety . . . . . . . . . . . . . . . 58

5.2 Nuclear Safety and inversion . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Nuclear Safety and robust inversion . . . . . . . . . . . . . . . . . . 65

6 SUR criterion for robust inversion 68

6.1 Optimal SUR criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 A first approximation of the optimal criteria . . . . . . . . . . . . . 70

6.2.1 An approximation of the uncertainty leading to a criterion . 71

6.2.2 Computing the criterion . . . . . . . . . . . . . . . . . . . . 72

6.2.3 Application to the test-case . . . . . . . . . . . . . . . . . . 75

Appendix A: Kriging update formulas 81

ix



CONTENTS

Appendix B: Explicit formulas for the Multi-points Expected Im-

provement 86

Appendix C: Fast computation of batch-sequential SUR strategies

for inversion 98

Appendix D: New SUR strategies for inversion using random set

theory 123

Appendix E: A tutorial for the KrigInv R package 132

Appendix F: Ongoing work in robust inversion 158

F.1 A new SUR criterion based on fast Gaussian process conditional

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

F.1.1 Updating Gaussian process realizations . . . . . . . . . . . . 159

F.1.2 Uncertainty quantification and SUR criteria . . . . . . . . . 160

F.1.3 Application to the test-case . . . . . . . . . . . . . . . . . . 164

F.2 Bonferroni bounds for the exceedance probability . . . . . . . . . . 167

References 169

Curriculum Vitae 178

x



List of Figures

2.1 Kriging mean, standard-deviation and covariance functions for two

types of kriging: Simple kriging and Universal kriging. . . . . . . . 21

2.2 2 iterations of a batch-sequential optimization strategy using the

q-EI, for q = 2, on a 1d-function. Left: kriging mean (blue dotted

line) and confidence intervals. Right: function q-EI(x(2)) where x(2)

is a batch of two points. At each iteration, the batch evaluated is

the black triangle on the right plots. . . . . . . . . . . . . . . . . . 28

4.1 Left: excursion probability after 10 evaluation of a 2d test func-

tion. Middle: J̃n(x
(q)) function, with q = 1 and its optimum (black

triangle). Right: Jn(x
(q)) function and its optimum. . . . . . . . . . 42

4.2 Nine conditional realizations of the random set Γ. . . . . . . . . . . 43

4.3 Left: excursion set of the Branin function (multiplied by a factor

−1) when D = [−10,∞). Right: excursion probability function

pn(·) obtained from n = 10 observations and Vorob’ev expectation. . 47

4.4 Symmetrical difference Γ∆Qn,Tn
for nine conditional realizations of

Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Left: Excursion probability and Vorob’ev Expectation after five it-

erations (with q = 4) of the batch-sequential criterion which aims

at reducing the Vorob’ev deviation. Right: Five iterations of the

J̃n criterion presented in Section 4.1. In the KrigInv package, the

latter criterion is called “sur”. Grey circles are the newly evaluated

locations. Numbers correspond to iteration number where these

locations were chosen. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Function pn(x)(1− pn(x)) at different iterations of the inversion. . . 54

xi



LIST OF FIGURES

4.7 pn(x)(1−pn(x)) function at different iterations of the inversion. The

function is plotted together with the sample of integration points

used to calculate the SUR criterion (Equation (4.14)) at each it-

eration. This sample is obtained using a Sequential Monte-Carlo

sampler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Operational/functional views of criticality parametric calculation. . 61

5.2 Contour lines of the function keff = f(MassePu, logConcPu) with

the excursion set (in white) of keff corresponding to a threshold

T = 0.95. This approximations is obtained by computing the krig-

ing mean function from 300 evaluations on a space-filling design of

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Plot of the function pn(x) = P (x ∈ Γ|An) after n evaluations of

the simulator. The triangles are the ten points of the initial design.

The squares are the points sampled using the J̃n criterion. Areas

in black correspond to pn(x) ≈ 0 and areas in white correspond to

pn(x) ≈ 1. The dotted line indicates the true excursion set. . . . . . 64

5.4 Evolution of H̃n during the sequential sampling strategy. . . . . . . 65

5.5 Mass-Geometry criticality system, depending on three parameters:

radius, mass and concentration of fissile mass (in orange), inside a

cylindrical container. . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Set Γ⋆
c (in white) obtained from evaluations of the keff on a grid. . . 67

6.1 Plot of the function p̂n(xc) after n evaluations of the simulator.

The triangles are the (projected) 30 points of the initial design.

The squares are the points sampled using the Ĵn criterion. Areas in
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Introduction

Computer codes with prohibitive evaluation times and costs play an important

role in many engineering applications as they are more and more used to analyse

and design complete systems, and often eventually influence decision making pro-

cesses. The high complexity of these simulators motivated the use of Design and

Analysis of Computer Experiments [Santner et al., 2003], through the introduction

of simplified “surrogate” models, used to predict the output of the computer codes,

relying on already available results, and also to efficiently guide further evaluations

so as to answer various potential motivating problems.

Our work started in this context, motivated by real tests cases in nuclear safety,

on an expensive computer code. The present thesis deals with sequential and

batch-sequential evaluation strategies of function under limited evaluation budget

using Gaussian process models (a.k.a kriging). While the main contributions of

the Ph.D. work are summarized in Chapters 1 to 4 and 6, the Chapters are com-

plemented by 5 articles appended to the thesis. As this work has already been

properly done in the past (see, e.g. Ginsbourger [2009]; Rasmussen and Williams

[2006]), this manuscript does not aim at giving a broad picture of different meta-

modeling techniques. In the first Chapter, a focus is put on the presentation of the

main notions coming into play in the forthcoming contributions. Important notions

where we did not contribute (like the choice of the covariance kernel in a kriging

metamodel) are voluntarily omitted. As each Chapter is constantly referring to

the results seen in the previous Chapters, we suggest to read this manuscript in

the order where it is presented.

The manuscript is organized as follows:

1
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• Chapter 1 introduces briefly the motivation of Gaussian process (GP) mod-

elling of expensive-to-evaluate functions. After some quick reminders on

definitions (Gaussian random variable, Gaussian vector, Gaussian process)

some advanced properties, used in the contributions, are highlighted.

• Chapter 2 recalls important notions on kriging and presents two contribu-

tions (constituting Appendix A and B, respectively). The first contribution

on kriging update formulas is of particular importance in this manuscript,

as it is used to obtain many closed-form formulas. The second contribution,

in kriging-based optimization, focuses on the derivation of a closed-form

formula for the multi-points Expected Improvement, which can be seen as a

generalization to batch-sequential settings of the Expected Improvement (EI)

criterion [Mockus et al., 1978], later popularized with the EGO algorithm of

Jones et al. [1998].

• Chapter 3 details the concept of Stepwise Uncertainty Reduction [Fleuret and

Geman, 1999], used to derive optimal k-steps lookahead sampling strategies

for various problems such as probability of failure estimation in reliability

analysis. The ideas presented in this Chapter are recent, but not new. They

are detailed for two reasons. First it is important from a theoretical point

of view to define the notion of optimal function evaluation strategy in the

Gaussian process modelling framework. Such strategies are proposed in the

next Chapters for variants of the problems usually addressed in SUR strate-

gies. Second, we wish to stress the computational challenges involved in the

computation of SUR criteria and strategies, justifying at once the restriction

to 1-step lookahead strategies and the energy spent on obtaining closed-form

expressions for SUR criteria.

• Chapter 4 summarizes the contribution of this thesis for inversion problems.

Three articles (see, Appendix C, D and E) are summarized and explained.

Although the reader is invited to read these articles, the Chapter is meant

to give a synthetic and relatively quick overview of the main contributions

presented in these articles.

• Chapter 5 presents motivations in nuclear safety. Test-cases are presented

2
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and SUR strategies are applied.

• Finally, Chapter 6 details the so-called problem of “robust inversion” which

can be seen as an inversion problem in a context where some parameters are

non-controlled environment parameters. New SUR strategies are presented

to deal with this problem. As in inversion, the practical implementation of

these strategies mainly rely on the Kriging update formulas. As a comple-

ment to Chapter 6, some promising ongoing results on an alternative robust

inversion approach are presented in Appendix F.

This thesis contains 5 articles, which are sent in Appendix A to E:

• C. Chevalier, D. Ginsbourger, and X. Emery. Corrected kriging update for-

mulae for batch-sequential data assimilation. Proceedings of the IAMG2013

conference, Madrid, 2013. URL http://arxiv.org/abs/1203.6452

• C. Chevalier and D. Ginsbourger. Fast computation of the multi-points

Expected Improvement with applications in batch selection. Proceedings of

the LION7 conference, Lecture Notes in Computer Science, 2013.

• C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and Y. Richet.

Fast parallel kriging-based Stepwise Uncertainty Reduction with application

to the identification of an excursion set. Accepted with minor revision to

Technometrics, 2013. URL http://hal.inria.fr/hal-00641108/en

• C. Chevalier, D. Ginsbouger, J. Bect, and I. Molchanov. Estimating and

quantifying uncertainties on level sets using the Vorobev expectation and

deviation with gaussian process models. mODa 10, Advances in Model-

Oriented Design and Analysis, Physica-Verlag HD, 2013.

• C. Chevalier, V. Picheny, and D. Ginsbourger. Kriginv: An efficient and

user-friendly implementation of batch-sequential inversion strategies based

on kriging. Computational Statistics & Data Analysis, 2013.

doi: http://dx.doi.org/10.1016/j.csda.2013.03.008
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General context
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Chapter 1

Motivations, Gaussian processes

(GPs)

1.1 Context

Engineering applications in nuclear safety, meteorology, finance, military domain,

telecommunications, oil exploration, crashworthiness and many other domains

have been increasingly relying on numerical simulations. The fast improvement

of computer capacities, especially over the last three decades, gave birth to the

so called “simulators”, “black-box functions” or “computer codes”, which aim at

describing a physical phenomenon. Simulators can be powerful tools to avoid

performing long, expensive, and/or dangerous (if not impossible) real physical ex-

periments. For instance, in car crashworthiness, one may be interested by the

outputs of a black-box simulating the physics of the crash instead of having to

crash a real car. In nuclear safety, needless to say that it might be preferable

to have a black-box predicting whether fissile material in a burning truck may

explode or not, rather than performing the true experiment.

It is common nowadays to base important decisions on the informations (the out-

puts) provided by these simulators, which naturally raises the crucial question of

the correctness of such outputs. When the simulator is a finite-element or a Monte-

Carlo code its accuracy can often be improved by running more calculations (i.e.

by diminishing the scale of the finite element code, or by increasing the number

5



of Monte-Carlo simulations) which explains that, despite the phenomenal recent

progress, the appetite for more computational capacity is not – and may never

be – satisfied. Thus, a major problem at stake is the calculation time and the

necessity to base the decisions on few evaluations of the simulator.

A wide range of problems can be formulated on black-boxes. Some of them will be

dealt with in this thesis. For instance, one may be interested in the input values

of the simulator for which one (scalar) output takes the highest or lowest value

(optimization problem). Alternatively we could seek for the set of inputs where

some scalar, or vector-valued output is in a set of interest (inversion problem). As

explained before, the key common point shared by these problems is the need to

bring a reasonable solution using few evaluations of the simulator. This implies to

select carefully the different locations where the simulator is evaluated, according

to a well-defined strategy.

A very common approach to build evaluation strategies of the simulator is the

rely on metamodels, or surrogate models (see, e.g., Wang and Shan [2006], Gins-

bourger [2009], Jin [2011], for a review of different metamodeling techniques). A

surrogate model is a deterministic or probabilistic representation of the simulator’s

input/output relationship, built from a restricted number of evaluations. In this

thesis, the surrogate model will usually be constructed from an initial set of eval-

uations (the initial Design Of Experiments, DOE) and will be used as a tool for

both representing the function of interest and selecting the next evaluation points.

Although very little will be said on the question of the choice of the initial DOE

(see, e.g, Stein [1999]), a major effort will be put on the construction of sequential

strategies for selecting the next point, or – sometimes – batch of points.

In this work, our metamodel will be a kriging metamodel (see, e.g., Matheron

[1973], Chilès and Delfiner [2012], Rasmussen and Williams [2006]). In short and

without showing any equations, in kriging we assume that the real valued function

of interest is a specific realization of a random process, which is often, but not

always, assumed Gaussian. The latter assumption is not mandatory in kriging

(see, e.g, Palacios and Steel [2006]) as, in general, the “kriging predictor” (also

called “kriging mean”) at a given non-evaluated point is simply the Best Linear
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Unbiased Predictor (BLUP) at this point, from the observations.

The Gaussian assumption widely eases the tractability of the random process when

new observations are assimilated. Indeed, an important mathematical result is that

a Gaussian process conditioned on some new observations is still a Gaussian pro-

cess. This result alone mainly explain why the Gaussian assumption is often used

in kriging: as new observations are assimilated, the whole conditional distribu-

tion of the random process can be calculated easily, through closed form formulas.

Today, Gaussian processes play a major role in the computer experiments and ma-

chine learning literature (see, e.g., Sacks et al. [1989b], Welch et al. [1992], Santner

et al. [2003], Rasmussen and Williams [2006], and the references therein). In the

present thesis, Gaussian processes will be used for two crucial purposes:

• Computing pointwise predictions (kriging means) or prediction uncertainties

(kriging variances) at non-evaluated points. This may give an approximate

representation of the function of interest.

• Constructing a sampling criterion which will be a well-chosen function

related to the kriging mean, variance and covariance and which will be used

to select sequentially the next point (or batch of points) to evaluate. Once

a sampling criterion is defined, the considered strategy always consists in

evaluating sequentially the point (or batch) where the criterion is maximized

or minimized.

The latter idea has been first used for global optimization problems [Mockus, 1989;

Mockus et al., 1978; Schonlau, 1997], with the now famous Expected Improvement

(EI) criterion. It was popularized by Jones et al. [1998], Jones [2001] with the so

called Efficient Global Optimization (EGO) algorithm. The global algorithm is

summarized below (see, Algorithm 1). The exact same algorithm will be used in

our applications, for a wider range a problems. The only exception is that the sam-

pling criterion will vary depending on the problem we want to solve (optimization,

inversion, etc...).

Note that, in Algorithm 1, finding a new point to evaluate requires an optimization

of the sampling criterion, Jn(·) over the input space. Thus, the calculation time of

Jn(·) itself can be a crucial issue, as we will see in this thesis (mainly in Parts II

7



Algorithm 1 EGO algorithm in global optimization

Require: n evaluations of the function of interest, f : the initial DOE,
Require: a sampling criterion, Jn. This is a real valued function, defined on the
parameter space of f , which depends on some outputs of a kriging metamodel.
Here, the sampling criterion is the Expected Improvement (EI).

Do: Fit a kriging metamodel from the initial DOE.

while evaluation budget is not consumed do
− Find the input location where the value of the sampling criterion is opti-
mized (here: maximized).
− Evaluate f at this point.
− Update the kriging metamodel, using this new observation.

end while

and III). It is indeed not reasonable to spend days for deciding what the next

evaluation point will be if the simulator takes only a few hours to provide its

response. In general, one wants the calculation time of the decision algorithm to

be small compared of the calculation time of the simulator. Before going further on

these issues we give some useful definitions and properties on Gaussian processes

in the next Section.

1.2 Gaussian process, standard definition and prop-

erties

This Section aims at giving standard definitions and properties on Gaussian ran-

dom variables, vectors and processes.

1.2.1 Gaussian random variable

A real-valued random variable Y is said to be Gaussian, or normally distributed

if it has the following characteristic function:

φY (t) := E (exp(itY )) = exp(itm− σ2t2/2) (1.1)
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where m ∈ R and σ ≥ 0 are two parameters of the distribution.

We write Y ∼ N(m, σ2) to say that Y has a normal distribution with parameters

m = E(Y ) and σ2 = V ar(Y ). We also say than Y has a standard normal distribu-

tion when Y has a normal distribution with parameters m = 0 and σ2 = 1. When

σ 6= 0 the density function of Y is of the form:

ϕm,σ2(x) :=
1

σ
√
2π

exp

(
−1

2

(
x−m

σ

)2
)
, x ∈ R, (1.2)

The density of the standard normal distribution is usually denoted by ϕ(·) and we

will use the notation ϕm,σ2(·) when (m, σ2) 6= (0, 1).

The cumulative distribution function (c.d.f) of the standard normal distribution

is the function:

Φ(x) :=
1√
2π

∫ x

−∞

e−u2/2du, x ∈ R, (1.3)

and, while no closed form expression is available to compute this integral, there

exist fast algorithms to compute Expression 1.3 with high precision [Cody, 1969;

Hart et al., 1968]. We sometimes also use the tail probability function of the

standard normal distribution:

Ψ(x) := 1− Φ(x), x ∈ R. (1.4)

1.2.2 Gaussian vector

A random vector Y = (Y1, . . . , Yp)
⊤ ∈ R

p, p ≥ 1 is said to have a multivariate

normal distribution in dimension p if every linear combination of its coordinates

has a normal distribution. Mathematically:

∀(α1, . . . , αp) ∈ R
p, ∃m ∈ R, σ ≥ 0 :

p∑

i=1

αiYi ∼ N(m, σ2)

If Y has a multivariate normal distribution in dimension p, there exist a vector

m ∈ R
p and a positive semi-definite matrix Σ ∈ R

p×p such that the characteristic
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function of Y is:

φY(t) := E (exp(i〈t,Y〉)) = exp

(
i〈t,m〉 − 1

2
t⊤Σt

)
, t ∈ R

p. (1.5)

We write that Y ∼ Np(m,Σ) as m = E(Y) and Σ = V ar(Y).

If in addition Σ is non-singular, the random vector Y has density:

ϕm,Σ(x) =
1

|Σ|1/2(2π)p/2 exp
(
−1

2
(x−m)⊤Σ−1(x−m)

)
, (1.6)

where |Σ| denotes the determinant of Σ. The c.d.f. of the multivariate normal

distribution, which will be extensively used in this manuscript is the function:

Φm,Σ(x) :=P(Y1 ≤ x1, . . . , Yp ≤ xp) (1.7)

=

∫

[−∞,x1]×...×[−∞,xp]

ϕm,Σ(u)du, x ∈ R
p, (1.8)

where Y = (Y1, . . . , Yp)
⊤ ∼ Np(m,Σ).

As, trivially, Φm,Σ(x) = Φ0,Σ(x −m), we will also adopt the notation Φ(x;Σ),

or Φp(x;Σ) for the c.d.f. of the centered multivariate Gaussian distribution, in

dimension p, with covariance matrix Σ.

Note that, from Equation (1.5), we can see that uncorrelated Gaussian variables

are independent1. We also have that the multivariate Gaussian distribution is

entirely determined by the first two moments, and that if Y ∼ Np(m,Σ) then

a + B⊤Y ∼ Nq(a + B⊤m,B⊤ΣB) for all q ≥ 1, a ∈ R
q,B ∈ R

p×q. From the

equivalence between independence and non-correlation we can prove the following

results:

Proposition 1 (Gaussian vector conditioning) Let (Y⊤
1 ,Y

⊤
2 )

⊤ be a Gaussian

1as the characteristic function can be expressed as a product of p characteristic functions
depending only on x1, . . . , xp respectively
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random vector (Y1 ∈ R
p,Y2 ∈ R

q) with distribution:

Np+q

((
m1

m2

)(
Σ11 Σ12

Σ21 Σ22

))
,

m1 ∈ R
p,m2 ∈ R

q,Σ11 ∈ R
p×p,Σ12 = Σ⊤

21 ∈ R
p×q,Σ22 ∈ R

q×q,

with Σ11,Σ22 positive semi-definite and Σ22 non singular.

• The conditional expectation of Y1 knowing Y2 coincides with the linear ex-

pectation, i.e. ∃a ∈ R
p,B ∈ R

p×q : E(Y1|Y2) = a+BY2

• L(Y1|Y2 = y2) = Np

(
m1 +Σ12Σ

−1
22 (y2 −m2),Σ11 −Σ12Σ

−1
22 Σ21

)

These results are proven in many books or articles. Here is a sketch of the proof,

in the particular case m = 0:

proof: Let ε := Y1 − Σ12Σ
−1
22 Y2. ε is a Gaussian vector and one can verify that

Cov(Y2, ε) = 0, which means (Gaussian case) that ε and Y2 are independent. Now,

ε is orthogonal to any random variable g(Y2), with g a Borel function which shows

(uniqueness of the orthogonal projection) that Σ12Σ
−1
22 Y2 is indeed the conditional

expectation E(Y1|Y2). Moreover, a decomposition of Y1 shows that V ar(Y1|Y2) =

V ar(ε|Y2) = V ar(ε) = Σ11 −Σ12Σ
−1
22 Σ21. Finally, from Y1 = E(Y1|Y2) + ε we see

that the random variable Y1 conditioned on Y2 = y2 has a normal distribution, the

mean and variance of which have been exhibited.�

1.2.3 Gaussian process

Let X be a parameter space. A random (or stochastic) process ξ over X is a

collection of random variables

{ξ(x) : x ∈ X}

defined over the same probability space. Now a Gaussian process is a random pro-

cess for which all finite dimensional distributions are Gaussian. Mathematically:

∀q ≥ 1, ∀(x1, . . . ,xq) ∈ X
q, the random vector: (ξ(x1), . . . , ξ(xq))

⊤ has a multi-

variate Gaussian distribution in dimension q.
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The distribution of a Gaussian process is1 fully determined by its mean function

m(·) and its covariance function (or kernel) k(·, ·):

m(x) :=E(ξ(x)), x ∈ X (1.9)

k(x,x′) :=Cov(ξ(x), ξ(x′)), (x,x′) ∈ X
2 (1.10)

We write ξ ∼ GP(m(·), k(·, ·)) or even sometimes ξ ∼ GP(m, k) as there is no

ambiguity that, here, m and k are functions. We can use Proposition 1 to show

that a Gaussian process ξ ∼ GP(m, k) conditioned on some observations Y :=

(ξ(x1), . . . , ξ(xn)) is still a Gaussian process with a different mean function and

covariance kernel. More precisely:

L (ξ|Y) = GP(mn, kn) with: (1.11)

mn(x) = m(x) + k(x)⊤K−1(Y −m(xn))

kn(x,x
′) = k(x,x′)− k(x)⊤K−1k(x′)

where k(x) := (k(x,x1), . . . , k(x,xn))
⊤ is the covariance between ξ(x) and the

observations, m(xn) := (m(x1), . . . ,m(xn))
⊤, and K is the covariance matrix be-

tween the observations (i.e. K ∈ R
n×n with Kij := k(xi,xj)).

1.3 Advanced properties on Gaussian vectors

We now give some properties on Gaussian vectors that are going to be useful

in the sequel of this work. Two subsections are presented here. In addition, one

subsection which opens interesting perspectives for the work presented in Chapter 6

is sent in the Appendix F, Section F.2.

1.3.1 Tallis formulas for the expectation of the maximum

Let Y = (Y1, . . . , Yq)
⊤ be a Gaussian vector, taking values in R

q, with mean

vector m := (m1, . . . ,mq)
⊤ ∈ R

q and covariance matrix Σ ∈ R
q×q. Let b :=

1as, using Kolmogorov extension theorem, a collection of finite dimensional distribution de-
fines the stochastic process
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(b1, . . . , bq)
⊤ ∈ (R∪{∞})q be a vector of size q that may contain, real numbers, or

∞. Tallis’ formula [Da Veiga and Marrel, 2012; Tallis, 1961] enables to calculate

the expectation of any coordinate Yk of Y under the linear constraint: ∀j ∈
{1, . . . , q}, Yj ≤ bj, which is abbreviated with the vectorized notation Y ≤ b. The

formula is given below:

Proposition 2 (Tallis formula)

E(Yk|Y ≤ b) = mk −
1

p

q∑

i=1

Σik ϕmi,Σii
(bi) Φq−1 (c.i;Σ.i) (1.12)

where:

• p := P(Y ≤ b) = Φq(b−m;Σ)

• Φq(·;Σ) is the c.d.f. of the centered multivariate Gaussian distribution in

dimension q, with covariance matrix Σ.

• c.i is the vector of Rq−1 with general term (bj −mj)− (bi −mi)
Σij

Σii
, j 6= i

• Σ.i is a (q−1)× (q−1) matrix obtained by computing Σuv− ΣiuΣiv

Σii
for u 6= i

and v 6= i.

One may note that the computation of Expression (1.12) requires one call to

the c.d.f. of the multivariate normal distribution in dimension q, through the

calculation of P(Y ≤ b), and q calls to the c.d.f. of this distribution in dimension

q − 1. Moreover, the vector c.i and the matrix Σ.i can be interpreted using the

Gaussian vectors conditioning formula seen before (see, Equation (1.11)). Indeed,

c.i is the mean vector of the centered Gaussian vector Y−i := (Y1−m1, . . . , Yi−1−
mi−1, Yi+1 − mi+1, . . . , Yq − mq)

⊤ knowing that Yi = bi, and Σ.i is its covariance

matrix:

L(Y−i|Yi = bi) = Nq−1(c.i,Σ.i) (1.13)

A proof for Equation (1.12) is available in Tallis [1961] and also in an article

[Chevalier and Ginsbourger, 2013] in the Appendix of this thesis (see, Appendix B).
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The Tallis’ formula happens to be a powerful tool to compute analytically ex-

pressions of the type E(maxi∈{1,...,q} Yi). Indeed, as detailed in Chevalier and

Ginsbourger [2013] and following the idea of Ginsbourger et al. [2010], the ran-

dom variable maxi∈{1,...,q} Yi can be decomposed into a sum of q random variables

Yi1(∀k 6=i,Yi>Yk), i = 1, . . . , q, simply because the maximum of the Yi’s has to be one

of the Yi’s. The expectation of each of these q random variable can be calculated

with a straightforward application of Tallis’ formula. Thus, one can construct an-

alytical expressions for E(maxi∈{1,...,q} Yi) and even E(maxi∈{1,...,q} g(Yi)) where g(·)
is an affine function. An adapted choice of function g(·) leads to a new analytical

formula for the so called multi-points Expected Improvement [Ginsbourger, 2009;

Ginsbourger et al., 2010; Schonlau, 1997] defined as:

E( max
i∈{1,...,q}

max(0, Yi − T )), (1.14)

where T ∈ R is a threshold. This is further detailed in Chapter 2, Section 2.3. Also,

the idea that the maximum of a Gaussian vector has to be one of its coordinate is

further used in the Appendix F, Section F.2 for constructing upper bounds for an

exceedance probability.

1.3.2 Updating the mean and covariance function of a Gaus-

sian process

Let ξ ∼ GP(m, k) be a Gaussian process on a domain X. We assume that we

observed the values of ξ at n points xold := (x1, . . . ,xn) ∈ X
n and then at r

additional points xnew := (xn+1, . . . ,xn+r). Let x,x′ be two points in X, we are

interested in the quantities:

mn+r(x) :=E(ξ(x)|An+r) (1.15)

kn+r(x,x
′) :=Cov(ξ(x), ξ(x′)|An+r), (1.16)

where An+r is the σ−algebra generated by (ξ(xi))1≤i≤n+r. A direct computa-

tion can be performed using Gaussian process conditioning formulas (see, Equa-

tion (1.11)) at the cost of an (n+ r)× (n+ r) matrix inversion. However, if the r
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last observation come after the n first ones, one can take advantage of a previous

computation of mn(x) and kn(x,x
′) to reduce this calculation cost. We indeed

have that:

mn+r(x) = mn(x) + kn(x,xnew)
⊤K−1

new(Ynew −mn(xnew)) (1.17)

kn+r(x,x
′) = kn(x,x

′)− kn(x,xnew)
⊤K−1

newkn(x
′,xnew) (1.18)

where Knew := kn(xn+i,xn+j)1≤i,j≤r, kn(x,xnew) := (kn(x,xn+1), . . . , kn(x,xn+r))
⊤

, Ynew = (ξ(xn+1), . . . , ξ(xn+r))
⊤ and mn(xnew) = (mn(xn+1), . . . ,mn(xn+r))

⊤.

The latter formulas are applications of Equation (1.11) to the Gaussian process

ξ conditioned on An as L(ξ|An) = GP(mn, kn). In the present setting, their use

avoid a (n + r) × (n + r) matrix inversion. We will see in the next chapter that

similar formulas apply in the more general setting of kriging.
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Chapter 2

Kriging

2.1 Kriging basics

Let ξ be a random process, defined over an input space X. The term kriging is

generally used when one aims at performing linear prediction of a random variable

ξ(x), x ∈ X, using n available observations of the random process ξ, denoted by

Y := (ξ(x1), . . . , ξ(xn))
⊤.

Before going further, we need to introduce some definitions

Definition 1 A random process ξ is said to be stationary, or strongly stationary,

if any of its finite dimensional distribution is invariant by translation, i.e.:

∀x1, . . . ,xn,h ∈ X, (ξ(x1), . . . , ξ(xn))
L
= (ξ(x1 + h), . . . , ξ(xn + h)), (2.1)

where
L
= denotes the equality in law.

A random process ξ is said to be weakly stationary, or stationary of order 2 if

∀x ∈ X,E(ξ(x)2) <∞ and:

• the mean function of ξ, m(x) := E(ξ(x)) exists and is constant,

• the covariance function of ξ, k(x,x′) := Cov(ξ(x), ξ(x′)) exists and only

depends on h := x− x′.

A random process ξ is said to be intrinsic-stationary if:
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• ∀x,h ∈ X,E(ξ(x+ h)− ξ(x)) = 0

• The function (x,h) 7→ V ar(ξ(x+ h)− ξ(x)) exists and only depends on h.

Historically, in kriging, depending on the assumptions on the mean function of the

random process ξ, ξ is assumed to be weakly stationary or intrinsic-stationary. In

all this chapter we will instead assume that ξ is a L2 random process, i.e. that the

covariance k(x,x′) := Cov(ξ(x), ξ(x′)) always exists and is finite. Let us compare

this assumption with the historical settings:

• In the so-called simple kriging (as defined later), ξ is often assumed weakly

stationary. Thus our assumption of a L2 random process is more general

than the historical assumptions. Indeed, the covariance k(x,x + h) only

needs to exist but does no longer need to be a function of h.

• In the so-called universal kriging ξ is often assumed intrinsic-stationary. As

some intrinsic-stationary processes are not L2, the equations are not writ-

ten in terms of covariance, but instead use the notion of semi-variogram,

2γ(h) := V ar(ξ(x + h)− ξ(x)) (see, e.g., Chilès and Delfiner [2012]). Thus

our assumption of a L2 random process is not more general than the histor-

ical assumption. However our assumption is neither more restrictive as a L2

random process is not necessarily intrinsic-stationary.

These definitions and clarifications being done, let us move back to the motivations.

Let’s assume that ξ is a L2 random process. In kriging we are interested in a linear

predictor of ξ(x) written as:

mn(x) :=
n∑

i=1

λi,n(x)ξ(xi) := λ(x)⊤Y, (2.2)

where the so-called kriging weights λ(x) := (λ1,n(x), . . . , λn,n(x))
⊤ are chosen

in order to minimize, over all possible λ ∈ R
n satisfying some constraints, the

variance of the residual, V ar(ξ(x) − λ⊤Y), with the unbiasedness constraint

E(ξ(x)−mn(x)) = 0. The residual (or kriging error) obtained with these kriging
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weights has a variance,

s2n(x) := V ar(ξ(x)− λ(x)⊤Y), (2.3)

which is called kriging variance. The covariance between two kriging errors at

different locations,

kn(x,x
′) := Cov(ξ(x)− λ(x)⊤Y, ξ(x′)− λ(x′)⊤Y), (2.4)

is called kriging covariance. Note that in Equations (2.3) and (2.4), the variances

and covariances refers to the randomness of ξ(x) and also Y = (ξ(x1), . . . , ξ(xn)).

We can now define, in the next subsections, two different settings that are often

used with kriging: Simple Kriging (SK) and Universal Kriging (UK).

2.1.1 Simple kriging

Let ξ be a L2 random process with known covariance function k(·, ·). In Sim-

ple kriging, the mean function m(x) of ξ is assumed to be known. In that case,

minimizing, over all possible weights λ the function V ar(ξ(x)− λ⊤Y) is not dif-

ficult because of the convexity of the function in λ (see, e.g., Baillargeon [2005]).

When the covariance matrix K := (k(xi,xj))1≤i,j≤n between the observations is

non-singular we obtain the so-called Simple kriging equations written here in the

case where m(x) = 0:

λ(x) = K−1k(x) (2.5)

mn(x) = λ(x)⊤Y = k(x)⊤K−1Y (2.6)

s2n(x) = k(x,x)− k(x)⊤K−1k(x) (2.7)

kn(x,x
′) = k(x,x′)− k(x)⊤K−1k(x′) (2.8)

where k(x) := (k(x,x1), . . . , k(x,xn))
⊤.

Note that, in the case where m(x) is not equal to zero, it suffices to consider the
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centered process ξ −m to obtain:

mn(x) = m(x) + k(x)⊤K−1(Y −m(xn)) (2.9)

wherem(xn) := (m(x1), . . . ,m(xn))
⊤. The kriging variances and covariances when

m(x) is not zero do not change.

Remark 1 Historically, as mentioned in the beginning of this Chapter, one as-

sumes in simple kriging that ξ is weakly stationary. This supplementary assump-

tion is not required to obtain simple kriging equations (2.5), (2.6), (2.7), (2.8), and

is only added to simplify the equations (see, e.g. Roustant et al. [2012]).

