
A DSL for multi-scale and autonomic software

deployment

Raja Boujbel, Sébastien Leriche, Jean-Paul Arcangeli

To cite this version:

Raja Boujbel, Sébastien Leriche, Jean-Paul Arcangeli. A DSL for multi-scale and autonomic
software deployment. ICSEA 2013, 8th International Conference on Software Engineering Ad-
vances, Oct 2013, Venice, Italy. IARIA, pp 291-296, ISBN: 978-1-61208-304-9, 2013. <hal-
00880313>

HAL Id: hal-00880313

https://hal-enac.archives-ouvertes.fr/hal-00880313

Submitted on 14 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50537359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-enac.archives-ouvertes.fr/hal-00880313


A DSL for Multi-Scale and Autonomic

Software Deployment

Raja BOUJBEL

Université de Toulouse

UPS - IRIT

118 route de Narbonne

F-31062 Toulouse, France

Email: Raja.Boujbel@irit.fr

Sébastien LERICHE

Université de Toulouse

ENAC

7 av. Edouard Belin

31055 Toulouse, France

Email: sebastien.leriche@enac.fr

Jean-Paul ARCANGELI

Université de Toulouse

UPS - IRIT

118 route de Narbonne

F-31062 Toulouse, France

Jean-Paul.Arcangeli@irit.fr

Abstract—In this paper, we present an ongoing work which
aims at defining and experimenting a domain-specific language
(DSL) dedicated to multi-scale and autonomic software deploy-
ment. Autonomic software deployment in open environments is an
open issue. There, the topology of target hosts is not always known
due either to unforeseen hardware failures or limitations (network
links, hosts. . . ) or to device arrival and disappearance. In a
previous work, we proposed to describe deployment constraints
using a DSL and then to satisfy them using a middleware
for autonomic deployment, rather than classically building and
executing a deployment plan. As deployment of multi-scale
distributed systems demands the expression of specific constraints
related to dimensions and scales, it is necessary to think over and
define a new domain-specific language. In this paper, we propose
a new DSL designed to support the expression of constraints
and properties related to multi-scale and autonomic software
deployment.

Keywords—Deployment, Multi-Scale, DSL, Component-Based
Software System

I. INTRODUCTION

Pervasive computing, on the one hand, and cloud com-
puting, on the other hand, are central topics in several recent
research studies. Contributions in both domains have reached
a good level of maturity. Nowadays, new research works have
identified the need to make pervasive and cloud computing
systems collaborate, so to build systems which are distributed
over several scales, called “multi-scale” systems.

The INCOME project [1] aims at designing software solu-
tions for multi-scale context management, not only in ambient
networks but also in the Internet of Things and clouds, able to
operate at different scales and to deal with the passage from a
scale to another one. Context management is a complex service
in charge of the gathering, the management (processing and
filtering), and the presentation of context data to applications,
which realization is distributed on the different devices which
compose the system. So, context managers are open multi-
scale applications which must be deployed, i.e. made and kept
available for use, in a situation of mobility and variability of
the quality of the resources. In this project, our work focuses on
software deployment and our goal is to develop a framework
for supporting the deployment of multi-scale applications
such as context managers. Deployment strategies should take
into account the multi-scale aspects like geography, network,
device, and user, as well as non functional properties such as

efficiency and privacy. In multi-scale systems, decentralization,
autonomy and adaptiveness are essential features.

In this paper, we present an ongoing work which aims
at defining and experimenting a Domain-Specific Language
(DSL) dedicated to multi-scale and autonomic software de-
ployment.

The paper is structured as follows. Section II introduces
the two main aspects of our working context: multi-scale dis-
tributed systems and software deployment. Section III provides
an example of deployment of a multi-scale software system,
analyses the requirements, and proposes to use a DSL to
support autonomic deployment. Section IV discusses related
work on DSL for software deployment. Our DSL is presented
in Section V using the example presented in Section III.
Section VI concludes and discusses some perspectives.

II. CONTEXT OVERVIEW

This section introduces the novel concept of multi-scale
system and provides an overview of software deployment.

A. Multi-scale distributed systems

The term “multi-scale system” is present in several recent
research papers [2], [8], [16]: in these works, authors consider
to make collaborate very small systems (objects from the
Internet of Things paradigm as, for example, swarms of tiny
sensors with very low computing capabilities) with very big
systems (such as those found in cloud computing). They
agree that new issues arise, mainly those related to huge
heterogeneity.