2.1.2 Universal kriging

The hypothesis of a zero (or known) mean function for the random process ξ is

often not realistic for practitioners. In this section, we still consider a L2 random

process ξ with known covariance function k(·, ·); but we also assume that the mean

function of ξ is unknown and can be written:

m(x) =
l∑

i=1

βifi(x), (2.10)

where β1, . . . , βl ∈ R are unknown coefficients and f1(·), . . . , fl(·) are l known basis

functions. Let us denote by f(x) := (f1(x), . . . , fl(x))
⊤ and let F ∈ R

n×l be the

matrix with row i equal to f(xi)
⊤. The goal is again to minimize, over λ ∈ R

n,

the variance of the kriging residual V ar(ξ(x)− λ⊤Y) with the unbiasedness con-

straint.

Calculations (detailed in, e.g., Cressie [1993]) lead to the Universal kriging equa-
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tions:

λ(x) = K−1
(
k(x) + F(F⊤K−1

F)−1(f(x)− F
⊤K−1k(x))

)
(2.11)

mn(x) = λ(x)⊤Y = f(x)⊤β̂ + k(x)⊤K−1
(
Y − Fβ̂

)
(2.12)

s2n(x) = k(x,x)− k(x)⊤K−1k(x) +

(f(x)⊤ − k(x)⊤K−1
F)(F⊤K−1

F)−1(f(x)⊤ − k(x)⊤K−1
F)⊤ (2.13)

kn(x,x
′) = k(x,x′)− k(x)⊤K−1k(x′) +

(f(x)⊤ − k(x)⊤K−1
F)(F⊤K−1

F)−1(f(x′)⊤ − k(x′)⊤K−1
F)⊤ (2.14)

where β̂ := (F⊤K−1
F)−1

F
⊤K−1Y.

An equivalent formulation of the Universal kriging equations (see, e.g. Bect et al.

[2012]) is to say that the kriging weights are solution of the linear system:

(
K F

F
⊤ 0

)(
λ(x)

µ(x)

)

︸ ︷︷ ︸
:=λ̃(x)

=

(
k(x)

f(x)

)

︸ ︷︷ ︸
:=k̃(x)

(2.15)

where µ(x) are Lagrange multipliers associated with the unbiasedness constraint.

Using these notations, we have:

mn(x) =λ(x)⊤Y (2.16)

s2n(x) =k(x,x)− k̃(x)⊤λ̃(x) (2.17)

kn(x,x
′) =k(x,x′)− k̃(x)⊤λ̃(x′). (2.18)

Note that, when l = 1 and f1(·) is the constant function equal to 1 we are in the

particular settings of Ordinary kriging. In that case, the random process ξ has

an unknown, constant, mean β = β1. Usually, β is estimated together with the

kriging weights and is a linear combination of the n observations.

Figure 2.1 presents an example of Simple and Universal kriging with four obser-

vations of a 1d-function. The covariance function is known and is assumed to be

a Matérn covariance with parameter ν = 3/2 (see, Stein [1999]; Yaglom [1986]
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Figure 2.1: Kriging mean, standard-deviation and covariance functions for two
types of kriging: Simple kriging and Universal kriging.

for more details on classical covariance functions used in kriging). Also, for the

Universal kriging, the basis functions are here f1(x) = 1, f2(x) = x (linear trend).

We can note that, in Simple kriging, the kriging mean tends to be attracted by the

mean of the process (here: zero), which is not the case in Universal kriging, where

there is a linear trend. Moreover, the uncertainty on the trend parameters leads

to higher kriging standard-deviations in Universal kriging than in Simple kriging,

specially in sparse regions, with no observations.

2.1.3 Kriging with the Gaussian assumption

In applications, kriging is often used with the additional assumption that ξ is a

Gaussian process, although the previous equations hold without this assumption.

In this setting, the Simple kriging equations (2.6), (2.7), (2.8) coincide with the

Gaussian process conditioning formulas (1.11). The kriging mean and covariance

are the conditional expectations and covariance functions of the Gaussian process

ξ given the observations. Also, As mentioned in Chapter 1, ξ conditioned on the

observations is still a Gaussian process, which will be particularly convenient in

the next Chapters.

In the Universal kriging setting, a convenient way to ensure that the process ξ
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conditioned on the observations is still Gaussian is to adopt a Bayesian approach.

More precisely, let us consider the following prior for ξ:

ξ ∼ GP

(
l∑

i=1

βifi(·), k(·, ·)
)

(2.19)

where the covariance kernel k is known and where the vector β has an improper

uniform distribution over R
l. With such a prior, the posterior distribution of ξ,

knowing the observations Y is Gaussian with mean function mn(·) given by Equa-

tion (2.12) and covariance function given by Equation (2.14) (see, e.g., O’Hagan

[1978] for a proof). Mathematically, in this Bayesian setting, ξ|Y ∼ GP(mn, kn).

The latter result is the main reason why we used the same notations as in Chapter 1

for the kriging mean, variance and covariance.

The formulas presented in this Chapter require the knowledge of the covariance

function k, which is often unrealistic in application. If it is only assumed that

k belongs to a parametric family kθ of covariance functions, a common approach

consists in plugging the maximum likelihood (or maximum a posteriori) estimate

of the parameter vector θ (see, e.g., Stein [1999]). This plug-in approach will be

used in Parts II and III of this work. However, as mentioned in the Appendix C,

the results obtained in these Parts are applicable (at the cost of additional compu-

tational efforts) if a fully Bayesian approach is chosen, i.e. if a prior distribution

is chosen for θ.

2.2 The Kriging update equations

Equations (2.12), (2.13), (2.14) are rather complicated and computer intensive if

they are computed at a large number of points and/or if the number of observa-

tions is high. We will see in Part II on Stepwise Uncertainty Reduction strategies

that one is often interested in calculating updated kriging means, variances or co-

variances. The problem at hand is rather simple: in an Universal kriging setting

we consider n observations ξ(x1), . . . , ξ(xn). We assume that, from these n ob-

servations, we already computed the kriging mean mn(x), and variance s2n(x) at

some point x and/or the kriging covariance kn(x,x
′) with some other point x′. Let
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xnew := (xn+1, . . . ,xn+r) ∈ X
r be a batch of r points. It is possible to take advan-

tage of previous calculations to compute quickly updated kriging means, variances

and covariances once ξ(xn+1), . . . , ξ(xn+r) have been observed. We indeed have

that:

λnew(x) =K−1
newkn(x,xnew) (2.20)

mn+r(x) = mn(x) + kn(x,xnew)
⊤K−1

new(Ynew −mn(xnew)) (2.21)

s2n+r(x) = s2n(x)− kn(x,xnew)
⊤K−1

newkn(x,xnew) (2.22)

kn+r(x,x
′) = kn(x,x

′)− kn(x,xnew)
⊤K−1

newkn(x
′,xnew) (2.23)

whereKnew := kn(xn+i,xn+j)1≤i,j≤r, kn(x,xnew) := (kn(x,xn+1), . . . , kn(x,xn+r))
⊤,

Ynew = (ξ(xn+1), . . . , ξ(xn+r))
⊤, mn(xnew) := (mn(xn+1), . . . ,mn(xn+r))

⊤ , and

λnew(x) are the r kriging weights of xn+1, . . . ,xn+r for the prediction at point x.

The formulas above, referred to as the kriging update formulas, happen to be sim-

ilar to Equations (2.6), (2.7), (2.8). They are Simple kriging equations applied on

a random process with mean function mn(·) and covariance function kn(·, ·).

Note that, in the case where ξ is Gaussian with known mean and covariance

functions, the Equations above also exactly correspond to Gaussian process con-

ditioning formulas. However, in the more general setting of Universal kriging

(non-Gaussian processes, mean function unknown) they have been proven only

quite recently in the particular case r = 1 by Barnes and Watson [1992]; Gao

et al. [1996]. For r > 1, a recent article by Emery [2009] proved Equation (2.21)

but failed to prove Equations (2.22) and (2.23). To the best of our knowledge,

Equations (2.22) and (2.23), in the general settings of Universal kriging, are new.

A proof for these Equations is given in the paper of Chevalier et al. [2013c] in

Appendix A of this manuscript.

Let us give a setting where the kriging update equations enable substantial compu-

tational savings. Let x,x′ ∈ X and assume that mn(x), s
2
n(x) and/or kn(x,x

′) have

been precomputed from n observations. One clearly sees from Equations (2.21),

(2.22), (2.23) that, to calculate the updated kriging mean, variance or covariance

from one batch of r additional new observations, it remains to compute kn(x,xnew).

In order words, one needs to compute r kriging covariances between a fixed point
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x and r new points. This can be done at a cost of O(rn) using Equation (2.14) if

– in addition – one pre-computes the terms of Equation (2.14) that do not depend

on xnew. The complexity of these precomputation, of O(n2), is significant but

becomes small if we consider a large number p of different batches x1
new, . . ., x

p
new.

Indeed the precomputation needs to be performed only one time, and not p times.

In addition, the complexity to compute K−1
new for a given batch is also high as it is

of O(rn2 + r2n), which is equal to O(rn2) if we assume that n≫ r. However, this

price has to be paid only one time per batch. It may also become small if, instead

of computing updated kriging means, variances or covariances at a single point x,

we compute them at M different x’s, with M a large number.

To summarize, if we want to compute p kriging updates (one per new batch) at

M different locations, with p,M ≫ n ≫ r, the cost of the precomputations is

O(prn2 + Mn2) and this cost is dominated by the cost to compute the updates

of O(pMrn). In a classic algorithm and still in the case where p,M ≫ n ≫ r

the dominating term would be of O(pMn2). In this setting, the kriging update

formulas yield a gain of a factor n/r, which can be interesting as n is often equal

to a few hundreds while r is typically small (i.e. lower than 10). More details

on the exact algorithms and complexity calculations are provided in Appendix C,

Supplementary Material. The kriging update equations are a key milestone to

reduce the computation cost of so-called Stepwise Uncertainty Reduction strategies

(see, Part II).

2.3 Global Optimization using kriging, the Multi-

points Expected Improvement

The Efficient Global Optimization (EGO) algorithm is a global optimization al-

gorithm, introduced by Jones et al. [1998], which relies on kriging and on an

Expected-Improvement (EI) criterion [Mockus et al., 1978]. The algorithm is

briefly detailed in Section 1.1 (see, Algorithm 1).

EGO consists in using a kriging metamodel to represent the target function f :

X 7→ R of interest. f is supposed to be a particular realization of a random process
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ξ which is assumed Gaussian for tractability. The Universal kriging setting is

used, with a covariance function k(·, ·) estimated, from the observation, among a

parametric family of functions.

The use of kriging allows to have a probabilistic framework to study our function

f . When n observations of f at points x1, . . . ,xn, An, are available, the Expected

Improvement is a criterion of interest quantifying the potential gain that would

be obtained from the evaluation of an additional point xn+1. In a maximization

problem, the criterion is:

EI(xn+1) = E ((ξ(xn+1)− T )+|An) , (2.24)

where (·)+ := max(0, ·) and T is a threshold which is generally equal to the maxi-

mum of the observation, T := max(ξ(xi)). At each iteration of the EGO algorithm,

the newly evaluated point is the point with maximum EI.

Note that Equation (2.24) is rather intuitive in the sense that we want to evaluate

the point which hopefully improves as much as possible the current maximum

found. The EI criterion is particularly convenient when a Gaussian prior is used

for ξ. Indeed, in this case, the full conditional distribution of ξ(x) is known for

each x ∈ X: ξ(x)|An ∼ N(mn(x), s
2
n(x)). As the EI is simply the expectation of

the exceedance of a random variable (with known distribution) over a threshold

T , it can be calculated with a closed-form expression:

EI(xn+1) = (mn(xn+1)− T )Φ

(
mn(xn+1)− T

sn(xn+1)

)
+ sn(xn+1)ϕ

(
mn(xn+1)− T

sn(xn+1)

)
.

(2.25)

The latter equation can be obtained with standard integral manipulations and

allows an easy use of the criterion in an optimization algorithm. If the reader

is keen on financial mathematics, he may have noted that a calculation of the

Expected Improvement in the case where ξ(x) is LogNormal (and not Gaussian)

would lead to the famous Black-Scholes formula for a European call option !

In the Gaussian setting, a lot of effort has been put recently on efficient opti-

mization algorithms using the multi-points Expected Improvement (q-EI) (see,

25



Schonlau [1997] as well as the recent work of Frazier [2012]; Ginsbourger et al.

[2010]; Girdziusas et al. [2012]; Janusevskis et al. [2011]). This criterion allows

the use of a parallel (or batch-sequential) EGO algorithm, i.e. an algorithm where

a batch of q > 1 points is evaluated at each iteration, through the maximization

of the q-EI. The q-EI is useful when many CPUs are available to evaluate the

target function f at q points simultaneously and is a natural generalization of the

one-point EI. Let x(q) := (xn+1, . . . ,xn+q) ∈ X
q be a batch of q points. The q-EI

is defined as follows:

qEI(x(q)) := E

(
( max
i=1,...,q

ξ(xn+i)− T )+|An

)
. (2.26)

If we denote Y = (ξ(xn+1), . . . , ξ(xn+q)) and remember that Y conditioned on An

has a normal distribution in dimension q with known mean and covariance matrix,

calculating the q-EI amounts to finding closed-form expressions for:

E

(
( max
i=1,...,q

Yi − T )+

)
, (2.27)

where Y ∼ Nq(m,Σ),m ∈ R
q,Σ ∈ R

q×q. So far, only Monte-Carlo approximation

methods were proposed to compute Expression (2.27) [Janusevskis et al., 2011].

It appears that, as detailed in an article of Chevalier and Ginsbourger [2013] in

the Appendix B of this manuscript, Expression (2.27) can be computed with a

closed-form formula obtained by applying q times the Tallis’ formula (1.12). The

formula can be seen in Appendix B and its proof stems from the idea that the

maximum of the Yi’s has to be one of the Yi’s. Mathematically:

max
i=1,...,q

Yi =

q∑

i=1

Yi1(Yi>Yj∀j 6=i). (2.28)
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A straightforward application of this idea gives:

qEI(x(q)) = E

(
( max
i=1,...,q

Yi − T )+

)

=

q∑

i=1

E(Yi − T )1(Yi>T,Yi>Yj∀j 6=i)

=

q∑

i=1

E(Yi − T |Yi > T, Yi > Yj ∀j 6= i)P(Yi > T, Yi > Yj ∀j 6= i),

and we see now that each term of the sum above can be computed with Tallis’

formula (1.12) on q different well-chosen Gaussian vectors. Indeed:

Proposition 3 Let Y := (Y1, . . . , Yq) be a Gaussian Vector with mean m ∈ R
q

and covariance matrix Σ ∈ R
q×q. For k ∈ {1, . . . , q} consider the Gaussian vectors

Z(k) := (Z
(k)
1 , . . . , Z

(k)
q ) defined as follows:

Z
(k)
j := Yj − Yk , j 6= k

Z
(k)
k := − Yk

Denoting by m(k) and Σ(k) the mean and covariance matrix of Z(k), and defining

the vector b(k) ∈ R
q by b

(k)
k = −T and b

(k)
j = 0 if j 6= k, the q-EI of x(q) is:

qEI(x(q)) =

q∑

k=1

(
(mk − T )pk +

q∑

i=1

Σ
(k)
ik ϕ

m
(k)
i ,Σ

(k)
ii

(b
(k)
i )Φq−1

(
c
(k)
.i ,Σ

(k)
.i

))
(2.29)

where:

• pk := P(Z(k) ≤ b(k)) = Φq(b
(k) −m(k),Σ(k)).

pk is actually the probability that Yk exceeds T and Yk = maxj=1,...,q Yj.

• c
(k)
.i ∈ R

q−1 has general term (b
(k)
j −m

(k)
j )− (b

(k)
i −m

(k)
i )

Σ
(k)
ij

Σ
(k)
ii

, with j 6= i

• Σ
(k)
.i ∈ R

(q−1)×(q−1) is the conditional covariance matrix of the random vector

Z
(k)
−i := (Z

(k)
1 , . . . , Z

(k)
i−1, Z

(k)
i+1, . . . , Z

(k)
q ) knowing Z

(k)
i .

Examples of use of the q-EI are proposed in Appendix B, as well as comparisons

of parallel optimization strategies using the qEI. Figure 2.2 gives a simple example
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of use of the q-EI in a batch-sequential EGO algorithm. For this example we chose

a function in dimension 1 and q = 2 in order to be able to represent (right plots)

the value of the q-EI. Though, in an EGO algorithm, the covariance parameters

are often estimated (e.g. using Maximum Likelihood, Roustant et al. [2012]) and

plugged-in, they are assumed to be known for this example.

Figure 2.2: 2 iterations of a batch-sequential optimization strategy using the q-EI,
for q = 2, on a 1d-function. Left: kriging mean (blue dotted line) and confidence
intervals. Right: function q-EI(x(2)) where x(2) is a batch of two points. At each
iteration, the batch evaluated is the black triangle on the right plots.
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Part II

The Stepwise Uncertainty

Reduction paradigm
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Chapter 3

Stepwise Uncertainty Reduction

(SUR)

3.1 Introduction

Let f : X 7→ R be a real-valued function defined over a compact domain X ⊂ R
d,

d ≥ 1. A Stepwise Uncertainty Reduction (SUR) strategy is a sequential evalua-

tion strategy of f which aims at constructing a sequence of evaluation locations,

X1,X2, . . . in order to reduce the uncertainty (as discussed later) on a given quan-

tity of interest. A suitable definition for the term “strategy” can be found in

Ginsbourger and Le Riche [2010]1. The term SUR refers to the work of Geman

and Jedynak [1996] in satellite image analysis and has been used to solve different

types of problems [Bettinger, 2009; Villemonteix, 2008] on expensive-to-evaluate

functions.

Here, we work in the particular setting where f is a sample path of a random

process ξ. The uncertainty is defined as a function, H which maps any finite se-

quence of observations (i.e. a sequence of couples (X, ξ(X))) to R+. The function

H restricted to sequences of length n is denoted Hn, so that, when n observations

An := {(Xi, ξ(Xi))1≤i≤n} are available we denote Hn(An) := H(An) the uncer-

1In short, a strategy will be a sequence of functions where each function fi(·) depends on
the past evaluations at locations x1, . . . ,xi and returns the next evaluation point xi+1. See
Ginsbourger and Le Riche [2010] for more details

30



tainty at time n. We also work in the particular setting of a limited evaluation

budget for f . At time n, we assume that we have p evaluations left. When An

is known the goal of a SUR strategy is to find p optimally chosen locations

Xn+1, . . . ,Xn+p such that the residual uncertainty H(An+p) = Hn+p(An+p) is as

small as possible.

At this stage, we need to make some important remarks. First the locations

Xn+1, . . . ,Xn+p are upper-cased to emphasize that they are random variables. In-

deed in a SUR strategy, at step n, the locationXn+2 may depend on the (unknown)

value of ξ at location Xn+1. More precisely, and for all n > 0, Xn+1 is going to be

a σ(An)-measurable random variable where σ(An) is the σ-algebra generated by

An. Second, the first remark implies that, given n observations An, the quantity

Hn+p(An+p) is also a random variable. Thus, instead of trying to construct the

sequence Xn+1, . . . ,Xn+p in order to have a low future uncertainty Hn+p(An+p),

the goal of the SUR strategy is to have a low future uncertainty in expectation.

When n observations are available, we aim at finding a sequence of p random vari-

ables X⋆
n+1, . . . ,X

⋆
n+p minimizing, over all random variable sequences of length p,

Xn+1, . . . ,Xn+p the expected future uncertainty:

E (Hn+p(An+p)|An) (3.1)

The SUR strategy finding the optimal locations given above will be called optimal

strategy.

We will often use the notation En(·) := E(·|An). Moreover, when An is known we

will also use the simplified notations:

En(Hn+p(An+p)) :=En(Hn+p((Xn+1, ξ(Xn+1)), . . . , (Xn+p, ξ(Xn+p)))) (3.2)

:=En(Hn+p(Xn+1, . . . ,Xn+p)). (3.3)

The notation in Equation (3.3) is abusive as the randomness of the future uncer-

tainty at time n + p comes from the randomness of Xn+1, . . . ,Xn+p but also of

ξ(Xn+1), . . . , ξ(Xn+p). However, we will use this shorter notation as there is no

ambiguity that, when n observations are known, the responses ξ(Xn+i), 1 ≤ i ≤ p
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are random. At time n, the function:

Jn(Xn+1, . . . ,Xn+p) := En(Hn+p(Xn+1, . . . ,Xn+p)) (3.4)

will be called sampling criterion. Finding the optimal locations (X⋆
n+1, . . . ,X

⋆
n+p)

amounts to minimizing the sampling criterion. Consequently, once an uncertainty

function H is defined, there exist a sampling criterion associated to it and an

optimal SUR strategy which consists in sequentially choosing the future evaluation

point to minimize the expectation of the future uncertainty. The sampling criteria

corresponding to given SUR strategies will sometimes be (abusively) called SUR

criteria.

3.2 k-steps lookahead optimal SUR strategies

To introduce this Section, we would like to use the example of the Expected

Improvement (EI) criterion (see, Equation (2.24)) for the problem of maximizing

a function f : X 7→ R considered as a realization of a Gaussian process ξ. It

is proven in the next Section that the maximization of the EI is an optimal (1-

step lookahead, as defined below) SUR strategy for a specific definition of the

uncertainty function which is exhibited. Let us assume in this example that the

remaining evaluation budget is p = 2. At time n we would like to find the two

optimal locations Xn+1,Xn+2, maximizing the 2-steps EI defined as follows:

EI2(Xn+1,Xn+2) := En(max(ξ(Xn+1), ξ(Xn+2))− Tn)+ (3.5)

where Tn := max1≤i≤n ξ(xi). This criterion is different than the multi-points Ex-

pected Improvement of Equation (2.26) as here Xn+2 is a σ(An+1)-measurable

random variable (i.e. it depends on ξ(Xn+1), which is unknown at time n). It is

shown in Ginsbourger and Le Riche [2010] that, though the optimal evaluation

location Xn+2 is a maximizer of the classical EI at time n + 1, the optimal Xn+1

is not necessarily a maximizer of the EI at time n. In other words, when p > 1

evaluations are left, it is not optimal to optimize sequentially p times the classical

EI. In this example, finding the location Xn+1 amounts to optimize the function,
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called EI2 here, given in Algorithm 2 below. A single evaluation1 of EI2(·) re-

quires to run many optimizations over X. Thus the optimization of EI2(·) over X
is expected to be cumbersome.

Algorithm 2 2-steps EI function: EI2(xn+1)

Require: n evaluations of f , An, and a current maximum y := max f(xi).
Require: a location xn+1

Require: a discretization of the possible response ξ(xn+1) to approximate the
expectation with respect to this random response, i.e. responses y1, . . . , yr and
weights w1, . . . , wr.

for i = 1 to r do
− assume that ξ(xn+1) = yi
− find Xn+2 maximizing the classical EI with respect to the new maximum,
max(y, yi).
− record a total Expected Improvement: EIi := (yi − y)+ + EI(Xn+2)

end for
Return the result

∑r
i=1 wiEIi

In general, a SUR strategy which aims at finding the optimal k locationsXn+1, . . . ,

Xn+k to reduce the uncertainty2 is called optimal k-steps lookahead SUR strategy.

In the literature, a general construction for deriving optimal k-steps lookahead

strategies is presented in Bect et al. [2012]; Ginsbourger and Le Riche [2010].

These strategies can be defined mathematically through dynamic programming

[Bect et al., 2012]. However, their practical use is difficult. For these reasons,

practitioners often use 1-step lookahead strategies even if the remaining evaluation

budget p, is greater than 1. In the case where p > 1, the sequential use of 1-step

lookahead strategies is suboptimal and is sometimes called “myopic” to emphasize

that we select the next evaluation point as if it is the last one.

1one may remark that it would be useful in this function to also return Xn+2(yi,xn+1) as,
once the location x⋆

n+1 is found by maximizing EI2, one could immediately obtain the location
x⋆
n+2 at time n + 1, i.e. after having evaluated the function at location x⋆

n+1. However this
approach is limited by the size, r, of the discretization of the response (i.e. the number of yi’s).

2the term “location” might be a bit confusing for the reader. Indeed, at time n, Xn+1 is a
measurable random variable. However, Xn+2 is function of the unknown ξ(Xn+1); Xn+3 is a
function of ξ(Xn+1),Xn+2, ξ(Xn+2) and so on. Thus the locations Xn+2,Xn+3, · · · are random
locations.
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The use of k-steps lookahead optimal SUR strategies can be generalized in the

case where we aim at finding k optimal batches of points, (Xn+1, . . . ,Xn+q), . . .,

(Xn+1+q(k−1), . . . ,Xn+qk), to reduce the uncertainty. In these settings, a batch of

points is evaluated at the same time, so that the random vector (Xn+q+1, . . . ,Xn+2q)

is a σ(An+q)-measurable random vector, and so on. In this thesis we will use this

generalization. However, we will focus only on 1-step lookahead SUR strategies.

The latter still offer significant challenges in application and can also be difficult

to implement.

3.3 The example of the Expected Improvement

Let us consider the settings of the EGO algorithm presented in Section 2.3. We

consider the Expected Improvement criterion (or its multi-points version, the q-EI)

to maximize f : X 7→ R, considered as a realization of a Gaussian process ξ.

Let us introduce an uncertainty function, Hn , defined as follows:

Hn(An) := En(max
x∈X

ξ(x)− Tn) (3.6)

where Tn = maxi=1,...,n ξ(xi). In a maximization problem, such definition for the

uncertainty is adapted in the sense that the uncertainty is non-negative, and low

if ξ(x) is not likely to get much greater than Tn. Now let us assume that we seek

for the batch (x⋆
n+1, . . . ,x

⋆
n+q)

1 minimizing - in expectation - the uncertainty at

time n+ q. We have, for all (xn+1, . . . ,xn+q) ∈ X
q:

Jn(xn+1, . . . ,xn+q) :=En(Hn+q(xn+1, . . . ,xn+q))

=En(En+q(max
x∈X

ξ(x)− Tn+q))

=En(En+q(max
x∈X

ξ(x)− Tn))− En(( max
i=1,...,q

ξ(xn+i)− Tn)+)

=En(max
x∈X

ξ(x)− Tn)− qEI(x(q))

=Hn(An)− qEI(x(q)).

1written with lower-case letters as we are at time n and deal with a σ(An)−measurable
random vector, i.e. we are in a 1-step lookahead setting
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The latter calculation proves that the expectation of the future uncertainty when

a batch of q points is added is equal to the current uncertainty minus the q-EI at

this batch. Consequently, the maximizer of the q-EI is also the minimizer of Jn
1.

Thus, the maximization of the q-EI is the optimal 1-step lookahead SUR strategy

if the uncertainty is defined using Equation (3.6). In this example, it is noticeable

that the uncertainty itself is difficult to compute numerically, as it involves the

maximum of a Gaussian process over a non-countable set. However the expected

uncertainty reduction when a batch is added (i.e., the q-EI) can be computed with

a closed-form expression (see, Section 2.3). We here have an example where a

SUR strategy can be efficiently applied without having to compute the current

uncertainty. A similar example will come in the next Chapter.

3.4 SUR strategies in inversion

A significant part of the contribution of this thesis relates to the efficient use of

SUR strategies for inversion problems (as defined later). The contributions in

inversion are detailed in the next Chapter. Before that, we detail in this Section

the problems at hand and motivate our contributions.

We are in the settings of the Universal kriging (see, Chapter 2) and deal with a

function f : X 7→ R
2 , where X is a compact subset of Rd, d ≥ 1 (often, a hyper-

rectangle). Our function of interest f is assumed to be a realization of a random

process ξ, which will usually be considered as Gaussian with known (or estimated

and plugged-in) covariance function k(·, ·). We also assume, like in the previous

Chapters, that f has already been evaluated at n locations x1, . . . ,xn and denote

An the set of the n couples (xi, f(xi))1≤i≤n. Now, let us consider a set D ⊂ R. We

are interested in the set:

Γ⋆ := {x ∈ X : f(x) ∈ D}, (3.7)

More precisely, many problems involving the set Γ⋆ can be formulated:

1Note that the assumption that the random process ξ is Gaussian is not used to obtain this
result.

2 in some cases, our work will be valid for functions valued in R
p with p > 1.
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• Determine the volume of Γ⋆, α⋆ := PX(Γ
⋆), where PX is a fixed measure.

Though it is not necessary, PX will often be a probability measure quantifying

the uncertainties on the inputs. The problem described is often referred to

as a probability of failure estimation problem [Bect et al., 2012].

• Determine the set Γ⋆ itself, i.e.: construct a classifier which tells us, for every

arbitrary point x ∈ X, if x is in Γ⋆ or not.

• In the particular case where D = [T,∞), with T a given threshold: find the

contour line C
⋆ := {x ∈ X : f(x) = T}. This problem is often referred to

as a contour line (or level set) estimation problem [Picheny, 2009; Picheny

et al., 2010].

The problems described above are rather close and in this thesis we group them

using the term inversion.

Dealing with these problems using a kriging metamodel (and a Gaussian prior)

has already been done in the literature (see, Bichon et al. [2008]; Echard et al.

[2011]; Ranjan et al. [2008] as well as Appendix E and Bect et al. [2012] for a

review of some sampling strategies for these problems). The methods proposed so

far have strengths and weaknesses. For example, the strategies proposed in Bichon

et al. [2008]; Echard et al. [2011]; Ranjan et al. [2008] are simple, fast, and easy

to implement (see, Appendix E for a speed comparison between some sampling

criteria). However, none of these criteria corresponds to an optimal SUR strategy.

Recently, Bect et al. [2012] showed that the 1-step lookahead SUR strategies tend

to outperform in application the “simpler” strategies proposed by Bichon et al.

[2008]; Echard et al. [2011]; Ranjan et al. [2008].

Our contribution on SUR strategies for inversion can be split into four categories:

1. Generalization of SUR strategies in the case where we evaluate q > 1 points

at a time. Batch-sequential 1-step lookahead SUR strategies are presented.

[Chevalier et al., 2013a].

2. Closed-form expression to efficiently compute SUR criteria: in many cases

the use of 1-step lookahead SUR strategies is complicated because of compu-

tation time. Thus, similarly to the k-steps lookahead SUR strategies, even
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if the strategy “exists”, it might be difficult to use in application. In the

Appedix C we present a contribution [Chevalier et al., 2013a] where the use

of two SUR strategy introduced in Bect et al. [2012] becomes possible in a

reasonable time, through closed-form formulas. The formulas apply for both

sequential and batch-sequential strategies.

3. Introduction of new SUR strategies for inversion: notions from random set

theory are used to define the conditional “variance” of a random set. We use

these notions to define our uncertainty function and derive the corresponding

optimal SUR strategy. The 1-step lookahead SUR strategy is implemented.

This contribution is detailed in the next Chapter and in a paper given in

Appendix D [Chevalier et al., 2013b].

4. Implementation in R language of the KrigInv package, which allows the use

of the studied strategies. Some auxiliary problems relative to numerical

computations are discussed. A paper dealing with KrigInv (Chevalier et al.

[2013d]) is given in Appendix E.
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Chapter 4

Contribution in SUR strategies

for inversion

In this Chapter, we use the setting and notations given in Section 3.4.

4.1 Fast computation of batch-sequential exist-

ing SUR strategies

Let us consider a function of interest f : X ⊂ R
d 7→ R, and n evaluations An :=

(xi, f(xi))1≤i≤n. We are in the Universal kriging setting and f is a sample path of

a Gaussian process ξ. Let D ⊂ R be a closed set. We recall that we are interested

in the set:

Γ⋆ := {x ∈ X : f(x) ∈ D}. (4.1)

Let us define the set:

Γ := {x ∈ X : ξ(x) ∈ D}. (4.2)

The latter set is random as ξ is a random process. Some realizations of Γ condi-

tioned on An may be obtained using conditional simulations of ξ (as an example,

see Figure 4.2).

Let us define α := PX(Γ) where PX is a given σ-finite measure on X. As mentioned

in Bect et al. [2012] the conditional variance of α is a natural way to quantify uncer-
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tainties on the real excursion volume α⋆. We write the corresponding uncertainty

function as follows:

Hn(An) := V arn(α), (4.3)

where V arn(·) := V ar(·|An). The computation of this uncertainty may require

Monte-Carlo approximations using conditional simulations of Gaussian random

fields. For this reason, the 1-step lookahead SUR strategy associated to this un-

certainty was judged impractical in Bect et al. [2012], so that the authors proposed

a different definition for the uncertainty function:

H̃n(An) :=

∫

X

pn(x)(1− pn(x))dPX(x) (4.4)

where pn(x) := P(x ∈ Γ|An) is called excursion probability function or, sometimes,

coverage probability function.

The definition of the uncertainty given in Equation (4.4) is obtained through an

application of Cauchy-Schwarz inequality, using the fact that

α =

∫

X

1(ξ(x)∈D)dPX(x) (4.5)

En(α) =

∫

X

pn(x)dPX(x). (4.6)

The calculations are the following:

V arn(α) = En((α− En(α))
2)

= En

((∫

X

(1(ξ(x)∈D) − pn(x))dPX(x)

)2
)

≤ PX(X) En

(∫

X

(1(ξ(x)∈D) − pn(x))
2dPX(x)

)

= PX(X) H̃n(An)

The function pn(·) can be interpreted as the probability that the random set Γ

contains x, or, equivalently, that ξ(x) ∈ D. As ξ(x)|An ∼ N(mn(x), s
2
n(x)), pn(x)
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has a simple expression in the particular case where D = [T,∞):

pn(x) = Φ

(
mn(x)− T

sn(x)

)
. (4.7)

More generally, if D is a (closed) finite union of disjoint intervals written as:

D =
l⋃

i=1

[ai, bi], ai ∈ R ∪ {−∞}, bi ∈ R ∪ {+∞}, a1 < b1 < . . . < al < bl (4.8)

then pn(x) can still be computed as:

pn(x) =
l∑

i=1

Φ

(
mn(x)− ai

sn(x)

)
− Φ

(
mn(x)− bi

sn(x)

)
. (4.9)

with the convention Φ(∞) = 1 and Φ(−∞) = 0.

Equation (4.4) introduces a definition of the uncertainty function, H̃n, which is

suitable for many reasons. First, the inequality in Equation (4.4) ensures that, if

H̃n goes to zero when new observations are sequentially added then Hn goes to

zero as well. Second, H̃n can be interpreted easily as it is small if, for all x ∈ X,

pn(x) is close to either 0 or 1. In other words, if for every x we are able to decide if

x is in the excursion set (i.e., pn(x) close to 1) or not (pn(x) close to 0) then H̃n is

low. On the contrary if there exist large (in the sense of their volume) zones where

pn(x) ≈ 1/2 then H̃n is high, as p(1− p) takes its maximum value for p = 1/2.

The optimal 1-step lookahead SUR criteria associated to the uncertainties Hn and

H̃n are respectively:

Jn(xn+1) =En(V arn+1(α)) (4.10)

J̃n(xn+1) =En

(∫

X

pn+1(x)(1− pn+1(x))dPX(x)

)
, (4.11)

where the expectation is taken with respect to the random response ξ(xn+1). As

explained previously, in Bect et al. [2012], the criterion Jn is considered intractable.

The criterion J̃n is implemented and the expectation is handled through a Monte-
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Carlo approximation which considers a finite number of possible responses ξ(xn+1).

A first contribution in this thesis is to propose a natural batch-sequential general-

ization of these two SUR criteria (i.e. criteria which depend on q > 1 points), and

to provide closed form expressions allowing their computation for both q = 1 and

q > 1. This contribution, detailed in Chevalier et al. [2013a], can be found in the

Appendix C and is summarized in this Section.

The 1-step lookahead SUR criteria which sample a batch of q > 1 points at each

iteration are given below:

Jn(xn+1, . . . ,xn+q) =En(V arn+q(α)) (4.12)

J̃n(xn+1, . . . ,xn+q) =En

(∫

X

pn+q(x)(1− pn+q(x))dPX(x)

)
. (4.13)

Using the notation x(q) := (xn+1, . . . ,xn+q), and assuming that D = [T,∞) for

some T ∈ R, our “fast” closed-form expressions are:

Jn(x
(q)) =γn −

∫

X×X

Φ2

((
a(z1)

a(z2)

)
,

(
c(z1) d(z1, z2)

d(z1, z2) c(z2)

))
PX(dz1)PX(dz2)

(4.14)

J̃n(x
(q)) =

∫

X

Φ2

((
a(x)

−a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)

))
PX(dx) (4.15)

where:

• Φ2(·,M) is the c.d.f. of the centered bivariate Gaussian distribution with

covariance matrix M ,

• a(x) := (mn(x)− T )/sn+q(x),

• b(x) := 1
sn+q(x)

Σ−1(kn(x,xn+1), . . . , kn(x,xn+q))
⊤,

• c(x) := 1 + b(x)⊤Σb(x) = s2n(x)/s
2
n+q(x)

• d(z1, z2) := b(z1)
⊤Σb(z2),

• Σ is the covariance matrix of (ξ(xn+1), . . . , ξ(xn+q))
⊤ conditional on An,
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• γn is a constant in the sense that it does not depend on x(q).

Note that the expressions above are only proven when D = [T,∞). However, they

can be extended to the more general case where D is a finite union of intervals

(see, Equation (4.8)).

Figure 4.1: Left: excursion probability after 10 evaluation of a 2d test function.
Middle: J̃n(x

(q)) function, with q = 1 and its optimum (black triangle). Right:
Jn(x

(q)) function and its optimum.

Figure 4.1 gives an example of use of these SUR strategies on a 2d test function

which is the Branin-Hoo function multiplied by a factor −1. We explain in Ap-

pendix E that SUR strategies which use J̃n tend to spread points in sparse regions

with pn(x) ≈ 1/2 while strategies using Jn tend to surround the excursion set in

order to control its volume.

Though quick proofs for Equations (4.14) and (4.15) can be found in Appendix C,

we would like to spend some time to detail how these expressions were obtained.

The explanations are here only given for the J̃n criterion but are similar for Jn.

Our starting point when attempting to compute the expectation of a random vari-

able (here: pn+q(x)(1 − pn+q(x)), for some x ∈ X) with respect to the response

ξ(x(q)) := (ξ(xn+1), . . . , ξ(xn+q)) is to study how the random variable depends on

these (Gaussian) responses. With our settings, the use of the kriging update for-

mulas is natural because the random variable pn+q(x)(1− pn+q(x)) is a functional
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Figure 4.2: Nine conditional realizations of the random set Γ.

of ξ(x(q)). At time n + q, ξ(x) has a Gaussian distribution with parameters ob-

tained from the kriging update formulas. In particular, the updated kriging mean,

mn+q(x) can be written in a form which explicitly shows its dependence on ξ(x(q)):

mn+q(x) = mn(x) + λnew(x)
⊤ξc(x

(q)) (4.16)

where λnew(x) are kriging weights given in Equation (2.20) and ξc(x
(q)) is the ran-

dom vector of the centered responses (ξ(xn+1)−mn(xn+1), . . . , ξ(xn+q)−mn(xn+q))
⊤

with conditional distribution Nq(0,Σ). Thus, from the simple expression (4.7) of

the excursion probability, our random variable at hand can be written simply in

function of U := ξc(x
(q)):

pn+q(x)(1− pn+q(x)) = Φ
(
a(x) + b(x)⊤U

)
Φ
(
−a(x)− b(x)⊤U

)
, (4.17)

where a(x) and b(x) are defined in Equations (4.14), (4.15). Once this expression

is established, it is possible to compute the expectation of pn+q(x)(1 − pn+q(x))
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in the case where U has a centered multivariate normal distribution. Indeed,

let (N1, N2)
⊤ ∼ N2(0, I2) be a Gaussian random vector independent from U. A

starting point is to remark that, trivially :

E(P(N1 ≤ a(x) + b(x)⊤U, N2 ≤ −a(x)− b(x)⊤U)) (4.18)

=P(N1 ≤ a(x) + b(x)⊤U, N2 ≤ −a(x)− b(x)⊤U) (4.19)

=Φ2

((
a(x)

−a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)

))
(4.20)

However, Expression (4.18) can also be written differently, in an integral which

considers all the possibles responses of the random vector U:

E(P(N1 ≤ a(x) + b(x)⊤U, N2 ≤ −a(x)− b(x)⊤U)) (4.21)

=

∫

Rq

P(N1 ≤ a(x) + b(x)⊤u, N2 ≤ −a(x)− b(x)⊤u)Ψ(du) (4.22)

=

∫

Rq

P(N1 ≤ a(x) + b(x)⊤u)P(N2 ≤ −a(x)− b(x)⊤u)Ψ(du) (4.23)

=

∫

Rq

Φ(a(x) + b(x)⊤u)Φ(−a(x)− b(x)⊤u)Ψ(du) (4.24)

=E
(
Φ
(
a(x) + b(x)⊤U

)
Φ
(
−a(x)− b(x)⊤U

))
(4.25)

where Ψ(·) is the p.d.f. of the random vector U. It is thus possible to start from

Expression (4.25) to obtain the result (4.20). The “trick” here is that we get rid

of the expectation when we go from (4.18) to (4.19). In this thesis, a similar

calculation scheme (basing on the kriging update formulas and managing to get

rid of the expectation with respect to U) will be applied for other sampling criteria

(see, Sections 4.2, 6.2, F.1).

Note that practical uses of the Jn and J̃n criteria are presented in Appendix C

and E. SUR criteria are indeed implemented in the KrigInv package [Chevalier

et al., 2013d]. Though it is not done in Appendix C, nor implemented in KrigInv,

the presented “trick” is applicable if D takes the form (4.8), i.e. is a union of l

disjoint intervals. In that case, Equation (4.17) becomes a sum of at most (2l)2

terms. The expectation of each of these (2l)2 terms at time n + q (i.e. when a
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batch is added) requires one call to the Φ2 function. For example, if D = [T1, T2],

we need four calls to Φ2 per integration point x, which is still reasonably fast in

applications as fast algorithms exist to compute Φ2 [Genz, 1992; Genz and Bretz,

2009].

The SUR criteria Jn which decreases the variance of α = PX(Γ) is a (1-step looka-

head) optimal for the problem of evaluating the true excursion’s volume α⋆ but

has some drawbacks if one aims at finding the excursion set Γ⋆ itself. There are

indeed no guarantees that, if V arn(α) goes to zero, then all the points are getting

perfectly classified, i.e. pn(x) → 0 or 1 a.e.1. For this reason, the use of the J̃n

criterion might be preferable if one aims at finding Γ⋆2. However, this criterion is

derived from an uncertainty function, H̃n, obtained by bounding the initial uncer-

tainty V arn(α). This uncertainty function does not really measure any “variance”

of the random set Γ and is thus not completely satisfying. This problem moti-

vates the next Section, where we aim at constructing a SUR criterion from a new

uncertainty measure, which will be a “variance” of the random set Γ itself.

4.2 New SUR strategies using notions from ran-

dom set theory

We investigate in this thesis new SUR strategies for inversion, based on original

definitions for the uncertainty. Let us consider the random set

Γ := {x ∈ X : ξ(x) ∈ D}. (4.26)

As said before, conditional realizations of this random set can be simulated from

(conditional) simulations of ξ (see, Figure 4.2). When our target function f is a

sample realization of ξ, the real unknown excursion set can be seen as one of these

1Indeed, a counter example can be constructed. For example we can think about a Gaussian
field on [0, 1]d which is constant on a first half of the domain, [0, 0.5) × [0, 1]d−1 and constant -
with opposite value - on the second half (0.5, 1] × [0, 1]d−1. If we take D = [0,∞) and use the
Lebesgue measure, the volume of the random set Γ is constant, equal to 1/2, and thus has zero
variance. However, pn(x) = 1/2 for all x ∈ [0, 1]d.

2For this criterion we have that if H̃n goes to zero then pn(x)→ 0 or 1 a.e.
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conditional realizations of Γ. Therefore, instead of focusing on the volume of Γ, it

is natural to aim at defining a conditional “variance” for the random set Γ itself.

The book of Molchanov [2005] gives many possible definitions for the variance of

a random closed set. In an article [Chevalier et al., 2013b] given in Appendix D,

we use the work of Vorob’ev [Vorobyev, 1984; Vorobyev and Lukyanova, 2013] to

build a new SUR strategy which aims at decreasing the Vorob’ev deviation of the

random set Γ. Even if precise definitions are given in Appendix D, let us quickly

summarize how this “variance” is defined and how the SUR strategy based on it

can be used in applications.

Let us consider the excursion probability function, pn(·), introduced in the previous

section (see, Equations (4.7) or (4.9), depending on the form of D). In Molchanov

[2005], such function is called coverage probability function. The Vorob’ev con-

ditional expectation of the random set Γ is a set obtained by thresholding pn(·)
with a “well-chosen” threshold denoted by Tn. This expectation, called Vorob’ev

Expectation, is the set:

Qn,Tn
:= {x ∈ X : pn(x) ≥ Tn}, (4.27)

where the threshold Tn is chosen so that the volume of the Vorob’ev Expectation

is equal to the expected volume of the random set Γ:

PX(Qn,Tn
) = En(PX(Γ)) (4.28)

=

∫

X

pndPX := αn. (4.29)

A remarkable fact is that that the set Qn,Tn
defined above is the minimizer, among

all closed set Q with volume αn, of the following conditional “variance”, called

Vorob’ev deviation:

V arn(Γ;Q) := E (PX(Γ∆Q)|An) , (4.30)

where A∆B denotes the symmetric difference between two sets A and B: A∆B :=
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(A ∪B) \ (A ∩ B). In other words, for all closed set Q with volume αn we have

V arn(Γ;Qn,Tn
) ≤ V arn(Γ;Q). (4.31)

A proof for the latter statement can be found in Molchanov [2005], p. 193. From

now on, V arn(Γ;Qn,Tn
) will be simply denoted by V arn(Γ): the Vorob’ev deviation

of Γ at time n. The quantity V arn(Γ) is a natural candidate for our uncertainty

function Hn:

Hn(An) := V arn(Γ). (4.32)

Moreover, computing V arn(Γ) is not difficult if we get back to its initial defini-

tion (4.30). We show in Appendix D that:

V arn(Γ) =

∫

Qn,Tn

(1− pn(x))PX(dx) +

∫

Qc
n,Tn

pn(x)PX(dx). (4.33)

where Ac denotes the complementary set of A in X. The Vorob’ev deviation can

thus be seen as the sum of “small” (i.e. lower than Tn) excursion probabilities

computed over Qc
n,Tn

plus the small “non-excursion” probabilities computed over

Qn,Tn
.

Figure 4.3: Left: excursion set of the Branin function (multiplied by a factor −1)
when D = [−10,∞). Right: excursion probability function pn(·) obtained from
n = 10 observations and Vorob’ev expectation.
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Figure 4.3 shows an example of computation of the Vorob’ev expectation on the

Branin-Hoo function. The Vorob’ev (conditional) expectation is the set of points

delimited by the blue line, which excursion probability is greater or equal than

the Vorob’ev threshold (here, Tn ≈ 0.45). Figure 4.4 represents the symmetric

difference between the Vorob’ev expectation and the nine conditional realizations

of Γ shown on Figure 4.2.

Figure 4.4: Symmetrical difference Γ∆Qn,Tn
for nine conditional realizations of Γ.

In order to use in applications a SUR strategy based on the uncertainty V arn(Γ),

one needs to be able to efficiently compute the expectation of the future uncertainty

if a batch of q points, x(q) is added:

Jn(x
(q)) := En (V arn+q(Γ)) . (4.34)

Now, Equation (4.33) can be rewritten:

V arn(Γ) =

∫

X

(
pn(x)1(pn(x)<Tn) + (1− pn(x))1(pn(x)≥Tn)

)
PX(dx) (4.35)
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so that:

Jn(x
(q)) = En

(∫

X

(
pn+q(x)1(pn+q(x)<Tn+q) + (1− pn+q(x))1(pn+q(x)≥Tn+q)

)
PX(dx)

)

(4.36)

Given an integration point x ∈ X, computing the expectation of the integrand may

seem difficult, mainly because we do not control well how the Vorob’ev threshold

“reacts” when new observations are assimilated. Empirically (see, Appendix D)

we verified that, from one iteration to another, the Vorob’ev threshold has only

small variations. Consequently, instead of trying to find closed form expressions

for Equation (4.36) we will instead investigate the simpler criterion:

J̃n(x
(q)) = En

(∫

X

(
pn+q(x)1(pn+q(x)<Tn) + (1− pn+q(x))1(pn+q(x)≥Tn)

)
PX(dx)

)
,

(4.37)

where the (random) Vorob’ev threshold Tn+q is fixed to Tn. Finding analytical ex-

pressions for Equation (4.37) involves the computation, for any integration points

x ∈ X, of the following expressions:

En(pn+q(x)1(pn+q(x)<Tn)), (4.38)

En(pn+q(x)1(pn+q(x)≥Tn)), (4.39)

En(1(pn+q(x)≥Tn)). (4.40)

Equation (4.37) is indeed the integral of (4.38) − (4.39) + (4.40).

Note that Expression (4.39) can be easily calculated from (4.38), as, using the law

of total expectation we have that: (4.38) + (4.39) = pn(x). We will thus focus in

the first place on the calculation of Expression (4.38). The calculations detailed

below apply in the particular case where D = [T,∞) for some T ∈ R. However,

as in the previous section, they may be adapted to the case where D is a finite

union of intervals. From the kriging update formulas, we have:

En(pn+q(x)1(pn+q(x)<Tn)) =

∫

Rq

Φ(a(x) + b(x)⊤u)1(a(x)+b(x)⊤u<Φ−1(Tn))Ψ(du)

where a(x),b(x),Ψ(·) andΣ are defined as in Section 4.1, Equations (4.14) and (4.15).
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Then, by defining again N1 ∼ N(0, 1) independent from the random centered re-

sponse at the batch x(q), U ∼ Nq(0,Σ), we have:

En(pn+q(x)1(pn+q(x)<Tn)) =

∫

Rq

P (N1 < a(x) + b(x)⊤u)1(a(x)+b(x)⊤u<Φ−1(Tn))Ψ(du)

=E
(
P (N1 < a(x) + b(x)⊤U, a(x) + b(x)⊤U < Φ−1(Tn)

)

where the last expectation refers to the randomness of U. At this stage, we see

that we can get rid of the expectation to obtain:

En(pn+q(x)1(pn+q(x)<Tn)) = Φ2

((
a(x)

Φ−1(Tn)− a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)− 1

))

(4.41)

The last term, (4.40), can be calculated more easily. We obtain:

En(1(pn+q(x)≥Tn)) = Φ

(
a(x)− Φ−1(Tn)√

c(x)− 1

)
(4.42)

so that our final result, written in one formula is:

J̃n(x
(q)) =

∫

X

(
2Φ2

((
a(x)

Φ−1(Tn)− a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)− 1

))
(4.43)

−pn(x) + Φ

(
a(x)− Φ−1(Tn)√

c(x)− 1

))
PX(dx).

The sampling criterion defined by Equation (4.43) has been implemented in the

KrigInv R package (see, Chevalier et al. [2013d], Section 4.3.1 and Appendix E).

Like the other criteria presented in Section 4.1, its computation simply requires

computations of updated kriging variances and covariances as well as efficient al-

gorithms for the function Φ2 [Azzalini, 2012; Kenkel, 2011]. The integral over X

is computed numerically, through a Monte Carlo sampling, and a relevant instru-

mental distribution may be selected in order to reduce the Monte-Carlo error (see,

Appendix E, and next Section for more details).

Keeping our example with the Branin function, an example of use of this J̃n crite-
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rion, dedicated to the reduction of the Vorob’ev deviation V arn(Γ), is presented

on Figure 4.5. To compare the behaviour of the criterion with the criteria pre-

sented in the last section, we also run the batch-sequential inversion on the same

function, but using the criterion called “sur” in KrigInv, which is the J̃n criterion

of Section 4.1. On this example, the batches chosen by the two criteria seem to be

rather similar.

Figure 4.5: Left: Excursion probability and Vorob’ev Expectation after five iter-
ations (with q = 4) of the batch-sequential criterion which aims at reducing the

Vorob’ev deviation. Right: Five iterations of the J̃n criterion presented in Sec-
tion 4.1. In the KrigInv package, the latter criterion is called “sur”. Grey circles
are the newly evaluated locations. Numbers correspond to iteration number where
these locations were chosen.

4.3 R programming: KrigInv package and aux-

iliary problems

4.3.1 KrigInv

The sampling criteria presented in this Chapter have all been implemented in the

KrigInv R package [Chevalier et al., 2012, 2013d]. The package enables the use

of sequential and batch-sequential sampling strategies for inversion. A tutorial is

available in Appendix E.
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Without repeating the content of the article given in Appendix E we would like to

briefly summarize what can be done with the criteria available in KrigInv. First,

three simple sampling criteria available in the literature (see, Bichon et al. [2008];

Picheny et al. [2010]; Ranjan et al. [2008]) are referred to as pointwise criteria.

These criteria are dedicated to inversion problems in the particular case where

D is of the form D = [T,∞). Pointwise criteria are easy and fast to compute.

However, the criteria are not associated with an uncertainty measure and are not

optimal. In addition, these three criteria cannot easily - to be best of our knowledge

- be adapted to batch-sequential settings.

In addition to pointwise criteria, a major contribution in KrigInv is the coding

of SUR criteria, including the criteria presented in this Chapter. An additional

SUR criterion called target Integrated Mean Square Error (tIMSE) [Picheny, 2009;

Picheny et al., 2010] is implemented. This criterion is dedicated to the estimation

of a contour line, but may as well be used to find the set Γ⋆ := {x : f(x) ∈ D}.
The tIMSE criterion can be used only in the particular case where D = [T,∞),

while the three criteria studied in this Chapter may be used when D has a more

general form. However, as of today, only the case D = [T,∞) is implemented.

Extending the implementation when D is a finite union of interval is currently a

work in progress. The Jn and J̃n criterion of Section 4.1 are respectively called

“jn” and “sur”. The J̃n criterion of Section 4.2 is called “vorob”.

In the Appendix E, more details and examples are given on the sampling criteria.

Moreover, auxiliary problems are discussed, like the choice of the optimization

method to find the point (or batch) that maximizes or minimizes a given criterion.

In the next subsection, we provide some supplementary work (which is not in the

article) for dealing with the integrals (over X or X×X) present in the SUR criteria.

4.3.2 Numerical integration, toward the Sequential Monte-

Carlo sampler

The computation of the “timse”, “sur”, “jn” or “vorob” criteria involves numerical

integration (see, Equations (4.14), (4.15), (4.43)). The integration domain is X for
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“timse”, “sur”, “vorob” and X × X for “jn”. In applications, these integrals are

usually computed using Monte-Carlo integration.

A standard method to compute these integrals is to use and i.i.d. sample of integra-

tion points, generated uniformly on the integration domain. It is however known

(see, Robert and Casella [2004] for details) that importance sampling techniques

may reduce the Monte-Carlo error, through the choice of an adapted instrumental

distribution. The optimal instrumental distribution (leading to a Monte-Carlo er-

ror of zero) is exhibited in Robert and Casella [2004] but its use requires knowledge

of the integral at hand, and is thus pointless.

We propose in the Appendix E some instrumental densities adapted to the integrals

at hand (i.e. hopefully “close” to the optimal distribution), and give a procedure

to generate a sample from these densities. The idea is the same for each SUR

criteria, and consists in saying that the integrand present in a SUR criterion may

not depart much from the integrand of the corresponding uncertainty measure.

This suggests the use of the following instrumental densities h(·):

• “sur” criterion (see, Equation (4.13)): h(x) ∝ pn(x)(1− pn(x))dPX(x)

• “jn” criterion (see, Equation (4.12)): h(z1, z2) ∝ pn(z1)pn(z2)dPX(z1)dPX(z2)

• “vorob” criterion (see, Equation (4.37)): h(x) ∝ (pn(x)1(pn(x)<Tn) + (1 −
pn(x))1(pn(x)≥Tn))dPX(x)

In KrigInv, samples from these instrumental distribution can be generated to com-

pute the SUR criterion. The samples are renewed at each iteration. Generating

these Monte-Carlo samples is not an easy task. Indeed, let us consider the exam-

ple of the “sur” criterion, and, for simplicity, let us assume that PX is the uniform

measure on X = [0, 1]2. One can see (Figure 4.6) that, as the inversion progresses,

the region where pn(x)(1 − pn(x)) is not zero does not have a simple shape and

has the tendency to become more and more narrow. The issues described here

exclude a straightforward use of standard MCMC methods, like the ones based on

the Metropolis-Hastings algorithm (see, Robert and Casella [2004] for a review of

the methods used in Markov Chain Monte-Carlo).
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Figure 4.6: Function pn(x)(1− pn(x)) at different iterations of the inversion.

The current method used in KrigInv to generate an (i.i.d) sample from the instru-

mental distribution is detailed in Appendix E. Keeping the example of the “sur”

criterion, the method consists in sampling from a simpler discrete distribution

proportional to:
N∑

j=1

pn(uj)(1− pn(uj))δuj
, (4.44)

where N is a large number and u1, . . . ,uN is an i.i.d. sample of points with

distribution PX. Sampling from the distribution above requires to calculate pn(uj)

for all uj’s and the normalizing constant c :=
∑

j pn(uj)(1 − pn(uj)). Then the

location uj is selected with probability c−1pn(uj)(1−pn(uj)). This method has the

advantage to be simple and easy to implement. However, it has many drawbacks.

First, both N and the number of points sampled from this distribution need to

tend to infinity to ensure the convergence of the Monte-Carlo estimator to the real

integral. Second, the method is rather computer-intensive as N is large, and does

not re-use the sample at time n to build a sample at time n + q. Despite these

important drawbacks, it is shown that, in application, the use of these instrumental

distributions significantly reduces the Monte-Carlo error.

We now would like to detail a work in progress in this field, which is not detailed in

Appendix E. In our settings, we would like to take advantage of the sequentiality of
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the problem. When a Monte-Carlo sample is built at time n, it would be interesting

to be able re-use this sample to construct a new one at time n+ q. The argument

here is that the distributions to sample are “close” from one iteration to another.

Indeed, with the example of the “sur” criterion, the quantity pn+q(x)(1− pn+q(x))

may not depart much from pn(x)(1− pn(x)).

A recent article of Del Moral et al. [2006] gives methods and algorithms adapted to

our problem. We recently implemented algorithms derived from this article. The

Sequential Monte-Carlo samplers aim at sampling sequentially from a sequence

of probability measures π1, π2, . . . , πk, known up to a multiplicative constant and

defined over the same measurable space. Here, π1 ∝ pn0(1− pn0) for some n0 ∈ N,

π2 ∝ pn0+q(1 − pn0+q) and so on. If one wants to construct, at each iteration i, a

sample of size s with distribution πi, an application of the algorithms of Del Moral

et al. [2006] to our particular settings leads to the following algorithm:

1. First Monte-Carlo sample: sample from a distribution π1 proportional to

pn0(1− pn0). The obtained sample is denoted by x1 ∈ X
s. Set, xi = x1 and

n = n0.

2. Evaluate the SUR criterion with this sample. Find the batch of q points

optimizing the criterion and evaluate the target function f at this batch.

3. For i from 2 to k, perform the following steps:

• When the q new evaluations are available, re-sample in the previous

Monte-Carlo sample xi−1 using the weights:

pn+q(xj)(1 − pn+q(xj))/(pn(xj)(1 − pn(xj))), xj ∈ xi−1. The obtained

sample is denoted by xi
resample

• Perform a single Metropolis-Hastings jump for each point of the sample

xi
resample. This gives a new sample xi from πi.

• Use this sample to compute the SUR criterion at iteration i. Find

the batch of q points optimizing the criterion and evaluate the target

function f at this batch. Set n = n+ q.

The algorithm above bases on a Sequential Monte-Carlo Sampler, using at step

i, a MCMC kernel with invariant distribution πi (see, Del Moral et al. [2006],
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Section 3.3.2.3). It is relevant in our settings as πi+1 ≈ πi. A sample of size 5000,

distributed from πi for different values of i, is shown on Figure 4.7. In this example,

the MCMC transition kernel is a Metropolis-Hastings kernel with Gaussian jumps.

In our settings, the algorithm has important advantages. First, it enables to

sample from a distribution even if its support becomes more and more narrow

(see, Figure 4.6). Second, the algorithm has a lower complexity of O(s), where s

is the number of integration points. This algorithm is not released yet in KrigInv.

Figure 4.7: pn(x)(1− pn(x)) function at different iterations of the inversion. The
function is plotted together with the sample of integration points used to calculate
the SUR criterion (Equation (4.14)) at each iteration. This sample is obtained
using a Sequential Monte-Carlo sampler.
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Part III

Contribution in robust inversion
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Chapter 5

Motivations in Nuclear Safety

This part of the thesis details our contribution in “robust inversion” of an expensive-

to-evaluate function. The problem will be properly defined mathematically in Sec-

tion 5.3. In this Chapter, we first present real-life test cases motivating the use

of SUR strategies for inversion and robust inversion. The test cases are provided

by the laboratory of criticality research of the French Institute of Nuclear Safety

(IRSN, Institut de Radioprotection et de Sûreté Nucléaire).

5.1 Introduction to Nuclear Criticality Safety

Fission reactions in nuclear plants are based on neutrons which are both a product

and an initiator of the fission reaction. The kernel of an heavy atom (of, e.g.,

Uranium, Plutonium) hit by neutrons may indeed fission into lighter kernels and

free other neutrons which may, again, hit other heavy kernels. The fission produces

a high quantity of energy and thus needs to be controlled. In particular, one wants

to avoid the overproduction of neutrons.

The criticality safety of a system is evaluated through the neutron multiplication

factor (called k-effective or keff), which models the nuclear chain reaction trend.

While a keff > 1 implies an increasing neutron production leading to an uncon-

trolled chain reaction, a keff < 1 is the safety state required for fuel storage. The

neutron multiplication factor depends on many parameters such as the composi-

tion of fissile materials, operation conditions, geometry, etc. For a given set of
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physical parameters, the value of keff can be evaluated using a simulator, often

based on Markov Chain Monte-Carlo (MCMC) simulation techniques, to solve the

underlying Boltzman equation which describes neutronic behaviour of the system.

An example of code to evaluate the keff is the MORET Monte Carlo code [Fernex

et al., 2005].

The keff can thus be seen as a multivariate function of the parameters of the

system, x ∈ X, (mass of fissile material, geometry, ...). Each call to MORET

delivers a noisy evaluation of keff and a variance obtained from the Monte-Carlo

estimation. A typical task to be performed by safety assessors is hence to find

the worst combination of input parameters of the criticality code (i.e. leading

to maximum reactivity) over the whole operating range. For instance, checking

sub-criticality can be done by solving a maximization problem where the objective

function (possibly, observed with a noise) is the keff returned by the simulator.

This straightforward view of criticality parametric calculations complies with the

framework of Design of Computer Experiments. It may provide a support to en-

hance and consolidate good practices in safety assessment. Indeed, supplementing

the standard “expert driven” assessment by a suitable algorithm may be helpful to

increase the reliability of the whole process, and the robustness of its conclusions.

In application, safety is assessed by checking if keff does not reach an upper safety

limit (USL) of 0.951. To accept this demonstration, the regulation requires safety

assessors to define some parameters (such as the fissile mass) to be strictly con-

trolled. In return, all the other parameters (say “non-controlled”, for example the

amount of water in the designed equipment) are assumed to take any values within

a given credible range [IRSN, 2010].

Evaluating keff(x) for one given configuration x is an expensive operation which

takes 5 to 30 minutes, depending on the numerical conditioning of the model.

Given the time constraints in the release of safety reports, it is thus important

to have a sound allocation strategy. The IRSN has at its disposal a computing

infrastructure allowing to evaluate the keff(·) function in parallel, at different “lo-

cations”, i.e. for different sets of input parameters. This feature encourages the

1In fact, true criticality is reached when keff > 1, but, considering the consequences of a
critical excursion, a margin from true criticality threshold is deducted to define the USL.
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use of batch-sequential strategies for solving problems on the keff function (opti-

mization, inversion, etc...). An example of use of the Efficient Global Optimization

(EGO) algorithm of Jones et al. [1998] to find the most critical parameters is given

in Richet et al. [2013].

At IRSN, the MORET code can be called sequentially or in batches using a soft-

ware called Prométhée1, which has the advantage of allowing the coupling of se-

quential evaluation strategies coded in R. The new algorithms of, e.g., the KrigInv

package can thus be used directly on nuclear safety real cases, which allows smooth

interactions with the physicists. The work presented in this thesis may be used to

propose different model-based solutions to different general problems on the keff(·)
function. Three problems studied in the thesis are listed below.

• Find the configurations x leading to the highest (here, assumed noise-free)

response keff(x): optimization problem. This can be done for instance using

a batch-sequential EGO algorithm with the multi-points Expected Improve-

ment criterion presented in Section 2.3 and Appendix B.

• Find the set Γ⋆ of “unwanted” configurations, where keff(x) is greater than

T = 0.95: inversion problem. This can be achieved using batch-sequential

SUR strategies for inversion presented in Chapter 4, and is also illustrated

in next Section.

• Find the set of safe-controlled configurations, as defined in Section 5.3 using

a sequential or batch-sequential SUR strategy for robust inversion. This part

is detailed in Chapter 6 and Appendix F.

It is important to emphasize that, in nuclear safety, kriging-based evaluation strate-

gies are used only as a complement to the expertise of the physicists, and can by no

means replace it. In nuclear safety studies, the experts calculate - from the physics

- the possible solutions to their problem at hand and may, as a complement, use

the evaluation strategies presented in this thesis to validate their results.

1see, Prométhée project: A grid computing environment dedicated to design of computer
experiments, http://promethee.irsn.org
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Figure 5.1: Operational/functional views of criticality parametric calculation.
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5.2 Nuclear Safety and inversion

In the present application case, defined by the IRSN, the system is a storage facility

of plutonium powder, whose criticality (keff) is controlled by two real-valued input

parameters:

• the mass of plutonium (MassePu) in the system

• the logarithm of the concentration of plutonium (logConcPu).

The input domain X is (MassePu,logConcPu)∈ X = [0.1, 2]× [2, 9.6] and our aim

is to locate the excursion set: Γ⋆ = {x ∈ X : f(x) ≥ T}, where T = 0.95 and

f(x) := keff(MassePu, logConcPu).

As explained previously we do not directly observe f(x) itself but rather f(x) +

ε, where ε is a noise with a standard deviation (here: 0.001) estimated by the

MCMC simulator. In addition the noises ε at different locations are assumed to

be independents. The noise is taken into account in our sampling strategy as the

SUR strategies for inversion presented in this thesis are applicable in these settings.

The unknown excursion set is represented in Figure 5.2. Such estimate is con-

structed for validation purposes, relying on 300 evaluations of the code on a space-

filling design of experiment, and by thresholding the kriging mean at T = 0.95.

Our aim is to determine whether SUR strategies can identify accurately the ex-

cursion set with a small fraction of this budget. Note that the present test case is

also presented in Appendix C.

We start with an initial design of 10 evaluations, obtained with the “maximiLHS”

function of the “LHS” R package. Then, 5 iterations of the J̃n criterion of Sec-

tion 4.1 (i.e. the “sur” criterion in KrigInv) are run, with batches of 4 points at

each iterations. The parameters of the algorithm are summarized below:

• Trend functions for the kriging model: only a constant (ordinary kriging).

• Covariance kernel: Matérn covariance with parameter ν = 3/2.