In [10], authors argue that the multi-scale nature of a
distributed system should be analyzed independently in several
specific dimensions such as geography, network, device, data,
user. . . Thus, a distributed system can be described as multi-
scale when, for at least one dimension, the elements of its
projection onto this dimension are associated with different
scales. Figure 1, extracted from [11], shows an example of
scales in the “Device processing power” dimension.

However, the concept of “multi-scale system” is not actu-
ally mature. The construction of future multi-scale distributed
systems will necessitate a new kind of languages, middleware
and patterns, allowing to take in consideration the multi-scale
aspects of the systems.



Fig. 1. Scales in the “Device processing power” dimension

B. Software deployment

Software deployment is a post-production process which
consists in making software available for use and then keeping
it operational. It is a complex process that includes a number of
inter-related activities such as installation of the software into
its environment (transfer and configuration), activation, update,
reconfiguration, deactivation and deinstallation [3]. Figure 2
represents the sequence of the activities. Software release and
software retire are carried out on the “producer site”, while
the other activities are carried out on the “deployment site”,
some of them at runtime.

Fig. 2. Software deployment life cycle

Deployment design is handled by an engineer called “de-
ployment designer”. He has to gather information not only
about the software system to deploy and the properties of each
of its components but also about the distributed organization
of the software at runtime. Designing deployment may consist
in expressing properties (commands, requirements. . . ) and
constraints. For instance, the deployment designer may express
that a particular software component should be installed on
some specific devices or on any device, even on incoming
ones in case of dynamic systems, while satisfying a set
of constraints. As a concrete example, consider a software
component C which should be deployed on each smartphone
which runs Android, has the GPS function active, and is
connected by WiFi.

A deployment plan is a mapping between a software
system and the deployment domain, increased by data for
configuration. The deployment domain is a distributed set

of machines which host the software system and provides
resources to it. The ultimate purpose of deployment design is to
produce a deployment plan which complies with the expressed
properties and constraints. Usually, this task is undertaken by
a human actor.

At runtime, software must be deployed on the domain
according to the deployment plan, this task being possibly
undertaken or controlled by an operator called “deployment
operator”. Automatization of deployment aims at avoiding (or
limiting) human handling in the management of deployment.

Figure 3 shows the timeline of deployment.

Fig. 3. Software deployment timeline

III. DEPLOYMENT OF MULTI-SCALE SOFTWARE SYSTEMS

In this work, we focus on the design phase of the deploy-
ment process, and precisely on the ways for a deployment
designer to express deployment properties and constraints.

Here is an example, in order to illustrate our aim. Let’s
consider a software system made of different components,
each of them having specific individual runtime requirements
(memory, OS. . . ). The deployment designer may want to
express not only these requirements, but also some other ones
related to the distribution of the components. For instance,
the deployment designer may want that (C1. . . C5 are software
components):

• a resource-consuming component C1 runs on a cloud,

• C2 runs on several machines in a given geographical
area (e.g. a city),

• C3 runs on the same device than C1,

• C4 runs on any smartphone of the domain,

• C5 runs on the same network than C4,

• C4 runs on any new smartphone entering in the
domain at runtime.

Moreover, some components may have constraints to run
properly, such as:

• C1 requires that the component C0 is installed and
activated locally,

• C2 must run on a Linux OS and an Arduino (single-
board microcontroller) must be connected to the host-
ing device,

• C3 requires 40M of free RAM at activation time
(Constr1),

• C5 requires a 100G hard drive (Constr2).



Fig. 4. Example of multi-scale deployment

Figure 4 illustrates such an example.

This section analyses the problem of software deployment
of multi-scale systems from the design point of view, and then
motivates the use of a Domain-Specific Language (DSL) which
supports the expression of multi-scale deployment properties
and constraints.

A. Analysis

Software deployment in large-scale and open distributed
systems (such as ubiquitous, mobile or peer-to-peer systems)
is still an open issue [9]. There, existing tools for software
deployment are reaching their limits: they use techniques
that do not suit the complexity of the issues encountered in
such infrastructures. Indeed, they are only valid within fixed
network topology and do not take into account neither host
and network variations of quality of service nor failures of
machines or links which are typical of these environments.