• Estimation of the covariance parameters: the covariance parameters (vari-

ance and ranges) are re-estimated at each iteration by Maximum Likelihood,

using the DiceKriging package.
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Figure 5.2: Contour lines of the function keff = f(MassePu, logConcPu) with the
excursion set (in white) of keff corresponding to a threshold T = 0.95. This approx-
imations is obtained by computing the kriging mean function from 300 evaluations
on a space-filling design of experiments.

• Initial design of experiments: 10 points (maximin LHS in dimension d = 2).

• Number of points evaluated per iteration: q = 4.

• Total number of iterations: 5.

• SUR criterion minimized at each iteration: J̃n function of Equations (4.13),(4.15).

• Criterion optimization: with the genoud R package [Mebane and Sekhon,

2011] and with the heuristic strategy detailed in Appendix E, Section 4.1.2.

• Number of integration points for the integral over X: 600 points renewed at

each iteration.

• Choice of the integration points: sampling from the “sur” instrumental den-

sity described in Appendix E, Sections 4.2.1 and 4.2.2.

• Parameters of the genoud algorithm: pop.size = 200, max.generation = 20.
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Figures 5.3 and 5.4 show the evolution of the algorithm. The newly evaluated

points are represented together with the decrease of the uncertainty H̃n defined in

Equation (4.4).

Figure 5.3: Plot of the function pn(x) = P (x ∈ Γ|An) after n evaluations of the
simulator. The triangles are the ten points of the initial design. The squares are
the points sampled using the J̃n criterion. Areas in black correspond to pn(x) ≈ 0
and areas in white correspond to pn(x) ≈ 1. The dotted line indicates the true
excursion set.

The SUR strategy on this rather simple smooth function shows good performances

as the true excursion set is quickly identified. More numerical tests are performed

in Appendix C on more difficult functions (one function in dimension 6 and one

function with a non-connected excursion set).
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Figure 5.4: Evolution of H̃n during the sequential sampling strategy.

5.3 Nuclear Safety and robust inversion

The so-called problem of “robust inversion” is defined in this Section, using an

example in nuclear-safety. We consider again a deterministic simulator f : X 7→ R,

which response is possibly observed with some noise.

The practical motivation in nuclear safety is that, often, some parameters of the

simulator can be controlled by practitioners (e.g. the mass of fissile material)

while other parameters are environment variables and cannot be controlled (e.g.

the quantity of water in the storage system). In nuclear safety, engineers are

interested by the “safe” configurations of a system, which are the configurations

where f(x) := keff(x) ≤ T , where T = 0.95. However, if one assumes that some of

the parameters of f are non-controlled, it is more relevant to seek the configurations

of controlled parameters where the system remains safe for all the possible values

of the non-controlled (environment) parameters. This problem is given the name

of “robust inversion”.

Mathematically, we consider that the input domain X for the d parameters can be

written X = Xc × Xnc, where Xc and Xnc are respectively the input domains for

the controlled and non-controlled parameters. A set of parameters x ∈ X is also

written x = (xc,xnc) ∈ Xc × Xnc. The goal in robust inversion is to identify the
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set:

Γ⋆
c := {xc ∈ Xc : ∀xnc ∈ Xnc, f(xc,xnc) ≤ T} (5.1)

Note that Γ⋆
c is a subset of Xc (and not of X). Also, the total number d of

parameters is written as the sum of the numbers of controlled on non-controlled

parameters: d = dc + dnc.

The test case studied in the next Chapter is fuel storage which depends of three

parameters. Two parameters are controlled: the mass of fissile material in the

storage and the geometry (i.e., the radius of the container). One parameter is

not controlled: the concentration of fissile material. Both mass and geometry are

parameters used to limit the keff, while the fissile concentration is not known nor

measured. It is just guaranteed to stay inside some physical bounds.

Figure 5.5: Mass-Geometry criticality system, depending on three parameters:
radius, mass and concentration of fissile mass (in orange), inside a cylindrical
container.

The domain X is an hyper-rectangle in dimension 3, and, instead of using directly

the MORET code to evaluate the function, a good fast approximation of it is

provided in R. Figure 5.6 gives the set Γ⋆
c obtained from the calculation of the

keff on a 100 × 100 × 100 grid. Obviously, in our application, we do not want to

perform millions of evaluations to identify Γ⋆
c . A realistic budget is more of the

order of a few hundreds of evaluations.

66



Figure 5.6: Set Γ⋆
c (in white) obtained from evaluations of the keff on a grid.

The next chapter presents new SUR strategy which aim at solving such robust-

inversion problem. As we will see, the work performed in inversion will be useful

(and serve as a baseline) to work on this problem.
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Chapter 6

SUR criterion for robust inversion

In this Chapter we deal with SUR strategies aiming to solve the problem of ro-

bust inversion defined in Section 5.3. The settings and notations introduced in

Section 5.3 are used throughout all the Chapter.

6.1 Optimal SUR criteria

In this section, we introduce optimal one-step-lookahead SUR sampling criteria

for the problem of robust inversion, i.e. the problem of identifying the set:

Γ⋆
c := {xc ∈ Xc : ∀xnc ∈ Xnc, f(xc,xnc) ≤ T}, (6.1)

where f : X 7→ R is a function which is possibly observed with some noise (the

variance of which is assumed to be known), and T is a fixed threshold1. We recall

that the d scalar inputs of f can be separated into dc controlled parameters and dnc

non-controlled parameters, so that the input space X can be written X = Xc×Xnc.

Following the methodology developed in Chapter 4, we introduce the random set:

Γc := {xc ∈ Xc : ∀xnc ∈ Xnc, ξ(xc,xnc) ≤ T}, (6.2)

where ξ is a random process which is assumed to be Gaussian.

1though not detailed in this Chapter, all the methods presented in this Chapter can be
extended to the case where f(xc,xnc) ∈ D where D is a closed finite union of intervals
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When n observations of f , An, are available, conditional realizations of Γc can be

simulated from conditional realizations of ξ. We introduce the random variable

αc := PXc
(Γc) where PXc

is a given σ-finite measure on Xc. Following the work of

Bect et al. [2012] in inversion, a natural choice of uncertainty measure is:

Hn(An) := V arn(αc), (6.3)

and, through the Cauchy-Schwartz inequality, the uncertainty defined in Equa-

tion (6.3) can be bounded as follows:

V arn(αc) ≤ PXc
(Xc)H̃n(An), (6.4)

where:

H̃n(An) :=

∫

Xc

p̃n(1− p̃n)dPXc (6.5)

and p̃n(xc) := P (xc ∈ Γc|An) is the coverage probability function. The use of the

uncertainty measure defined in Equation (6.5) is convenient as decreasing H̃n(An)

ensures that all the domain Xc can be classified correctly. More precisely, if H̃n(An)

decreases to zero as n tends to infinity, it means that, for ε arbitrary small, we

have:

PXc
({xc ∈ Xc : p̃n(xc) > ε and p̃n(xc) < 1− ε}) −−−→

n→∞
0 (6.6)

The condition given by Equation (6.6) does not necessarily hold ifHn(An) (and not

H̃n(An)) goes to zero, which justifies the use of H̃n(An) to quantify uncertainties

on the true excursion set Γ∗
c .

The coverage probability function, p̃n(·), can be rewritten as follows:

p̃n(xc) =P (∀xnc ∈ Xnc, ξ(xc,xnc) ≤ T |An) (6.7)

=P

(
max

xnc∈Xnc

ξ(xc,xnc) ≤ T |An

)
, (6.8)

and the latter expression emphasizes that the coverage probability function at a

given point xc ∈ Xc is equal to the non-exceedance probability of the sectional

Gaussian process ξxc
(·) := ξ(xc, ·).
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The uncertainty measures being defined with Equations (6.3) and (6.5), the opti-

mal one-step-lookahead SUR criteria associated with these uncertainties are:

Jn(x
(q)) :=En(V arn+q(αc)) (6.9)

J̃n(x
(q)) :=En

(∫

Xc

p̃n+q(1− p̃n+q)dPXc

)
, (6.10)

where x(q) ∈ X
q is a batch of q points and where the expectations are taken with

respect to the random values of ξ at this batch.

In Chapter 4, closed-form expression allowing efficient computations of these crite-

ria were found (see, Equations (4.14) and (4.15)). However, for this new problem

of robust inversion, finding closed-form expressions appears to be more challeng-

ing. In fact, the computation of the coverage probability, p̃n(xc), itself is a difficult

question as it amounts to calculate the exceedance probability of a non-stationary

Gaussian process. This can be done through Gaussian process simulations but is

expected to be computationally expensive. Our work in the next sections will be

to propose approximations of the function p̃n(·) which allow a practical use of the

SUR criterion defined by Equation (6.10).

6.2 A first approximation of the optimal criteria

In this section, we propose a multi-points SUR sampling criterion which is con-

structed from the optimal one-step-lookahead criterion defined by Equation (6.10).

This new criterion has the advantage to be simpler to compute and has been imple-

mented in the Prométhée platform, at the IRSN. A work in progress on a second

criterion is presented in Appendix F.
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6.2.1 An approximation of the uncertainty leading to a

criterion

The computation of non-exceedance probabilities of a (non-stationary) Gaussian

process conditioned on some observations, like

p̃n(xc) := P

(
max

xnc∈Xnc

ξxc
(xnc) ≤ T |An

)
, (6.11)

for some xc ∈ Xc, is considered to be difficult and numerically expensive if Monte-

Carlo simulations are used.

Let xc ∈ Xc. A quite natural idea to obtain an approximation of p̃n(xc) is to

observe the value of the sectional Gaussian process ξxc
(·) on a finite number of

locations, rather than on the whole set Xnc.

Mathematically, if ℓ > 0 and if x1
nc(xc), . . . ,x

ℓ
nc(xc) are ℓ points in Xnc that de-

pend on xc, we propose to approximate the coverage probability p̃n(xc) with the

following expression:

p̂n(xc) := P

(
max

xnc∈{x1
nc,...,x

ℓ
nc}

ξxc
(xnc) ≤ T |An

)
, (6.12)

where the locations x1
nc(xc), . . . ,x

ℓ
nc(xc) are denoted by x1

nc, . . . ,x
ℓ
nc to alleviate

notations. One may remark approximating the non-exceedance probability p̃n

with p̂n introduces a bias. Indeed, we have that p̃n(xc) ≤ p̂n(xc), as, trivially,

max
xnc∈Xnc

ξxc
(xnc) ≥ max

xnc∈{x1
nc,...,x

ℓ
nc}

ξxc
(xnc).

However, the (positive) difference between p̂n(xc) and p̃n(xc) can be mitigated

by choosing the locations x1
nc, . . . ,x

ℓ
nc in order to minimize p̂n(xc) (i.e. to max-

imize the exceedance probability). For this reason, although p̂n(xc) depends on

the choice of x1
nc, . . . ,x

ℓ
nc, we will stick to that notation as we will assume that

x1
nc, . . . ,x

ℓ
nc are chosen in order to minimize p̂n(xc).

When the location x1
nc, . . . ,x

ℓ
nc are fixed, the computation of p̂n(xc) requires one

call to the c.d.f. of the multivariate normal distribution in dimension ℓ, Φℓ, which
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can be done in R with packages like “mnormt” and “mvtnorm” [Azzalini, 2012;

Genz et al., 2012]. In the sequel, ℓ will be referred to as the discretization param-

eter.

Now, writing the uncertainty as follows:

Ĥn(An) :=

∫

Xc

p̂n(1− p̂n)dPXc , (6.13)

the 1-step lookahead SUR criterion becomes:

Ĵn(x
(q)) := En

(∫

Xc

p̂n+q(1− p̂n+q)dPXc

)
. (6.14)

As we will see, a closed form expression can be found for the integrand of the

latter expression. As in the Chapter 4, this expression will be established using

the kriging update formulas and manipulations with the c.d.f. of the multivariate

normal distribution.

6.2.2 Computing the criterion

Let xc ∈ Xc and (x1
nc, . . . ,x

ℓ
nc) ∈ X

ℓ
nc. We recall that the locations x1

nc, . . . ,x
ℓ
nc are

chosen such that:

p̂n(xc) := P

(
max

xnc∈{x1
nc,...,x

ℓ
nc}

ξxc
(xnc) ≤ T |An

)

is minimized, so that the positive difference between p̂n(xc) and the true non-

exceedance probability p̃n(xc) is as small as possible.

Let x(q) ∈ X
q be a batch of q points. Our goal is to find closed-form expressions

for:

(∗) := En (p̂n+q(xc)(1− p̂n+q(xc))) , (6.15)

in order to allow efficient computations of the SUR criterion given by Equa-

tion (6.14).

Let us fix the notations. The vector of ℓ locations ((xc,x
1
nc), . . . , (xc,x

ℓ
nc))

⊤ has,

at time n a kriging mean denoted by m
(ℓ)
n and a kriging covariance matrix denoted
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by Σ(ℓ)
n . The kriging covariance of the candidate batch x(q) at time n is denoted

by Σ(q)
n . For 1 ≤ i ≤ ℓ we also denote by Bi the q × 1 column vector of kriging

weights of x(q) for the prediction at point (xc,x
i
nc) and by B := (B1, . . . ,Bℓ). The

matrix B has q rows and ℓ columns. Finally, we denote by Tℓ the column vector

of size ℓ with each component equal to T . Our closed-form expression is given

below:

(∗) = p̂n(xc)− Φ2ℓ

((
Tℓ −m

(ℓ)
n

Tℓ −m
(ℓ)
n

)
,

(
Σ(ℓ)

n B⊤Σ(q)
n B

B⊤Σ(q)
n B Σ(ℓ)

n

))
, (6.16)

where Φ2ℓ(·,Σ) is the c.d.f. of the centered multivariate normal distribution in

dimension 2ℓ, with covariance matrix Σ.

proof : First, from the law of total expectation we have that:

En (p̂n+q(xc)(1− p̂n+q(xc))) = p̂n(xc)− En

(
(p̂n+q(xc))

2
)
, (6.17)

so that we now seek a closed-form expression for En ((p̂n+q(xc))
2). This will be

done by exhibiting the dependence of p̂n+q(xc) to the random response at location

x(q). From the kriging update formulas, we have that:

p̂n+q(xc) =P

(
max

xnc∈{x1
nc,...,x

ℓ
nc}

ξxc
(xnc) ≤ T |An+q

)
(6.18)

=P (N+m(ℓ)
n +B⊤ξc(x

(q)) ≤ Tℓ) (6.19)

whereN ∼ Nℓ(0,Σ
(ℓ)
n+q), ξc(x

(q)) is the centered response at location x(q): ξc(x
(q)) =

(ξ(xn+1)−mn(xn+1), . . . , ξ(xn+q)−mn(xn+q))
⊤, and where the vector inequalities

of Equation (6.19) mean component-wise inequalities.

We now proceed as in Chapter 4, but with multivariate calculations. We use

the notation U := ξc(x
(q)). Let N1,N2 be two random vectors independent from

each other, and independent from U, with distribution Nℓ(0,Σ
(ℓ)
n+q). Using similar

calculations than in Section 4.1 (see, all the calculations from Equation (4.18) to

Equation (4.25)), we have that:

En

(
(p̂n+q(xc))

2
)
= P (N1 +B⊤U ≤ Tℓ −m(ℓ)

n ,N2 +B⊤U ≤ Tℓ −m(ℓ)
n ), (6.20)
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which shows that En ((p̂n+q(xc))
2) can be computed with a call to the Φ2ℓ function.

To conclude our proof, it remains to note that the vectorsN1+B⊤U andN2+B⊤U

are both centered, but not independent. To compute the covariance matrix of the

vector of size 2ℓ we can perform block calculations:

Cov(N1 +B⊤U,N1 +B⊤U) =V ar(N1) + V ar(B⊤U) (6.21)

=Σ
(ℓ)
n+q +B⊤Σ(q)

n B (6.22)

=Σ(ℓ)
n (6.23)

Cov(N1 +B⊤U,N2 +B⊤U) =V ar(B⊤U) (6.24)

=B⊤Σ(q)
n B (6.25)

(6.26)

which completes the proof. �

Note that, for a given xc ∈ Xc, the term p̂n(xc) of Equation (6.16) does not depend

on the candidate batch x(q) and can thus be precomputed, or even ignored if we

aim at finding an optimal batch x(q). Following our notations we have that

p̂n(xc) = Φℓ(Tℓ −m(ℓ)
n ,Σ(ℓ)

n ). (6.27)

As in Chapter 4, the obtained closed-form expression involves the c.d.f. of the

multivariate distribution, in a dimension which does not depend on q (the size of

the batch). The obtained criterion is thus suitable for large batch sizes. On the

other hand, the computation cost of the criterion widely depends on the choice of

the discretization parameter, ℓ, which should ideally be as high as possible. Indeed,

when ℓ is larger, one can expect the function p̂n to be a better approximation of

p̃n. Unfortunately, in our case, computation times generally prevents the use of a

discretization parameter higher than 10 as the computation cost of Φ2ℓ gets larger

when ℓ > 10. Section F.1 introduces a SUR criterion which mitigates this problem.

But before that, we would like to test the presented SUR criterion on our robust

inversion test-case in nuclear safety.
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6.2.3 Application to the test-case

The test-case introduced in Section 5.3 is now studied using the SUR criterion Ĵn

given by Equation (6.14). We recall that the objective functions has three scalar

inputs, two of which being controlled. The set of the safe controlled configuration

(calculated from 1 million evaluations of keff) is represented on Figure 5.6.

Many parameters are involved in our batch-sequential sampling algorithm. As in

Chapter 5, we summarize them below:

• Trend functions for the kriging model: only a constant (ordinary kriging).

• Covariance kernel: Matérn covariance with parameter ν = 3/2.

• Estimation of the covariance parameters: By Maximum Likelihood. The

estimation is renewed at each iteration.

• Initial design of experiments: 30 points (maximin LHS in dimension 3).

• Number of points evaluated per iteration: q = 4.

• Total number of iterations: 40.

• SUR criterion minimized at each iteration: Ĵn (see, Equations (6.14),(6.16)).

• Optimizer for the criterion: rgenoud function of the genoud package, with

the heuristic strategy detailed in Appendix E, Section 4.1.2.

• Number of integration point for the integral over Xc: 200 points renewed at

each iteration.

• Choice of the integration points: sampling from an instrumental density

derived with the same method than in Appendix E, Section 4.2.1 and 4.2.2.

• Parameters of the genoud algorithm: pop.size = 100, max.generation = 5.

• Discretization parameter: ℓ = 5.

• Optimization method to find the points x1
nc(xc), . . . ,x

ℓ
nc(xc) for each inte-

gration point xc ∈ Xc: Monte-Carlo optimization which generates uniformly,

over Xℓ
c, 100 candidate batches of ℓ points and selects the best one.
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In comparison to Chapter 5, a lower budget is spent to optimize the criterion:

the parameter “pop.size” of the genetic algorithm is set to 100 instead of 200. In

addition, the number of integration points to compute the main integrand (over

Xc) is reduced from 600 to 200, mainly to reduce computation time. In our settings,

evaluating the criterion requires 200 calls to Φ2ℓ (one per integration point) and,

here the discretization parameter, ℓ, is chosen equal to 5. As these calls are much

more expensive than the calls to Φ2 in Chapter 5, the number of integration points

and the budget for optimization is reduced.

With these settings, one iteration of the algorithm (i.e., finding the best batch of

q = 4 points where the function is evaluated) takes approximately 20 minutes with

a workstation with a 2.53 GHz CPU. This cost also tends to increase with number

of observations.

Figures 6.1, and 6.2 show the evolution of the coverage probability function p̂n(·)
and the uncertainty Ĥn during the algorithm. Note that the value of the dis-

cretization parameter, ℓ, used to do these plots does not need to be the same than

the one in the SUR strategy. For these plots, we used ℓ = 20.

As in Chapter 5, the main output of these strategies is not really an excursion

set, but instead a function which gives an (hopefully, usually close to 0 or 1)

excursion probability. This function can be seen as a classifier. In the present

case, the excursion domain Γ⋆
c is well recovered by the algorithm. Indeed, after 40

iterations (160 evaluations) the whole domain Xc has an excursion probability p̂n

close to either 0 or 1.
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Figure 6.1: Plot of the function p̂n(xc) after n evaluations of the simulator. The
triangles are the (projected) 30 points of the initial design. The squares are the

points sampled using the Ĵn criterion. Areas in black correspond to p̂n ≈ 0 and
areas in white correspond to p̂n ≈ 1.
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Figure 6.2: Evolution of the uncertainty Ĥn during the sequential sampling strat-
egy.
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Conclusions and future work

In this thesis we study sequential and batch-sequential evaluation strategies of

real-valued functions under limited evaluation budget, with a kriging metamodel.

Motivated by real test cases in nuclear safety, we investigated sequential and batch-

sequential strategies for inversion problems. The Stepwise Uncertainty Reduction

(SUR) paradigm and the related (1-step lookahead) optimal strategies were pre-

sented, followed by some outputs of this Ph.D. work in terms of efficient calculation

and implementation of SUR strategies using original closed-form criteria, and rely-

ing on update formulas. At the IRSN, the use of batch-sequential SUR strategies

- which was previously too computer-intensive - is now possible, as a complement

to the expertise of the physicists. The kriging update formulas [Chevalier et al.,

2013c] are not only useful for the computational savings that they may provide.

They can also be used as a tool to investigate the relation between the unknown

response at a given point or batch and any quantity depending on the future krig-

ing mean and variance functions, as illustrated for instance in the newest results

presented in Appendix F.

Besides, another contribution was proposed in global optimization, with closed-

form formulas to compute the multi-points Expected Improvement criterion [Gins-

bourger et al., 2010; Schonlau, 1997]. These formulas, derived from Tallis’ formulas

[Tallis, 1961] allow the use of a batch-sequential EGO algorithm which selects as

each iteration a batch of q points, possibly using a gradient algorithm in the space

of dimension d × q. The implementation of such an algorithm constitutes an in-

teresting perspective.

In the field of inversion, new SUR strategies based on random set theory were

proposed and implemented in the KrigInv R package. These methods have the
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advantage of being able to estimate a set and to deliver, together with the estima-

tion, a quantification of the estimation uncertainty. Important work remains to

be done on difficult questions of convergence for these SUR strategies, though a

first contribution under a deterministic space-filling design assumption was already

obtained in Chevalier et al. [2013b]. Also, important auxiliary problems could be

further investigated, such as the global optimization of SUR sampling criteria, or

the numerical integrations appearing in the calculation of most SUR criteria. For

this latter problem, we believe that the use of Sequential Monte-Carlo algorithms

may be very well adapted.

Finally, a contribution was proposed for the so-called problem of “robust inver-

sion”. We investigated two SUR sequential sampling strategies obtained, again,

with more work on the kriging update formulas. The work in progress with up-

dates of GP simulations (see, Appendix F) could open interesting perspectives

when one deals with sequential data assimilation and wants to quantify uncertain-

ties using GP conditional simulations. In the domain of robust inversion, another

quite ambitious perspective would be to investigate on potential approximations of

exceedance probabilities of GPs using the work of Adler and Taylor [2007]. Bridges

might be constructed between the (difficult) theory of exceedance probability of

stationary GPs and SUR strategies for robust inversion. In particular, a recent

article of Taylor et al. [2007] could provide useful solutions for this problem.

80



Appendix A: Kriging update

formulas
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Corrected kriging update formulae for

batch-sequential data assimilation

Clément Chevalier, David Ginsbourger, Xavier Emery

Abstract Recently, a lot of effort has been paid to the efficient computation of krig-

ing predictors when observations are assimilated sequentially. In particular, kriging

update formulae enabling significant computational savings were derived. Taking

advantage of the previous kriging mean and variance computations helps avoiding a

costly matrix inversion when adding one observation to the n already available ones.

In addition to traditional update formulae taking into account a single new observa-

tion, Emery (2009) also proposed formulae for the batch-sequential case, i.e. when

k > 1 new observations are simultaneously assimilated. However, the kriging vari-

ance and covariance formulae given in Emery (2009) for the batch-sequential case

are not correct. In this work, we fix this issue and establish correct expressions for

updated kriging variances and covariances when assimilating observations in paral-

lel. An application in sequential conditional simulation finally shows that coupling

update and residual substitution approaches may enable significant speed-ups.

Key words: Gaussian process, kriging weights, sequential conditional simulation

1 Kriging update formulae for batch-sequential data assimilation

Let us consider a real-valued second-order random field Z indexed by D⊂ R
d . The

term kriging is often used when one aims at calculating a linear predictor Ẑn(x) and

the associated prediction variance σ2
n (x) (often called kriging mean and variance),

of the field Z at a point x ∈ D, from a set of n observations, at locations x1, . . . ,xn ∈
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2 Clément Chevalier, David Ginsbourger, Xavier Emery

D. Also, denote by σn : (x,y) ∈ D2→ σn(x,y) := E[(Z(x)− Ẑn(x))(Z(y)− Ẑn(y))]
the kriging covariance function, giving covariances between kriging errors. Krig-

ing means, variances and covariances can be computed using the so-called kriging

equations, given in, e.g., [2]. Recently, a lot of effort has been put in reducing the

cost for computing kriging means, variances and covariances when the observa-

tions are assimilated sequentially. In particular, when n observations are available,

one may take advantage of previous computations to reduce the calculation cost of

the kriging predictors when k > 1 additional observations are available, at locations

xn+1, . . . ,xn+k. In that setup, [3] recently proposed the following kriging update for-

mulae:

Ẑn+k(x) = Ẑn(x) +
k

∑
i=1

λn+i|n+k(x)
(
Z(xn+i)− Ẑn(xn+i)

)
, (1)

σ2
n+k(x) = σ2

n (x) −
k

∑
i=1

λ 2
n+i|n+k(x)σ

2
n (xn+i) , (2)

σn+k(x,y) = σn(x,y) −
k

∑
i=1

λn+i|n+k(x)λn+i|n+k(y)σ
2
n (xn+i) (3)

where λn+i|n+k(x) denotes the kriging weight of Z(xn+i) when predicting Z(x) rely-

ing on Z(x1), . . . ,Z(xn+k). In [3], Eqs. (2), (3) are proven only for k = 1. In fact, for

k > 1, a counter example for Eq. (2) can be obtained rather easily with the Brown-

ian motion, as shown in a draft version of the present paper [1]. The next sections

provide corrected formulae and an application in Gaussian field simulation.

2 Corrected kriging update formulae

We now propose corrected expressions that replace Eqs. (2), (3). To improve the

readability, we adopt the following simplified notations:

• Xold := {x1, . . . ,xn}, and Xnew := {xn+1, . . . ,xn+k},
• Zold := (Z(x1), . . . ,Z(xn)), and Znew := (Z(xn+1), . . . ,Z(xn+k)),
• λ new,old(x) := (λ1|n+k(x), . . . ,λn|n+k(x))

⊤,

• λ new,new(x) := (λn+1|n+k(x), . . . ,λn+k|n+k(x))
⊤,

• σ2
old(x) := σ2

n (x), σ2
new(x) := σ2

n+k(x), and similarly for the covariances.

For conciseness and coherence, Ẑn(x) and Ẑn+k(x) are also denoted by Ẑold(x) and

Ẑnew(x), respectively. The corrected update formulae are given below:

Proposition 1 (Corrected kriging update equations for the batch-sequential case)

Ẑnew(x) = Ẑold(x)+λ new,new(x)
⊤(Znew− Ẑold(Xnew)) (4)

σnew(x,y) = σold(x,y)−λ new,new(x)
⊤Σnewλ new,new(y) (5)



Kriging update formulae 3

where Σnew := Cov[Znew− Ẑold(Xnew)] is the covariance matrix of kriging errors.

Note that Eq. 4 is exactly the same result as Eq. 1 (which original proof is correct).

Proof. Subtracting Z(x) to both sides of Eq. 4, simple manipulations give

Ẑold(x)−Z(x) = (Ẑnew(x)−Z(x))−λ new,new(x)
⊤(Znew− Ẑold(Xnew)).

Using the uncorrelatedness between kriging errors and observations, we then obtain

Var[Ẑold(x)−Z(x)] =Var[Ẑnew(x)−Z(x)]+Var[λ new,new(x)
⊤(Znew− Ẑold(Xnew))]

σ2
old(x) = σ2

new(x)+λ new,new(x)
⊤Σnewλ new,new(x)

which proves Eq. (5) for x = y. A proof with x 6= y can be obtained similarly. �

Proposition 2 (Kriging update equations in terms of kriging covariance)

Σnewλ new,new(x) = σold(Xnew,x) (6)

Ẑnew(x) = Ẑold(x)+σold(Xnew,x)
T Σ−1

new(Znew− Ẑold(Xnew)) (7)

σnew(x,y) = σold(x,y)−σold(Xnew,x)
T Σ−1

newσold(Xnew,y) (8)

Proof. We prove Eq. (6) using a Gaussian assumption on the field Z. The formula

remains valid in non-Gaussian cases as the best linear prediction and the conditional

expectation coincide in the Gaussian case. Using the orthogonal projection interpre-

tation of the conditional expectation,

Z(x) = E(Z(x)|Zold,Znew)+

=:ε︷ ︸︸ ︷
Z(x)−E(Z(x)|Zold,Znew)

= λ new,old(x)
⊤Zold +λ new,new(x)

⊤Znew + ε ,

with ε centered, and independent of Zold and Znew. Let us now calculate the condi-

tional covariance between Z(x) and Znew knowing the observations Zold:

σold(Xnew,x) := Cov(Znew,Z(x)|Zold)

= 0+Cov
(

Znew,λ new,new(x)
⊤Znew

∣∣ Zold

)
+Cov(Znew,ε|Zold)

=Σnewλ new,new(x)+Cov(Znew,ε|Zold)

Noting that Cov(Znew,ε|Zold) = 0, the latter equation proves Eq. (6). Eqs. (7), and

(8) follow by plugging in Eq. (6) into Eqs. (4), (5). �

3 GP simulation, with batch-sequential data assimilation

A well known algorithm for simulating M Gaussian process (GP) realizations in p

points conditionally on n observations consists in adding to the kriging mean ob-
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tained with the n real observations M kriging residual functions artificially obtained

based on non-conditional realizations [4, 2]. The kriging update formulae can be

used in this algorithm to reduce computation costs in the case where one aims at

smoothly “converting” GP realizations conditioned on n observations to realiza-

tions conditioned on n+k observations (see, Fig.1, with n = 6 and k = 3). Comput-

ing kriging means knowing n observations and k real or simulated new observations

(denoted by Znew and Zsim respectively) requires to use Eq. (4). It appears that the

difference between these two updated kriging mean functions (i.e. with k observa-

tions equal to Znew and Zsim) only depends on Znew−Zsim and on λ new,new, which

can be obtained from Eq. 6. Then, the calculation of λ⊤new,new(Znew−Zsim) for p

points has O(pk) complexity and O(Mpk) for M simulations. This is faster than

standard algorithms based on a decomposition (e.g., LU or Cholesky) of the p× p

covariance matrix which require M matrix-vector product for a cost of O(Mp2).
The gain of O(p/k) can be substantial: in an application set up, with M = 100000,

p = 200, n = 6, k = 3, the computation time is divided by more than 10.

Fig. 1 100 GP realizations conditioned on 6 data (black lines) and 9 data (red lines)
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Abstract. The Multi-points Expected Improvement criterion (or q-EI)
has recently been studied in batch-sequential Bayesian Optimization.
This paper deals with a new way of computing q-EI, without using
Monte-Carlo simulations, through a closed-form formula. The latter al-
lows a very fast computation of q-EI for reasonably low values of q (typ-
ically, less than 10). New parallel kriging-based optimization strategies,
tested on different toy examples, show promising results.

Keywords: Computer Experiments, Kriging, Parallel Optimization, Ex-
pected Improvement

1 Introduction

In the last decades, metamodeling (or surrogate modeling) has been increasingly
used for problems involving costly computer codes (or “black-box simulators”).
Practitioners typically dispose of a very limited evaluation budget and aim at
selecting evaluation points cautiously when attempting to solve a given problem.

In global optimization, the focus is usually put on a real-valued function f
with d-dimensional source space. In this settings, [1] proposed the now famous
Efficient Global Optimization (EGO) algorithm, relying on a kriging metamodel
[2] and on the Expected Improvement (EI) criterion [3]. In EGO, the optimiza-
tion is done by sequentially evaluating f at points maximizing EI. A crucial
advantage of this criterion is its fast computation (besides, the analytical gra-
dient of EI is implemented in [4]), so that the hard optimization problem is
replaced by series of much simpler ones.

Coming back to the decision-theoretic roots of EI [5], a Multi-points Expected
Improvement (also called “q-EI”) criterion for batch-sequential optimization was
defined in [6] and further developed in [7, 8]. Maximizing this criterion enables
choosing batches of q > 1 points at which to evaluate f in parallel, and is of
particular interest in the frequent case where several CPUs are simultaneously
available. Even though an analytical formula was derived for the 2-EI in [7], the
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Monte Carlo (MC) approach of [8] for computing q-EI when q ≥ 3 makes the
criterion itself expensive-to-evaluate, and particularly hard to optimize.

A lot of effort has recently been paid to address this problem. The pragmatic
approach proposed by [8] consists in circumventing a direct q-EI maximization,
and replacing it by simpler strategies where batches are obtained using an offline
q-points EGO. In such strategies, the model updates are done using dummy
response values such as the kriging mean prediction (Kriging Believer) or a
constant (Constant Liar), and the covariance parameters are re-estimated only
when real data is assimilated. In [9] and [10], q-EI optimization strategies were
proposed relying on the MC approach, where the number of MC samples is tuned
online to discriminate between candidate designs. Finally, [11] proposed a q-EI
optimization strategy involving stochastic gradient, with the crucial advantage
of not requiring to evaluate q-EI itself.

In this article we derive a formula allowing a fast and accurate approximate
evaluation of q-EI. This formula may contribute to significantly speed up strate-
gies relying on q-EI. The main result, relying on Tallis’ formula, is given in
Section 2. The usability of the proposed formula is then illustrated in Section 3
through benchmark experiments, where a brute force maximization of q-EI is
compared to three variants of the Constant Liar strategy. In particular, a new
variant (CL-mix) is introduced, and is shown to offer very good performances
at a competitive computational cost. For self-containedness, a slightly revisited
proof of Tallis’ formula is given in appendix.

2 Multi-points Expected Improvement explicit formulas

In this section we give an explicit formula allowing a fast and accurate determin-
istic approximation of q-EI. Let us first give a few precisions on the mathematical
settings. Along the paper, f is assumed to be one realisation of a Gaussian Pro-
cess (GP) with known covariance kernel and mean known up to some linear trend
coefficients, so that the conditional distribution of a vector of values of the GP
conditional on past observations is still Gaussian (an improper uniform prior is
put on the trend coefficients when applicable). This being said, most forthcoming
derivations boil down to calculations on Gaussian vectors. Let Y := (Y1, . . . , Yq)
be a Gaussian Vector with mean m ∈ R

q and covariance matrix Σ. Our aim in
this paper is to explicitly calculate expressions of the following kind:

E

[(
max

i∈{1,...,q}
Yi − T

)

+

]
(1)

where (.)+ := max(., 0). In Bayesian optimization (say maximization), expecta-
tions and probabilities are taken conditional on response values at a given set of
n points (x1, . . . ,xn) ∈ X

n where X is the input set of f (often, a compact subset
of Rd, d ≥ 1), the threshold T ∈ R is usually the maximum of those n available
response values, and Y is the vector of unknown responses at a given batch of q
points, Xq := (xn+1, . . . ,xn+q) ∈ X

q. In such framework, the vector m and the
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matrix Σ are the so-called “Kriging mean” and “Kriging covariance” at Xq and
can be calculated relying on classical Kriging equations (see, e.g., [12]).

In order to obtain a tractable analytical formula for Expression (1), not
requiring any Monte-Carlo simulation, let us first give a useful formula obtained
by [13], and recently used in [14] for GP modeling with inequality constraints:

Proposition 1 (Tallis’ formulas) Let Z := (Z1, . . . , Zq) be a Gaussian Vector
with mean m ∈ R

q and covariance matrix Σ ∈ R
q×q. Let b = (b1, . . . , bq) ∈

R
q. The expectation of any coordinate Zk under the linear constraint (∀j ∈
{1, . . . , q}, Zj ≤ bj) denoted by Z ≤ b can be expanded as follows:

E(Zk|Z ≤ b) = mk −
1

p

q∑

i=1

Σik ϕmi,Σii
(bi) Φq−1 (c.i, Σ.i) (2)

where:

– p := P(Z ≤ b) = Φq(b−m, Σ)
– Φq(u, Σ) (u ∈ R

q, Σ ∈ R
q×q, q ≥ 1) is the c.d.f. of the centered multivariate

Gaussian distribution with covariance matrix Σ.
– ϕm,σ2(.) is the p.d.f. of the univariate Gaussian distribution with mean m

and variance σ2

– c.i is the vector of Rq−1 with general term (bj −mj)− (bi −mi)
Σij

Σii
, j 6= i

– Σ.i is a (q−1)×(q−1) matrix obtained by computing Σuv− ΣiuΣiv

Σii
for u 6= i

and v 6= i. This matrix corresponds to the conditional covariance matrix of
the random vector Z−i := (Z1, . . . , Zi−1, Zi+1, . . . , Zq) knowing Zi.

For the sake of brevity, the proof of this Proposition is sent in the Appendix.
A crucial point for the practical use of this result is that there exist very fast
procedures to compute the c.d.f. of the multivariate Gaussian distribution. For
example, the work of [15], [16] have been used in many R packages (see, e.g.,
[17], [18]). The Formula (2) above is an important tool to efficiently compute
Expression (1) as shown with the following Property:

Proposition 2 Let Y := (Y1, . . . , Yq) be a Gaussian Vector with mean m ∈
R

q and covariance matrix Σ. For k ∈ {1, . . . , q} consider the Gaussian vectors

Z(k) := (Z
(k)
1 , . . . , Z

(k)
q ) defined as follows:

Z
(k)
j := Yj − Yk , j 6= k

Z
(k)
k := − Yk

Denoting by m(k) and Σ(k) the mean and covariance matrix of Z(k), and defining

the vector b(k) ∈ R
q by b

(k)
k = −T and b

(k)
j = 0 if j 6= k, the EI of Xq writes:

EI(Xq) =

q∑

k=1

(
(mk − T )pk +

q∑

i=1

Σ
(k)
ik ϕ

m
(k)
i

,Σ
(k)
ii

(b
(k)
i )Φq−1

(
c
(k)
.i , Σ

(k)
.i

))

(3)
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where:

– pk := P(Z(k) ≤ b(k)) = Φq(b
(k) −m(k), Σ(k)).

pk is actually the probability that Yk exceeds T and Yk = maxj=1,...,q Yj.
– Φq(., Σ) and ϕm,σ2(.) are defined in Proposition 1

– c
(k)
.i is the vector of Rq−1 constructed like in Proposition 1, by computing

(b
(k)
j −m

(k)
j )− (b

(k)
i −m

(k)
i )

Σ
(k)
ij

Σ
(k)
ii

, with j 6= i

– Σ
(k)
.i is a (q−1)× (q−1) matrix constructed from Σ(k) like in Proposition 1.

It corresponds to the conditional covariance matrix of the random vector

Z
(k)
−i := (Z

(k)
1 , . . . , Z

(k)
i−1, Z

(k)
i+1, . . . , Z

(k)
q ) knowing Z

(k)
i .

Proof. Using that 1{maxi∈{1,...,q} Yi≥T} =
∑q

k=1 1{Yk≥T, Yj≤Yk ∀j 6=k}, we get

EI(Xq) = E

[(
max

i∈{1,...,q}
Yi − T

) q∑

k=1

1{Yk≥T, Yj≤Yk ∀j 6=k}

]

=

q∑

k=1

E
(
(Yk − T )1{Yk≥T, Yj≤Yk ∀j 6=k}

)

=

q∑

k=1

E

(
Yk − T

∣∣∣Yk ≥ T, Yj ≤ Yk ∀j 6= k
)
P (Yk ≥ T, Yj ≤ Yk ∀j 6= k)

=

q∑

k=1

(
−T − E

(
Z

(k)
k

∣∣∣Z(k) ≤ b(k)
))

P

(
Z(k) ≤ b(k)

)

Now the computation of pk := P
(
Z(k) ≤ b(k)

)
simply requires one call to the Φq

function and the proof can be completed by applying Tallis’ formula (2) to the
random vectors Z(k) ( 1 ≤ k ≤ q).

Remark 1. From Properties (1) and (2), it appears that computing q-EI requires
a total of q calls to Φq and q2 calls to Φq−1. The proposed approach performs
thus well when q is moderate (typically lower than 10). For higher values of q,
estimating q-EI by Monte-Carlo might remain competitive. Note that, when q
is larger (say, q = 50) and when q CPUs are available, one can always split the
calculations of the q2 calls to Φq−1 on these q CPUs.

Remark 2. In the particular case q = 1 and with the convention Φ0(., Σ) = 1,
Equation (3) corresponds to the classical EI formula proven in [5, 1].

Remark 3. The Multi-points EI can be used in a batch-sequential strategy to
optimize a given expensive-to-evaluate function f , as detailed in the next Sec-
tion. Moreover, the same criterion can also be used for constrained optimiza-
tion provided that the constraints are linear. For example an expression like:

E

[(
maxi∈{1,...,q} Yi − T

)
+
|Y ≤ a

]
, a ∈ R

q, can also be computed using Tallis’

formula and the same proof.
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3 Batch sequential optimization using Multi-points EI

Let us first illustrate Proposition 2 and show that the proposed q-EI calculation
based on Tallis’ formula is actually consistent with a Monte Carlo estimation.
From a kriging model based on 12 observations of the Branin-Hoo function [1],
we generated a 4-point batch (Figure 1, left plot) and calculated its q-EI value
(middle plot, dotted line). The MC estimates converge to a value close to the
latter, and the relative error after 5 ∗ 109 runs is less than 10−5. 4-point batches
generated from the three strategies detailed below are drawn on the right plot.
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Fig. 1. Convergence (middle) of MC estimates to the q-EI value calculated with Propo-
sition 2 in the case of a batch of four points (shown on the left plot). Right: candidate
batches obtained by q-EI stepwise maximisation (squares), and the CL-min (circles)
and CL-max (triangles) strategies.

We now compare a few kriging-based batch-sequential optimization methods
on two different functions: the function x 7→ − log(−Hartman6(x)) (see, e.g.,
[1]), defined on [0, 1]6 and the Rastrigin function ([19, 20]) in dimension two
restricted to the domain [0, 2.5]2. The first function in dimension 6 is unimodal,
while the second one has a lot of local optima (see: Figure 2). The Rastrigin
function is one of the 24 noiseless test function of the Black-Box Optimization
Benchmark (BBOB) [19].

For each runs, we start with a random initial Latin hypercube design (LHS)
of n0 = 10 (Rastrigin) or 50 (Hartman6) points and estimate the covariance
parameters by Maximum Likelihood (here a Matérn kernel with ν = 3/2 is
chosen). For both functions and all strategies, batches of q = 6 points are added
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Fig. 2. Contour lines of the Rastrigin function (grayscale) and location of the global
optimizer (black triangle)

at each iteration, and the covariance parameters are re-estimated after each
batch assimilation. Since the tests are done for several designs of experiments,
we chose to represent, along the runs, the relative mean squared error:

rMSE =
1

M

M∑

i=1

(
y
(i)
min − yopt

yopt

)2

(4)

where y
(i)
min in the current observed minimum in run number i and yopt is the

real unknown optimum. The total number M of different initial designs of ex-
periments is fixed to 50. The tested strategies are:

– (1) q-EI stepwise maximization: q sequential d-dimensional optimizations
are performed. We start with the maximization of the 1-point EI and add
this point to the new batch. We then maximize the 2-point EI (keeping the
first point obtained as first argument), add the maximizer to the batch, and
iterate until q points are selected.

– (2) Constant Liar min (CL-min): We start with the maximization of the
1-point EI and add this point to the new batch. We then assume a dummy
response (a“lie”) at this point, and update the Kriging metamodel with
this point and the lie. We then maximize the 1-point EI obtained with the
updated kriging metamodel, get a second point, and iterate the same process
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until a batch of q points is selected. The dummy response has the same
value over the q − 1 lies, and is here fixed to the minimum of the current
observations.

– (3) Constant Liar max (CL-max): The lie in this Constant Liar strategy is
fixed to the maximum of the current observations.

– (4) Constant Liar mix (CL-mix): At each iteration, two batches are gener-
ated with the CL-min and CL-max strategies. From these two “candidate”
batches, we choose the batch with the best actual q-EI value, calculated
based on Proposition 2.

– (5) Random sampling.

Note that CL-min tends to explore the function near the current minimizer (as
the lie is a low value and we are minimizing f) while CL-max is more exploratory.
Thus, CL-min is expected to perform well on unimodal functions. On the con-
trary, CL-max may perform better on multimodal functions. For all the tests
we use the DiceKriging and DiceOptim packages [4]. The optimizations of the
different criteria rely on a genetic algorithm using derivatives, available in the
rgenoud package [21]. Figure 3 represents the compared performances of these
strategies.
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Fig. 3. Compared performances of the five considered batch-sequential optimization
strategies, on two test functions.

From these plots we draw the following conclusions: first, the q-EI stepwise
maximization strategy outperforms the strategies based on constant lies, CL-
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min and CL-max. However, the left graph of Figure 3 points out that the CL-
min strategy seems particularly well-adapted to the Hartman6 function. Since
running a CL is computationally much cheaper than a brute fore optimization of
q-EI, it is tempting to recommend the CL-min strategy for Hartman6. However,
it is not straightforward to know in advance which of CL-min or CL-max will
perform better on a given test case. Indeed, for example, CL-max outperforms
CL-min on the Rastrigin function.

Now, we observe that using q-EI in the CL-mix heuristic enables very good
performances in both cases without having to select one of the two lie values
in advance. For the Hartman6 function, CL-mix even outperforms both CL-
min and CL-max and has roughly the same performance as a brute force q-
EI maximization. This suggests that a good heuristic might be to generate, at
each iteration, candidate batches obtained with different strategies (e.g. CL with
different lies) and to discriminate those batches using q-EI.

Conclusion

In this article we give a closed-form expression enabling a fast computation of
the Multi-points Expected Improvement criterion for batch sequential Bayesian
global optimization. This formula is consistent with the classical Expected Im-
provement formula and its computation does not require Monte Carlo simula-
tions. Optimization strategies based on this criterion are now ready to be used
on real test cases, and a brute maximization of this criterion shows promising
results. In addition, we show that good performances can be achieved by us-
ing a cheap-to-compute criterion and by discriminating the candidate batches
generated by such criterion with the q-EI. Such heuristics might be particularly
interesting when the time needed to generate batches becomes a computational
bottleneck, e.g. when q ≥ 10 and calls to the Gaussian c.d.f. become expensive.

A perspective, currently under study, is to improve the maximization of q-EI
itself, e.g. through a more adapted choice of the algorithm and/or an analytical
calculation of q-EI’s gradient.
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Appendix: proof for Tallis’ formula (2)

The proof proposed here follows exactly the method given in [13] in the particular case
of a centered Gaussian Vector with normalized covariance matrix (i.e. a covariance
matrix equal to the correlation matrix). Here, the proof is slightly more detailed and
applies in a more general case.

Let Z := (Z1, . . . , Zq) ∼ N (m,Σ) withm ∈ R
q andΣ ∈ R

q×q . Let b = (b1, . . . , bq) ∈
R

q. Our goal is to calculate: E(Zk|Z ≤ b). The method proposed by Tallis consists in
calculating the conditional joint moment generating function (MGF) of Z defined as
follows:

MZ(t) := E(exp(t⊤Z)|Z ≤ b) (5)

It is known (see, e.g., [22]) that the conditional expectation of Zk can be obtained by
deriving such MGF with respect to tk, in t = 0. Mathematically this writes:

E(Zk|Z ≤ b) =
∂MZ(t)

∂tk

∣

∣

∣

∣

∣

t=0

(6)

The main steps of this proof are then to calculate such MGF and its derivative with
respect to any coordinate tk.

Let us consider the centered random variable Zc := Z−m. Denoting h = b−m,
conditioning on Z ≤ b or on Zc ≤ h are equivalent. The MGF of Zc can be calculated
as follows:

MZc(t) :=E(exp(t⊤Zc)|Zc ≤ h)

=
1

p

∫ h1

−∞

. . .

∫ hq

−∞

exp(t⊤u)ϕ0,Σ(u)du

=
1

p
(2π)−

q
2 |Σ|−

1
2

∫ h1

−∞

. . .

∫ hq

−∞

exp

(

−
1

2

(

u⊤
Σ

−1u− 2t⊤u
)

)

du

where p := P(Z ≤ b) and ϕv,Σ(.) denotes the p.d.f. of the multivariate normal dis-
tribution with mean v and covariance matrix Σ. The calculation can be continued by
noting that:

MZc(t) =
1

p
(2π)−

q
2 |Σ|−

1
2 exp

(

1

2
t⊤Σt

)
∫ h1

−∞

. . .

∫ hq

−∞

exp

(

−
1

2
(u−Σt)⊤ Σ

−1 (u−Σt)

)

du

=
1

p
exp

(

1

2
t⊤Σt

)

Φq(h−Σt, Σ)

where Φq(., Σ) is the c.d.f. of the centered multivariate normal distribution with co-
variance matrix Σ.



Calculation of the Multi-points EI relying on Tallis’ formula 11

Now, let us calculate for some k ∈ {1, . . . , q} the partial derivative ∂MZc (t)
∂tk

in t = 0,

which is equal by definition to E(Zc
k|Z

c ≤ h).

p E(Zc
k|Z

c ≤ h) = p
∂MZc(t)

∂tk

∣

∣

∣

∣

∣

t=0

= 0 + 1.
∂

∂tk






Φq






h− tk







Σ1k

...
Σqk






, Σ













∣

∣

∣

∣

∣

tk=0

=−

q
∑

i=1

Σik

∫ h1

−∞

. . .

∫ hi−1

−∞

∫ hi+1

−∞

. . .

∫ hq

−∞

ϕ0,Σ(u−i, ui = hi)du−i

The last step is obtained applying the chain rule to x 7→ Φq(x, Σ) at the point x =
h. Here, ϕ0,Σ(u−i, ui = hi) denotes the c.d.f. of the centered multivariate normal
distribution at given points (u−i, ui = hi) := (u1, . . . , ui−1, hi, ui+1, . . . , uq). Note that
the integrals in the latter Expression are in dimension q − 1 and not q. In the ith

term of the sum above, we integrate with respect to all the q components except the
component i. To continue the calculation we can use the identity:

∀u ∈ R
q
, ϕ0,Σ(u) = ϕ0,Σii

(ui)ϕΣ
−1
ii

Σiui,Σ−i,−i−ΣiΣ
−1
ii

Σ⊤
i
(u−i) (7)

where Σi = (Σ1i, . . . , Σi−1i, Σi+1i, . . . , Σqi)
⊤ (Σi ∈ R

q−1) and Σ−i,−i is the (q − 1)×
(q−1) matrix obtained by removing the line and column i from Σ. This identity can be
proven using Bayes formula and Gaussian vectors conditioning formulas. Its use gives:

p E(Zc
k|Z

c ≤ h) =−

q
∑

i=1

Σikϕ0,Σii
(hi)Φq−1(h−i −Σ

−1
ii Σihi, Σ−i,−i −ΣiΣ

−1
ii Σ

⊤

i )

=−

q
∑

i=1

Σikϕmi,Σii
(bi)Φq−1(h−i −Σ

−1
ii Σihi, Σ−i,−i −ΣiΣ

−1
ii Σ

⊤

i )

which finally delivers Tallis’ formula, see Equation (2).
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Abstract

Stepwise Uncertainty Reduction (SUR) strategies aim at constructing a sequence of
sampling points for a function f : Rd → R, in such a way that the residual uncertainty
about a quantity of interest becomes small. In the context of Gaussian Process-based
approximation of computer experiments, these strategies have been shown to be par-
ticularly efficient for the problem of estimating the volume of excursion of a function f
above a threshold. However, these strategies remain difficult to use in practice because
of their high computational complexity, and they only deliver at each iteration a single
point to evaluate. In this paper we introduce parallel sampling criteria, which allow
selecting several sampling points simultaneously. Such criteria are of particular interest
when the function f is expensive to evaluate and many CPUs are available. We also
manage to drastically reduce the computational cost of these strategies using closed
form expressions. We illustrate their performances in various numerical experiments,
including a nuclear safety test case.

Keywords: Computer experiments, Gaussian processes, Sequential design, Probability of
failure, Active learning, Inversion
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1 Introduction

Whether in natural sciences, engineering, or economics, the study of complex phenomena is

increasingly relying on numerical simulations. From an end user’s perspective, a numerical

simulator can often be considered as a black box taking a number of real-valued parameters

as inputs and returning one or several quantities of interest after a post-processing stage.

Formally, the space of inputs is a set X ⊂ R
d and the simulator can be viewed as a function

f : X → R that maps the inputs to a cost or a performance indicator. In many practical

applications, the objective is to obtain information about the simulator from a number of

runs, or, in other words, to infer a quantity of interest from a number of evaluations of f . A

problem that is often at stake is the estimation of the probability that a cost exceeds a given

threshold. This problem corresponds to the estimation of the volume α⋆ of the excursion

set Γ⋆ = {x ∈ X : f(x) ≥ T}, with T a given threshold, under a measure PX on X. In

safety analysis, PX typically models the uncertainty on input parameters. If f is expensive

to evaluate, the estimation of α⋆ must be performed with a limited number of evaluations of

f , which naturally excludes brute-force approaches like Monte Carlo sampling.

A popular approach consists in constructing a response surface (also known as surrogate

or meta-model) based on available evaluations of f , together with an uncertainty measure

about this surface. Using this uncertainty measure is one of the key concepts in the design

and analysis of computer experiments [see, e.g., Santner et al., 2003, Fang et al., 2006,

Bayarri et al., 2007, Forrester et al., 2008, and references therein]. It has been found to

be a convenient and powerful tool, providing efficient answers to the issues of designing

experiments (Sacks et al. [1989]) or global optimization (Jones et al. [1998]) for instance.

For the problem of estimating a probability of failure, several sampling strategies based

on a kriging metamodel have already been proposed [see Bect et al., 2011, for a review]. Note

that some of these strategies were initially designed to estimate the boundary of the excursion

set (and not its volume) but, as these problems are quite close, we expect these criteria to have

fairly good performances for the problem of estimating a probability of failure. The sampling

criteria proposed by Ranjan et al. [2008], Bichon et al. [2008] and Echard et al. [2010]consist of

heuristic modifications of the famous Expected Improvement criterion of Jones et al. [1998].

They compute a pointwise trade-off between predicted closeness to the threshold T , and
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high prediction uncertainty. In contrast, Stepwise Uncertainty Reduction (SUR) strategies

[Vazquez and Bect, 2009, Bect et al., 2011] rely on global measures of uncertainty about the

excursion set Γ⋆ and take into account the important fact that sampling at a point x also

brings useful information on the neighbourhood of x. Numerical experiments [reported by

Bect et al., 2011] showed that SUR criteria widely outperform pointwise criteria in terms of

quickly estimating the true volume of excursion α⋆.

Perhaps the most natural SUR sampling criterion, for the problem of estimating a prob-

ability of failure, is the expected posterior variance of the volume of the random excursion

set Γ = {x ∈ X : ξ(x) ≥ T}, where ξ is a Gaussian process modeling our current (prior)

knowledge about f . This criterion has been considered impractical in previous publications

[Vazquez and Bect, 2009, Bect et al., 2011], since its computation seems to require condi-

tional simulations of the Gaussian process ξ, which are very expensive. Alternative SUR

strategies were proposed instead: in short, they consist in defining a measure of uncertainty

dedicated to the problem at hand, and then sampling sequentially at the location that will

reduce the most, in expectation, this uncertainty.

An example of application of a SUR strategy is shown on Figure 1, on a real test case.

Here a simulator f calculates whether a storage facility of plutonium powder presents risks of

nuclear chain reactions or not, as a function of two variables, the mass and the concentration

of Plutonium. A sequential sampling of this 2-dimensional “expensive” function, using a SUR

strategy, manages to identify with very few evaluations the set of “dangerous” configurations.

Despite their very good performances in applications, SUR strategies still have important

drawbacks. Computing the value of a SUR criterion at a single point xn+1 ∈ X is indeed

very computer demanding since it relies on numerical integration. Besides, these strategies

where designed to sample one point at a time while practionners often the have the capacity

to run r > 1 simulations in parallel. This very high numerical complexity to simply compute

the value of a sampling criterion at one point mainly explains why, despite their very good

performances on numerical experiments, SUR strategies based on kriging are not yet widely

used by practitioners for the problem of estimating a probability of failure.

In this paper, we bring new solutions to the issues mentioned above. We first introduce

new parallel SUR sampling criteria and provide methods and algorithms allowing to run
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Figure 1: SUR strategy (first and last iteration) applied to a nuclear criticality safety simula-

tor. The black triangles stand for the design points at the current iteration. The red square

is the point sampled using the SUR criterion. Areas in black (resp. white) correspond to

excursion probabilities near 0 (resp. 1). The dotted line indicates a fine approximation of

the true but unknown excursion set’s boundary.

them in a very reasonable time. In particular, we show that the unaffordable (one step look-

ahead) optimal criterion presented in Bect et al. [2011] can be computed quickly, without

simulating any Gaussian Process realization. Furthermore, we illustrate the use of parallel

criteria in real-life applications, and investigate their performances on several test cases.

The paper is organised as follows: Section 2 introduces notations and gives two examples

of SUR criteria (including the optimal onse-step-lookahead criterion) with their new parallel

versions. The theoretical basis of our methods to quickly compute the criteria are detailed

in Section 3 and our new algorithms are tested in Section 4 on different test cases, including

a nuclear safety application. For the sake of brevity, basic notions about kriging and details

about the choice of the integrations points are presented in appendix. In addition, detailed

computational complexity calculations are provided as Supplementary Material.
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2 Kriging-based Stepwise Uncertainty Reduction

A Stepwise Uncertainty Reduction (SUR) strategy aims at constructing a sequenceX1, X2, . . .

of evaluation points of f in such a way that the residual uncertainty about a quantity of inter-

est given the information provided by the evaluation results becomes small. More precisely,

SUR strategies are based on three main ideas. The first (Bayesian) idea is to consider f as

a sample path of a random process ξ, which is assumed Gaussian for the sake of tractability.

The second idea is to introduce a measure of the uncertainty about the quantity of inter-

est conditioned on the σ-algebra An generated by {(Xi, ξ(Xi)), 1 ≤ i ≤ n}. We will denote

by Hn such a measure of uncertainty, which is an An-measurable random variable. The third

idea is to choose evaluation points sequentially in order to minimize, at each step n, the ex-

pected value of the future uncertainty measure Hn+1 with respect to the random outcomes

of the new evaluation of ξ:

Xn+1 = argmin
xn+1∈X

Jn(xn+1) (1)

where

Jn(xn+1) := En

(
Hn+1

∣∣ Xn+1 = xn+1

)
, (2)

and En ( · ) stands for the conditional expectation E ( · | An).

Depending of the definition given to the measure of uncertainty, many sequential SUR

strategies can be designed in order to infer any quantity of interest. For the question of

estimating a probability of failure, two SUR strategies are presented in this section.

Example 1: criterion J
(α)
n . Recall that we denote by Γ the random excursion set {x ∈

X : ξ(x) ≥ T} and α its volume, α = PX(Γ). The conditional variance Varn
(
α
)
of α is a

natural choice for Hn to quantify the (residual) uncertainty about α⋆ given An. In the rest

of the paper, we denote this uncertainty by H
(α)
n . A possible SUR strategy to estimate α⋆

would consist, at step n, in choosing as next evaluation point an optimizer of the criterion:

J (α)
n (xn+1) := En

(
V arn+1(α)

∣∣ Xn+1 = xn+1

)
(3)

A quite natural parallel extension of this criterion is now introduced. The following criterion

depends indeed on r > 0 points (xn+1, . . . , xn+r) ∈ X
r:

J (α)
n (xn+1, . . . , xn+r) := En

(
V arn+r(α)

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)
(4)
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Note that the latter criterion, is considered intractable in Bect et al. [2011] for r = 1 because

its computation has a very high numerical complexity (it requires the simulation of a large

number of Gaussian Process realizations). We will see in the next sections that both parallel

and non parallel versions of this criterion can be computed quickly and used in applications.

Example 2: criterion J
(Γ)
n . The excursion volume can be characterized by the random

variable 1{ξ(x)>T}. This random variable has conditional expectation:

pn(x) := En1{ξ(x)>T} = P(ξ(x) > T |An) = Φ

(
mn(x)− T

sn(x)

)
,

where mn(x) and sn(x) are the kriging mean and variance at point x at time n (see the

Appendix for a brief reminder about kriging and the notations used throughout the paper),

and Φ denotes the cumulative distribution function (c.d.f.) of the standard Gaussian dis-

tribution. The random variable 1{ξ(x)>T} has conditional variance pn(x)(1 − pn(x)), so that
∫
X
pn(1 − pn)dPX can serve as a measure of global uncertainty about α⋆. We denote this

uncertainty measure by H
(Γ)
n , and the corresponding SUR sampling criterion is

J (Γ)
n (xn+1) := En

(∫

X

pn+1(1− pn+1)dPX

∣∣ Xn+1 = xn+1

)
. (5)

This criterion was first introduced by Bect et al. [2011]. Again, a natural extension is the

following new parallel criterion:

J (Γ)
n (xn+1, . . . , xn+r) = En

(∫

X

pn+r(1− pn+r)dPX

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)
. (6)

In Bect et al. [2011], the numerical computation of J
(Γ)
n in (6) is considered only for r = 1

and is based on quadrature formulas written as

J (Γ)
n (xn+1) ≈

1

M

Q∑

q=1

M∑

m=1

w(q)vn+1(x
(m); xn+1, y

(q)
n+1). (7)

Q is the number of points used to approximate the conditional expectation with respect to

the random outcome of the evaluation at xn+1, which has a N (mn(xn+1), s
2
n(xn+1)) distribu-

tion. M is the number of points used to obtain a Monte-Carlo approximation of H
(Γ)
n+1. The

x(m)’s are i.i.d. according to PX; (y
(1)
n+1, . . . , y

(Q)
n+1) and (w(1), . . . , w(Q)) stand for the quadra-

ture points and quadrature weights of the Gauss-Hermite quadrature. Here the computation

of vn+1(x
(m); xn+1, y

(q)
n+1) in (7) involves the calculation of the kriging mean and the kriging
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variance at x(m) from the evaluations of ξ at X1, . . . , Xn and xn+1. It follows (See supplemen-

tary materialfor more detail about algorithmic complexities) that the computation of J
(Γ)
n

at one point has a O(n3 +Mn2 +MQ) complexity. Since we need to evaluate J
(Γ)
n several

times to carry out the minimization in (1), the computational cost of this SUR sampling

strategy implemented using (7) can be very large.

The problem becomes even more difficult for r > 1, which requires a higher value for Q.

Indeed, when r > 1, we have to approximate a conditional expectation with respect to the

random outcome of the Gaussian vector (ξ(xn+1), . . . , ξ(xn+r))
⊤, which requires a discretiza-

tion of an integral over Rr. As a consequence, the complexity to compute the parallel SUR

criterion presented above is expected to rise quickly with r, which makes it impractical even

for small r.

The next section brings useful properties allowing to circumvent these issues. In partic-

ular, new analytical formulas allow us to get rid of the cumbersome integral over R
r and

make it possible to compute efficiently both parallel and non-parallel criteria.

3 Efficient calculation of parallel SUR criteria

In this section, we provide new expressions allowing to efficiently compute the two parallel

SUR strategies introduced in the previous section.

3.1 Criterion J
(Γ)
n

As explained in the previous sections, the proposed parallel criterion J
(Γ)
n is the conditional

expectation given An of the future uncertainty H
(Γ)
n+r, assuming that r new points will be

evaluated. Such a future uncertainty is an An+r-measurable random variable, meaning that

the computation of its conditional expectation given An requires to discretize an integral

over R
r. It turns out that the complexity for computing J

(Γ)
n can be drastically reduced,

using the new analytical expressions given below.

Proposition 1.

J (Γ)
n (xn+1, . . . , xn+r) =

∫

X

Φ2




 a(x)

−a(x)


 ,


 c(x) 1− c(x)

1− c(x) c(x)




PX(dx), (8)
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where:

• Φ2(.,M) is the c.d.f. of the centered bivariate Gaussian with covariance matrix M

• a(x) := (mn(x)− T )/sn+r(x),

• b(x) := 1
sn+r(x)

Σ−1(kn(x, xn+1), . . . , kn(x, xn+r)
⊤

• c(x) := 1 + b(x)⊤Σb(x) = s2n(x)/s
2
n+r(x)

• Σ is the r × r covariance matrix of (ξ(xn+1), . . . , ξ(xn+r))
⊤ conditional on An.

Proof. First, an interchange of integral and expectation (Fubini-Tonelli theorem) delivers

J (Γ)
n (xn+1, . . . , xn+r) =

∫

X

En (pn+r(x)(1− pn+r(x)))PX(dx), (9)

where the conditioning on Xn+i = xn+i’s is not explicitely reproduced, to alleviate notations.

Now, using the kriging update formula (see, e.g., Barnes and Watson [1992], Gao et al. [1996],

Emery [2009], as well as Chevalier and Ginsbourger [2012]), we obtain:

mn+r(x) = mn(x) + (kn(x, xn+1), . . . , kn(x, xn+r))Σ
−1ycentered, (10)

where ycentered := (ξ(xn+1)−mn(xn+1), . . . , ξ(xn+r)−mn(xn+r))
⊤, so that

pn+r(x) = Φ
(
a(x) + b(x)⊤ycentered

)
(11)

A plug-in of expression (10) in the integrand of expression (6) gives:

En (pn+r(x)(1− pn+r(x))) =

∫

Rr

Φ(a(x) + b(x)⊤u)Φ(−a(x) − b(x)⊤u)Ψ(u)du (12)

where Ψ is the N (0,Σ) density of ycentered knowing An. By definition of Φ, we then get

En (pn+r(x)(1− pn+r(x))) = Pn(N1 < a(x) + b(x)⊤ycentered, N2 < −a(x)− b(x)⊤ycentered)

= Pn(N1 − b(x)⊤ycentered < a(x), N2 + b(x)⊤ycentered < −a(x)),

where (N1, N2)
T ∼ N (0, I2) independently of ycentered. Finally, N1 − b(x)⊤ycentered and

N2 +b(x)⊤ycentered form a Gaussian couple with componentwise variances equal to c(x) and

covariance 1− c(x), so that the anounced result directly follows by integration over X.
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Remark 1. For the latter Proposition 1, we managed to get rid of an integral over R
r.

Moreover, the given formula is “exact” in the sense that we no longer have to compute an

estimate (relying on quadrature points) of such integral over R
r. Besides, the computation

of J
(Γ)
n is now available for r > 1 at a cost that is not quickly increasing with r. For n

observations and M discretization points for the integral over X , the complexity to compute

J
(Γ)
n for one batch of r points is mainly of O(rMn) if we assume that r << n << M (which

is often the case in practice) and that some quantities have been pre-computed (see algorithms

in the Supplementary Material for more details). This means that the complexity is roughly

linear in r, which ensures that batches with large values for r can be used in applications.