In addition, users of the deployment tools are required
to manage manually the deployment activities, which needs
a significant human involvement, possibly out of reach of
concerned end-users (for example, in case of personal devices
like smartphones): for large distributed component-based ap-
plications with many constraints and requirements, it is too
hard and complicated to accomplish the deployment process
manually. Consequently, there is a need for new infrastructures
and techniques that automate the deployment process and allow
a dynamic reconfiguration of software systems with few or
without human intervention.

Additionally, in our opinion, decentralization, openness and
dynamics (mobility, variations of resources availability and
quality, disconnections, failures) are in favour of autonomy:
the autonomic computing approach [7], where the system
self-manages some properties (self-configuration, self-healing),
may support solutions which satisfy the requirements of dis-
tributed multi-scale software systems deployment. This idea
lead us to “autonomic software deployment” [9].

B. Our approach

Instead of directly expressing a statically defined deploy-
ment plan, we propose to express deployment constraints and
properties from which the deployment plan can be computed.
In this paper, we focus on the expression of the constraints
and properties, not on the construction of the plan. For this
last point, our idea is use a constraint solver, supplying it with
an up-to-date description of a domain (available hosts and their
properties).

So, in order to build the plan, and moreover to allow
management of deployment at runtime, data about the domain
must be collected. Thus, a system of probes should run and
collect data ranging from the domain properties such as free
RAM to more abstract ones related to multi-scale (dimensions
and scales). Relations between probes and properties can be
made explicit at the same level as the deployment properties
and constraints in order to allow the specification of the system
of probes at the deployment design time.

C. Towards a DSL for autonomic software deployment of
multi-scale systems

In this ongoing work, our aim is to provide a solution
for the expression of the deployment design, concerning in
particular the dimensions and other significant properties of
multi-scale software systems.

Deployment is a specific operation on software. Its design
requires particular skills. Thus, we think that the deployment
designer could benefit from a dedicated language when stating
the properties and constraints. So, we propose a domain-
specific language (DSL) dedicated to the description of de-
ployment constraints and properties. DSLs present several
advantages: they use idioms and abstractions of the targeted
domain, so they can be used by domain experts; they are light,
so easy to maintain, portable, and reusable; they are most often
well documented, coherent and reliable, and optimized for the
targeted domain [15], [13], [14].

IV. RELATED WORK ON DSL FOR SOFTWARE

DEPLOYMENT

Existing deployment platforms propose several formalisms
to express deployment constraints, software dependencies,
and hardware preferences of software to deploy. Usually, the
formalisms include architecture description languages (ADL),
deployment descriptors (like XML descriptor deployment), and
dedicated languages (DSL). In this section, we overview some
works on software deployment that propose the use of a DSL.

Dearle et al. [5], [4] present a framework for autonomic
management of deployment and configuration of distributed
applications. To facilitate the work of the deployment designer,
they define a DSL, Deladas. Using it, a set of available
resources and a set constraints are specified. These defi-
nitions permit to generate an applicable deployment plan.
The constraint-based approach avoids the deployment designer
specifying precisely the location of each component, and then
rewriting all the plan in case of problems with a resource.
Deladas does not allow to express multi-scale properties and
constraints. Openness is neither taken into account, the set
of hosts is statically defined in a file by the deployment



manager. Deployment is still autonomic: at runtime, when
the deployment middleware detects a constraint violation (de-
pendencies between components), it tries to solve it by a
local adaptation. The new deployment plan is computed by
a centralized management component called MADME.

Matougui et al. [9] present a middleware framework de-
signed to reduce the human cost for setting up software
deployment and to deal with failure-prone and change-prone
environments. This is achieved by the use of a high-level
constraint-based language and an autonomic agent-based sys-
tem for establishing and maintaining software deployment. In
the DSL (called j-ASD), some expressions dedicated to deal
with autonomic issues are proposed. But they target large-scale
or dynamic environments such as grids or P2P systems, only
within the same network scale.

Sledviewsky et al. [12] present an approach that incorpo-
rate DSL for software development and deployment on the
cloud. Firstly, the developer defines a DSL in order to describe
a model of the application with it. Secondly, this model is
translated into specific code and automatically deployed onto
the Cloud. This approach is specific to deployment on the
cloud. It highlights the need to facilitate the work of the
deployment designer, and that using DSL is a solution for that.