Remark 2. When the integral over X is discretized based on M integration points, the

computation of the J
(Γ)
n criterion requires to calculate the updated kriging variance s2n+r(x)

for each of the M points. The updated kriging variance can be efficiently calculated using a

kriging variance update formula given and proven in Chevalier and Ginsbourger [2012].

Remark 3. By reducing equation (6) to equation (8), we achieved to reduce the integral

over R
r to an integral over R

2 (Φ2). Moreover, although calculating Φ2 is not trivial, this

bivariate integral is standard, and there exist very efficient numerical procedures to compute

it. For instance, Genz [1992] wrote routines in Fortran77 which have been wrapped in many

R Packages (e.g., mnormt, pbivnorm, mvtnorm, available on CRAN).

3.2 Criterion J
(α)
n

In the kriging framework and conditionally on An, the conditional expectation of the volume

of excursion α is given by α̂ :=
∫
X
pndPX. As explained before, the conditional variance

Varn
(
α
)
of α given An is a very natural choice to quantify the uncertainty about α but,

even for r = 1, it was considered intractable so far. In fact, with the help of the kriging update

formulas (See Eq. 10) and the calculation schemes introduced in the proof of Proposition 1,

we will now show that this criterion can be expressed in a numerically tractable form, for

both parallel and non-parallel versions.
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Proposition 2.

J (α)
n (xn+1, . . . , xn+r) = γn−

∫

X×X

Φ2




 a(z1)

a(z2)


 ,


 c(z1) d(z1, z2)

d(z1, z2) c(z2)




PX(dz1)PX(dz2),

(13)

where

• Φ2, a,b, and Σ are defined as in Proposition 1,

• d(z1, z2) := b(z1)
⊤Σb(z2)

• γn is a constant, in the sense that it does not depend on (xn+1, . . . , xn+r).

Proof. Neglecting again the conditioning on the Xn+i = xn+i’s in the notations, we have:

J (α)
n (xn+1, . . . , xn+r) := En

(
V arn+r(α)

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)

= En

(
En+r

(∫

X

(1{ξ(x)>T} − pn+r(z))PX(dz)

)2
)

= En

(
En+r

∫∫

X×X

(1{ξ(z1)>T} − pn+r(z1))(1{ξ(z2)>T} − pn+r(z2))PX(dz1)PX(dz2)

)

= En

(∫∫

X×X

(
En+r(1{ξ(z1)>T}1{ξ(z2)>T})− pn+r(z1)pn+r(z2)

)
PX(dz1)PX(dz2)

)

By applying the law of total expectation, we see that, for any (z1, z2) ∈ X
2:

En(En+r(1{ξ(z1)>T}1{ξ(z2)>T})) = En(1{ξ(z1)>T}1{ξ(z2)>T}) = P (ξ(z1) > T, ξ(z2) > T |An)

Thus, this quantity does not depend on the choice of the r points (xn+1, . . . , xn+r). Writing

γn :=
∫∫

X×X
P (ξ(z1) > T, ξ(z2) > T |An)PX(dz1)PX(dz2), J

(α)
n simplifies to

J (α)
n (xn+1, . . . , xn+r) = γn −

∫∫

X×X

En(pn+r(z1)pn+r(z2))PX(dz1)PX(dz2).

The end result is obtained using similar calculations as in the proof of Property 1.

10



Remark 4. This new expression is very similar to the expression found in Proposition 1 and

can be computed with the same complexity. However, in practice, the number of integrations

points M has to be higher because the domain to be discretized is X×X. In the examples of

Section 4, we use importance sampling techniques to choose these M integration points. In

Section 4.1, we empirically demonstrate that using M2 integration points to compute the J
(α)
n

criterion and using M points to compute J
(Γ)
n yields comparable performances for estimating

the true volume of excursion in the case where the unknown function is actually a Gaussian

Process realization.

4 Applications

In this section, we illustrate our sequential sampling strategies on several test cases. The ex-

amples include simulated realizations of two-dimensional Gaussian Processes, a two-dimensional

nuclear safety case study and a six-dimensional test function.

4.1 Benchmark on simulated Gaussian Process realizations

The first objective of this section is to compare the non parallel versions of the J
(Γ)
n and J

(α)
n

criteria. The test functions are 200 independent realizations of a two-dimensional Gaussian

Process (GP) indexed by [0, 1]2. The covariance parameters for the kriging models are fixed

equal to the actual ones of the GP. Besides comparing the two criteria, we want to estimate

the effect of numerical integration erros on the global performance of the SUR strategies.

The criterion J
(α)
n requires to compute an integral over X × X, so is it expected that the

error will be higher than for the criterion J
(Γ)
n , which requires an integration over X only.

Therefore, as a rule of thumb, we use M integration points for J
(Γ)
n and M2 for J

(α)
n .

For each GP realization, we fix the threshold T in order to have a constant volume of

excursion α⋆ = 0.2. The volumes are calculated using 1 000 reference points, so for each

Gaussian Process realization, exactly 200 points are in the excursion set. The initial design

consists of n0 = 12 points using maximin Latin Hypercube Sampling (LHS), and a total of

n1 = 40 points are added to the design using either the J
(Γ)
n criterion or the J

(α)
n criterion.

For all realizations, the performance of both criteria are measured in term of the relative

squared volume error SE := (α̂ − α⋆)2/α⋆2, where α̂ is the estimated volume (equal to the
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average probability of excursion of the reference points).

Two strategies are considered for numerical integration: first, we use M = 50 and 100

integration points to compute J
(Γ)
n obtained using a Sobol sequence; note that the integration

points are not bound to lie among the 1 000 reference points. In that case, theM2 points used

to compute J
(α)
n correspond to a M ×M grid. We also test the use of M = 50 points chosen

using a specific instrumental distribution (and renewed at each iteration) versus M2 = 2500

points over X×X chosen using some other distribution on X×X. In this last case, the M2

points are not on a grid. Further details about the choice of the integration points are given

in the Appendix, section B.

Figure 2 draws the evolution of SE, the average of the SE values over the 200 realizations,

as a function of the number of observations. First, one can see that the number of integration

points has a direct impact on the performance of both SUR strategy, since the experiments

corresponding toM = 50 with quasi-Monte Carlo sampling –based here on a Sobol sequence–

provide the worst results (bold curves with the MC legend on Figure 2).

Besides, the J
(Γ)
n criterion with M integration points has roughly the same performance

as the J
(α)
n criterion with M2 integration points. This suggests that, in high dimension, the

criterion J
(Γ)
n should be chosen since it requires a significantly lower computational effort.

A third conclusion is that the use of importance sampling (with a well chosen instrumental

distribution) has a significant impact on the performance of these strategies, especially after

a high number of iterations. Indeed, as the algorithm progresses, the criterion becomes more

difficult to calculate with a good accuracy as explained in Appendix B. In that case, a

clever choice of the integration points has a crucial impact on the global performance of the

strategy.

From this application we can conclude that the criterion J
(Γ)
n roughly achieves the same

performances as J
(α)
n at a lower computational cost. This is why, in the next applications,

we will mostly focus our attention on the J
(Γ)
n criterion and its parallel extension.

4.2 Nuclear safety test case

In this section, we illustrate a batch-sequential SUR strategy on an engineering problem,

and provide an efficient strategy for optimizing J
(Γ)
n when the batch size r is large.

A system involving fissile materials may produce a chain reaction based on neutrons,
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Figure 2: Performance (measured in term of mean squared relative error) of two SUR strate-

gies based on the J
(Γ)
n and J

(α)
n criteria, in function of the number of integration points and

the method for choosing them (importance sampling or quasi Monte Carlo).

which are both a product and an initiator of fission reactions. Nuclear criticality safety

assessment aims at avoiding “criticality accidents” (overproduction of neutrons) within the

range of operational conditions. In order to check subcriticality of a system, the neutrons

multiplication factor, keff, is estimated using a costly simulator. In our case, the system is a

storage facility of plutonium powder, whose keff depends on two input parameters: the mass

of plutonium (MassePu) and the concentration of plutonium (logConcPu). We aim at finding

the set of “dangerous” configurations {(MassePu, logConcPu) : keff(MassePu, logConcPu) >

T}, where T is threshold fixed at 0.95. The main issue lies in the high cost to evaluate keff

at one single configuration. Many CPU are available to evaluate points in parallel, which

means that our sampling strategy has to provide us, at each iteration, a number of points

r > 1 at which to evaluate the simulator simultaneously.
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In this section, we run our stepwise algorithms on this two-dimensional problem. The

J
(Γ)
n sampling criterion is used with an initial design of experiment of n = 6 points. The

criterion is computed using M = 600 integration points renewed at each iteration, sampled

from a specific instrumental distribution (See Appendix B for more detail). At each iteration,

batches of r = 4 points are evaluated in parallel. Instead of performing the optimization of

J
(Γ)
n directly on the X

r space, we propose the following heuristic:

• find the point xn+1 optimizing the criterion for r = 1;

• while k < r, consider the points xn+1, . . . , xn+k as fixed, find xn+k+1 such that the set of

points (xn+1, . . . , xn+k, xn+k+1) optimizes the criterion for r = k+1, and set k ← k+1.

This heuristic is of course sub-optimal but it allows us to replace the difficult optimization

in r × d dimensions into r consecutive optimizations in dimension d. Note that this option

allows using high values of r.

The evolution of the algorithm is shown on Figure 3. One can see that the excursion

set is accurately identified in few (three) iterations of the parallel SUR strategy. After 18

evaluations (i.e. six initial evaluations plus three iterations, each providing a batch of r = 4

points), the excursion probability pn(x) does not depart much from the true function 1x∈Γ⋆ .

A key question here is to compare performances between the parallel criterion and the

non-parallel one (r = 1). If the total number of evaluation of f is strictly identical, we

generally expect the parallel criterion to have a worse performance than the non parallel

one, in term of reducing the uncertainty H
(Γ)
n , because in the non parallel case the nth

evaluation point is chosen based on n − 1 past evaluations, while in the parallel case it is

chosen based on n − r evaluations. In an ideal case, the uncertainty would decrease at the

same rate, meaning that n/r iterations of the parallel criterion gives the same remaining

uncertainty as n iterations of the non-parallel one (for n a multiple of r, say). Thus, if f is

very expensive to evaluate, the time saving for the practitioner might be considerable.

Figure 4 gives the evolution of the uncertainty H
(Γ)
n obtained during the uncertainty

reduction with the parallel and the non-parallel criteria. It also shows J
(Γ)
n (x⋆

n
), which is

the values of the J
(Γ)
n criterion (with r = 4) at its current minimizer x⋆

n
. Note that, here,

x⋆
n
is a batch of r points. One can see on Figure 4 that at each iteration, J

(Γ)
n (x⋆

n
) is lower

14



Figure 3: Plot of the function pn(x) = Pn(x ∈ Γ) = Φ
(

mn(x)−T
sn(x)

)
after n evaluations of the

simulator. The triangles are the six points of the initial DOE. The squares are the points

sampled using the J
(Γ)
n criterion. Areas in black correspond to pn(x) ≈ 0 and areas in white

correspond to pn(x) ≈ 1. The dotted line indicates the true excursion set. The contour lines

indicate the three level sets pn(x) = 0.05, 0.5 and 0.95.

than H
(Γ)
n . This was to be expected, since J

(Γ)
n (x⋆

n
) is precisely the expectation of the future

uncertainty H
(Γ)
n+r if the r points x⋆

n
are added to the design of experiments.

A striking conclusion to this section is that, here, the parallel criterion has the same

performance as the non-parallel one, in term of reducing the uncertainty H
(Γ)
n , which corre-

sponds to the ideal case mentioned before.

4.3 Six dimensional example

The Hartman6 function is a well known 6-dimensional function used in unconstrained global

optimisation (Torn and Zilinskas [1989]). We test our SUR strategies on this function for

two reasons. First we want to prove that the sampling strategy works (i.e., is able to

recover the true volume of excursion) on higher dimensional functions, and provides better

performances than a “basic” random sampling strategy. Second, we want to confirm the

compared performances of the parallel J
(Γ)
n criterion with the non parallel one observed
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Figure 4: Evolution ofH
(Γ)
n during the sequential sampling strategy on the nuclear safety case

study. The optimum J
(Γ)
n (x⋆

n
) of the J

(Γ)
n criterion is usually lower than H

(Γ)
n and corresponds

to the expectation of H
(Γ)
n at the next iteration.

earlier. We follow Jones et al. [1998] and perform the following change of variables:

yH : x ∈ R
6 7→ − log(−Hartman6(x)) .

We work with a threshold T = 4 and use two measures of performance:

• the uncertainty H
(Γ)
n ,

• the relative squared volume error SE, defined in section 4.1.

All the performance calculations are done using 10 000 reference points (with a sobol se-

quence). In this example, α⋆ = 0.2127 which means that exactly 2127 of the 10 000 reference

points are in the excursion set.

The results are averaged over 100 random initial design of experiments of 36 points

(all of them being maximin Latin Hypercube Designs, generated with the R package lhs

Carnell [2009]). The average uncertainty and the squared error are denoted by H
(Γ)
n and SE

respectively.

In Figure 5, the parallel J
(Γ)
n criterion, with r = 4, and the non parallel one are tested

and compared. The criteria are calculated based on 250 integration points renewed at each

iteration, using an instrumental distribution. A total of 80 new points are evaluated for
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each instance of any of the two considered strategies. Two main conclusions can be obtained

from Figure 5. First, as anticipated, the SUR strategies are sequentially reducing the relative

real volume error faster than the basic random sampling strategy. From a relative error, in

absolute value, of approximately 15% (with the initial design), we end up with a relative error

(after having added 80 new observations) of approximately 3.3% on average. Second, the

parallel strategy has again almost the same performance as the non parallel one. This means

that we are, again, very close to the “ideal case” mentioned in the previous application.
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Figure 5: Evolution of H
(Γ)
n and of the averaged squared relative volume error during both

the considered sequential and batch sequential algorithms, on the yH function.

5 Conclusion and future work

In this paper, we presented algorithms for the computation of parallel and non-parallel

Kriging-based infill sampling criteria. We showed that the use of the formulas introduced in

this paper enables a practically sound implementation of the Stepwise Uncertainty Reduc-

tion (SUR) criteria proposed in Bect et al. [2011] and of batch-sequential versions of them.

In particular, the complexity for computing a SUR criterion giving r points to evaluate si-
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multaneously is “only” linear in r. Sampling criteria that were previously unaffordable in

practical applications can now be used for parallel or non-parallel inversion. In addition,

we showed that the proposed parallel SUR criteria do perform extremely well, in terms of

quickly estimating a probability of failure. For low values of r, computing one iteration of

the parallel criterion improves the accuracy of the estimation at almost the same pace than

r sequential iterations of the non-parallel criterion. In applications on expensive-to-evaluate

simulators, this allows a considerable time saving for the practitioners. Finally, a new version

of the R package KrigInv (Chevalier et al. [2012]) is now available online, and allows using

the presented sequential and batch-sequential strategies.

Further improvement are possible in this work and were mentioned in this paper. Sequential

Monte Carlo methods might be an interesting alternative to compute a set of integration

points that “evolves” from one iteration to another (See, e.g, Li et al.). Finally, from a

more theoretical perspective, approaches directly based on random set notions (considering

a “variance” of the excursion set itself, rather than the variance of the excursion volume)

may provide elegant alternative sampling criteria for inversion and related problems.
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APPENDIX

A Kriging mean and variance

In this section, we shall recall how to obtain the kriging mean and variance. Let ξ ∼ GP(m, k)

be a Gaussian random process with mean function m(·) = E(ξ(·)) and covariance function

k(·, ·) = cov(ξ(·), ξ(·)). We assume that the mean can be written as a linear combination

m(·) =
l∑

i=1

βi pi(·) (14)

of basis functions p1, . . . , pl (very often, these are monomials), where β1, . . . , βl are unknown

parameters. The covariance k is assumed to be a given symmetric strictly positive function.

The kriging predictor of ξ at a point x ∈ X from n observations ξ(x1), . . . , ξ(xn) is the

best linear unbiased predictor (BLUP) of ξ(x) from the observations, that we shall denote

by

mn(x) = λ(x; xn)
T




ξ(x1)
...

ξ(xn)


 . (15)

The vector of kriging weights λ(x; xn) ∈ R
n can be obtained by solving the linear system


K(xn) p(xn)

T

p(xn) 0




︸ ︷︷ ︸
:=K̃(xn)

·


λ(x; xn)

µ(x; xn)




︸ ︷︷ ︸
:=λ̃(x;xn)

=


k(x, xn)

p(x)




︸ ︷︷ ︸
:=k̃(x,xn)

(16)

where K(xn) is the n× n covariance matrix of the random vector (ξ(x1), . . . , ξ(xn))
T, p(xn)

is the l×n matrix with general term pi(xj), k(x, xn) is the column vector with general term

k(x, xi) and µ(x; xn) is a vector of l Lagrange multipliers associated to the unbiasedness

constraint.

The covariance function of the prediction error

kn(x, y) := En ((ξ(x)−mn(x)) (ξ(y)−mn(y))) , (17)

also called kriging covariance, can be written using the notations of equation (16) as

kn(x, y) = k(x, y)− k̃(x, xn)
T λ̃(y; xn). (18)
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The conditional variance of the prediction error at a point x ∈ X, also called kriging variance,

will be denoted by s2n(x) := kn(x, x).

Remark 5. To ensure that the conditional process f |An is still Gaussian when the mean

function is of the form (14), with an unknown vector of parameters β, it is necessary to

adopt a Bayesian approach and to use an (improper) uniform distribution over Rl as a prior

distribution for β (see Bect et al. [2011], Section 2.3, Proposition 2, and the references

therein for more detail).

B Modelling choices

B.1 Choice of the integration points

The criteria studied in this paper involve the numerical computation of integrals over the

domains X or X × X. We showed in section 4 that the number of integration points has

an important impact on the performance of the corresponding strategies. In this section we

deal with the question of how these integration points are chosen.

The J
(Γ)
n and J

(α)
n criteria may be written under the following general form:

Jn(xn+1, . . . , xn+r) = Const±
∫

D

En

(
vn+r(u)

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)
Q(du) (19)

More specifically, for the J
(Γ)
n criterion, we have Const = 0, D := X, vn+r(x) = pn+r(x)(1−

pn+r(x)) and Q := PX. For the J
(α)
n criterion, Const = γn, D := X × X, vn+r(z1, z2) =

pn+r(z1)pn+r(z2) and Q := PX⊗PX. Note that in the remainder of this section, we omit the

conditioning on (Xn+1 = xn+1, . . . , Xn+r = xn+r) in order to simplify the notations.

For both criteria, a straightforward option to for calculating the integral over D would be

to use Monte Carlo sampling with distribution Q. However, importance sampling techniques

(see, e.g., Rubinstein and Kroese [2008], Robert and Casella [2004]) are a good choice for

reducing the variance of the Monte Carlo error in case a suitable instrumental density is

chosen. For the integral in equation 19, a natural choice for such an instrumental density is:

h(u) ∝ vn(u)Q(u) . (20)
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Indeed, if a point u has, in expectation, a high “future uncertainty” vn+r(u) it generally

means that the current uncertainty at point u, vn(u) is already high. For the J
(Γ)
n criterion,

we thus propose the following instrumental density:

h(u) ∝ pn(u)(1− pn(u))PX(u) (21)

Similarly, for the J
(α)
n criterion, the proposed instrumental density is:

h(z1, z2) ∝ pn(z1)pn(z2)PX ⊗ PX(z1, z2) (22)

Remark 6. Using importance sampling techniques for the problem of estimating a probability

of failure with a kriging metamodel has already been proposed and applied in Dubourg [2011].

B.2 Sampling from our instrumental distribution

Sampling from the densities h defined above in Equations 21 and 22 is a difficult task.

Figure 6 shows the value of the density pn(x)(1−pn(x))PX(x), which is (up to a multiplicative

factor) the instrumental density proposed to compute the criterion J
(Γ)
n . When n = 20

evaluations of the simulator are available, one may remark (right graph) that the support of

the instrumental density becomes very narrow. This issue complicates the use of standard

MCMC algorithms to obtain a sample distributed according to the instrumental density.

Sequential Monte Carlo methods may provide a nice solution to this issue but they have

not been investigated and implemented yet in the KrigInv package (Chevalier et al. [2012]).

Instead, we decided to use a simpler approximation. The idea consists in replacing the

integral in 19 by the following estimator:

∫

D

En (vn+r(u))Q(du) ≈ 1

N

N∑

j=1

En(vn+r(uj)) , (23)

where N is a large number and u1, . . . ,uN is a i.i.d sample of N points with distribution Q.

Rather than aiming at computing the integral of origin, we try to approximate this finite

sum using a discrete instrumental density proportional to:

N∑

j=1

vn(uj)δuj

Such new discrete instrumental density is easy to sample from.
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Figure 6: Plot of the function pn(x)(1 − pn(x)) after n evaluations of the MORET code

(left). The triangles are the six points of the initial DOE. Right: the squares are the points

sampled using the J
(Γ)
n criterion. Areas in black correspond to low uncertainty zones.

Of course, this method has important limitations. In particular the new “objective”

quantity 1
N

∑N
j=1 En(vn+r(uj)) can be completely different from

∫
D
En (vn+r(u))Q(du) if all

the N points from the initial large sample have an uncertainty vn close to zero, or if N is not

large enough. In essence, both N and the number of draws should tend to infinity in order for

the estimator to converge to the true value of the integral. However, even if adapted MCMC

approaches are likely to perform better in future implementations, this simple and easy

option proposed here already provided a significantly improved calculation of the proposed

SUR criteria compared to a standard quasi-Monte Carlo approach, as presented in section 4.
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Appendix D: New SUR strategies

for inversion using random set

theory
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Estimating and quantifying uncertainties on

level sets using the Vorob’ev expectation and

deviation with Gaussian process models

Clément Chevalier, David Ginsbourger, Julien Bect and Ilya Molchanov

Abstract Several methods based on Kriging have been recently proposed for cal-

culating a probability of failure involving costly-to-evaluate functions. A closely

related problem is to estimate the set of inputs leading to a response exceeding a

given threshold. Now, estimating such level set – and not solely its volume – and

quantifying uncertainties on it are not straightforward. Here we use notions from

random set theory to obtain an estimate of the level set, together with a quantifi-

cation of estimation uncertainty. We give explicit formulae in the Gaussian process

set-up and provide a consistency result. We then illustrate how space-filling versus

adaptive design strategies may sequentially reduce level set estimation uncertainty.

1 Introduction

Reliability studies increasingly rely on complex deterministic simulations. A prob-

lem that is often at stake is to identify, from a limited number of evaluations of f :

D⊂R
d 7→R, the level set of “dangerous” configurations Γf = {x ∈ D : f (x)≥ T},

where T is a given threshold. In such context, it is commonplace to predict quanti-

ties of interest relying on a surrogate model for f . This approach was popularized in

the design and analysis of computer experiments [12, 11, 7] . In the Kriging frame-

work, several works have already been proposed for reliability problems (see, e.g.,

[2, 9, 10, 6] and the references therein). However, the quantity of interest is usually

the volume of Γf , and none of the methods explicitly reconstruct Γf itself.
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2 Clément Chevalier, David Ginsbourger, Julien Bect and Ilya Molchanov

An illustrative example for this issue is given on Figure 1. A Kriging model is

built from five evaluations of a 1d function (left plot). Three level set realisations

(with T = 0.8) are obtained from Gaussian process (GP) conditional simulations.

The focus here is on summarizing the conditional distribution of excursion sets us-

ing ad hoc notions of expectation and deviation from the theory of random sets. We

address this issue using an approach based on the Vorob’ev expectation [1, 8].

Fig. 1: Conditional simulations of level sets. Left: Kriging model obtained from five

evaluations of a 1d function. Right: Three GP conditional simulations, leading to

three different level sets. Here the threshold is fixed to T = 0.8.

In Section 2 we present the Vorob’ev expectation and deviation for a closed ran-

dom set. In Section 3 we then give analytical expressions for these quantities in the

GP framework. In addition we give consistency result regarding the convergence of

the Vorob’ev expectation to the actual level set. To the best of our knowledge, this

is the first Kriging-based approach focusing on the level set itself, and not solely its

volume. Our results are illustrated on a test case in Section 4.

2 The Vorob’ev expectation and deviation in Random Set theory

Random variables are usually defined as measurable maps from a probability space

(Ω ,G ,P) to some measurable space, such as (R,B(R)) or (Rd ,B(Rd)). However

there has been a growing interest during the last decades for set-valued random

elements, and in particular for random closed sets [8].

Definition 1. Let F be the family of all closed subsets of D. A map X : Ω 7→F is

called a random closed set if, for every compact set K in D,

{ω : X(ω)∩K 6= /0} ∈ G . (1)
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As mentioned in [8], this definition basically means that for any compact K,

one can always say when observing X if it hits K or not. Defining the expectation

of a random set is far from being straightforward. Different candidate notions of

expectation from the random set literature are documented in [8] (Chapter 2), with

a major development on the selection expectation. Some alternative expectations

mentioned in [8] include the linearisation approach, the Vorob’ev expectation, the

distance average, the Fréchet expectation, and the Doss and Herer expectations.

In the present work we focus on the Vorob’ev expectation, which is based on the

intuitive notion of coverage probability function. Given a random closed set X over

a space D with σ -finite measure µ (say D⊂R
d and µ = Lebd), then X is associated

with a random field (1X (x))x∈D. The coverage function is defined as the expectation

of this binary random field:

Definition 2 (coverage function and α-quantiles of a random set). The function

pX : x ∈ D 7→ P(x ∈ X) = E(1X (x)) (2)

is called the coverage function of X . The α-quantiles of X are the level sets of pX ,

Qα := {x ∈ D : pX (x)≥ α}, α ∈ (0,1]. (3)

Note that in Equation 2, the expectation is taken with respect to the set X and

not to the point x. In Figure 1 (right) we plotted three conditional realizations of the

random set X := {x ∈ [0,1],ξ (x) ≥ T}, where ξ is a GP. The α-quantile defined

in Definition 2 can be seen as the set of points having a (conditional, in Figure 1)

probability of belonging to X greater or equal than α . This definition is particularly

useful here as, now, the so-called Vorob’ev expectation of the random set X will be

defined as a “well-chosen” α-quantile of X .

Definition 3 (Vorob’ev expectation). Assuming E(µ(X)) < ∞, the Vorob’ev ex-

pectation of X is defined as the α∗-quantile of X , where α∗ is determined from

E(µ(X)) = µ(Qα∗) (4)

if this equation has a solution, or in general, from the condition

µ(Qβ )≤ E(µ(X))≤ µ(Qα∗) for all β > α∗. (5)

Throughout this paper, an α∗ satisfying the condition of Definition 3 will be

referred to as a Vorob’ev threshold.

Property 1. For any measurable set M with µ(M) = E(µ(X)), we have:

E(µ(Qα∗∆X))≤ E(µ(M∆X)), (6)

where A∆B denotes the symmetric difference between two sets A and B. The quan-

tity E(µ(Qα∗∆X)) is called Vorob’ev deviation.
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The Vorob’ev expectation thus appears as a global minimizer of the deviation,

among all closed sets with volume equal to the average volume of X . A proof can be

found in [8], p. 193. In the next section, we will use these definitions and properties

for our concrete problem, where the considered random set is a level set of a GP.

3 Conditional Vorob’ev expectation for level sets of a GP

In this section, we focus on the particular case where the random set (denoted by X

in the previous section) is a level set

Γ := {x ∈ D : ξ (x)≥ T} (7)

of a GP ξ above a fixed threshold T ∈ R. Once n evaluation results An :=
((x1,ξ (x1)), . . . ,(xn,ξ (xn))) are known, the main object of interest is then the con-

ditional distribution of the level set Γ given An. We propose to use the Vorob’ev

expectation and deviation to capture and quantify the variability of the level set Γ
conditionally on the available observations An.

3.1 Conditional Vorob’ev expectation and deviation

In the simple Kriging GP set-up (see, e.g., [5]), we know the marginal conditional

distributions of ξ (x)|An:

L (ξ (x)|An) = N (mn(x),s
2
n(x)), (8)

where mn(x) = E(ξ (x)|An) and s2
n(x) = Var(ξ (x)|An) are respectively the simple

Kriging mean and variance functions. The coverage probability function and any

α-quantile of Γ can be straightforwardly calculated (given An) as follows.

Property 2. (i) The coverage probability function of Γ has the following expression:

pn(x) : = P(x ∈ Γ |An) = P(ξ (x)≥ T |An) = Φ

(
mn(x)−T

sn(x)

)
, (9)

where Φ(.) denotes the c.d.f. of the standard Gaussian distribution.

(ii) For any α ∈ (0,1], the α-quantile of Γ (conditional on An) is

Qn,α = {x ∈ D : mn(x)−Φ−1(α)sn(x)≥ T}. (10)

(iii) For any α ∈ (0,1], the α-quantile of Γ can also be seen as the excursion set

above T of the Kriging quantile with level 1−α .

From Property 2, one can see hat the Vorob’ev expectation is in fact the excursion

set above T of a certain Kriging quantile. In applications, an adequate Vorob’ev
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threshold value can be determined by tuning α to a level α∗n such that µ(Qn,α∗n ) =
E(µ(Γ )|An) =

∫
D pn(x)µ(dx). This can be done through a simple dichotomy.

Once the Vorob’ev expectation is calculated, the computation of the Vorob’ev

deviation E(µ(Qn,α∗n ∆Γ )|An) does not require to simulate Γ . Indeed,

E(µ(Qn,α∗n ∆Γ )|An) = E

(∫

D
(1x∈Qn,α∗n ,x 6∈Γ +1x 6∈Qn,α∗n ,x∈Γ )µ(dx)

∣∣∣An

)

=
∫

Qn,α∗n

E(1x 6∈Γ |An)µ(dx)+
∫

Qc
n,α∗n

E(1x∈Γ|An)µ(dx)

=
∫

Qn,α∗n

(1− pn(x))µ(dx)+
∫

Qc
n,α∗n

pn(x)µ(dx). (11)

We will present in Section 4 an example of computation of Vorob’ev expectation

and deviation. Before that, we give in the next subsection a consistency result for

the case where observations of ξ progressively fill the space D.

3.2 Consistency result

Let us consider a (zero-mean, stationary) GP Z and a deterministic sequence of

sampling points x1,x2, . . ., such that smax
n , supx∈D sn→ 0 (this holds, e.g., for any

space-filling sequence, assuming that the covariance function is merely continuous).

We denote by α∗n the Vorob’ev threshold selected for the first n sampling points, and

by κn = Φ−1(α∗n ) and Qn,α∗n ⊂D the corresponding quantile and Vorob’ev expecta-

tion. Our goal here is to prove that the Vorob’ev expectation is a consistent estimator

of the true excursion set Γ , in the sense that µ
(
Qn,α∗n ∆ Γ

)
→ 0 for some appropriate

convergence mode. To do so, we shall consider a slightly modified estimator Qn,α∗n ,

where the choice of the Vorob’ev threshold α∗n is constrained in such a way that

|κn| ≤ κmax
n , for some deterministic sequence of positive constants κmax

n .

Proposition 1 Assume that µ(D)<+∞ and κmax
n = O

(√
|logsmax

n |
)

. Then

E
(
µ
(
Qn,α∗n ∆ Γ

))
= O

(
smax

n

√
|logsmax

n |
)
.

As a consequence, µ
(
Qn,α∗n ∆ Γ

)
→ 0 for the convergence in mean.

Proof. The result has been proven in [13, 14] in the special case κmax
n = 0 (i.e., with

α∗n = 1/2). We follow their proof very closely.

Let us first rewrite the probability of misclassification at x ∈ D as

E

(
1Qn,α∗n ∆ Γ (x)

)
= E

(
1pn(x)≥α∗n (1− pn(x)) + 1pn(x)<α∗n pn(x)

)
, (12)

and consider the events
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E+
n = {mn(x)≥ T +wn(x)} , E−n = {mn(x)≥ T −wn(x)} ,

where wn(x) is a deterministic sequence that will be specified later. Let us assume

that κmax
n sn(x) = O(wn(x)), uniformly in x. Then we have

|κn| sn(x) ≤ κmax
n sn(x) ≤ C wn(x)

for some C > 1 (without loss of generality), and thus

1pn(x)≥α∗n = 1mn(x)≥T+κnsn(x) ≤ 1|mn(x)−T |≤Cwn(x) + 1E+
n
.

As a consequence, noting that
mn(x)−T

sn(x)
≥ wn(x)

sn(x)
on E+

n , we obtain:

1pn(x)≥α∗n (1− pn(x)) ≤ 1|mn(x)−T |≤Cwn(x) + 1E+
n
(1− pn(x))

≤ 1|mn(x)−T |≤Cwn(x) +Ψ

(
wn(x)

sn(x)

)
,

whereΨ denotes the standard normal complementary cdf. Proceeding similarly with

the second term in (12), it follows that

E

(
1Qn,α∗n ∆ Γ (x)

)
≤ 2

[
Ψ

(
wn(x)

sn(x)

)
+ P(|mn(x)−T | ≤Cwn(x))

]
.

Using the tail inequalityΨ(u)≤ 1

u
√

2π
exp(− 1

2
u2), and observing that Var (mn(x))≥

s2
0− (smax

n )2 ≥ s2
0/4 for n larger than some n0 that does not depend on x, we have:

E

(
1Qn,α∗n ∆ Γ (x)

)
≤
√

2

π

[
sn(x)

wn(x)
exp

(
−1

2

w2
n(x)

s2
n(x)

)
+ 4C

wn(x)

s0

]
. (13)

Finally, taking wn(x)=
√

2sn(x)
√
|logsn(x)| as in [13], we have indeed κmax

n sn(x)=
O(wn(x)) uniformly in x, and from (13) we deduce that

E

(
1Qn,α∗n ∆ Γ (x)

)
= O

(
smax

n

√
|logsmax

n |
)

uniformly in x. The result follows by integrating with respect to µ over D.

4 Application to adaptive design for level set estimation

Here we present a 2-dimensional example on the notions and results previously

detailed. We consider the Branin-Hoo function, with variables normalised so that the

domain D is [0,1]2. We multiply the function by a factor −1 and we are interested

in the set {x ∈ D : f (x) ≥ −10}. Figure 2 (top) gives the real level set and the

coverage probability function obtained from n = 10 observations. The covariance
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parameters of the Gaussian process used for Kriging are assumed to be known. The

measure µ is the uniform measure on D = [0,1]2 and the current Vorob’ev deviation

is E(µ(Qn,α∗n ∆Γ )|An)≈ 0.148. All the integrals are calculated using the KrigInv R

package [4] with a Sobol’ Quasi Monte Carlo sequence of 10000 points.

Fig. 2: Top left: Level set of a 2d function. Middle: Coverage probability function

after 10 evaluations of f . Top right: E
(
1Qn,α∗n ∆ Γ (·)

)
function. Bottom left: De-

crease of the Vorob’ev deviation when new points are added (2 strategies). Middle:

Evolution of α∗. Bottom right: New Vorob’ev expectation (SUR strategy).

On Figure 2 (bottom plots) one can see the evolution of the Vorob’ev devia-

tion and threshold when new points are added. Two different strategies are tested:

a simple space filling strategy (with, again, the Sobol’ sequence) and a so-called

Stepwise Uncertainty Reduction (SUR) strategy, aiming at reducing the variance of

µ(Γ ) (see, [2], criterion JSUR
4,n , or [3] for more details). We observe that the SUR

strategy manages to quickly reduce the Vorob’ev deviation (bottom right plot) and

that the Vorob’ev expectation obtained after the new evaluations matches with the

true level set. However, note that the consistency of the adaptive approach is not

guaranteed by Proposition 1 as the latter only holds for a deterministic space filling

sequence. Further research is needed to establish an extension of Proposition 1 to

adaptive settings.
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5 Conclusion

In this paper we proposed to use random set theory notions, the Vorob’ev expec-

tation and deviation, to estimate and quantify uncertainties on a level set of a real-

valued function. This approach has the originality of focusing on the set itself rather

than solely on its volume. When the function is actually a GP realization, we proved

that the Vorob’ev deviation converges to zero in infill asymptotics, under some mild

conditions. However, the final example illustrates that a space-filling approach based

on a Sobol’ sequence may not be optimal for level set estimation, as it clearly was

outperformed by an adaptive strategy dedicated to volume of excursion estimation.

In future works, we may investigate sampling criteria and adaptive strategies dedi-

cated to uncertainty reduction in the particular context of set estimation.
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1. Introduction

In many engineering fields, the use of metamodeling or surrogate modeling techniques
has become commonplace for dealing efficiently with time-consuming high-fidelity sim-
ulations. These techniques consist of replacing the expensive model by a simpler one,
based on a limited number of evaluations, in order to compute predictions and/or to
guide an evaluation strategy of the simulator. The KrigInv R package, available on
CRAN, was developed in this context. Its main goal is to propose evaluation strategies
dedicated to inversion (as defined later), based on a kriging metamodel.

Mathematically, the expensive simulator (or typically an objective function built
upon it) is considered here as a real-valued function f defined on a compact domain
X ⊂ R

d, often assumed to be a hyper-rectangle. We assume further that:

• No closed-form expression is available for f . The objective function is seen
as a “black-box” taking x ∈ X as input and returning f(x) without any other
information, such as gradients.

• The dimension of the input domain X is moderate. X is typically a compact
subset of Rd with d of the order of 10.

• We have a small evaluation budget. Evaluating f at any point x is assumed
to be slow or expensive, so our problem needs to be solved in only a few evaluations
of f : at most a few hundred, but, very often, much less.

• f can be evaluated sequentially. We usually dedicate a fraction of the budget
for the initial design of experiments and then evaluate sequentially f at well-chosen
points. The next point (or batch) to evaluate f at is chosen by optimizing a given
sampling criterion.

• Noisy simulators are handled. Our methods work in the setting where we do
not directly observe f(x) but rather f(x) + ε, where ε is a centered noise with
known (or previously estimated and plugged-in) variance.

In the setting described above, metamodeling techniques have already proven to be
efficient (see, e.g., Santner et al. (2003); Fang et al. (2006); Rasmussen and Williams
(2006); Forrester et al. (2008); Gramacy and Lee (2008); Marrel et al. (2008)). From a
set of n evaluation results {f(x1), . . . , f(xn)}, an approximated response surface can be
constructed, jointly with a measure of uncertainty at non-evaluated points, in order to
guide a sequential sampling strategy of f . This idea has led to the famous Efficient Global
Optimization (EGO) algorithm (Jones et al., 1998), where a kriging metamodel (Sacks
et al., 1989; Stein, 1999; Cressie, 1993) and the Expected Improvement (EI) criterion
are used to optimize an expensive function f . In the methods presented here, similar
concepts are used, except that our final aim is not to find the optimum of f . KrigInv
provides sequential sampling strategies aiming at solving the following inverse problems:
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• Estimating the excursion set Γ∗ = {x ∈ X : f(x) ≥ T}, where T is a fixed
threshold.

• Estimating the volume of excursion: α∗ := PX(Γ
∗), where PX is a given measure.

• Estimating the contour line C∗ := {x ∈ X : f(x) = T}.

Note that the second problem is often encountered as a probability of failure estimation
problem in the reliability literature (Bect et al., 2012), assuming that the input variables
are random, with known distribution. The three problems described above are quite
similar (a criterion dedicated to anyone of them is expected to perform fairly well on the
others) and in this paper we group them under the term inversion.

Estimating a probability of failure is classically done through classical Monte Carlo
sampling, or even refinements of Monte Carlo methods like subset sampling (Au and
Beck, 2001) or cross-entropy methods (Rubinstein and Kroese, 2004). These methods
are not adapted to our setting as they require too many evaluations of f . Some response
surface methods make parametric approximations of f (see, e.g. Kim and Na (1997),
Gayton et al. (2003)) or of the boundary of the excursion set {x : f(x) ≥ T} with
the so-called First and Second Order Reliability Methods (FORM and SORM, see e.g.
Zhao and Ono (1999)). Though they may provide an interesting alternative they are
not considered in KrigInv. Our non-parametric approach relies on a kriging metamodel
and on different sampling criteria available in the literature and described in Section 3.

An example of sequential inversion using kriging, widely developed in this paper,
is provided in Figure 1. In this example, f is the Branin-Hoo function, i.e. a two
dimensional function defined on [0, 1]2, available in the DiceKriging package (Roustant
et al., 2012). We fix a threshold T = 80. The real excursion set (assumed unknown)
is represented together with the excursion probability function (as defined in Section 2)
based on 12 function evaluations. Such excursion probability function is also represented
once 10 additional well-chosen points have been evaluated.

The paper is organised as follows. Section 2 introduces the excursion probability
function, which will be crucial for understanding the evaluation strategies. Section 3
presents the sampling criteria available in KrigInv, and Section 4 finally provides the
user with advanced settings like the choice of the integration points for criteria involving
numerical integration. An introduction to kriging and further details on the outputs of
an inversion are described in appendix, for the sake of brevity.

2. Kriging and excursion probability

The goal of this section is to recall a few necessary basics and notations in Gaussian
process modeling, and to illustrate the excursion probability function, onto which most
kriging-based inversion methods are built. In Gaussian process modeling, we assume that
f is a realization of a Gaussian random field ξ indexed by X. Considering the distribution
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Figure 1: Left: excursion set of the Branin-Hoo function above T = 80. Middle and
right: excursion probability function based on 12 and 22 evaluations of f .

of ξ knowing the event An := {ξ(x1) = f(x1), . . . , ξ(xn) = f(xn)}, the corresponding
conditional expectation yields an approximated response surface. Such approximation
is called kriging mean and is denoted by mn(x). At a non-evaluated point x, the un-
certainty on ξ(x) is handled through the kriging variance, s2n(x) and, as the conditional
random field ξ|An is still Gaussian, we have that L(ξ(x)|An) = N (mn(x), s

2
n(x)). Krig-

ing mean and variance can be calculated using the closed-form formulas (see, e.g. Chilès
and Delfiner (1999)) implemented in the DiceKriging package (Roustant et al., 2012).

In the Gaussian process framework, finding Γ∗ = {x ∈ X : f(x) ≥ T} or α∗ = PX(Γ
∗)

becomes an estimation problem. Since ∀x ∈ X, ξ(x) ∼ N (mn(x), s
2
n(x)), the excursion

probability,

pn(x) := P (ξ(x) ≥ T |An),

can be calculated in closed form:

P (ξ(x) ≥ T |An) = P

(
ξ(x)−mn(x)

sn(x)
≥ T −mn(x)

sn(x)

∣∣∣An

)

= Φ

(
mn(x)− T

sn(x)

)
,

where Φ(·) is the c.d.f. of the standard Gaussian distribution. The function pn(·) plays
a crucial role in solving the inversion problems described above (respectively, estimation
of Γ∗, α∗ and C∗). Indeed the three following estimators can be used (Bect et al. (2012)):

Γ̂ ={x ∈ X : pn(x) ≥ 1/2},

α̂ =

∫

X

pn(x)dx,

Ĉ ={x ∈ X : pn(x) = 1/2} = {x ∈ X : mn(x) = T}.
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It hence appears that the function pn(·) can be used as a classifier. In some sense, an
“ideal” kriging model for inversion would be able to perfectly discriminate the excursion
region, i.e. would give either pn(x) = 0 or 1 for all x ∈ X. We will see in the next section
that this idea is extensively used to build the sequential sampling strategies available in
KrigInv. Appendix B provides additional details on using a kriging model to obtain
relevant informations for inversion.

3. Package structure and sampling criteria

This section gives an exhaustive description of the sampling criteria available inKrigInv.
A sampling criterion aims at giving, at each iteration, a point or a batch of points for
evaluation. More precisely, all KrigInv algorithms share the following general scheme:

1. Evaluate f at an initial set of design points {x1, . . . ,xn}.

2. Build a first metamodel based on {f(x1), . . . , f(xn)}.

3. While the evaluation budget is not exhausted:

• choose the next design point xn+1, or batch of design points (xn+1, . . . ,xn+r),
by maximizing a given sampling criterion over Xr,

• evaluate f at the chosen design point(s),

• update the metamodel.

In KrigInv, the available sampling criteria are called using the functions EGI (stand-
ing for Efficient Global Inversion) and EGIparallel. The criteria are separated into
two categories: pointwise criteria, which involve only the conditional distribution of
ξ(xn+1)|An, and integral criteria, which involve a numerical integration over the whole
domain X.

Note that the integral criteria covered here are well suited for delivering batches of
r > 1 points, which is very useful in practice when several CPUs are available in parallel.

3.1. Pointwise sampling criteria

Three pointwise sampling criteria are available in KrigInv. These are criteria which
depend on a point xn+1 ∈ X and which evaluation mainly involves the computation
of mn(xn+1) and s2n(xn+1). For these three criteria, the sampled point is the point
where the value of the criterion is maximized. Criteria proposed by Ranjan et al.
(2008), Bichon et al. (2008) and Picheny et al. (2010) are reviewed in this section. The
main idea with these three criteria (respectively ranjan, bichon and tmse) is that the
interesting points xn+1 ∈ X to evaluate f at are the points having both a high kriging
variance and an excursion probability close to 1/2.
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tmse criterion: The Targeted Mean Square Error criterion has been proposed by Picheny
et al. (2010). The idea is to decrease the Mean Square Error (i.e. the kriging variance)
at points where mn is close to T . The criterion consists in the following quantity:

tmse(xn+1) = s2n(xn+1)
1√

2π(s2n(xn+1) + ε2)
exp


−1

2

(
mn(xn+1)− T√
s2n(xn+1) + ε2

)2

 , (1)

where ε ≥ 0 is a parameter that tunes the bandwidth of a window of interest around the
threshold T . In KrigInv, ε is equal to zero by default and can be modified using the
argument method.param of the EGI function, detailed in Section 3.3. High values of ε
make the criterion more exploratory, while low values concentrate the evaluations near
the contour line of the kriging mean, {x : mn(x) = T}. Unless the user wants to force
exploration of sparse regions, we recommend to use the default value ε = 0.

ranjan and bichon criteria: These two criteria (see, Ranjan et al. (2008), Bichon et al.
(2008)) depend on a parameter α which can also be set with themethod.param argument.
The default value for α is 1. Bect et al. (2012) provide the following common general
expression for these two criteria:

expr(x) = En

[(
(αsn(x))

δ − |T − ξ(x)|δ
)
+

]
, (2)

where En(·) := E(·|An), (·)+ := max(·, 0) and δ is an additional parameter equal to 1 for
the bichon criterion and 2 for the ranjan criterion. The goal is to sample a point xn+1

with a kriging mean close to T and a high kriging variance, so that the positive difference
between (αsn(xn+1))

δ and |T − ξ(xn+1)|δ is maximal in expectation. The choice δ = 2
(ranjan criterion) should favour sparse regions, of high kriging variance. However, in
practice, these two criteria have very similar behaviours.
Calculations detailed in Bect et al. (2012) with δ = 1 and 2 respectively lead to the
following expressions, which, unlike Expression 2, can be computed easily from the
kriging mean and variance:

bichon(xn+1) = sn(xn+1)
[
α(Φ(t+)− Φ(t−))− t(2Φ(t)− Φ(t+)− Φ(t−))

−(2φ(t)− φ(t+)− φ(t−))
]
,

ranjan(xn+1) = s2n(xn+1)
[
(α2 − 1− t2)(Φ(t+)− Φ(t−))− 2t(φ(t+)− φ(t−))

+t+φ(t+)− t−φ(t−)
]
,

where φ is the p.d.f. of the standard Gaussian distribution, t := (mn(xn+1)−T )/sn(xn+1),
t+ := t+ α and t− := t− α.

Illustration: Figure 2 shows, on the 2d example introduced in Section 1, the excursion
probability function pn(·) after ten iterations based on these criteria. An example of
code generating these plots is given in Section 3.3. The sets of points evaluated with
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these criteria (circles) are rather similar and the criteria tend to evaluate points at the
boundary of the domain X. We recall that these criteria only depend on the marginal
distribution at a point xn+1. Consequently, they do not take into account the fact that
sampling at a point xn+1 may also bring useful information on the neighbourhood of
xn+1. Recently, Bect et al. (2012) showed that these pointwise criteria are outperformed
in applications by the integral sampling criteria presented in the next section. The price
to pay for such more efficient criteria will be a higher computation time.

Figure 2: Excursion probability after ten iterations of the tmse, ranjan and bichon
criterion. New evaluated points are represented by circles. The number associated with
each point corresponds to the iteration at which the point is evaluated.

3.2. Integral sampling criteria

The term “integral criteria” refers to sampling criteria involving numerical integration
over the design space X. We give here details on the three integral criteria available in
KrigInv. For the moment, two out of these three criteria can yield, at each iteration, a
batch of r observations in lieu of a unique point. Note that the corresponding multi-point
criteria have been shown to perform very well in applications (Chevalier et al., 2012).

All integral criteria presented here rely on the concept of Stepwise Uncertainty Re-
duction (SUR, see, e.g., Bect et al. (2012)). In short, the idea of SUR consists in defining
an arbitrary measure of uncertainty given n observations An, and seeking the point xn+1

(or batch (xn+1, . . . ,xn+r)) such that evaluating ξ(xn+1) (or (ξ(xn+1), . . . , ξ(xn+r))) re-
duces the most (in expectation) this uncertainty. Consequently, different definitions for
the term “uncertainty” will lead to different sampling criteria.

timse criterion: The Targeted Integrated Mean Square Error criterion (timse) was orig-
inally dedicated to contour line estimation (Picheny et al., 2010). It may easily be used
as well for the problem of estimating the excursion set or its volume. The timse criterion
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can be seen as the integral version of the tmse criterion. From the SUR point of view,
the uncertainty measure underlying timse is the following:

Uncertaintytimse :=

∫

X

tmse(x)PX(dx)

=

∫

X

s2n(x)
1√

2π(s2n(x) + ε2)
exp


−1

2

(
mn(x)− T√
s2n(x) + ε2

)2

PX(dx)

=

∫

X

s2n(x)Wn(x)PX(dx),

where Wn(x) is a weight function and ε is a parameter with the same role as in the tmse
criterion. More details and interpretations of the weight function Wn(x) are available in
Picheny et al. (2010), Section 3.

The goal of the criterion is to sample a new point (or batch), in order to reduce
Uncertaintytimse. It can be shown that the expectation of the future uncertainty when
adding a batch of r points xn+1, . . . ,xn+r has a simple closed form expression:

timse(xn+1, . . . ,xn+r) :=

∫

X

s2n+r(x)Wn(x)PX(dx), (3)

where s2n+r(x) is the kriging variance at point x once the batch (xn+1, . . . ,xn+r) has
been added to the design of experiments. This variance (referred to as updated kriging
variance here) does not depend on the unknown ξ(xn+1), . . . , ξ(xn+r). Efficient formulas
to compute s2n+1(x) are given in Emery (2009). Also, Chevalier and Ginsbourger (2012)
give formulas to quickly compute s2n+r(x) when r > 1.

From Equation 3, we see that this criterion aims at reducing the kriging variance in
“interesting” regions. These regions are selected using the weight function Wn. This
weight is high when both mn is close to T and s2n is high. In Equation 3, the integral
over X is discretized in M integration points. The choice of these integration points is
an open option for the user of KrigInv. See Section 4.2 for more detail.

sur criterion: The sur criterion is introduced in Bect et al. (2012) and uses the following
definition of the uncertainty:

Uncertaintysur :=

∫

X

pn(x)(1− pn(x))PX(dx). (4)

This definition can be obtained with non-heuristic considerations (see, Bect et al. (2012))
but, intuitively, the uncertainty is low when pn(x) = 0 or 1 over the whole domain,
meaning that we are able to classify each point x ∈ X. The sampling criterion associated
with this definition of the uncertainty is:

sur(xn+1, . . . ,xn+r) := En

(∫

X

pn+r(x)(1 − pn+r(x))PX(dx)

∣∣∣Xn+1 = xn+1, . . . ,Xn+r = xn+r

)
, (5)
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where the condition Xn+1 = xn+1, . . . ,Xn+r = xn+r means that the next evaluation
points are xn+1, . . . ,xn+r. Computing Equation 5 for a batch of points (xn+1, . . . ,xn+r)
requires integrating both over X and over all possible responses (ξ(xn+1), . . . , ξ(xn+r)),
which may be quite impractical. In fact, Equation 5 can be simplified through the
following closed-form expression (see: Chevalier et al. (2012) for a complete proof):

sur(xn+1, . . . ,xn+r) =

∫

X

Φ2

((
a(x)
−a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)

))
PX(dx), (6)

where Φ2(·,Σ) is the c.d.f. of the centered bivariate Gaussian with covariance matrix Σ,
a(x) := (mn(x)− T )/sn+r(x) and c(x) := s2n(x)/s

2
n+r(x). With Equation 6, computing

efficiently the multi-point criterion involves an update formula for kriging variances, and
efficient numerical procedures to compute the bivariate Gaussian c.d.f. Φ2 (Genz, 1992).

jn criterion: The jn criterion, introduced in Bect et al. (2012), is an optimal sampling
criterion to estimate the excursion volume. The jn criterion can be naturally obtained
by considering the volume α of the random excursion set Γ = {x ∈ X : ξ(x) > T}. When
n observations are available, the uncertainty is defined as follows:

Uncertaintyjn :=Varn(α), (7)

where Varn(·) := Var(·|An). The associated sampling criterion is:

jn(xn+1, . . . ,xn+r) := En

(
Varn+r(α)

∣∣Xn+1 = xn+1, . . . ,Xn+r = xn+r

)
. (8)

The criterion samples a batch of points (xn+1, . . . ,xn+r) in order to decrease as much
as possible (in expectation) the future variance of the excursion volume. An analytical
expression allowing to compute efficiently Equation 8 is available in Chevalier et al.
(2012) and is not reproduced here. Note that in the current version of KrigInv this
criterion can be used with r = 1 only.

Evaluating jn involves an integral over X × X, which is more difficult to compute
than the integrals over X for the timse and sur criteria. Remarkably, jn often tends to
be more space-filling than sur. Compared to cheaper criteria, jn performs especially well
in cases where the excursion set has a complicated shape or is not connected. Indeed,
as the criterion focuses on the excursion volume, it tends to evaluate points which are
not too close to the boundary of the excursion set.

Illustration: Figure 3 shows the same plots as Figure 2 with the pointwise criteria re-
placed by the integral criteria timse, sur and jn, with r = 1. The plots are realized with
the default parameters for the integration and optimization methods (see: Section 4). In
this example, sur and timse show similar behaviours (the first three evaluations are al-
most the same), while jn tends to be slightly more exploratory. The jn criterion focuses
on the excursion volume. So when a point which is “far” from the current estimated
excursion region (the zone in white) has a non zero (say 0.01) excursion probability,
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it may be picked by the jn criterion because the event {ξ(x) > T}, even if it has a
low probability, would change considerably the volume of excursion. The converse is
also true: when a point with excursion probability of say 0.99 is far from the estimated
boundary, it may be picked for the same reasons. Comparing the results to Figure 2, a

Figure 3: Excursion probability after ten iterations of the timse, sur and jn criterion.
New evaluated points are represented by circles.

major difference is that no point is placed on the corners of the domain, while, for all the
pointwise criteria, three corners were explored. The boundaries of X are often sampled
by the pointwise criteria since those are regions with high kriging variance. However,
sampling at the boundary of X does not contribute as efficiently to the reduction of un-
certainty as sampling inside the design region. The unfortunate tendency of pointwise
criteria to sample on the boundaries of X partially explains the better performances of
integral criteria in general.

Figure 4 shows three iterations of the timse and sur parallel criteria, with r = 4
points evaluated at each iteration. As in the non-parallel case, sur and timse show
rather similar behaviours. The parallel sur and timse criteria tend to spread points on
the estimated boundary of the excursion set.

3.3. Using the criteria: the EGI and EGIparallel functions

EGI and EGIparallel are the two main functions of the KrigInv package. Users may
choose to rely on these two functions only, as they are interfacing with all the other
KrigInv functions. However, we export and provide a help file for all the coded func-
tions, including the low level ones that are normally only called via other functions. EGI
allows using criteria yielding one point per iteration while EGIparallel is dedicated to
batch-sequential strategies. A general example of using EGI follows:

n <- 12 ; fun <- branin

design <- data.frame(optimumLHS(n,k=2)) #initial design (a LHS)
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Figure 4: Excursion probability after three iterations based on the multi-point timse
and sur criteria. Explored design points are represented by circles.

response <- fun(design)

model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

T <- 80 ; iter <- 10

obj <- EGI(T=T,model=model,method="ranjan",fun=fun,

iter=iter,lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=obj$lastmodel,T=T,new.points=iter,

main="10 iterations of the ranjan criterion")

EGI and EGIparallel take as argument a km object generated with the km function
of the DiceKriging package. This choice ensures that the user has a basic knowledge
of the DiceKriging package before using KrigInv. The other arguments relate to the
problem at hand, that is: the target function fun, the lower and upper bounds of the
hyper-rectangle X (lower and upper), the threshold T, the number of iterations iter
(each of them bringing 1 or r > 1 observations), the sampling criterion method, and
the number of points per batch batchsize (EGIparallel only). More advanced options,
related to the evaluation and optimization of the criteria, are described in Section 4.

EGI returns a list with several fields. One of them (lastmodel) is the last krig-
ing model obtained after all iterations. In our example we used this km object in a
print uncertainty call, displaying the excursion probability once the ten new points
are evaluated. Other important outputs include the newly sampled points, par, and the
value of f at these points, value.

The following example is a basic use of the EGIparallel function with three it-
erations. In this example, each iteration gives a batch of r = 4 points, for parallel
evaluations of f . The output of this code is provided in Figure 4 (right).
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#a km object called "model" is built as before (code not reproduced)

T <- 80 ; iter <- 3 ; r <- 4

obj <- EGIparallel(T=T,model=model,method="sur",fun=fun,

iter=iter,batchsize=r,lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=obj$lastmodel,T=T,new.points=iter*r,

main="3 iterations of a parallel sampling criterion")

The two previous examples can be used with different sampling criteria by simply
changing the argument method of EGI or EGIparallel.

Remark 1. Other examples of use of EGIparallel (one in dimension 6 and one 2d−test
case in nuclear safety) are presented in Chevalier et al. (2012).

3.4. Elements of computational effort required by the strategies

In this section, we provide some elements related to the computational time required to
run the different sampling strategies. In general, the computational effort grows rapidly
with the dimension d of the input space X, because of three main effects.

• With kriging, the number of observations n often grows with the dimension, in
order to learn the covariance function and ensure a reasonable space filling. The
cost therefore grows accordingly because of the inversion of a n×nmatrix required
to compute kriging means and variances.

• The optimization in dimension d of any sampling criterion is more difficult and
requires evaluating the criterion at more locations.

• When an integral criterion is used, the number of integration points required to
compute the criterion with a good accuracy is higher.

Note that the computation time of all criteria described above is also marginally impacted
by d through the higher computing cost of the covariance function, e.g., when a separable
covariance function is chosen.

In Table 1, we show indicative computational time for evaluating the ranjan and sur
criteria (with r = 1), and the time required to maximize them over X. Three problems,
respectively in dimension two, six and twenty are considered. Default parameters are
used for optimization and integration. All models are based on standard Latin Hyper-
cube Sampling (LHS) designs. The number of design points for each problem is arbitrary
and quickly increases with the dimension. The 6D function is the classical benchmark
function hartman (Dixon and Szegö (1978)); the 20D function is the spherical func-
tion −∑20

i=1(xi − 1/2)2. Note that the function themselves do not have any impact on
the computation time of the criteria. Only the dimension does. Times are given for a
workstation with a 2.53GHz CPU and 3GB of RAM.
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Table 1: Computation time (in seconds) required to evaluate and optimize pointwise
and integral criteria, on different test problems.

ranjan ranjan maximization sur sur maximization

Branin (2D), n = 12 pts < 0.001 0.65 0.0024 1.4
6D function, n = 60 pts < 0.001 4.1 0.005 10.4
20D function, n = 400 pts 0.008 82 0.025 133

On these examples, the computational effort increases quickly with dimension for
both criteria. This is due to the higher number of observations and also to the higher
number of points tested by the genoud optimizer (approximately 600, 3000 and 6000,
respectively, for the three problems). We see here that the practical interest of the
methods implemented in KrigInv depends on the time required to obtain design points.
Since it takes approximately two minutes in 20D to choose such a point, the use of the
sur criterion only makes sense if the evaluation time of f is several times slower.

Note that we recommend to use these algorithms only for dimensions d ≤ 20, even
though this limit is of course indicative. Indeed, while problem-dependent, the number
of observations n needed to accurately identify the excursion set may increase rapidly
with the dimension. This makes the use of kriging impractical because of the n × n
matrix inversion used in kriging which limits n to a few hundreds, or thousands at most.

4. Optimizing the performances of the sampling strategies with ad-

vanced options

This section describes the options available to the user for two major sub-problems of
the inversion problems tackled here. First, our sampling strategies usually require to
optimize a sampling criterion at each iteration. The question of choosing the optimiza-
tion method arises naturally. Second, for the criteria involving numerical integration,
the questions of the number and the choice of integration points are detailed.

4.1. Optimization of the sampling criteria

For a one-point criterion, finding x∗ ∈ Xmaximizing or minimizing the criterion amounts
to performing an optimization in dimension d. The options for such optimization are
detailed in Section 4.1.1. For a multi-point criterion, finding the optimal batch of r points
requires an optimization in dimension rd and can be impractical for high r or high d.
In that case, a heuristic optimization strategy consisting in r sequential optimizations
in dimension d is proposed and explained in Section 4.1.2.
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4.1.1. One-point criteria: discrete or continuous optimization

The optimcontrol argument of the EGI or EGIparallel functions allows to tune the
optimization of the selected sampling criterion. optimcontrol is a list with several fields.
The field method has two possible values: “discrete” for an optimization over a discrete
set of points or “genoud” (default) for a continuous optimization with a genetic algorithm
(Mebane and Sekhon, 2011).

When method is set to “discrete”, the user can manually set the field optim.points
to indicate which points will be evaluated. The new observation is chosen as the best
point over the discrete set. This may be useful if the user wants to optimize the criterion
over a discrete grid in dimension d (for small d) or if the user has a guess on the
location of the optimum. If optim.points is not set, 100d points are independently
chosen at random, with a uniform distribution. Alternatively, the genoud algorithm
(recommended option) optimizes a function by building generations of points spread on
the domain X, selecting the ones with the best f values and mutating them in order
to have a new generation of points to evaluate. The user has the possibility to tune
the parameters of the genoud algorithm, including the fields pop.size (default: 50d)
or max.generation (default: 10d) which are respectively the number of points in each
generation and the maximum number of generations. The maximum number criterion
evaluations is pop.size×max.generation.

4.1.2. Parallel criteria: standard or heuristic optimization

The optimization of the multi-point sampling criteria is not trivial. Instead of searching
for an optimal point xn+1 ∈ X, multi-point sampling criteria are looking for an optimal
batch of r points (xn+1, . . . ,xn+r) ∈ X

r. This optimization problem of dimension rd
and can be very challenging.

In KrigInv, the user can choose between two optimization scenarios using the field
optim.option of the optimcontrol list:

• Standard optimization in dimension rd, optim.option = 1 : the optimizer works
directly in dimension rd to find the optimal batch of r points.

• Heuristic optimization strategy (default), optim.option = 2 : this option applies the
following heuristic optimization strategy. First, find the point xn+1 optimizing the
criterion for r = 1. Then, consider xn+1 as fixed and find a point xn+2 optimizing
the criterion for r = 2. Iterate this procedure r times to finally obtain the batch
of points xn+1, . . . ,xn+r. Though this heuristic is clearly sub-optimal in theory,
it often outperforms the standard optimization when the dimension rd becomes
difficult to handle for the optimizer.

Similarly to the one-point case, the user can choose between continous and discrete
optimization. When continuous optimization (with genoud) is selected, the user can
choose between the standard and heuristic scenarios. For discrete optimizations, only
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the heuristic strategy is applied, as combinatorial explosion prevents from optimizing
over all the combinations of r points among the discrete set of points.

Figure 5: Excursion probability after five iterations of the multi-point timse criterion,
with two scenarios for the optimization. New evaluated points are represented by circles.

In Figure 5, we perform five iterations of the multi-point timse criterion with r = 4.
Here, we observe that brute force optimization (left) yields less satisfying results than the
heuristic strategy (right). Indeed, eight points are located far from the boundary, which
correspond to either poor local optima or premature termination of the optimization. On
the contrary (right), all the points but three are well spread on the estimated boundary
when the heuristic strategy is chosen.

To conclude this section, we would recommend to use either the heuristic optimization
strategy (default) or, if the user wants an optimization in dimension rd, to increase the
value of pop.size to at least 100rd (if affordable numerically).

4.2. Importance sampling for numerical integration

4.2.1. Integration options

The computation of the integral criteria presented in Equations 3, 5 and 8 involves
numerical integration. The integration domain is X for sur and timse, and X × X for
jn. Computing such integrals is not trivial as the evaluation cost of the integrand is
significant. Consequently, the integration points should be chosen carefully, especially
when the dimension is high, in order to accurately evaluate the criteria at reasonable
cost.

In KrigInv, three options are available for choosing integration points: fixed integra-
tion points (provided by the user), random integration points with uniform distribution,
or random integration points with an instrumental distribution. The integcontrol argu-
ment of EGI or EGIparallel is a list specifying how to build these integration points.
The most important fields in this list are integration.points and integration.weights in
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case the user decides to specify manually his own integration points and weights, ob-
tained from another procedure, or n.points and distrib to specify instead the number M
of integration points and the distribution to sample from. Possible values for distrib are
“sobol” (default) or “MC”, to use the Sobol sequence or a sample from a uniform dis-
tribution. Other (recommended) values are the names of the integral criteria: “timse”,
“sur” and “jn”. If the argument integcontrol is not set, the default setting is to take
100d integration points with the Sobol sequence.

Three instrumental distributions are available to compute the integrals present in
the timse, sur and jn criteria. We use the expressions “timse (respectively, sur or jn)
instrumental distribution” as each distribution is adapted to the corresponding sampling
criterion. These distributions were obtained by noting that the integrand of any criterion
(Equations 3, 5 and 8) may not depart much from the integrand of the corresponding
uncertainty measure. This suggests the use of the following instrumental densities h(·):

• timse criterion (one-point and multi-point): h(x) ∝ s2n(x)Wn(x)dPX(x),x ∈ X,

• sur criterion (one-point and multi-point): h(x) ∝ pn(x)(1− pn(x))dPX(x),x ∈ X ,

• jn criterion: h(z1, z2) ∝ pn(z1)pn(z2)dPX(z1)dPX(z2), (z1, z2) ∈ X× X.

When integcontrol$distrib=“timse”,“sur” or “jn”, KrigInv automatically builds integra-
tion samples from the corresponding distributions. The integration sample is renewed
at each iteration of the sequential inversion. We strongly recommend users to use these
instrumental distributions as they have been shown to considerably enhance the compu-
tation and the optimization of integral criteria in practice (Chevalier et al., 2012).

4.2.2. Sampling from the instrumental density

Sampling from the instrumental densities h(·) is not an easy task. Indeed, as the inversion
progresses, the region where the instrumental densities are strictly positive can become
very narrow and non-connected, which excludes a basic Markov Chain Monte-Carlo
approach.