V. PROPOSITION OF A DSL

In this section, we describe by means of an example our
proposition of a DSL dedicated to the autonomic deployment
of multi-scale distributed systems. Tokens and keywords are
presented further and the grammar is defined in EBNF syntax1.

A. Example

We give below a full example of code for the deployment
of the multi-scale distributed software system presented in
Section III. Then, we use this code to present and explain
the main elements of the language.

1 Include "base.jasd"

2 //base.jasd defines some probes

3 //like OS, RAM, CPU, Network, and HD

5 Component C0 {

6 Version 1

7 URL "http://test.fr/plopC0.jar"

8 }

10 Component C1 {

11 Version 1

12 URL "http://test.fr/plopC1.jar"

13 Require C0

14 DeploymentInterface fr.enac.plop.DIimpl

15 }

17 Probe Arduino {

18 ProbeInterface fr.irit.arduino.DIimpl

19 URL "http://irit.fr/INCOME/arduinoProbe.jar"

20 }

22 Constraint AliveArduino {

23 Arduino Exist, Alive

24 }

1The grammar is available at http://www.irit.fr/∼Raja.Boujbel/ebnf-jasd.
html

27 Constraint LinuxCstr {

28 OS.Name = "Linux" //OS probe

29 }

31 Constraint Constr1 {

32 RAM.FreeSpace >= 40 //RAM probe

33 }

35 Constraint Constr2 {

36 CPU.Load < 80 //CPU probe

37 Network.BandWith > 1024 //Network probe

38 }

40 Constraint Constr3 {

41 HD.size > 100 //HD probe

42 }

44 Component C2 {

45 Version 1

46 URL "http://test.fr/plopC2.jar"

47 DeploymentInterface fr.enac.plop.DIimpl

48 Constraint Constr1, LinuxCstr, AliveArduino

49 Soft Constraint Constr2

50 }

52 Component C3 {

53 Version 1

54 URL "http://test.fr/plopC3.jar"

55 DeploymentInterface fr.enac.plop.DIimpl

56 Soft Constraint Constr1

57 }

59 Component C4 {

60 Version 1

61 URL "http://test.fr/plopC4.jar"

62 DeploymentInterface fr.enac.plop.DIimpl

63 Soft Constraint Constr1, Constr2

64 }

66 Component C5 {

67 Version 2

68 URL "http://irit.fr/plopC5.jar"

69 Constraint Constr3

70 }

72 MultiScaleProbe Geography {

73 MultiScaleProbeInterface

74 eu.telecom-sudparis.GeographyProbeImpl

75 URL "http://it-sudparis.eu/INCOME/GeoProbe.jar"

76 }

78 //other MultiScale probes are described

79 //the same way

80 //{...}

82 Deployment {

83 AllHosts LinuxCstr

85 C1 @ Constr2, Device.Cloud

86 C2 @ 2..4 Geography.City("Toulouse")

87 C3 @ SameValue Device(C1)

88 C4 @ All Device.SmartPhone

89 C5 @ SameValue Network.MAN(C4)

90 }

B. Elements of the language

1) Component: The keyword Component defines a com-
ponent. The Version field is useful for the update activity.
The URL field specifies the address where the component
is reachable for download. The DeploymentInterface

field specifies the interface of the component, necessary for
the interactions with the deployment system: the latter must



interact with the component, for configuring and starting it, for
managing it at runtime, and for stopping it. The Require field
lists required components: at installation time of the compo-
nent, if the required component is not installed, the deployment
system must install it on the device. The Constraint field
lists hardware and software constraints of the component. By
default, these constraints are hard, i.e. they must be satisfied
both when generating the deployment plan and at runtime (so,
the deployment system must check that there is no constraint
violation). For the keyword Soft, see 6).

2) Probe: The keyword Probe defines a probe. A
probe has two mandatory fields. The first one, the Probe-

Interface, specifies the interface of the probe. This inter-
face is needed for interactions with the deployment system for
information retrieval. The second one, the URL, specifies the
address where the probe is reachable for download.