For the moment, a simple procedure has been implemented to tackle this problem.
We explain it shortly in the particular case of the sur instrumental distribution. The
idea remains valid for the two other distributions. For sur, the idea consists in sampling
from a simpler discrete instrumental distribution:

∑N
j=1 pn(uj)(1 − pn(uj))δuj

, where
N is a large number and u1, . . . ,uN is an i.i.d sample of points with distribution PX.
Obtaining a weighted sample of M integration points from this discrete distribution is
not hard. A major drawback of this method, mentioned in Chevalier et al. (2012), is
that both M and N must tend to infinity to ensure the convergence to the integral.

InKrigInv, the user can modify the value ofN (default: 10M) in the integcontrol list
through the n.candidates field. A higher value of N entails a more precise instrumental
density and improves the quality of the integration sample (and thus the accuracy of the
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criterion computation). However, it also increases computation time. The distribution
PX of these N points (field init.distrib) is uniform by default. The user has the possibility
to specify manually the position of these N points if he wants a sample from a non-
uniform distribution PX. Note that when the jn criterion is used with the corresponding
jn instrumental distribution, points are sampled in X×X (and not X). If M integration
points in X (and not X × X) are imposed, KrigInv automatically creates a grid of M2

integration points in X×X. Users choosing the jn criterion are strongly encouraged not
to choose this expensive option and to rely on the jn instrumental distribution instead.

4.2.3. Illustration

We now illustrate the advantages of sampling from an instrumental density instead of
uniform sampling with our R example. The code below generates a sample of 1000
integration points from the sur distribution (i.e. a distribution with density h(x) ∝
pn(x)(1− pn(x))), and a sample of 1000 integration points from a uniform distribution.
The random samples are plotted on Figure 6.

#a km object is built as before (code not reproduced) from 12 obs.

#Sample of integration points from the "sur" distribution.

integcontrol <- list(n.points=1000,distrib="sur")

integ.outputs <- integration_design(integcontrol=integcontrol,d=2,

lower=c(0,0),upper=c(1,1),model=model,T=T)

print_uncertainty_2d(model=model,T=T,type="pn",show.points=FALSE,

main="one sample from the instrumental density")

points(integ.outputs$integration.points,pch=17,cex=2)

#Sample of integration points from the uniform distribution.

integcontrol <- list(n.points=1000,distrib="MC")

integ.outputs <- integration_design(integcontrol=integcontrol,d=2,

lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=model,T=T,type="pn",show.points=FALSE,

main="one sample from uniform distribution")

points(integ.outputs$integration.points,pch=17,cex=2)

Table 2 compares the values of the sur criterion at point x = (0.2, 0.2) obtained using
the two sampling scheme (averaged over 1000 repetitions) to an accurate estimation of
the criterion based on 100000 points (using a Sobol sequence). We see that both methods
have no bias as, in average, the value of the sur criterion at point x is the actual exact
value. However, for a comparable computational cost, the evaluation of the criterion is a
lot more accurate if the sur distribution is chosen. Indeed, for different random samples
of 1000 integration points, the standard deviation of the value of the sur criterion at x
with the instrumental distribution is one order of magnitude smaller than with a uniform
distribution.

17



Figure 6: Excursion probability after 12 initial evaluations of the Branin function with a
threshold T = 80. The set of triangles correspond to the sample used for the numerical
integration. Such a sample is distributed with an instrumental density proportional to
pn(x)(1 − pn(x)) (left) and uniformly (right).

Table 2: sur values based on different sampling schemes. Numbers in parenthesis are
standard deviations over 1000 repetitions.

MC (1000 pts) Instrumental distribution sur (1000 pts) Sobol (100000 pts)
6.04e-2 (2.4e-3) 6.04e-2 (3.3e-4) 6.04e-2

5. Conclusion and perspectives

The R package KrigInv offers sequential sampling strategies to estimate excursion sets,
probabilities of failure and contour lines of a real-valued expensive-to-evaluate function
by means of a kriging model. The goal of the present tutorial is to make the package
accessible to people who are not familiar with kriging, and to clearly emphasize the
strengths and limitations of such metamodel-based inversion methods.

From an end-user perspective, we would recommend to use a sampling criterion and
parameters that do an adapted trade-off between performance of the criterion and com-
putation time. If a single evaluation of f takes only a few seconds, pointwise criteria
can quickly provide interesting results. On the other hand, if evaluating f takes many
hours, it may be worth spending a few minutes to choose carefully the design points
with an integral criterion and a generous budget for both efficient integration and opti-
mization. Finally, if several CPUs are available to evaluate f simultaneously at different
points, the user can take advantage of the parallel sampling criteria. In that case, the
computational savings are likely to be very significant.

The current version of the KrigInv package can be further improved in different
ways. Allowing the users to use their own optimizer for selecting the best points accord-
ing to the proposed criteria may provide more flexibility to advanced users. Sequential
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Monte Carlo methods might improve the performances of criteria involving integrals.
Some of the sampling criteria implemented in the package (sur and jn) might be used in
the case where the objective function returns a multivariate output (Conti and O’Hagan,
2010; Paulo et al., 2012) or even a function (Hung et al., 2012; Rougier, 2008), provided
that pn(·) can be computed easily. Finally, new criteria involving random set consider-
ations are currently being studied and will be implemented in KrigInv in the longer
term.
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Appendix A. Kriging basics

The goal of this section is to provide a basic understanding of the kriging metamodel.
Well known references on kriging include Stein (1999); Cressie (1993). In kriging we
consider that f is a realization of a Gaussian process ξ. A key property in this setting
is that, when n observations An of ξ are available, the conditional process ξ|An is still
Gaussian. The unconditional covariance function k(·, ·) of ξ is assumed to be a known
symmetric positive definite function or kernel. The kriging mean at a point x ∈ X,
denoted by mn(x), is the best linear unbiased predictor of ξ(x) from the observations.
The conditional covariance from the n observations between two points x and x′, known
as kriging covariance, is denoted by kn(x,x

′), so that, finally, ξ|An ∼ GP (mn, kn).
In particular, for all x ∈ X, ξ(x) has a Gaussian distribution with mean mn(x) and
variance s2n(x) := kn(x,x). In simple kriging the unconditional mean function m(·) of ξ
is assumed to be zero. In the ordinary kriging setting, the mean function is assumed to
be an unknown constant µ. In that case, the kriging mean and covariance are given by:

mn(x) =µ̂+ k(x)⊤K−1(y − µ̂1) (A.1)

kn(x,x
′) =k(x,x′)− k(x)⊤K−1k(x′) +

(1− 1⊤K−1k(x))(1 − 1⊤K−1k(x′))1⊤K−11 , (A.2)
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where K is the n × n covariance matrix at the observations: Kij = k(xi,xj) and k(x)
is the vector of size n with ith entry equal to k(x,xi). 1 is the vector of size n with
components equal to one and µ̂ is the estimator of the trend from the n observations
y = (ξ(x1), . . . , ξ(xn))

⊤:

µ̂ =
1⊤K−1y1⊤K−11 . (A.3)

The reader is referred to Roustant et al. (2012), Section 2, for the exact expressions
of the kriging mean and variance in the more general universal kriging setting. The
knowledge of these formulas is not required as all the computations are transparently
performed in the DiceKriging package (Roustant et al., 2012). Such package allows
to compute easily kriging means and variances from the observations at any points x
through the construction of a km (kriging model) object.

Appendix B. Some outputs of an inversion

In this section, we describe what the actual outputs of an inversion can be. Indeed,
at the end of an inversion, it is obviously not enough to indicate only what the newly
evaluated points are. The function print uncertainty has been coded to settle this
issue.

This function is a wrapper around three functions, print uncertainty 1d, 2d and
nd, which are called depending on the dimension d of the domain X. The main feature
of this function is to plot the function pn(·) over the whole domain X. Such a task is
not difficult when d ≤ 2, but becomes more challenging when d > 2. A first example in
dimension one follows.

f <- function(x) return(x^2)

design <- matrix(c(0.1,0.3,0.4,0.9),ncol=1)

response <- f(design)

model1d <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

print_uncertainty_1d(model=model1d,T=0.5,type="pn",

xlab="x",ylab="pn(x)",cex.lab=1.5,cex.points=3,

main="excursion probability",cex.main=1.5)

design.updated <- matrix(c(design,0.6,0.7,0.8),ncol=1)

response.updated <- f(design.updated)

model1d.updated <- km(formula=~1, design = design.updated,

response = response.updated,covtype="matern3_2")

print_uncertainty_1d(model=model1d.updated,T=0.5,type="pn",

xlab="x",ylab="pn(x)",cex.lab=1.5,cex.points=3,
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main="updated excursion probability",cex.main=1.5,

new.points=3,pch.points.end=19)

Figure B.7 gives the output of such code. In this example in dimension d = 1, the
unknown function is f(x) = x2. The threshold T is fixed to 0.5. As no domain X is
specified in the arguments of print uncertainty 1d, the default value [0, 1]d is used.
The plots on the right are generated using the DiceView package (Richet et al., 2012)
and represent the kriging mean and confidence intervals on the whole domain X. These
plots are useful to visualize our knowledge of the function f and the regions where f may
exceed the threshold T . The plots on the left give the value of the uncertainty function.
By default this function is defined as the function pn(·), but other definitions can be set
with the argument type. In the R example above we additionally evaluate f at points
0.6, 0.7, 0.8. The result is a better knowledge of the excursion set {x ∈ [0, 1] : f(x) > 0.5}
as one can see that, with these three new evaluations, pn(x) is equal to 0 or 1 on almost
all the domain.

Figure B.7: Two calls of the print uncertainty 1d function with two different km
objects

An example in dimension d = 2 on the Branin-Hoo function is already widely devel-
oped in this paper and is not reproduced here. In dimension d > 2 it is not trivial to
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represent the value of pn(x) on the whole domain X. Let x = (x(1), . . . , x(d)) ∈ X. The
print uncertainty nd function offers a pair plot with two possible options:

• option=“mean”: For all possible pairs of components 1 ≤ i < j ≤ d we plot the
two-dimensional function:

gij(u, v) =

∫

{x∈X: x(i)=u,x(j)=v}
pn(x)PX(dx),

• option=“max”: For all possible pairs of components 1 ≤ i < j ≤ d we plot the
two-dimensional function:

hij(u, v) = max
{x∈X: x(i)=u,x(j)=v}

pn(x).

Figure B.8 represents the output of the following R example, with a three-dimensional
function f .

f <- function(x) return( branin(c(x[1],x[2]) )*x[3] )

n <- 50 #high number of evaluations

T <- 80 #threshold

design <- data.frame(maximinLHS(n,k=3)) #initial design (a LHS)

response <- apply(X=design,MARGIN=1,FUN=f)

model3d <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

print_uncertainty_nd(model=model3d,T=80,type="pn",option="max",

main="max excursion probability",cex.main=2,

levels=c(0.05,0.5,0.95),

nintegpoints=100,resolution=30)

print_uncertainty_nd(model=model3d,T=80,type="pn",option="mean",

main="average excursion probability",cex.main=2,

levels=c(0.05,0.5,0.95),

nintegpoints=100,resolution=30)

In Figure B.8 “max” (or “average”) excursion probability refers to a maximum (resp.
average) excursion probability with respect to d−2 variables. Note that the computation
performed in the print uncertainty nd function are very intensive. One can change
the arguments nintegpoints to control the number of integration points in the integral of
gij (or the maximum in hij) and resolution to tune the resolution of each image. Each
pixel corresponds to one evaluation of the function gij or hij .
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Figure B.8: Two calls of the print uncertainty nd function with two different options
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Appendix F: Ongoing work in

robust inversion

F.1 A new SUR criterion based on fast Gaussian

process conditional simulation

This Section presents an ongoing work on an alternative SUR strategy for robust

inverson which mitigates one of the drawbacks of the SUR strategy of Section 6.2

(see, remarks on the discretization parameter, ℓ, in the last paragraph of Sec-

tion 6.2.2). The construction of this new SUR strategy relies, again, on update

formulas which allow significant computational savings and – sometimes – enable

to find closed-form expressions when conditional expectations (like the ones of

Equations (6.14),(4.12),(4.13)) are at stake.

An important difference is that the update formulas involved are not meant to

update a kriging mean or variance but rather to update a conditional realization

of a Gaussian process. In short, a Gaussian process realization conditioned on

n observations can be “transformed” efficiently in order to be conditioned on n+q

observations. Moreover, the dependence of the Gaussian process realization on

the response at these q new points can be exhibited explicitly, which may allow

computation of expectations with respect to these random responses. The next

subsection details these arguments. We then propose an uncertainty measure,

provide closed-form expressions for the associated SUR criteria and test it on the
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nuclear safety case.

F.1.1 Updating Gaussian process realizations

Let ξ ∼ GP(m, k) be a Gaussian process on a domain X and (x1, . . . ,xp) :=

x(p) ∈ X
p be a batch of p locations. Computing simulations of ξ at locations

x(p) amounts to simulate realizations of a Gaussian random vector with mean

vector m(x(p)) = (m(x1), . . . ,m(xp))⊤ and covariance matrix Σ ∈ R
p×p such that

Σij = k(xi,xj). Standard algorithms are based on a decomposition (e.g., LU

or Cholesky) of Σ which comes with at a cost of O(p3). Then, each simulation

consists of a matrix-vector product so that, when a large number M of simulations

is performed, the complexity is of O(Mp2) (see, e.g. Ripley [2009]).

As explained in Appendix A, a well known algorithm for simulating M Gaussian

process realizations in p locations conditionally on n observations consists in adding

to the kriging mean obtained with the n observations M kriging residual functions

artificially obtained from non-conditional realizations. The algorithm is detailed

in, e.g., Chilès and Delfiner [2012]; Hoshiya [1995]; Vazquez [2005].

Another possible interpretation of the algorithm is to say that the conditional

simulation is obtained by adding the difference between two kriging mean functions

to the non-conditional simulation. The two kriging mean functions are obtained

from the real n observations or from n simulated observations.

As the method described here does not depend on the choice of the mean function

m and covariance kernel k, one may apply this algorithm to realizations of a

Gaussian process already conditioned on n observations (with mean functionmn(·)
and covariance function kn(·, ·) ) in order to condition the realizations to q ≥ 1

additional observations at a batch xnew = x(q) ∈ X
q. The observations locations

are denoted by x1, . . . ,xn,xn+1, . . . ,xn+q. Mathematically if x is a point of the

batch x(p) we have:

zn+q(x) = zn(x) + (mn+q(x)real −mn+q(x)simulated), (F.1)

where zn(x) is the old simulated value at point x, zn+q(x) is the newly simulated
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value,mn+q(·)real is the updated kriging mean function obtained from the real q new

observations (at xnew) and mn+q(·)simulated is the updated kriging mean function

obtained from q simulated observations at xnew.

Note that if the q points of the batch xnew are also points of the batch x(p) then

the simulations at these points are already done. However, in the opposite case

the conditional simulation of ξ(xnew) need to be performed before computing the

kriging mean. These simulations are performed conditionally on n+p observations,

which involves a potentially important cost of O((n+ p)3 +Mq2).

Equation (F.1) written is this form emphasizes that we need to compute a dif-

ference between two updated kriging mean function. This motivates the use of

kriging update formulas (see, Equation (2.21)). Equation (F.1) can be rewritten:

zn+q(x) = zn(x) + kn(x,xnew)
⊤K−1

new(ξ(xnew)real − ξ(xnew)simulated) (F.2)

whereKnew := kn(xn+i,xn+j)1≤i,j≤q and kn(x,xnew) := (kn(x,xn+1), . . . , kn(x,xn+q))
⊤.

In conclusion, once the q kriging weights λnew(x) := K−1
newkn(x,xnew) of xnew for

the prediction at point x are precomputed for each point x of the batch x(p), the

update of one conditional simulation comes at a cost of only O(pq) (i.e. p vector-

vector products of size q). This cost is lower than the cost of O(p2) of classical

algorithms. An example of update of a conditional Gaussian process realization is

illustrated in Appendix A.

In addition to a reduced cost for updating conditional realizations of a Gaussian

process, Equation (F.2) has the advantage to exhibit the relation between the

updated Gaussian process realization and the true response ξ(xnew) = ξ(xnew)real.

The latter will be further used in the next subsection.

F.1.2 Uncertainty quantification and SUR criteria

Let us consider again the problem of using SUR strategies for robust inversion.

We are using the notations of Sections 6.1 and 6.2. Let xc ∈ Xc. In this section
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we consider a new approximation of the non-excursion probability,

p̃n(xc) := P

(
max

xnc∈Xnc

ξxc
(xnc) ≤ T |An

)
, (F.3)

of the sectional Gaussian process ξxc
. LetM > 1 and let us considerM realizations

of ξxc
conditioned on n real observations An. Note that the observation locations,

x1, . . . ,xn lie in X and not in Xc.

The M conditional simulations of ξxc
are supposed to be performed in ℓ points

of Xnc, x1
nc, . . . ,x

ℓ
nc and are denoted by (z11,n, . . . , z

ℓ
1,n), . . . , (z

1
M,n, . . . , z

ℓ
M,n). A

natural Monte-Carlo approximation of p̃n(xc) consists in counting the proportion

of realizations that do not exceed T :

p̂n(xc) :=
1

M
#{1 ≤ i ≤M : max

1≤j≤ℓ
zji,n ≤ T}, (F.4)

where # denotes the cardinal of a set. Now, as in Section 6.2, the uncertainty at

time n and the associated SUR criterion can be written:

Ĥn(An) :=

∫

Xc

p̂n(1− p̂n)dPXc (F.5)

Ĵn(x
(q)) :=En

(∫

Xc

p̂n+q(1− p̂n+q)dPXc

)
. (F.6)

We will now use results from Section F.1.1 to obtain closed-form expression for

Equation (F.6) in the particular case where the size of the batch is q = 1.

Let us consider a batch of q = 1 point, x(q) := xn+1 ∈ X. If xn+1 is equal to

one of the points (xc,x
j
nc) for some 1 ≤ j ≤ ℓ, then let zℓ+1

i,n := zji,n, 1 ≤ i ≤ M .

Otherwise for each (1 ≤ i ≤ M), the number zℓ+1
i,n is obtained by simulating

ξ(xn+1), conditionally on the n+ℓ observations ξ(x1), . . . , ξ(xn), z
1
i,n, . . . , z

ℓ
i,n. Now,

Equation (F.2) can be rewritten as follows:

zki,n+1 = zki,n + λ(xk
nc)
(
ξ(xn+1)− zℓ+1

i,n

)
, 1 ≤ i ≤M, 1 ≤ k ≤ ℓ, (F.7)
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where λ(xk
nc) is the kriging weight of xn+1 for the prediction at point (xc,x

k
nc), at

time n. This weight is equal to kn(xn+1, (xc,x
k
nc))/s

2
n(xn+1).

Equation (F.7) will be useful to calculate the coverage probability at time n+ 1:

p̂n+1(xc) :=
1

M
#{1 ≤ i ≤M : max

1≤j≤ℓ
zji,n+1 ≤ T}. (F.8)

as, for each simulation i we will manage to know, in function of ξ(xn+1), whether

max1≤j≤ℓ z
j
i,n+1 ≤ T or not.

Let k ∈ {1, . . . , ℓ} and let us the notations aki := zki,n−λ(xk
nc)z

ℓ+1
i,n and bk := λ(xk

nc).

If bk > 0, we have,

zki,n+1 ≤ T ⇔aki + bkξ(xn+1) ≤ T

⇔ξ(xn+1) ≤
T − aki

bk
,

and, then,

max
1≤j≤ℓ, bj>0

zji,n+1 ≤ T ⇔ ξ(xn+1) ≤ min
1≤j≤ℓ, bj>0

T − aji
bj

(F.9)

Similarly, we can show that:

max
1≤j≤ℓ, bj≤0

zji,n+1 ≤ T ⇔ ξ(xn+1) ≥ max
1≤j≤ℓ, bj<0

T − aji
bj

. (F.10)

Also, the case of zero kriging weights needs to be taken into account:

max
1≤j≤ℓ, bj=0

zji,n+1 ≤ T ⇔ max
1≤j≤ℓ, bj=0

zji,n ≤ T. (F.11)

In conclusion, the updated simulation number i does not exceed T if and only if
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the condition (F.11) is satisfied and if:

ξ(xn+1) ∈ [ui, vi] :=

[
max

1≤j≤ℓ, bj<0

T − aji
bj

, min
1≤j≤ℓ, bj>0

T − aji
bj

]
(F.12)

if the latter interval exists (i.e. if the lower bound is lower than the upper bound);

and with the convention : ui := −∞ if no bj is negative and vi := +∞ if no bj is

positive.

As, at time n, ξ(xn+1) ∼ N(mn(xn+1), s
2
n(xn+1)), let us write ξ(xn+1) =

d mn(xn+1)+

sn(xn+1)N , where N ∼ N(0, 1). Equation (F.12) can be rewritten:

N ∈ [u′
i, v

′
i] :=

[
ui −mn(xn+1)

sn(xn+1)
,
vi −mn(xn+1)

sn(xn+1)

]
. (F.13)

Note that, u′
i ≥ v′i means that the updated simulation i always exceeds or equals

T , simply because conditions (F.9) and (F.10) cannot be both satisfied. . Thus, to

count the number of (updated) simulations that do not exceed T we only consider

the set of indices i, where the simulation i might not exceed T , written as follows:

E := {1 ≤ i ≤M : max
1≤j≤ℓ, bj=0

zji,n ≤ T and u′
i < v′i} (F.14)

A simple way to count this number of simulations, in function of the (centered,

normalized) responseN is to count the number of u′
i’s lower thanN and to subtract

the number of v′i’s lower than N :

p̂n+1(xc) :=
1

M
(#{i ∈ E : u′

i < N} −#{i ∈ E : v′i < N}) . (F.15)

It thus appears that p̂n+1(xc), seen as a function of the normalized response N is

piecewise constant on k − 1 intervals (w1 := −∞, w2), (w2, w3), . . . , (wk−1, wk :=

∞), for some k > 1, where the wi’s can be calculated by sorting the u′
i’s and the

v′i’s. With these notations, p̂n+1(xc)(1 − p̂n+1(xc)) seen as a function of N is also

piecewise constant on these k − 1 intervals, with values denoted by γ1, . . . , γk−1.

To obtain the expectation of p̂n+1(xc)(1 − p̂n+1(xc)) with respect to the random
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response N , it remains to integrate this function with respect to the standard

Gaussian distribution:

En (p̂n+1(xc)(1− p̂n+1(xc))) =
k−1∑

j=1

γj(Φ(wj+1)− Φ(wj)), (F.16)

which ends our calculations as the SUR criterion given by Equation (F.6) can be

computed by integrating the latter expression over Xc.

The obtained closed-form expression in Equation (F.16) has advantages and draw-

backs compared to the SUR criterion studied in Section 6.2. Its use allows the

choice of a much larger discretization parameter ℓ as the computation cost is not

expected to rise exponentially with ℓ like before, with the call to Φ2ℓ. Moreover,

the computation cost of the criterion is expected to be lower as the computation

of kriging weights (to obtain the u′
i’s and v′i’s), or of the c.d.f., Φ of the standard

normal distribution, are not expensive operations. On the other hand, the com-

putation of this SUR criterion is expected to require an important memory as, for

each integration point xc ∈ Xc, a large number, M , of conditional simulations in

ℓ points needs to be saved. Moreover, the explicit expressions for the expectation

of the future uncertainties were obtained when only q = 1 point is added. Further

work is required to establish similar expressions for q > 1 and, one may expect that

these expressions will involve computations of Φq, which will be more expensive.

F.1.3 Application to the test-case

The test-case introduced in Section 5.3 is now studied using this new SUR criterion

computed using Equation (F.16). Most of the parameters of the algorithm are

similar to those of Section 6.2.3. However, we list below some changes. The values

between parenthesis are the values used in Section 6.2.3.

• Number of points evaluated per iteration: q = 1 (4).

• Total number of iterations: 160 (40).

• SUR criterion minimized at each iteration: Ĵn (see, Equation (F.6)).
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• Number of integration point for the integral over Xc: 100 points renewed at

each iteration (200).

• Parameters of the genoud algorithm: pop.size = 50, max.generation = 4

(100,5).

• Discretization parameter: ℓ = 50 (5).

• Number of GP realization per integration point: M = 500.

In comparison to Section 5.3, the budget for evaluation of the criterion (number of

integration points) and for its optimization (parameters of the genetic algorithm)

is slightly reduced because the current R implementation of the SUR strategy is

not well optimized yet, and quite computer intensive at the moment.

Figure F.3 shows that one part of the safe region is not properly identified (at

the top left on Xc). Some newly evaluated locations (in red) do not seem to be

relevant as there are in a region where p̂n ≈ 0 or 1. Further work is necessary

to determine whether this is due to the low optimization budget (and the small

number of integration points) or not. The SUR criteria presented in this Section

is indeed expected to be - in average - more reliable than the previous one as it

enables the use or a larger discretization parameter ℓ which is convenient, specially

if the number of non-controlled parameters, dnc is greater than 1.
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Figure F.3: Plot of the function p̂n(xc) of Equation (F.4) after n evaluations of the
simulator. The triangles are the (projected) 30 points of the initial design. Areas
in black correspond to p̂n ≈ 0 and areas in white correspond to p̂n ≈ 1.
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F.2 Bonferroni bounds for the exceedance prob-

ability

In this Section, we are interested in bounds for the quantity:

p := P( max
i∈{1,...,q}

Yi ≥ T ), (F.17)

where T ∈ R is an arbitrary threshold and Y = (Y1, . . . , Yq)
⊤ is a Gaussian

vector of large size q (typically, q ≫ 1000), with mean m and covariance matrix

Σ. A direct calculation of p is possible through the c.d.f. of the multivariate

normal distribution in dimension q (see, e.g., the algorithms of Genz [1992]) but

such calculation is expected to be computationally expensive; so that we are here

interested in a fast-to-compute upper bound of p.

We follow the article of Taylor et al. [2007] to mention that a trivial upper bound

for p is the so called “Bonferroni” bound:

p ≤
q∑

i=1

P(Yi ≥ T ) =

q∑

i=1

Φ

(
mi − T√

Σii

)
. (F.18)

However, the Bonferroni bound might not be sharp if the correlation between the

Yi’s is strong. Thus, following the idea that the maximum of the Yi’s has to be

one of them we have:

p =

q∑

i=1

P(Yi ≥ T and for all j 6= i, Yi > Yj) (F.19)

≤
q∑

i=1

P(Yi ≥ T and for some j(i) 6= i, Yi > Yj(i)). (F.20)

Equation (F.20) raises the choice of the indices j(i) leading to a good bound (i.e.

as low as possible), without needing expensive calls to the c.d.f. of the normal

distribution in high dimension.
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In Taylor et al. [2007], Y1, . . . , Yq are considered as unknown responses of a non-

stationary Gaussian process ξ which is discretely sampled at q points x1, . . . ,xq of

a d−dimensional grid in an input space X, which is a compact subset of Rd. Thus,

p is seen as an approximation of the probability of exceedance of ξ above T . When

ξ is stationary and centered, Taylor et al. [2007] suggest to select, in each term of

the sum (F.20) the 2d “neighbours” of the point xi on the grid. This writes:

p ≤
q∑

i=1

P(ξ(xi) ≥ T and ξ(xi) > ξ(xj) for all xj neighbour of xi) (F.21)

Each term of the sum (F.21) requires one call to the c.d.f. of the multivariate nor-

mal distribution in dimension 2d+1. However, when ξ is stationary and centered,

Taylor et al. [2007] manage to significantly reduce the cost for computing these

terms.

In a more general setting (arbitrary Gaussian vector Y) we may choose the in-

dices j(i) using a different strategy. More precisely, we believe that this work

opens interesting perspectives for using SUR strategies in robust inversion (see,

Chapter 6).
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D. Ginsbourger. Métamodèles multiples pour l’approximation et l’optimisation de

fonctions numériques multivariables. PhD thesis, Ecole nationale supérieure des

Mines de Saint-Etienne, 2009. 1, 6, 14

D. Ginsbourger and R. Le Riche. Towards gaussian process-based optimization

with finite time horizon. In mODa 9–Advances in Model-Oriented Design and

Analysis, pages 89–96. Springer, 2010. 30, 32, 33

D. Ginsbourger, R. Le Riche, and Carraro L. Kriging is well-suited to parallelize

optimization. In Computational Intelligence in Expensive Optimization Prob-

lems. Springer, 2010. 14, 26, 79

R. Girdziusas, J. Janusevskis, and R Le Riche. On integration of multi-point

improvements. Neural Information Processing Systems (NIPS) workshop, 2012.

26

R. Gramacy and H. Lee. Gaussian processes and limiting linear models. Compu-

tational Statistics & Data Analysis, 53(1):123–136, 2008.

R. Gramacy and N. Polson. Particle learning of gaussian process models for sequen-

tial design and optimization. Journal of Computational and Graphical Statistics,

20(1):pp. 102–118, 2011.

R.B. Gramacy and H.K.H. Lee. Adaptive design and analysis of supercomputer

experiments. Technometrics, 51(2):130–145, 2009.

M. Hamada, HF Martz, CS Reese, and AG Wilson. Finding near-optimal bayesian

experimental designs via genetic algorithms. The American Statistician, 55(3):

175–181, 2001.

173

http://cran.r-project.org/web/packages/mvtnorm/vignettes/MVT_Rnews.pdf
http://cran.r-project.org/web/packages/mvtnorm/vignettes/MVT_Rnews.pdf


REFERENCES

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization

bencharking 2009: Noiseless functions definitions. Technical report, INRIA 2009,

2010.

J.F. Hart, E.W. Cheney, and C.L. Lawson. Computer Approximations. Wiley,

New York, 1968. 9

M. Hoshiya. Kriging and conditional simulation of gaussian fields. Journal of

engineering mechanics, 121(2):181–186, 1995. 159

Y. Hung, V. R. Joseph, and S.N. Melkote. Analysis of computer experiments with

functional response. 2012. tentatively accepted by Technometrics.

IRSN. Analysis guide - nuclear criticality risks and their prevention in plants

and laboratories. Technical report, IRSN DSU/SEC/T/2013-334, 2010.

URL http://www.irsn.fr/EN/publications/technical-publications/

Documents/IRSN_report_nuclear_criticality_risks.pdf. 59

J. Janusevskis, R. Le Riche, and D. Ginsbourger. Parallel expected improvements

for global optimization: summary, bounds and speed-up. August 2011. URL

http://hal-emse.ccsd.cnrs.fr/hal-00613971. 26

J. Janusevskis, R. Le Riche, D. Ginsbourger, and R. Girdziusas. Expected improve-

ments for the asynchronous parallel global optimization of expensive functions

: Potentials and challenges. In LION 6 Conference (Learning and Intelligent

OptimizatioN), Paris : France, 2012.

Y. Jin. Surrogate-assisted evolutionary computation: Recent advances and future

challenges. Swarm and Evolutionary Computation, 1 (2):61–70, 2011. 6

D. R. Jones. A taxonomy of global optimization methods based on response sur-

faces. Journal of Global Optimization, 21:345–383, 2001. 7

D. R. Jones, M. Schonlau, and J. William. Efficient global optimization of expen-

sive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

2, 7, 24, 60

174

http://www.irsn.fr/EN/publications/technical-publications/Documents/IRSN_report_nuclear_criticality_risks.pdf
http://www.irsn.fr/EN/publications/technical-publications/Documents/IRSN_report_nuclear_criticality_risks.pdf
http://hal-emse.ccsd.cnrs.fr/hal-00613971


REFERENCES

B. Kenkel. pbivnorm : Vectorized bivariate normal cdf, 2011. URL http://cran.

r-project.org/web/packages/pbivnorm. 50

S-H. Kim and S-W Na. Response surface method using vector projected sampling

points. Structural Safety, 19:3–19, 1997.

Ling Li, Julien Bect, and Emmanuel Vazquez. Bayesian Subset Simulation : a

kriging-based subset simulation algorithm for the estimation of small probabil-

ities of failure. Technical report, 2012. URL http://publicationslist.org/

jbect. Submitted to PSAM 11 and ESREL 2012.

Amandine Marrel, Bertrand Iooss, François Van Dorpe, and Elena Volkova. An

efficient methodology for modeling complex computer codes with gaussian pro-

cesses. Computational Statistics & Data Analysis, 52(10):4731–4744, 2008.

G. Matheron. The intrinsic random functions, and their applications. Advances

in Applied Probability, 5:439–468, 1973. 6

W. Mebane and J. Sekhon. Genetic optimization using derivatives: The rgenoud

package for r. Journal of Statistical Software, Vol. 42, Issue 11:1–26, 2011. 63

J. Mockus. Bayesian Approach to Global Optimization. Theory and Applications.

Kluwer Academic Publisher, Dordrecht, 1989. 7

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for

seeking the extremum. In L. Dixon and Eds G. Szego, editors, Towards Global

Optimization, volume 2, pages 117–129. Elsevier, 1978. 2, 7, 24

I. Molchanov. Theory of Random Sets. Springer, 2005. 46, 47

M.D. Morris and T.J. Mitchell. Exploratory designs for computational experi-

ments. Journal of statistical planning and inference, 43(3):381–402, 1995.

A. O’Hagan. Curve fitting and optimal design for prediction. Journal of the Royal

Statistical Society. Series B (Methodological), 40(1):1–42, 1978. 22

M.B. Palacios and M.F.J. Steel. Non-gaussian bayesian geostatistical modeling.

Journal of the American Statistical Association, 101:604–618, 2006. 6

175

http://cran.r-project.org/web/packages/pbivnorm
http://cran.r-project.org/web/packages/pbivnorm
http://publicationslist.org/jbect
http://publicationslist.org/jbect


REFERENCES
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