3) Constraint: The keyword Constraint defines a con-
straint on a component. It has one kind of field, a probe value
test. There can be several tests in a Constraint, like in
Constr2 (line 35). A probe value test is composed by two
or three parts. If the constraint is related to the existence or
the liveliness of a hardware or a software component, the
probe value test is composed by the probe name and keywords
Exists or Alive. These keywords are defined for any probe
interface. For example, at line 23, the used probe is Arduino,
and the constraint uses default methods Exists and Alive.
If the constraint is about a value, the probe value is composed
by the probe name, a method call, a comparator, and a value.
There, the method is probe specific, and defined in the probe
interface For example, at line 28, the used probe is OS, the
information method used is Name, and its value is compared
to the string "Linux".

4) Multi-scale Probe: The keyword MultiScaleProbe

defines a multi-scale probe, useful for the deployment. Like
Probe, it has only two fields. The first one, MultiScale-
ProbeInterface, specifies the interface of the probe. The
second one, URL specifies the address where the implemen-
tation of the probe is reachable for download. In our current
solution, scales are defined in the implementation of probes,
and the probes allows to identify the scale of a given device.

5) Deployment: The keyword Deployment defines
the deployment properties and constraints. The keyword
AllHosts allows to specify and delimit the deployment
domain: line 83 expresses that the deployment covers all hosts
which satisfy the constraint LinuxCstr. The operator @

allows to specify deployment constraints specific to a com-
ponent. These constraints can take several forms: the device
hosting the component C1 must satisfy Constr2 and be on
the scale Cloud on the dimension Device (line 85); the
component C2 must be deployed on 2 to 4 devices, in the
city Toulouse (line 86); the component C4 must be deployed
on all devices of the dimension Device.Smartphone, i.e.
on all smartphones of the domain (line 88). The keyword
SameValue expresses that the component must be in the
same dimension or scale as a referred one: the component
C3 (line 87) must be deployed on one device (implicit) which
has the same value in the dimension Device as the device
hosting C1 (in other words, C3 should be deployed on the
same device as C1); the component C5 must be deployed on

a device which is situated in the same medium area network
(MAN) as the device hosting C4 (line 89).

6) Dynamics and openness: Some constructions of the
DSL are particularly well-adapted for the expression of prop-
erties related to dynamics and openness. By default, the
constraints should be satisfied during the entire application
runtime, and so must be checked dynamically. The keyword
Soft is used to specify that a constraint should be satisfied
initially by the generated deployment plan, but maybe not
satisfied at runtime. When specifying the Deployment, the
keyword All allows to specify that a component should be
deployed on a subdomain which satisfies (even dynamically)
a property or a constraint. In the example, the component
C4 should be deployed on every smartphone of the domain,
including those which enter in the domain at runtime; so, the
deployment plan evolves dynamically depending on entering
and leaving devices.

The file must have at least one definition of a component
and one expression of the deployment. Other fields are op-
tional. As the code can be split in several files, the keyword
Include permits to include other files (line 1).

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the first version of a DSL for
multi-scale and autonomic deployment, and explain the various
elements of the language by means of an example. This DSL
allows to express the deployment constraints of a multi-scale
software system and its components. These constraints drive
the computation of the deployment plan, and are used by the
autonomic deployment system do detect (and possibly repair)
any constraint violation at the application runtime.

Another part of our work concerns the realization of
this autonomic deployment system. We are designing it as a
middleware, on the same basis than first experiments described
in our previous work [9]. This middleware will enable deploy-
ment in multi-scale environments. It will provide the probes
needed to gather informations about the hosts.

We believe that a DSL is the best way for a deployment
designer to describe deployment constraints. A DSL has much
more expressiveness than any Markup Language (such as
XML), and is more efficient since the deployment designer
expresses (and read) directly concepts of its field of expertise.
Moreover, modern tools for making DSL allows their designers
to integrate several level of validation (not only syntactic but
also semantic).

Presently, the DSL targets the installation and activation
activities. Other activities and features, as constraint infringe-
ment at application runtime, are hard coded in the deployment
manager system. In the future, we can move some of them
at the DSL level, to increase expressiveness and flexibility
when designing deployment. For example, we can add in the
grammar the keyword on-deinstall or on-update to
define actions to perform when deinstalling or updating a
component.

Focusing on multi-scale systems, we do need a sound and
extensible vocabulary to describe the dimensions and their
scales. In the INCOME project, another ongoing work aims at



defining an ontology for multi-scale distributed systems. We
plan to integrate these concepts in our DSL.

Besides, we are currently working on a toolchain for our
DSL. Using Xtext and Xtend frameworks [6], we have realized
an Eclipse plugin for the edition of the DSL that makes it
multi-platform compliant and easy-to-use for a deployment
designer. The DSL and the Eclipse plugin are part of the
deliverables of the INCOME project.

ACKNOWLEDGMENTS

This work is part of the French National Research Agency
(ANR) project INCOME2 (ANR-11-INFR-009, 2012-2015).
The authors thank all the members of the project that con-
tributed directly or indirectly to this paper.

REFERENCES

[1] J.-P. Arcangeli, A. Bouzeghoub, V. Camps, C. M.-F. Canut, S. Chabri-
don, D. Conan, T. Desprats, R. Laborde, E. Lavinal, S. Leriche,
H. Maurel, A. Péninou, C. Taconet, and P. Zaraté. INCOME - Multi-
scale Context Management for the Internet of Things. In F. Paternò,
B. E. R. d. Ruyter, P. Markopoulos, C. Santoro, E. v. Loenen, and
K. Luyten, editors, AmI, volume 7683 of Lecture Notes in Computer

Science, pages 338–347. Springer, 2012.

[2] G. Blair and P. Grace. Emergent Middleware: Tackling the Interop-
erability Problem. Internet Computing, IEEE, 16(1):78–82, jan.-feb.
2012.

[3] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van Der Hoek,
and A. L. Wolf. A characterization framework for software deployment
technologies. Technical report, DTIC Document, 1998.

[4] A. Dearle, G. N. C. Kirby, and A. McCarthy. A Middleware Frame-
work for Constraint-Based Deployment and Autonomic Management of
Distributed Applications. CoRR, abs/1006.4733, 2010.

[5] A. Dearle, G. N. C. Kirby, and A. J. McCarthy. A Framework
for Constraint-Based Deployment and Autonomic Management of
Distributed Applications. In ICAC, 1st International Conference on
Autonomic Computing (ICAC 2004), 17-19 May 2004, New York, NY,
USA, pages 300–301. IEEE Computer Society, 2004.

2http://anr-income.fr

[6] M. Eysholdt and H. Behrens. Xtext: implement your language faster
than the quick and dirty way. In W. R. Cook, S. Clarke, and M. C.
Rinard, editors, SPLASH/OOPSLA Companion, Companion to the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, SPLASH/OOPSLA 2010, Oc-
tober 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 307–309. ACM,
2010.

[7] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[8] M. Kessis, C. Roncancio, and A. Lefebvre. DASIMA: A Flexible
Management Middleware in Multi-Scale Contexts. In Information

Technology: New Generations, 2009. ITNG ’09. Sixth International

Conference on, pages 1390–1396, april 2009.

[9] M. E. A. Matougui and S. Leriche. A middleware architecture
for autonomic software deployment. In ICSNC ’12 : The Seventh

International Conference on Systems and Networks Communications,
pages 13–20, Lisbon, Portugal, 2012. XPS. 12619 12619 .

[10] S. Rottenberg, S. Leriche, C. Lecocq, and C. Taconet. Vers une
définition d’un système réparti multi-échelle. In Journées francophones

Mobilité et Ubiquité (UBIMOB). Cépaduès Editions, 2012. In French.

[11] S. Rotteneberg, S. Leriche, C. Taconet, C. Lecocq, and T. Desprats.
From Smartdust to Cloud: The Emergence of Multiscale Distributed
Systems. Unpublished Paper, 2013.

[12] K. Sledziewski, B. Bordbar, and R. Anane. A DSL-Based Approach
to Software Development and Deployment on Cloud. In AINA, 24th
IEEE International Conference on Advanced Information Networking
and Applications, AINA 2010, Perth, Australia, 20-13 April 2010, pages
414–421. IEEE Computer Society, 2010.

[13] M. Strembeck and U. Zdun. An approach for the systematic develop-
ment of domain-specific languages. Software: Practice and Experience,
39(15):1253–1292, 2009.

[14] J.-P. Tolvanen and S. Kelly. Integrating models with domain-specific
modeling languages. In Proceedings of the 10th Workshop on Domain-

Specific Modeling, DSM ’10, pages 10–1, New York, NY, USA, 2010.
ACM.

[15] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[16] M. van Steen, G. Pierre, and S. Voulgaris. Challenges in very large
distributed systems. Journal of Internet Services and Applications,
3(1):59–66, 2012. 10.1007/s13174-011-0043-x.


